2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/acpi/aml-build.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
40 #include "hw/sysbus.h"
41 #include "migration/vmstate.h"
42 #include "hw/block/block.h"
43 #include "sysemu/block-backend.h"
44 #include "sysemu/blockdev.h"
45 #include "sysemu/sysemu.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/module.h"
50 #include "qom/object.h"
52 /********************************************************/
53 /* debug Floppy devices */
55 #define DEBUG_FLOPPY 0
57 #define FLOPPY_DPRINTF(fmt, ...) \
60 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
65 /********************************************************/
68 #define TYPE_FLOPPY_BUS "floppy-bus"
69 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus
, FLOPPY_BUS
)
71 typedef struct FDCtrl FDCtrl
;
72 typedef struct FDrive FDrive
;
73 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
);
80 static const TypeInfo floppy_bus_info
= {
81 .name
= TYPE_FLOPPY_BUS
,
83 .instance_size
= sizeof(FloppyBus
),
86 static void floppy_bus_create(FDCtrl
*fdc
, FloppyBus
*bus
, DeviceState
*dev
)
88 qbus_create_inplace(bus
, sizeof(FloppyBus
), TYPE_FLOPPY_BUS
, dev
, NULL
);
93 /********************************************************/
94 /* Floppy drive emulation */
96 typedef enum FDriveRate
{
97 FDRIVE_RATE_500K
= 0x00, /* 500 Kbps */
98 FDRIVE_RATE_300K
= 0x01, /* 300 Kbps */
99 FDRIVE_RATE_250K
= 0x02, /* 250 Kbps */
100 FDRIVE_RATE_1M
= 0x03, /* 1 Mbps */
103 typedef enum FDriveSize
{
109 typedef struct FDFormat
{
110 FloppyDriveType drive
;
117 /* In many cases, the total sector size of a format is enough to uniquely
118 * identify it. However, there are some total sector collisions between
119 * formats of different physical size, and these are noted below by
120 * highlighting the total sector size for entries with collisions. */
121 static const FDFormat fd_formats
[] = {
122 /* First entry is default format */
123 /* 1.44 MB 3"1/2 floppy disks */
124 { FLOPPY_DRIVE_TYPE_144
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 2880 */
125 { FLOPPY_DRIVE_TYPE_144
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 3.5" 3200 */
126 { FLOPPY_DRIVE_TYPE_144
, 21, 80, 1, FDRIVE_RATE_500K
, },
127 { FLOPPY_DRIVE_TYPE_144
, 21, 82, 1, FDRIVE_RATE_500K
, },
128 { FLOPPY_DRIVE_TYPE_144
, 21, 83, 1, FDRIVE_RATE_500K
, },
129 { FLOPPY_DRIVE_TYPE_144
, 22, 80, 1, FDRIVE_RATE_500K
, },
130 { FLOPPY_DRIVE_TYPE_144
, 23, 80, 1, FDRIVE_RATE_500K
, },
131 { FLOPPY_DRIVE_TYPE_144
, 24, 80, 1, FDRIVE_RATE_500K
, },
132 /* 2.88 MB 3"1/2 floppy disks */
133 { FLOPPY_DRIVE_TYPE_288
, 36, 80, 1, FDRIVE_RATE_1M
, },
134 { FLOPPY_DRIVE_TYPE_288
, 39, 80, 1, FDRIVE_RATE_1M
, },
135 { FLOPPY_DRIVE_TYPE_288
, 40, 80, 1, FDRIVE_RATE_1M
, },
136 { FLOPPY_DRIVE_TYPE_288
, 44, 80, 1, FDRIVE_RATE_1M
, },
137 { FLOPPY_DRIVE_TYPE_288
, 48, 80, 1, FDRIVE_RATE_1M
, },
138 /* 720 kB 3"1/2 floppy disks */
139 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 3.5" 1440 */
140 { FLOPPY_DRIVE_TYPE_144
, 10, 80, 1, FDRIVE_RATE_250K
, },
141 { FLOPPY_DRIVE_TYPE_144
, 10, 82, 1, FDRIVE_RATE_250K
, },
