Merge remote-tracking branch 'remotes/cohuck-gitlab/tags/s390x-20210316' into staging
[qemu.git] / hw / misc / imx6_src.c
blob79f437591132afe5ebdd2bb60d857da72aa127a9
1 /*
2 * IMX6 System Reset Controller
4 * Copyright (c) 2015 Jean-Christophe Dubois <jcd@tribudubois.net>
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include "hw/misc/imx6_src.h"
13 #include "migration/vmstate.h"
14 #include "qemu/bitops.h"
15 #include "qemu/log.h"
16 #include "qemu/main-loop.h"
17 #include "qemu/module.h"
18 #include "arm-powerctl.h"
19 #include "hw/core/cpu.h"
21 #ifndef DEBUG_IMX6_SRC
22 #define DEBUG_IMX6_SRC 0
23 #endif
25 #define DPRINTF(fmt, args...) \
26 do { \
27 if (DEBUG_IMX6_SRC) { \
28 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX6_SRC, \
29 __func__, ##args); \
30 } \
31 } while (0)
33 static const char *imx6_src_reg_name(uint32_t reg)
35 static char unknown[20];
37 switch (reg) {
38 case SRC_SCR:
39 return "SRC_SCR";
40 case SRC_SBMR1:
41 return "SRC_SBMR1";
42 case SRC_SRSR:
43 return "SRC_SRSR";
44 case SRC_SISR:
45 return "SRC_SISR";
46 case SRC_SIMR:
47 return "SRC_SIMR";
48 case SRC_SBMR2:
49 return "SRC_SBMR2";
50 case SRC_GPR1:
51 return "SRC_GPR1";
52 case SRC_GPR2:
53 return "SRC_GPR2";
54 case SRC_GPR3:
55 return "SRC_GPR3";
56 case SRC_GPR4:
57 return "SRC_GPR4";
58 case SRC_GPR5:
59 return "SRC_GPR5";
60 case SRC_GPR6:
61 return "SRC_GPR6";
62 case SRC_GPR7:
63 return "SRC_GPR7";
64 case SRC_GPR8:
65 return "SRC_GPR8";
66 case SRC_GPR9:
67 return "SRC_GPR9";
68 case SRC_GPR10:
69 return "SRC_GPR10";
70 default:
71 sprintf(unknown, "%u ?", reg);
72 return unknown;
76 static const VMStateDescription vmstate_imx6_src = {
77 .name = TYPE_IMX6_SRC,
78 .version_id = 1,
79 .minimum_version_id = 1,
80 .fields = (VMStateField[]) {
81 VMSTATE_UINT32_ARRAY(regs, IMX6SRCState, SRC_MAX),
82 VMSTATE_END_OF_LIST()
86 static void imx6_src_reset(DeviceState *dev)
88 IMX6SRCState *s = IMX6_SRC(dev);
90 DPRINTF("\n");
92 memset(s->regs, 0, sizeof(s->regs));
94 /* Set reset values */
95 s->regs[SRC_SCR] = 0x521;
96 s->regs[SRC_SRSR] = 0x1;
97 s->regs[SRC_SIMR] = 0x1F;
100 static uint64_t imx6_src_read(void *opaque, hwaddr offset, unsigned size)
102 uint32_t value = 0;
103 IMX6SRCState *s = (IMX6SRCState *)opaque;
104 uint32_t index = offset >> 2;
106 if (index < SRC_MAX) {
107 value = s->regs[index];
108 } else {
109 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
110 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
114 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx6_src_reg_name(index), value);
116 return value;
120 /* The reset is asynchronous so we need to defer clearing the reset
121 * bit until the work is completed.
124 struct SRCSCRResetInfo {
125 IMX6SRCState *s;
126 int reset_bit;
129 static void imx6_clear_reset_bit(CPUState *cpu, run_on_cpu_data data)
131 struct SRCSCRResetInfo *ri = data.host_ptr;
132 IMX6SRCState *s = ri->s;
134 assert(qemu_mutex_iothread_locked());
136 s->regs[SRC_SCR] = deposit32(s->regs[SRC_SCR], ri->reset_bit, 1, 0);
137 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n",
138 imx6_src_reg_name(SRC_SCR), s->regs[SRC_SCR]);
140 g_free(ri);
143 static void imx6_defer_clear_reset_bit(int cpuid,
144 IMX6SRCState *s,
145 unsigned long reset_shift)
147 struct SRCSCRResetInfo *ri;
148 CPUState *cpu = arm_get_cpu_by_id(cpuid);
150 if (!cpu) {
151 return;
154 ri = g_malloc(sizeof(struct SRCSCRResetInfo));
155 ri->s = s;
156 ri->reset_bit = reset_shift;
158 async_run_on_cpu(cpu, imx6_clear_reset_bit, RUN_ON_CPU_HOST_PTR(ri));
162 static void imx6_src_write(void *opaque, hwaddr offset, uint64_t value,
163 unsigned size)
165 IMX6SRCState *s = (IMX6SRCState *)opaque;
166 uint32_t index = offset >> 2;
167 unsigned long change_mask;
168 unsigned long current_value = value;
170 if (index >= SRC_MAX) {
171 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
172 HWADDR_PRIx "\n", TYPE_IMX6_SRC, __func__, offset);
173 return;
176 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx6_src_reg_name(index),
177 (uint32_t)current_value);
179 change_mask = s->regs[index] ^ (uint32_t)current_value;
181 switch (index) {
182 case SRC_SCR:
184 * On real hardware when the system reset controller starts a
185 * secondary CPU it runs through some boot ROM code which reads
186 * the SRC_GPRX registers controlling the start address and branches
187 * to it.
