2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "qemu/units.h"
26 #include "sysemu/block-backend.h"
27 #include "hw/qdev-properties.h"
28 #include "hw/qdev-properties-system.h"
29 #include "hw/ssi/ssi.h"
30 #include "migration/vmstate.h"
31 #include "qemu/bitops.h"
33 #include "qemu/module.h"
34 #include "qemu/error-report.h"
35 #include "qapi/error.h"
37 #include "qom/object.h"
39 /* Fields for FlashPartInfo->flags */
41 /* erase capabilities */
44 /* set to allow the page program command to write 0s back to 1. Useful for
45 * modelling EEPROM with SPI flash command set
49 /* 16 MiB max in 3 byte address mode */
50 #define MAX_3BYTES_SIZE 0x1000000
52 #define SPI_NOR_MAX_ID_LEN 6
54 typedef struct FlashPartInfo
{
55 const char *part_name
;
57 * This array stores the ID bytes.
58 * The first three bytes are the JEDIC ID.
59 * JEDEC ID zero means "no ID" (mostly older chips).
61 uint8_t id
[SPI_NOR_MAX_ID_LEN
];
63 /* there is confusion between manufacturers as to what a sector is. In this
64 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
65 * command (opcode 0xd8).
72 * Big sized spi nor are often stacked devices, thus sometime
73 * replace chip erase with die erase.
74 * This field inform how many die is in the chip.
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82 .part_name = _part_name,\
84 ((_jedec_id) >> 16) & 0xff,\
85 ((_jedec_id) >> 8) & 0xff,\
87 ((_ext_id) >> 8) & 0xff,\
90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91 .sector_size = (_sector_size),\
92 .n_sectors = (_n_sectors),\
97 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
98 .part_name = _part_name,\
100 ((_jedec_id) >> 16) & 0xff,\
101 ((_jedec_id) >> 8) & 0xff,\
103 ((_ext_id) >> 16) & 0xff,\
104 ((_ext_id) >> 8) & 0xff,\
108 .sector_size = (_sector_size),\
109 .n_sectors = (_n_sectors),\
114 #define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
116 .part_name = _part_name,\
118 ((_jedec_id) >> 16) & 0xff,\
119 ((_jedec_id) >> 8) & 0xff,\
121 ((_ext_id) >> 8) & 0xff,\
124 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
125 .sector_size = (_sector_size),\
126 .n_sectors = (_n_sectors),\
131 #define JEDEC_NUMONYX 0x20
132 #define JEDEC_WINBOND 0xEF
133 #define JEDEC_SPANSION 0x01
135 /* Numonyx (Micron) Configuration register macros */
136 #define VCFG_DUMMY 0x1
137 #define VCFG_WRAP_SEQUENTIAL 0x2
138 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
139 #define NVCFG_XIP_MODE_MASK (7 << 9)
140 #define VCFG_XIP_MODE_DISABLED (1 << 3)
141 #define CFG_DUMMY_CLK_LEN 4
142 #define NVCFG_DUMMY_CLK_POS 12
143 #define VCFG_DUMMY_CLK_POS 4
144 #define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
145 #define EVCFG_VPP_ACCELERATOR (1 << 3)
146 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
147 #define NVCFG_DUAL_IO_MASK (1 << 2)
148 #define EVCFG_DUAL_IO_DISABLED (1 << 6)
149 #define NVCFG_QUAD_IO_MASK (1 << 3)
150 #define EVCFG_QUAD_IO_DISABLED (1 << 7)
151 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
152 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
154 /* Numonyx (Micron) Flag Status Register macros */
155 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
156 #define FSR_FLASH_READY (1 << 7)
158 /* Spansion configuration registers macros. */
159 #define SPANSION_QUAD_CFG_POS 0
160 #define SPANSION_QUAD_CFG_LEN 1
161 #define SPANSION_DUMMY_CLK_POS 0
162 #define SPANSION_DUMMY_CLK_LEN 4
163 #define SPANSION_ADDR_LEN_POS 7
164 #define SPANSION_ADDR_LEN_LEN 1
167 * Spansion read mode command length in bytes,
168 * the mode is currently not supported.
171 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
172 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
174 static const FlashPartInfo known_devices
[] = {
175 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
176 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
177 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
179 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
180 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
181 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
183 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
184 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
185 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
186 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
188 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K
) },
190 /* Atmel EEPROMS - it is assumed, that don't care bit in command
191 * is set to 0. Block protection is not supported.