142 { FLOPPY_DRIVE_TYPE_144
, 10, 83, 1, FDRIVE_RATE_250K
, },
143 { FLOPPY_DRIVE_TYPE_144
, 13, 80, 1, FDRIVE_RATE_250K
, },
144 { FLOPPY_DRIVE_TYPE_144
, 14, 80, 1, FDRIVE_RATE_250K
, },
145 /* 1.2 MB 5"1/4 floppy disks */
146 { FLOPPY_DRIVE_TYPE_120
, 15, 80, 1, FDRIVE_RATE_500K
, },
147 { FLOPPY_DRIVE_TYPE_120
, 18, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 2880 */
148 { FLOPPY_DRIVE_TYPE_120
, 18, 82, 1, FDRIVE_RATE_500K
, },
149 { FLOPPY_DRIVE_TYPE_120
, 18, 83, 1, FDRIVE_RATE_500K
, },
150 { FLOPPY_DRIVE_TYPE_120
, 20, 80, 1, FDRIVE_RATE_500K
, }, /* 5.25" 3200 */
151 /* 720 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120
, 9, 80, 1, FDRIVE_RATE_250K
, }, /* 5.25" 1440 */
153 { FLOPPY_DRIVE_TYPE_120
, 11, 80, 1, FDRIVE_RATE_250K
, },
154 /* 360 kB 5"1/4 floppy disks */
155 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 1, FDRIVE_RATE_300K
, }, /* 5.25" 720 */
156 { FLOPPY_DRIVE_TYPE_120
, 9, 40, 0, FDRIVE_RATE_300K
, },
157 { FLOPPY_DRIVE_TYPE_120
, 10, 41, 1, FDRIVE_RATE_300K
, },
158 { FLOPPY_DRIVE_TYPE_120
, 10, 42, 1, FDRIVE_RATE_300K
, },
159 /* 320 kB 5"1/4 floppy disks */
160 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 1, FDRIVE_RATE_250K
, },
161 { FLOPPY_DRIVE_TYPE_120
, 8, 40, 0, FDRIVE_RATE_250K
, },
162 /* 360 kB must match 5"1/4 better than 3"1/2... */
163 { FLOPPY_DRIVE_TYPE_144
, 9, 80, 0, FDRIVE_RATE_250K
, }, /* 3.5" 720 */
165 { FLOPPY_DRIVE_TYPE_NONE
, -1, -1, 0, 0, },
168 static FDriveSize
drive_size(FloppyDriveType drive
)
171 case FLOPPY_DRIVE_TYPE_120
:
172 return FDRIVE_SIZE_525
;
173 case FLOPPY_DRIVE_TYPE_144
:
174 case FLOPPY_DRIVE_TYPE_288
:
175 return FDRIVE_SIZE_350
;
177 return FDRIVE_SIZE_UNKNOWN
;
181 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
182 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
184 /* Will always be a fixed parameter for us */
185 #define FD_SECTOR_LEN 512
186 #define FD_SECTOR_SC 2 /* Sector size code */
187 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
189 /* Floppy disk drive emulation */
190 typedef enum FDiskFlags
{
191 FDISK_DBL_SIDES
= 0x01,
199 FloppyDriveType drive
; /* CMOS drive type */
200 uint8_t perpendicular
; /* 2.88 MB access mode */
206 FloppyDriveType disk
; /* Current disk type */
208 uint8_t last_sect
; /* Nb sector per track */
209 uint8_t max_track
; /* Nb of tracks */
210 uint16_t bps
; /* Bytes per sector */
211 uint8_t ro
; /* Is read-only */
212 uint8_t media_changed
; /* Is media changed */
213 uint8_t media_rate
; /* Data rate of medium */
215 bool media_validated
; /* Have we validated the media? */
219 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
);
221 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
222 * currently goes through some pains to keep seeks within the bounds
223 * established by last_sect and max_track. Correcting this is difficult,
224 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
226 * For now: allow empty drives to have large bounds so we can seek around,
227 * with the understanding that when a diskette is inserted, the bounds will
228 * properly tighten to match the geometry of that inserted medium.