188 * Here we are taking a short cut and branching directly to the
189 * requested address (we don't want to run the boot ROM code inside
190 * QEMU)
192 if (EXTRACT(change_mask, CORE3_ENABLE)) {
193 if (EXTRACT(current_value, CORE3_ENABLE)) {
194 /* CORE 3 is brought up */
195 arm_set_cpu_on(3, s->regs[SRC_GPR7], s->regs[SRC_GPR8],
196 3, false);
197 } else {
198 /* CORE 3 is shut down */
199 arm_set_cpu_off(3);
201 /* We clear the reset bits as the processor changed state */
202 imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
203 clear_bit(CORE3_RST_SHIFT, &change_mask);
205 if (EXTRACT(change_mask, CORE2_ENABLE)) {
206 if (EXTRACT(current_value, CORE2_ENABLE)) {
207 /* CORE 2 is brought up */
208 arm_set_cpu_on(2, s->regs[SRC_GPR5], s->regs[SRC_GPR6],
209 3, false);
210 } else {
211 /* CORE 2 is shut down */
212 arm_set_cpu_off(2);
214 /* We clear the reset bits as the processor changed state */
215 imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
216 clear_bit(CORE2_RST_SHIFT, &change_mask);
218 if (EXTRACT(change_mask, CORE1_ENABLE)) {
219 if (EXTRACT(current_value, CORE1_ENABLE)) {
220 /* CORE 1 is brought up */
221 arm_set_cpu_on(1, s->regs[SRC_GPR3], s->regs[SRC_GPR4],
222 3, false);
223 } else {
224 /* CORE 1 is shut down */
225 arm_set_cpu_off(1);
227 /* We clear the reset bits as the processor changed state */
228 imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
229 clear_bit(CORE1_RST_SHIFT, &change_mask);
231 if (EXTRACT(change_mask, CORE0_RST)) {
232 arm_reset_cpu(0);
233 imx6_defer_clear_reset_bit(0, s, CORE0_RST_SHIFT);
235 if (EXTRACT(change_mask, CORE1_RST)) {
236 arm_reset_cpu(1);
237 imx6_defer_clear_reset_bit(1, s, CORE1_RST_SHIFT);
239 if (EXTRACT(change_mask, CORE2_RST)) {
240 arm_reset_cpu(2);
241 imx6_defer_clear_reset_bit(2, s, CORE2_RST_SHIFT);
243 if (EXTRACT(change_mask, CORE3_RST)) {
244 arm_reset_cpu(3);
245 imx6_defer_clear_reset_bit(3, s, CORE3_RST_SHIFT);
247 if (EXTRACT(change_mask, SW_IPU2_RST)) {
248 /* We pretend the IPU2 is reset */
249 clear_bit(SW_IPU2_RST_SHIFT, &current_value);
251 if (EXTRACT(change_mask, SW_IPU1_RST)) {
252 /* We pretend the IPU1 is reset */
253 clear_bit(SW_IPU1_RST_SHIFT, &current_value);
255 s->regs[index] = current_value;
256 break;
257 default:
258 s->regs[index] = current_value;
259 break;
263 static const struct MemoryRegionOps imx6_src_ops = {
264 .read = imx6_src_read,
265 .write = imx6_src_write,
266 .endianness = DEVICE_NATIVE_ENDIAN,
267 .valid = {
269 * Our device would not work correctly if the guest was doing
270 * unaligned access. This might not be a limitation on the real
271 * device but in practice there is no reason for a guest to access
272 * this device unaligned.
274 .min_access_size = 4,
275 .max_access_size = 4,
276 .unaligned = false,
280 static void imx6_src_realize(DeviceState *dev, Error **errp)
282 IMX6SRCState *s = IMX6_SRC(dev);
284 memory_region_init_io(&s->iomem, OBJECT(dev), &imx6_src_ops, s,
285 TYPE_IMX6_SRC, 0x1000);
286 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
289 static void imx6_src_class_init(ObjectClass *klass, void *data)
291 DeviceClass *dc = DEVICE_CLASS(klass);
293 dc->realize = imx6_src_realize;
294 dc->reset = imx6_src_reset;
295 dc->vmsd = &vmstate_imx6_src;
296 dc->desc = "i.MX6 System Reset Controller";
299 static const TypeInfo imx6_src_info = {
300 .name = TYPE_IMX6_SRC,
301 .parent = TYPE_SYS_BUS_DEVICE,
302 .instance_size = sizeof(IMX6SRCState),
303 .class_init = imx6_src_class_init,
306 static void imx6_src_register_types(void)
308 type_register_static(&imx6_src_info);
311 type_init(imx6_src_register_types)