193 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM
) },
194 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM
) },
197 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
198 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
199 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
200 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
201 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K
) },
204 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K
) },
205 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K
) },
207 /* Intel/Numonyx -- xxxs33b */
208 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
209 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
210 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
211 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
214 { INFO("is25lq040b", 0x9d4013, 0, 64 << 10, 8, ER_4K
) },
215 { INFO("is25lp080d", 0x9d6014, 0, 64 << 10, 16, ER_4K
) },
216 { INFO("is25lp016d", 0x9d6015, 0, 64 << 10, 32, ER_4K
) },
217 { INFO("is25lp032", 0x9d6016, 0, 64 << 10, 64, ER_4K
) },
218 { INFO("is25lp064", 0x9d6017, 0, 64 << 10, 128, ER_4K
) },
219 { INFO("is25lp128", 0x9d6018, 0, 64 << 10, 256, ER_4K
) },
220 { INFO("is25lp256", 0x9d6019, 0, 64 << 10, 512, ER_4K
) },
221 { INFO("is25wp032", 0x9d7016, 0, 64 << 10, 64, ER_4K
) },
222 { INFO("is25wp064", 0x9d7017, 0, 64 << 10, 128, ER_4K
) },
223 { INFO("is25wp128", 0x9d7018, 0, 64 << 10, 256, ER_4K
) },
224 { INFO("is25wp256", 0x9d7019, 0, 64 << 10, 512, ER_4K
) },
227 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K
) },
228 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
229 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
230 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
231 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
232 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
233 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
234 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
235 { INFO6("mx25l25635e", 0xc22019, 0xc22019, 64 << 10, 512, 0) },
236 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
237 { INFO("mx66l51235f", 0xc2201a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
238 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
239 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
240 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
243 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K
) },
244 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K
) },
245 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K
) },
246 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K
) },
247 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K
) },
248 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K
) },
249 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K
) },
250 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
251 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K
) },
252 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
253 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
254 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
255 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
256 { INFO("n25q512ax3", 0x20ba20, 0x1000, 64 << 10, 1024, ER_4K
) },
257 { INFO("mt25ql512ab", 0x20ba20, 0x1044, 64 << 10, 1024, ER_4K
| ER_32K
) },
258 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
259 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K
, 4) },
260 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
261 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K
, 2) },
263 /* Spansion -- single (large) sector size only, at least
264 * for the chips listed here (without boot sectors).
266 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
267 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K
) },
268 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
269 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
270 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
271 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
272 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
273 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
274 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
275 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
276 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
277 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
278 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
279 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
280 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
281 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
282 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
284 /* Spansion -- boot sectors support */
285 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
286 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
288 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
289 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
290 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
291 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
292 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
293 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
294 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
295 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
296 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
297 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K
) },
299 /* ST Microelectronics -- newer production may have feature updates */
300 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
301 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
302 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
303 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
304 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
305 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
306 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
307 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
308 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
309 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
311 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
312 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
313 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
315 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
316 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
317 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
319 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
320 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
321 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
322 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
324 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
325 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
326 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
327 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
328 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
329 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
330 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
331 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
332 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K
) },
333 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
334 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
335 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K
) },
336 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K
) },
337 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K
) },
338 { INFO("w25q512jv", 0xef4020, 0, 64 << 10, 1024, ER_4K
) },
350 BULK_ERASE_60
= 0x60,
383 ERASE4_SECTOR
= 0xdc,
385 EN_4BYTE_ADDR
= 0xB7,
386 EX_4BYTE_ADDR
= 0xE9,
388 EXTEND_ADDR_READ
= 0xC8,
389 EXTEND_ADDR_WRITE
= 0xC5,
395 * Micron: 0x35 - enable QPI
396 * Spansion: 0x35 - read control register
417 STATE_COLLECTING_DATA
,
418 STATE_COLLECTING_VAR_LEN_DATA
,
438 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
441 SSIPeripheral parent_obj
;
450 uint8_t data
[M25P80_INTERNAL_DATA_BUFFER_SZ
];
454 uint8_t needed_bytes
;
455 uint8_t cmd_in_progress
;
457 uint32_t nonvolatile_cfg
;
458 /* Configuration register for Macronix */
459 uint32_t volatile_cfg
;
460 uint32_t enh_volatile_cfg
;
461 /* Spansion cfg registers. */
462 uint8_t spansion_cr1nv
;
463 uint8_t spansion_cr2nv
;
464 uint8_t spansion_cr3nv
;
465 uint8_t spansion_cr4nv
;
466 uint8_t spansion_cr1v
;
467 uint8_t spansion_cr2v
;
468 uint8_t spansion_cr3v
;
469 uint8_t spansion_cr4v
;
471 bool four_bytes_address_mode
;
479 const FlashPartInfo
*pi
;
484 SSIPeripheralClass parent_class
;
488 #define TYPE_M25P80 "m25p80-generic"
489 OBJECT_DECLARE_TYPE(Flash
, M25P80Class
, M25P80
)
491 static inline Manufacturer
get_man(Flash
*s
)
493 switch (s
->pi
->id
[0]) {
511 static void blk_sync_complete(void *opaque
, int ret
)
513 QEMUIOVector
*iov
= opaque
;
515 qemu_iovec_destroy(iov
);
518 /* do nothing. Masters do not directly interact with the backing store,
519 * only the working copy so no mutexing required.