230 static void fd_empty_seek_hack(FDrive
*drv
)
232 drv
->last_sect
= 0xFF;
233 drv
->max_track
= 0xFF;
236 static void fd_init(FDrive
*drv
)
239 drv
->perpendicular
= 0;
241 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
245 drv
->media_changed
= 1;
248 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
250 static int fd_sector_calc(uint8_t head
, uint8_t track
, uint8_t sect
,
251 uint8_t last_sect
, uint8_t num_sides
)
253 return (((track
* num_sides
) + head
) * last_sect
) + sect
- 1;
256 /* Returns current position, in sectors, for given drive */
257 static int fd_sector(FDrive
*drv
)
259 return fd_sector_calc(drv
->head
, drv
->track
, drv
->sect
, drv
->last_sect
,
263 /* Returns current position, in bytes, for given drive */
264 static int fd_offset(FDrive
*drv
)
266 g_assert(fd_sector(drv
) < INT_MAX
>> BDRV_SECTOR_BITS
);
267 return fd_sector(drv
) << BDRV_SECTOR_BITS
;
270 /* Seek to a new position:
271 * returns 0 if already on right track
272 * returns 1 if track changed
273 * returns 2 if track is invalid
274 * returns 3 if sector is invalid
275 * returns 4 if seek is disabled
277 static int fd_seek(FDrive
*drv
, uint8_t head
, uint8_t track
, uint8_t sect
,
283 if (track
> drv
->max_track
||
284 (head
!= 0 && (drv
->flags
& FDISK_DBL_SIDES
) == 0)) {
285 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
286 head
, track
, sect
, 1,
287 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
288 drv
->max_track
, drv
->last_sect
);
291 if (sect
> drv
->last_sect
) {
292 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
293 head
, track
, sect
, 1,
294 (drv
->flags
& FDISK_DBL_SIDES
) == 0 ? 0 : 1,
295 drv
->max_track
, drv
->last_sect
);
298 sector
= fd_sector_calc(head
, track
, sect
, drv
->last_sect
, NUM_SIDES(drv
));
300 if (sector
!= fd_sector(drv
)) {
303 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
304 " (max=%d %02x %02x)\n",
305 head
, track
, sect
, 1, drv
->max_track
,
311 if (drv
->track
!= track
) {
312 if (drv
->blk
!= NULL
&& blk_is_inserted(drv
->blk
)) {
313 drv
->media_changed
= 0;
321 if (drv
->blk
== NULL
|| !blk_is_inserted(drv
->blk
)) {
328 /* Set drive back to track 0 */
329 static void fd_recalibrate(FDrive
*drv
)
331 FLOPPY_DPRINTF("recalibrate\n");
332 fd_seek(drv
, 0, 0, 1, 1);
336 * Determine geometry based on inserted diskette.
337 * Will not operate on an empty drive.
339 * @return: 0 on success, -1 if the drive is empty.
341 static int pick_geometry(FDrive
*drv
)
343 BlockBackend
*blk
= drv
->blk
;
344 const FDFormat
*parse
;
345 uint64_t nb_sectors
, size
;
347 int match
, size_match
, type_match
;
348 bool magic
= drv
->drive
== FLOPPY_DRIVE_TYPE_AUTO
;
350 /* We can only pick a geometry if we have a diskette. */
351 if (!drv
->blk
|| !blk_is_inserted(drv
->blk
) ||
352 drv
->drive
== FLOPPY_DRIVE_TYPE_NONE
)
357 /* We need to determine the likely geometry of the inserted medium.
358 * In order of preference, we look for:
359 * (1) The same drive type and number of sectors,
360 * (2) The same diskette size and number of sectors,
361 * (3) The same drive type.
363 * In all cases, matches that occur higher in the drive table will take
364 * precedence over matches that occur later in the table.
366 blk_get_geometry(blk
, &nb_sectors
);
367 match
= size_match
= type_match
= -1;
369 parse
= &fd_formats
[i
];
370 if (parse
->drive
== FLOPPY_DRIVE_TYPE_NONE
) {
373 size
= (parse
->max_head
+ 1) * parse
->max_track
* parse
->last_sect
;
374 if (nb_sectors
== size
) {
375 if (magic
|| parse
->drive
== drv
->drive
) {
376 /* (1) perfect match -- nb_sectors and drive type */
378 } else if (drive_size(parse
->drive
) == drive_size(drv
->drive
)) {
379 /* (2) size match -- nb_sectors and physical medium size */
380 match
= (match
== -1) ? i
: match
;
382 /* This is suspicious -- Did the user misconfigure? */
383 size_match
= (size_match
== -1) ? i
: size_match
;
385 } else if (type_match
== -1) {
386 if ((parse
->drive
== drv
->drive
) ||
387 (magic
&& (parse
->drive
== get_fallback_drive_type(drv
)))) {
388 /* (3) type match -- nb_sectors mismatch, but matches the type
389 * specified explicitly by the user, or matches the fallback
390 * default type when using the drive autodetect mechanism */
396 /* No exact match found */
398 if (size_match
!= -1) {
399 parse
= &fd_formats
[size_match
];
400 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
401 "but inserted medium appears to be a "
402 "%"PRId64
" sector '%s' type\n",
403 FloppyDriveType_str(drv
->drive
),
405 FloppyDriveType_str(parse
->drive
));
407 assert(type_match
!= -1 && "misconfigured fd_format");
410 parse
= &(fd_formats
[match
]);
413 if (parse
->max_head
== 0) {
414 drv
->flags
&= ~FDISK_DBL_SIDES
;
416 drv
->flags
|= FDISK_DBL_SIDES
;
418 drv
->max_track
= parse
->max_track
;
419 drv
->last_sect
= parse
->last_sect
;
420 drv
->disk
= parse
->drive
;
421 drv
->media_rate
= parse
->rate
;
425 static void pick_drive_type(FDrive
*drv
)
427 if (drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
) {
431 if (pick_geometry(drv
) == 0) {
432 drv
->drive
= drv
->disk
;
434 drv
->drive
= get_fallback_drive_type(drv
);
437 g_assert(drv
->drive
!= FLOPPY_DRIVE_TYPE_AUTO
);
440 /* Revalidate a disk drive after a disk change */
441 static void fd_revalidate(FDrive
*drv
)
445 FLOPPY_DPRINTF("revalidate\n");
446 if (drv
->blk
!= NULL
) {
447 drv
->ro
= !blk_is_writable(drv
->blk
);
448 if (!blk_is_inserted(drv
->blk
)) {
449 FLOPPY_DPRINTF("No disk in drive\n");
450 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
451 fd_empty_seek_hack(drv
);
452 } else if (!drv
->media_validated
) {
453 rc
= pick_geometry(drv
);
455 FLOPPY_DPRINTF("Could not validate floppy drive media");
457 drv
->media_validated
= true;
458 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
459 (drv
->flags
& FDISK_DBL_SIDES
) ? 2 : 1,
460 drv
->max_track
, drv
->last_sect
,
461 drv
->ro
? "ro" : "rw");
465 FLOPPY_DPRINTF("No drive connected\n");
468 drv
->flags
&= ~FDISK_DBL_SIDES
;
469 drv
->drive
= FLOPPY_DRIVE_TYPE_NONE
;
470 drv
->disk
= FLOPPY_DRIVE_TYPE_NONE
;
474 static void fd_change_cb(void *opaque
, bool load
, Error
**errp
)
476 FDrive
*drive
= opaque
;
479 blk_set_perm(drive
->blk
, 0, BLK_PERM_ALL
, &error_abort
);
481 if (!blkconf_apply_backend_options(drive
->conf
,
482 !blk_supports_write_perm(drive
->blk
),
488 drive
->media_changed
= 1;
489 drive
->media_validated
= false;
490 fd_revalidate(drive
);
493 static const BlockDevOps fd_block_ops
= {
494 .change_media_cb
= fd_change_cb
,
498 #define TYPE_FLOPPY_DRIVE "floppy"
499 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive
, FLOPPY_DRIVE
)
505 FloppyDriveType type
;
508 static Property floppy_drive_properties
[] = {