523 static void flash_sync_page(Flash
*s
, int page
)
527 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
531 iov
= g_new(QEMUIOVector
, 1);
532 qemu_iovec_init(iov
, 1);
533 qemu_iovec_add(iov
, s
->storage
+ page
* s
->pi
->page_size
,
535 blk_aio_pwritev(s
->blk
, page
* s
->pi
->page_size
, iov
, 0,
536 blk_sync_complete
, iov
);
539 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
543 if (!s
->blk
|| !blk_is_writable(s
->blk
)) {
547 assert(!(len
% BDRV_SECTOR_SIZE
));
548 iov
= g_new(QEMUIOVector
, 1);
549 qemu_iovec_init(iov
, 1);
550 qemu_iovec_add(iov
, s
->storage
+ off
, len
);
551 blk_aio_pwritev(s
->blk
, off
, iov
, 0, blk_sync_complete
, iov
);
554 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
557 uint8_t capa_to_assert
= 0;
563 capa_to_assert
= ER_4K
;
568 capa_to_assert
= ER_32K
;
572 len
= s
->pi
->sector_size
;
578 if (s
->pi
->die_cnt
) {
579 len
= s
->size
/ s
->pi
->die_cnt
;
580 offset
= offset
& (~(len
- 1));
582 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: die erase is not supported"
591 trace_m25p80_flash_erase(s
, offset
, len
);
593 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
594 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: %d erase size not supported by"
598 if (!s
->write_enable
) {
599 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: erase with write protect!\n");
602 memset(s
->storage
+ offset
, 0xff, len
);
603 flash_sync_area(s
, offset
, len
);
606 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
608 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
609 flash_sync_page(s
, s
->dirty_page
);
610 s
->dirty_page
= newpage
;
615 void flash_write8(Flash
*s
, uint32_t addr
, uint8_t data
)
617 uint32_t page
= addr
/ s
->pi
->page_size
;
618 uint8_t prev
= s
->storage
[s
->cur_addr
];
620 if (!s
->write_enable
) {
621 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: write with write protect!\n");
625 if ((prev
^ data
) & data
) {
626 trace_m25p80_programming_zero_to_one(s
, addr
, prev
, data
);
629 if (s
->pi
->flags
& EEPROM
) {
630 s
->storage
[s
->cur_addr
] = data
;
632 s
->storage
[s
->cur_addr
] &= data
;
635 flash_sync_dirty(s
, page
);
636 s
->dirty_page
= page
;
639 static inline int get_addr_length(Flash
*s
)
641 /* check if eeprom is in use */
642 if (s
->pi
->flags
== EEPROM
) {
646 switch (s
->cmd_in_progress
) {
661 return s
->four_bytes_address_mode
? 4 : 3;
665 static void complete_collecting_data(Flash
*s
)
669 n
= get_addr_length(s
);
670 s
->cur_addr
= (n
== 3 ? s
->ear
: 0);
671 for (i
= 0; i
< n
; ++i
) {
673 s
->cur_addr
|= s
->data
[i
];
676 s
->cur_addr
&= s
->size
- 1;
678 s
->state
= STATE_IDLE
;
680 trace_m25p80_complete_collecting(s
, s
->cmd_in_progress
, n
, s
->ear
,
683 switch (s
->cmd_in_progress
) {
690 s
->state
= STATE_PAGE_PROGRAM
;
693 /* AAI programming starts from the even address */
694 s
->cur_addr
&= ~BIT(0);
695 s
->state
= STATE_PAGE_PROGRAM
;
709 s
->state
= STATE_READ
;
718 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
721 switch (get_man(s
)) {
723 s
->quad_enable
= !!(s
->data
[1] & 0x02);
726 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
729 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
731 s
->volatile_cfg
= s
->data
[1];
732 s
->four_bytes_address_mode
= extract32(s
->data
[1], 5, 1);
738 if (s
->write_enable
) {
739 s
->write_enable
= false;