509 DEFINE_PROP_UINT32("unit", FloppyDrive
, unit
, -1),
510 DEFINE_BLOCK_PROPERTIES(FloppyDrive
, conf
),
511 DEFINE_PROP_SIGNED("drive-type", FloppyDrive
, type
,
512 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
514 DEFINE_PROP_END_OF_LIST(),
517 static void floppy_drive_realize(DeviceState
*qdev
, Error
**errp
)
519 FloppyDrive
*dev
= FLOPPY_DRIVE(qdev
);
520 FloppyBus
*bus
= FLOPPY_BUS(qdev
->parent_bus
);
525 if (dev
->unit
== -1) {
526 for (dev
->unit
= 0; dev
->unit
< MAX_FD
; dev
->unit
++) {
527 drive
= get_drv(bus
->fdc
, dev
->unit
);
534 if (dev
->unit
>= MAX_FD
) {
535 error_setg(errp
, "Can't create floppy unit %d, bus supports "
536 "only %d units", dev
->unit
, MAX_FD
);
540 drive
= get_drv(bus
->fdc
, dev
->unit
);
542 error_setg(errp
, "Floppy unit %d is in use", dev
->unit
);
546 if (!dev
->conf
.blk
) {
547 /* Anonymous BlockBackend for an empty drive */
548 dev
->conf
.blk
= blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL
);
549 ret
= blk_attach_dev(dev
->conf
.blk
, qdev
);
552 /* Don't take write permissions on an empty drive to allow attaching a
553 * read-only node later */
556 read_only
= !blk_bs(dev
->conf
.blk
) ||
557 !blk_supports_write_perm(dev
->conf
.blk
);
560 if (!blkconf_blocksizes(&dev
->conf
, errp
)) {
564 if (dev
->conf
.logical_block_size
!= 512 ||
565 dev
->conf
.physical_block_size
!= 512)
567 error_setg(errp
, "Physical and logical block size must "
568 "be 512 for floppy");
572 /* rerror/werror aren't supported by fdc and therefore not even registered
573 * with qdev. So set the defaults manually before they are used in
574 * blkconf_apply_backend_options(). */
575 dev
->conf
.rerror
= BLOCKDEV_ON_ERROR_AUTO
;
576 dev
->conf
.werror
= BLOCKDEV_ON_ERROR_AUTO
;
578 if (!blkconf_apply_backend_options(&dev
->conf
, read_only
, false, errp
)) {
582 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
583 * for empty drives. */
584 if (blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_ENOSPC
&&
585 blk_get_on_error(dev
->conf
.blk
, 0) != BLOCKDEV_ON_ERROR_REPORT
) {
586 error_setg(errp
, "fdc doesn't support drive option werror");
589 if (blk_get_on_error(dev
->conf
.blk
, 1) != BLOCKDEV_ON_ERROR_REPORT
) {
590 error_setg(errp
, "fdc doesn't support drive option rerror");
594 drive
->conf
= &dev
->conf
;
595 drive
->blk
= dev
->conf
.blk
;
596 drive
->fdctrl
= bus
->fdc
;
599 blk_set_dev_ops(drive
->blk
, &fd_block_ops
, drive
);
601 /* Keep 'type' qdev property and FDrive->drive in sync */
602 drive
->drive
= dev
->type
;
603 pick_drive_type(drive
);
604 dev
->type
= drive
->drive
;
606 fd_revalidate(drive
);
609 static void floppy_drive_class_init(ObjectClass
*klass
, void *data
)
611 DeviceClass
*k
= DEVICE_CLASS(klass
);
612 k
->realize
= floppy_drive_realize
;
613 set_bit(DEVICE_CATEGORY_STORAGE
, k
->categories
);
614 k
->bus_type
= TYPE_FLOPPY_BUS
;
615 device_class_set_props(k
, floppy_drive_properties
);
616 k
->desc
= "virtual floppy drive";
619 static const TypeInfo floppy_drive_info
= {
620 .name
= TYPE_FLOPPY_DRIVE
,
621 .parent
= TYPE_DEVICE
,
622 .instance_size
= sizeof(FloppyDrive
),
623 .class_init
= floppy_drive_class_init
,
626 /********************************************************/
627 /* Intel 82078 floppy disk controller emulation */
629 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
);
630 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
);
631 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
632 int dma_pos
, int dma_len
);
633 static void fdctrl_raise_irq(FDCtrl
*fdctrl
);
634 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
);
636 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
);
637 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
);
638 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
);
639 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
);
640 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
);
641 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
);
642 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
);
643 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
);
644 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
);
645 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
);
646 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
);
647 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
);
659 FD_STATE_MULTI
= 0x01, /* multi track flag */
660 FD_STATE_FORMAT
= 0x02, /* format flag */
676 FD_CMD_READ_TRACK
= 0x02,
677 FD_CMD_SPECIFY
= 0x03,
678 FD_CMD_SENSE_DRIVE_STATUS
= 0x04,
681 FD_CMD_RECALIBRATE
= 0x07,
682 FD_CMD_SENSE_INTERRUPT_STATUS
= 0x08,
683 FD_CMD_WRITE_DELETED
= 0x09,
684 FD_CMD_READ_ID
= 0x0a,
685 FD_CMD_READ_DELETED
= 0x0c,
686 FD_CMD_FORMAT_TRACK
= 0x0d,
687 FD_CMD_DUMPREG
= 0x0e,
689 FD_CMD_VERSION
= 0x10,
690 FD_CMD_SCAN_EQUAL
= 0x11,
691 FD_CMD_PERPENDICULAR_MODE
= 0x12,
692 FD_CMD_CONFIGURE
= 0x13,
694 FD_CMD_VERIFY
= 0x16,
695 FD_CMD_POWERDOWN_MODE
= 0x17,
696 FD_CMD_PART_ID
= 0x18,
697 FD_CMD_SCAN_LOW_OR_EQUAL
= 0x19,
698 FD_CMD_SCAN_HIGH_OR_EQUAL
= 0x1d,
700 FD_CMD_OPTION
= 0x33,
701 FD_CMD_RESTORE
= 0x4e,
702 FD_CMD_DRIVE_SPECIFICATION_COMMAND
= 0x8e,
703 FD_CMD_RELATIVE_SEEK_OUT
= 0x8f,
704 FD_CMD_FORMAT_AND_WRITE
= 0xcd,
705 FD_CMD_RELATIVE_SEEK_IN
= 0xcf,
709 FD_CONFIG_PRETRK
= 0xff, /* Pre-compensation set to track 0 */
710 FD_CONFIG_FIFOTHR
= 0x0f, /* FIFO threshold set to 1 byte */
711 FD_CONFIG_POLL
= 0x10, /* Poll enabled */
712 FD_CONFIG_EFIFO
= 0x20, /* FIFO disabled */
713 FD_CONFIG_EIS
= 0x40, /* No implied seeks */
722 FD_SR0_ABNTERM
= 0x40,
723 FD_SR0_INVCMD
= 0x80,
724 FD_SR0_RDYCHG
= 0xc0,
728 FD_SR1_MA
= 0x01, /* Missing address mark */
729 FD_SR1_NW
= 0x02, /* Not writable */
730 FD_SR1_EC
= 0x80, /* End of cylinder */
734 FD_SR2_SNS
= 0x04, /* Scan not satisfied */
735 FD_SR2_SEH
= 0x08, /* Scan equal hit */
746 FD_SRA_INTPEND
= 0x80,
760 FD_DOR_SELMASK
= 0x03,
762 FD_DOR_SELMASK
= 0x01,
764 FD_DOR_nRESET
= 0x04,
766 FD_DOR_MOTEN0
= 0x10,
767 FD_DOR_MOTEN1
= 0x20,
768 FD_DOR_MOTEN2
= 0x40,
769 FD_DOR_MOTEN3
= 0x80,
774 FD_TDR_BOOTSEL
= 0x0c,
776 FD_TDR_BOOTSEL
= 0x04,
781 FD_DSR_DRATEMASK
= 0x03,
782 FD_DSR_PWRDOWN
= 0x40,
783 FD_DSR_SWRESET
= 0x80,
787 FD_MSR_DRV0BUSY
= 0x01,
788 FD_MSR_DRV1BUSY
= 0x02,
789 FD_MSR_DRV2BUSY
= 0x04,
790 FD_MSR_DRV3BUSY
= 0x08,
791 FD_MSR_CMDBUSY
= 0x10,
792 FD_MSR_NONDMA
= 0x20,
798 FD_DIR_DSKCHG
= 0x80,
802 * See chapter 5.0 "Controller phases" of the spec:
805 * The host writes a command and its parameters into the FIFO. The command
806 * phase is completed when all parameters for the command have been supplied,
807 * and execution phase is entered.
810 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
811 * contains the payload now, otherwise it's unused. When all bytes of the
812 * required data have been transferred, the state is switched to either result
813 * phase (if the command produces status bytes) or directly back into the
814 * command phase for the next command.
817 * The host reads out the FIFO, which contains one or more result bytes now.