743 case EXTEND_ADDR_WRITE
:
747 s
->nonvolatile_cfg
= s
->data
[0] | (s
->data
[1] << 8);
750 s
->volatile_cfg
= s
->data
[0];
753 s
->enh_volatile_cfg
= s
->data
[0];
757 if (get_man(s
) == MAN_SST
) {
758 if (s
->cur_addr
<= 1) {
760 s
->data
[0] = s
->pi
->id
[2];
761 s
->data
[1] = s
->pi
->id
[0];
763 s
->data
[0] = s
->pi
->id
[0];
764 s
->data
[1] = s
->pi
->id
[2];
768 s
->data_read_loop
= true;
769 s
->state
= STATE_READING_DATA
;
771 qemu_log_mask(LOG_GUEST_ERROR
,
772 "M25P80: Invalid read id address\n");
775 qemu_log_mask(LOG_GUEST_ERROR
,
776 "M25P80: Read id (command 0x90/0xAB) is not supported"
785 static void reset_memory(Flash
*s
)
787 s
->cmd_in_progress
= NOP
;
790 s
->four_bytes_address_mode
= false;
794 s
->state
= STATE_IDLE
;
795 s
->write_enable
= false;
796 s
->reset_enable
= false;
797 s
->quad_enable
= false;
798 s
->aai_enable
= false;
800 switch (get_man(s
)) {
803 s
->volatile_cfg
|= VCFG_DUMMY
;
804 s
->volatile_cfg
|= VCFG_WRAP_SEQUENTIAL
;
805 if ((s
->nonvolatile_cfg
& NVCFG_XIP_MODE_MASK
)
806 == NVCFG_XIP_MODE_DISABLED
) {
807 s
->volatile_cfg
|= VCFG_XIP_MODE_DISABLED
;
809 s
->volatile_cfg
|= deposit32(s
->volatile_cfg
,
812 extract32(s
->nonvolatile_cfg
,
817 s
->enh_volatile_cfg
= 0;
818 s
->enh_volatile_cfg
|= EVCFG_OUT_DRIVER_STRENGTH_DEF
;
819 s
->enh_volatile_cfg
|= EVCFG_VPP_ACCELERATOR
;
820 s
->enh_volatile_cfg
|= EVCFG_RESET_HOLD_ENABLED
;
821 if (s
->nonvolatile_cfg
& NVCFG_DUAL_IO_MASK
) {
822 s
->enh_volatile_cfg
|= EVCFG_DUAL_IO_DISABLED
;
824 if (s
->nonvolatile_cfg
& NVCFG_QUAD_IO_MASK
) {
825 s
->enh_volatile_cfg
|= EVCFG_QUAD_IO_DISABLED
;
827 if (!(s
->nonvolatile_cfg
& NVCFG_4BYTE_ADDR_MASK
)) {
828 s
->four_bytes_address_mode
= true;
830 if (!(s
->nonvolatile_cfg
& NVCFG_LOWER_SEGMENT_MASK
)) {
831 s
->ear
= s
->size
/ MAX_3BYTES_SIZE
- 1;
835 s
->volatile_cfg
= 0x7;
838 s
->spansion_cr1v
= s
->spansion_cr1nv
;
839 s
->spansion_cr2v
= s
->spansion_cr2nv
;
840 s
->spansion_cr3v
= s
->spansion_cr3nv
;
841 s
->spansion_cr4v
= s
->spansion_cr4nv
;
842 s
->quad_enable
= extract32(s
->spansion_cr1v
,
843 SPANSION_QUAD_CFG_POS
,
844 SPANSION_QUAD_CFG_LEN
846 s
->four_bytes_address_mode
= extract32(s
->spansion_cr2v
,
847 SPANSION_ADDR_LEN_POS
,
848 SPANSION_ADDR_LEN_LEN
855 trace_m25p80_reset_done(s
);
858 static uint8_t numonyx_mode(Flash
*s
)
860 if (!(s
->enh_volatile_cfg
& EVCFG_QUAD_IO_DISABLED
)) {
862 } else if (!(s
->enh_volatile_cfg
& EVCFG_DUAL_IO_DISABLED
)) {
869 static uint8_t numonyx_extract_cfg_num_dummies(Flash
*s
)
873 assert(get_man(s
) == MAN_NUMONYX
);
875 mode
= numonyx_mode(s
);
876 num_dummies
= extract32(s
->volatile_cfg
, 4, 4);
878 if (num_dummies
== 0x0 || num_dummies
== 0xf) {
879 switch (s
->cmd_in_progress
) {
885 num_dummies
= (mode
== MODE_QIO
) ? 10 : 8;
893 static void decode_fast_read_cmd(Flash
*s
)
895 s
->needed_bytes
= get_addr_length(s
);
896 switch (get_man(s
)) {
897 /* Dummy cycles - modeled with bytes writes instead of bits */
899 s
->needed_bytes
+= 8;
902 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
905 if (extract32(s
->volatile_cfg
, 6, 2) == 1) {
906 s
->needed_bytes
+= 6;
908 s
->needed_bytes
+= 8;
912 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
913 SPANSION_DUMMY_CLK_POS
,
914 SPANSION_DUMMY_CLK_LEN
919 * The Fast Read instruction code is followed by address bytes and
920 * dummy cycles, transmitted via the SI line.
922 * The number of dummy cycles is configurable but this is currently
923 * unmodeled, hence the default value 8 is used.
925 * QPI (Quad Peripheral Interface) mode has different default value
926 * of dummy cycles, but this is unsupported at the time being.
928 s
->needed_bytes
+= 1;
935 s
->state
= STATE_COLLECTING_DATA
;
938 static void decode_dio_read_cmd(Flash
*s
)
940 s
->needed_bytes
= get_addr_length(s
);
941 /* Dummy cycles modeled with bytes writes instead of bits */
942 switch (get_man(s
)) {
944 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
947 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
948 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
949 SPANSION_DUMMY_CLK_POS
,
950 SPANSION_DUMMY_CLK_LEN
954 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
957 switch (extract32(s
->volatile_cfg
, 6, 2)) {
959 s
->needed_bytes
+= 6;
962 s
->needed_bytes
+= 8;
965 s
->needed_bytes
+= 4;
971 * The Fast Read Dual I/O instruction code is followed by address bytes
972 * and dummy cycles, transmitted via the IO1 and IO0 line.
974 * The number of dummy cycles is configurable but this is currently
975 * unmodeled, hence the default value 4 is used.
977 s
->needed_bytes
+= 1;
984 s
->state
= STATE_COLLECTING_DATA
;
987 static void decode_qio_read_cmd(Flash
*s
)
989 s
->needed_bytes
= get_addr_length(s
);
990 /* Dummy cycles modeled with bytes writes instead of bits */
991 switch (get_man(s
)) {
993 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
994 s
->needed_bytes
+= 4;
997 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
998 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
999 SPANSION_DUMMY_CLK_POS
,
1000 SPANSION_DUMMY_CLK_LEN
1004 s
->needed_bytes
+= numonyx_extract_cfg_num_dummies(s
);
1007 switch (extract32(s
->volatile_cfg
, 6, 2)) {
1009 s
->needed_bytes
+= 4;
1012 s
->needed_bytes
+= 8;
1015 s
->needed_bytes
+= 6;
1021 * The Fast Read Quad I/O instruction code is followed by address bytes
1022 * and dummy cycles, transmitted via the IO3, IO2, IO1 and IO0 line.
1024 * The number of dummy cycles is configurable but this is currently
1025 * unmodeled, hence the default value 6 is used.
1027 * QPI (Quad Peripheral Interface) mode has different default value
1028 * of dummy cycles, but this is unsupported at the time being.
1030 s
->needed_bytes
+= 3;
1037 s
->state
= STATE_COLLECTING_DATA
;
1040 static bool is_valid_aai_cmd(uint32_t cmd
)
1042 return cmd
== AAI_WP
|| cmd
== WRDI
|| cmd
== RDSR
;
1045 static void decode_new_cmd(Flash
*s
, uint32_t value
)
1049 s
->cmd_in_progress
= value
;
1050 trace_m25p80_command_decoded(s
, value
);
1052 if (value
!= RESET_MEMORY
) {
1053 s
->reset_enable
= false;
1056 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& !is_valid_aai_cmd(value
)) {
1057 qemu_log_mask(LOG_GUEST_ERROR
,
1058 "M25P80: Invalid cmd within AAI programming sequence");
1074 s
->needed_bytes
= get_addr_length(s
);
1077 s
->state
= STATE_COLLECTING_DATA
;
1081 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1082 s
->needed_bytes
= get_addr_length(s
);
1085 s
->state
= STATE_COLLECTING_DATA
;
1087 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1088 "DIO or QIO mode\n", s
->cmd_in_progress
);
1092 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1093 s
->needed_bytes
= get_addr_length(s
);
1096 s
->state
= STATE_COLLECTING_DATA
;
1098 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1099 "QIO mode\n", s
->cmd_in_progress
);
1105 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1106 s
->needed_bytes
= get_addr_length(s
);
1109 s
->state
= STATE_COLLECTING_DATA
;
1111 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1112 "DIO mode\n", s
->cmd_in_progress
);
1118 decode_fast_read_cmd(s
);
1122 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1123 decode_fast_read_cmd(s
);
1125 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1126 "QIO mode\n", s
->cmd_in_progress
);
1131 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1132 decode_fast_read_cmd(s
);
1134 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1135 "DIO mode\n", s
->cmd_in_progress
);
1141 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_QIO
) {
1142 decode_dio_read_cmd(s
);
1144 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1145 "QIO mode\n", s
->cmd_in_progress
);
1151 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) != MODE_DIO
) {
1152 decode_qio_read_cmd(s
);
1154 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute cmd %x in "