820 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
821 FD_PHASE_RECONSTRUCT
= 0,
823 FD_PHASE_COMMAND
= 1,
824 FD_PHASE_EXECUTION
= 2,
828 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
829 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
834 /* Controller state */
835 QEMUTimer
*result_timer
;
839 /* Controller's identification */
845 uint8_t dor_vmstate
; /* only used as temp during vmstate */
860 uint8_t eot
; /* last wanted sector */
861 /* States kept only to be returned back */
862 /* precompensation */
866 /* Power down config (also with status regB access mode */
870 uint8_t num_floppies
;
871 FDrive drives
[MAX_FD
];
874 FloppyDriveType type
;
875 } qdev_for_drives
[MAX_FD
];
877 FloppyDriveType fallback
; /* type=auto failure fallback */
881 PortioList portio_list
;
884 static FloppyDriveType
get_fallback_drive_type(FDrive
*drv
)
886 return drv
->fdctrl
->fallback
;
889 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
890 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlSysBus
, SYSBUS_FDC
)
892 struct FDCtrlSysBus
{
894 SysBusDevice parent_obj
;
900 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlISABus
, ISA_FDC
)
902 struct FDCtrlISABus
{
903 ISADevice parent_obj
;
913 static uint32_t fdctrl_read (void *opaque
, uint32_t reg
)
915 FDCtrl
*fdctrl
= opaque
;
921 retval
= fdctrl_read_statusA(fdctrl
);
924 retval
= fdctrl_read_statusB(fdctrl
);
927 retval
= fdctrl_read_dor(fdctrl
);
930 retval
= fdctrl_read_tape(fdctrl
);
933 retval
= fdctrl_read_main_status(fdctrl
);
936 retval
= fdctrl_read_data(fdctrl
);
939 retval
= fdctrl_read_dir(fdctrl
);
942 retval
= (uint32_t)(-1);
945 trace_fdc_ioport_read(reg
, retval
);
950 static void fdctrl_write (void *opaque
, uint32_t reg
, uint32_t value
)
952 FDCtrl
*fdctrl
= opaque
;
955 trace_fdc_ioport_write(reg
, value
);
958 fdctrl_write_dor(fdctrl
, value
);
961 fdctrl_write_tape(fdctrl
, value
);
964 fdctrl_write_rate(fdctrl
, value
);
967 fdctrl_write_data(fdctrl
, value
);
970 fdctrl_write_ccr(fdctrl
, value
);
977 static uint64_t fdctrl_read_mem (void *opaque
, hwaddr reg
,
980 return fdctrl_read(opaque
, (uint32_t)reg
);
983 static void fdctrl_write_mem (void *opaque
, hwaddr reg
,
984 uint64_t value
, unsigned size
)
986 fdctrl_write(opaque
, (uint32_t)reg
, value
);
989 static const MemoryRegionOps fdctrl_mem_ops
= {
990 .read
= fdctrl_read_mem
,
991 .write
= fdctrl_write_mem
,
992 .endianness
= DEVICE_NATIVE_ENDIAN
,
995 static const MemoryRegionOps fdctrl_mem_strict_ops
= {
996 .read
= fdctrl_read_mem
,
997 .write
= fdctrl_write_mem
,
998 .endianness
= DEVICE_NATIVE_ENDIAN
,
1000 .min_access_size
= 1,
1001 .max_access_size
= 1,
1005 static bool fdrive_media_changed_needed(void *opaque
)
1007 FDrive
*drive
= opaque
;
1009 return (drive
->blk
!= NULL
&& drive
->media_changed
!= 1);
1012 static const VMStateDescription vmstate_fdrive_media_changed
= {
1013 .name
= "fdrive/media_changed",
1015 .minimum_version_id
= 1,
1016 .needed
= fdrive_media_changed_needed
,
1017 .fields
= (VMStateField
[]) {
1018 VMSTATE_UINT8(media_changed
, FDrive
),
1019 VMSTATE_END_OF_LIST()
1023 static const VMStateDescription vmstate_fdrive_media_rate
= {
1024 .name
= "fdrive/media_rate",
1026 .minimum_version_id
= 1,
1027 .fields
= (VMStateField
[]) {
1028 VMSTATE_UINT8(media_rate
, FDrive
),
1029 VMSTATE_END_OF_LIST()
1033 static bool fdrive_perpendicular_needed(void *opaque
)
1035 FDrive
*drive
= opaque
;
1037 return drive
->perpendicular
!= 0;
1040 static const VMStateDescription vmstate_fdrive_perpendicular
= {
1041 .name
= "fdrive/perpendicular",
1043 .minimum_version_id
= 1,
1044 .needed
= fdrive_perpendicular_needed
,
1045 .fields
= (VMStateField
[]) {
1046 VMSTATE_UINT8(perpendicular
, FDrive
),
1047 VMSTATE_END_OF_LIST()
1051 static int fdrive_post_load(void *opaque
, int version_id
)
1053 fd_revalidate(opaque
);
1057 static const VMStateDescription vmstate_fdrive
= {
1060 .minimum_version_id
= 1,
1061 .post_load
= fdrive_post_load
,
1062 .fields
= (VMStateField
[]) {
1063 VMSTATE_UINT8(head
, FDrive
),
1064 VMSTATE_UINT8(track
, FDrive
),
1065 VMSTATE_UINT8(sect
, FDrive
),
1066 VMSTATE_END_OF_LIST()
1068 .subsections
= (const VMStateDescription
*[]) {
1069 &vmstate_fdrive_media_changed
,
1070 &vmstate_fdrive_media_rate
,
1071 &vmstate_fdrive_perpendicular
,
1077 * Reconstructs the phase from register values according to the logic that was
1078 * implemented in qemu 2.3. This is the default value that is used if the phase
1079 * subsection is not present on migration.