1155 "DIO mode\n", s
->cmd_in_progress
);
1160 if (s
->write_enable
) {
1161 switch (get_man(s
)) {
1163 s
->needed_bytes
= 2;
1164 s
->state
= STATE_COLLECTING_DATA
;
1167 s
->needed_bytes
= 2;
1168 s
->state
= STATE_COLLECTING_VAR_LEN_DATA
;
1171 s
->needed_bytes
= 1;
1172 s
->state
= STATE_COLLECTING_DATA
;
1179 s
->write_enable
= false;
1180 if (get_man(s
) == MAN_SST
) {
1181 s
->aai_enable
= false;
1185 s
->write_enable
= true;
1189 s
->data
[0] = (!!s
->write_enable
) << 1;
1190 if (get_man(s
) == MAN_MACRONIX
|| get_man(s
) == MAN_ISSI
) {
1191 s
->data
[0] |= (!!s
->quad_enable
) << 6;
1193 if (get_man(s
) == MAN_SST
) {
1194 s
->data
[0] |= (!!s
->aai_enable
) << 6;
1199 s
->data_read_loop
= true;
1200 s
->state
= STATE_READING_DATA
;
1204 s
->data
[0] = FSR_FLASH_READY
;
1205 if (s
->four_bytes_address_mode
) {
1206 s
->data
[0] |= FSR_4BYTE_ADDR_MODE_ENABLED
;
1210 s
->data_read_loop
= true;
1211 s
->state
= STATE_READING_DATA
;
1215 if (get_man(s
) != MAN_NUMONYX
|| numonyx_mode(s
) == MODE_STD
) {
1216 trace_m25p80_populated_jedec(s
);
1217 for (i
= 0; i
< s
->pi
->id_len
; i
++) {
1218 s
->data
[i
] = s
->pi
->id
[i
];
1220 for (; i
< SPI_NOR_MAX_ID_LEN
; i
++) {
1224 s
->len
= SPI_NOR_MAX_ID_LEN
;
1226 s
->state
= STATE_READING_DATA
;
1228 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Cannot execute JEDEC read "
1229 "in DIO or QIO mode\n");
1234 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1235 s
->data
[0] |= (!!s
->four_bytes_address_mode
) << 5;
1238 s
->state
= STATE_READING_DATA
;
1243 if (s
->write_enable
) {
1244 trace_m25p80_chip_erase(s
);
1245 flash_erase(s
, 0, BULK_ERASE
);
1247 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: chip erase with write "
1254 s
->four_bytes_address_mode
= true;
1257 s
->four_bytes_address_mode
= false;
1260 case EXTEND_ADDR_READ
:
1261 s
->data
[0] = s
->ear
;
1264 s
->state
= STATE_READING_DATA
;
1267 case EXTEND_ADDR_WRITE
:
1268 if (s
->write_enable
) {
1269 s
->needed_bytes
= 1;
1272 s
->state
= STATE_COLLECTING_DATA
;
1276 s
->data
[0] = s
->nonvolatile_cfg
& 0xFF;
1277 s
->data
[1] = (s
->nonvolatile_cfg
>> 8) & 0xFF;
1280 s
->state
= STATE_READING_DATA
;
1283 if (s
->write_enable
&& get_man(s
) == MAN_NUMONYX
) {
1284 s
->needed_bytes
= 2;
1287 s
->state
= STATE_COLLECTING_DATA
;
1291 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1294 s
->state
= STATE_READING_DATA
;
1297 if (s
->write_enable
) {
1298 s
->needed_bytes
= 1;
1301 s
->state
= STATE_COLLECTING_DATA
;
1305 s
->data
[0] = s
->enh_volatile_cfg
& 0xFF;
1308 s
->state
= STATE_READING_DATA
;
1311 if (s
->write_enable
) {
1312 s
->needed_bytes
= 1;
1315 s
->state
= STATE_COLLECTING_DATA
;
1319 s
->reset_enable
= true;
1322 if (s
->reset_enable
) {
1327 switch (get_man(s
)) {
1329 s
->data
[0] = (!!s
->quad_enable
) << 1;
1332 s
->state
= STATE_READING_DATA
;
1335 s
->quad_enable
= true;
1342 s
->quad_enable
= false;
1345 if (get_man(s
) == MAN_SST
) {
1346 if (s
->write_enable
) {
1347 if (s
->aai_enable
) {
1348 s
->state
= STATE_PAGE_PROGRAM
;
1350 s
->aai_enable
= true;
1351 s
->needed_bytes
= get_addr_length(s
);
1352 s
->state
= STATE_COLLECTING_DATA
;
1355 qemu_log_mask(LOG_GUEST_ERROR
,
1356 "M25P80: AAI_WP with write protect\n");
1359 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1365 s
->state
= STATE_READING_DATA
;
1366 s
->data_read_loop
= true;
1368 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1373 static int m25p80_cs(SSIPeripheral
*ss
, bool select
)
1375 Flash
*s
= M25P80(ss
);
1378 if (s
->state
== STATE_COLLECTING_VAR_LEN_DATA
) {
1379 complete_collecting_data(s
);
1383 s
->state
= STATE_IDLE
;
1384 flash_sync_dirty(s
, -1);
1385 s
->data_read_loop
= false;
1388 trace_m25p80_select(s
, select
? "de" : "");
1393 static uint32_t m25p80_transfer8(SSIPeripheral
*ss
, uint32_t tx
)
1395 Flash
*s
= M25P80(ss
);
1398 trace_m25p80_transfer(s
, s
->state
, s
->len
, s
->needed_bytes
, s
->pos
,
1399 s
->cur_addr
, (uint8_t)tx
);
1403 case STATE_PAGE_PROGRAM
:
1404 trace_m25p80_page_program(s
, s
->cur_addr
, (uint8_t)tx
);
1405 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
1406 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1408 if (get_man(s
) == MAN_SST
&& s
->aai_enable
&& s
->cur_addr
== 0) {
1410 * There is no wrap mode during AAI programming once the highest
1411 * unprotected memory address is reached. The Write-Enable-Latch
1412 * bit is automatically reset, and AAI programming mode aborts.
1414 s
->write_enable
= false;
1415 s
->aai_enable
= false;
1421 r
= s
->storage
[s
->cur_addr
];
1422 trace_m25p80_read_byte(s
, s
->cur_addr
, (uint8_t)r
);
1423 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1426 case STATE_COLLECTING_DATA
:
1427 case STATE_COLLECTING_VAR_LEN_DATA
:
1429 if (s
->len
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1430 qemu_log_mask(LOG_GUEST_ERROR
,
1431 "M25P80: Write overrun internal data buffer. "
1432 "SPI controller (QEMU emulator or guest driver) "
1433 "is misbehaving\n");
1434 s
->len
= s
->pos
= 0;
1435 s
->state
= STATE_IDLE
;
1439 s
->data
[s
->len
] = (uint8_t)tx
;
1442 if (s
->len
== s
->needed_bytes
) {
1443 complete_collecting_data(s
);
1447 case STATE_READING_DATA
:
1449 if (s
->pos
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1450 qemu_log_mask(LOG_GUEST_ERROR
,
1451 "M25P80: Read overrun internal data buffer. "
1452 "SPI controller (QEMU emulator or guest driver) "
1453 "is misbehaving\n");
1454 s
->len
= s
->pos
= 0;
1455 s
->state
= STATE_IDLE
;
1459 r
= s
->data
[s
->pos
];
1460 trace_m25p80_read_data(s
, s
->pos
, (uint8_t)r
);
1462 if (s
->pos
== s
->len
) {
1464 if (!s
->data_read_loop
) {
1465 s
->state
= STATE_IDLE
;
1472 decode_new_cmd(s
, (uint8_t)tx
);
1479 static void m25p80_realize(SSIPeripheral
*ss
, Error
**errp
)
1481 Flash
*s
= M25P80(ss
);
1482 M25P80Class
*mc
= M25P80_GET_CLASS(s
);
1487 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
1491 uint64_t perm
= BLK_PERM_CONSISTENT_READ
|
1492 (blk_supports_write_perm(s
->blk
) ? BLK_PERM_WRITE
: 0);
1493 ret
= blk_set_perm(s
->blk
, perm
, BLK_PERM_ALL
, errp
);
1498 trace_m25p80_binding(s
);
1499 s
->storage
= blk_blockalign(s
->blk
, s
->size
);
1501 if (blk_pread(s
->blk
, 0, s
->storage
, s
->size
) != s
->size
) {
1502 error_setg(errp
, "failed to read the initial flash content");
1506 trace_m25p80_binding_no_bdrv(s
);
1507 s
->storage
= blk_blockalign(NULL
, s
->size
);
1508 memset(s
->storage
, 0xFF, s
->size
);
1512 static void m25p80_reset(DeviceState
*d
)
1514 Flash
*s
= M25P80(d
);
1519 static int m25p80_pre_save(void *opaque
)
1521 flash_sync_dirty((Flash
*)opaque
, -1);
1526 static Property m25p80_properties
[] = {
1527 /* This is default value for Micron flash */
1528 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash
, nonvolatile_cfg
, 0x8FFF),
1529 DEFINE_PROP_UINT8("spansion-cr1nv", Flash
, spansion_cr1nv
, 0x0),
1530 DEFINE_PROP_UINT8("spansion-cr2nv", Flash
, spansion_cr2nv
, 0x8),
1531 DEFINE_PROP_UINT8("spansion-cr3nv", Flash
, spansion_cr3nv
, 0x2),
1532 DEFINE_PROP_UINT8("spansion-cr4nv", Flash
, spansion_cr4nv
, 0x10),
1533 DEFINE_PROP_DRIVE("drive", Flash
, blk
),
1534 DEFINE_PROP_END_OF_LIST(),
1537 static int m25p80_pre_load(void *opaque
)
1539 Flash
*s
= (Flash
*)opaque
;
1541 s
->data_read_loop
= false;
1545 static bool m25p80_data_read_loop_needed(void *opaque
)
1547 Flash
*s
= (Flash
*)opaque
;
1549 return s
->data_read_loop
;
1552 static const VMStateDescription vmstate_m25p80_data_read_loop
= {
1553 .name
= "m25p80/data_read_loop",
1555 .minimum_version_id
= 1,
1556 .needed
= m25p80_data_read_loop_needed
,
1557 .fields
= (VMStateField
[]) {
1558 VMSTATE_BOOL(data_read_loop
, Flash
),
1559 VMSTATE_END_OF_LIST()
1563 static bool m25p80_aai_enable_needed(void *opaque
)
1565 Flash
*s
= (Flash
*)opaque
;
1567 return s
->aai_enable
;
1570 static const VMStateDescription vmstate_m25p80_aai_enable
= {
1571 .name
= "m25p80/aai_enable",
1573 .minimum_version_id
= 1,
1574 .needed
= m25p80_aai_enable_needed
,
1575 .fields
= (VMStateField
[]) {
1576 VMSTATE_BOOL(aai_enable
, Flash
),
1577 VMSTATE_END_OF_LIST()
1581 static const VMStateDescription vmstate_m25p80
= {
1584 .minimum_version_id
= 0,
1585 .pre_save
= m25p80_pre_save
,
1586 .pre_load
= m25p80_pre_load
,
1587 .fields
= (VMStateField
[]) {
1588 VMSTATE_UINT8(state
, Flash
),
1589 VMSTATE_UINT8_ARRAY(data
, Flash
, M25P80_INTERNAL_DATA_BUFFER_SZ
),
1590 VMSTATE_UINT32(len
, Flash
),
1591 VMSTATE_UINT32(pos
, Flash
),
1592 VMSTATE_UINT8(needed_bytes
, Flash
),
1593 VMSTATE_UINT8(cmd_in_progress
, Flash
),
1594 VMSTATE_UINT32(cur_addr
, Flash
),
1595 VMSTATE_BOOL(write_enable
, Flash
),
1596 VMSTATE_BOOL(reset_enable
, Flash
),
1597 VMSTATE_UINT8(ear
, Flash
),
1598 VMSTATE_BOOL(four_bytes_address_mode
, Flash
),
1599 VMSTATE_UINT32(nonvolatile_cfg
, Flash
),
1600 VMSTATE_UINT32(volatile_cfg
, Flash
),
1601 VMSTATE_UINT32(enh_volatile_cfg
, Flash
),
1602 VMSTATE_BOOL(quad_enable
, Flash
),
1603 VMSTATE_UINT8(spansion_cr1nv
, Flash
),
1604 VMSTATE_UINT8(spansion_cr2nv
, Flash
),
1605 VMSTATE_UINT8(spansion_cr3nv
, Flash
),
1606 VMSTATE_UINT8(spansion_cr4nv
, Flash
),
1607 VMSTATE_END_OF_LIST()
1609 .subsections
= (const VMStateDescription
* []) {
1610 &vmstate_m25p80_data_read_loop
,
1611 &vmstate_m25p80_aai_enable
,
1616 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
1618 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1619 SSIPeripheralClass
*k
= SSI_PERIPHERAL_CLASS(klass
);
1620 M25P80Class
*mc
= M25P80_CLASS(klass
);
1622 k
->realize
= m25p80_realize
;
1623 k
->transfer
= m25p80_transfer8
;
1624 k
->set_cs
= m25p80_cs
;
1625 k
->cs_polarity
= SSI_CS_LOW
;
1626 dc
->vmsd
= &vmstate_m25p80
;
1627 device_class_set_props(dc
, m25p80_properties
);
1628 dc
->reset
= m25p80_reset
;
1632 static const TypeInfo m25p80_info
= {
1633 .name
= TYPE_M25P80
,
1634 .parent
= TYPE_SSI_PERIPHERAL
,
1635 .instance_size
= sizeof(Flash
),
1636 .class_size
= sizeof(M25P80Class
),
1640 static void m25p80_register_types(void)
1644 type_register_static(&m25p80_info
);
1645 for (i
= 0; i
< ARRAY_SIZE(known_devices
); ++i
) {
1647 .name
= known_devices
[i
].part_name
,
1648 .parent
= TYPE_M25P80
,
1649 .class_init
= m25p80_class_init
,
1650 .class_data
= (void *)&known_devices
[i
],
1656 type_init(m25p80_register_types
)