1081 * Don't change this function to reflect newer qemu versions, it is part of
1082 * the migration ABI.
1084 static int reconstruct_phase(FDCtrl
*fdctrl
)
1086 if (fdctrl
->msr
& FD_MSR_NONDMA
) {
1087 return FD_PHASE_EXECUTION
;
1088 } else if ((fdctrl
->msr
& FD_MSR_RQM
) == 0) {
1089 /* qemu 2.3 disabled RQM only during DMA transfers */
1090 return FD_PHASE_EXECUTION
;
1091 } else if (fdctrl
->msr
& FD_MSR_DIO
) {
1092 return FD_PHASE_RESULT
;
1094 return FD_PHASE_COMMAND
;
1098 static int fdc_pre_save(void *opaque
)
1102 s
->dor_vmstate
= s
->dor
| GET_CUR_DRV(s
);
1107 static int fdc_pre_load(void *opaque
)
1110 s
->phase
= FD_PHASE_RECONSTRUCT
;
1114 static int fdc_post_load(void *opaque
, int version_id
)
1118 SET_CUR_DRV(s
, s
->dor_vmstate
& FD_DOR_SELMASK
);
1119 s
->dor
= s
->dor_vmstate
& ~FD_DOR_SELMASK
;
1121 if (s
->phase
== FD_PHASE_RECONSTRUCT
) {
1122 s
->phase
= reconstruct_phase(s
);
1128 static bool fdc_reset_sensei_needed(void *opaque
)
1132 return s
->reset_sensei
!= 0;
1135 static const VMStateDescription vmstate_fdc_reset_sensei
= {
1136 .name
= "fdc/reset_sensei",
1138 .minimum_version_id
= 1,
1139 .needed
= fdc_reset_sensei_needed
,
1140 .fields
= (VMStateField
[]) {
1141 VMSTATE_INT32(reset_sensei
, FDCtrl
),
1142 VMSTATE_END_OF_LIST()
1146 static bool fdc_result_timer_needed(void *opaque
)
1150 return timer_pending(s
->result_timer
);
1153 static const VMStateDescription vmstate_fdc_result_timer
= {
1154 .name
= "fdc/result_timer",
1156 .minimum_version_id
= 1,
1157 .needed
= fdc_result_timer_needed
,
1158 .fields
= (VMStateField
[]) {
1159 VMSTATE_TIMER_PTR(result_timer
, FDCtrl
),
1160 VMSTATE_END_OF_LIST()
1164 static bool fdc_phase_needed(void *opaque
)
1166 FDCtrl
*fdctrl
= opaque
;
1168 return reconstruct_phase(fdctrl
) != fdctrl
->phase
;
1171 static const VMStateDescription vmstate_fdc_phase
= {
1172 .name
= "fdc/phase",
1174 .minimum_version_id
= 1,
1175 .needed
= fdc_phase_needed
,
1176 .fields
= (VMStateField
[]) {
1177 VMSTATE_UINT8(phase
, FDCtrl
),
1178 VMSTATE_END_OF_LIST()
1182 static const VMStateDescription vmstate_fdc
= {
1185 .minimum_version_id
= 2,
1186 .pre_save
= fdc_pre_save
,
1187 .pre_load
= fdc_pre_load
,
1188 .post_load
= fdc_post_load
,
1189 .fields
= (VMStateField
[]) {
1190 /* Controller State */
1191 VMSTATE_UINT8(sra
, FDCtrl
),
1192 VMSTATE_UINT8(srb
, FDCtrl
),
1193 VMSTATE_UINT8(dor_vmstate
, FDCtrl
),
1194 VMSTATE_UINT8(tdr
, FDCtrl
),
1195 VMSTATE_UINT8(dsr
, FDCtrl
),
1196 VMSTATE_UINT8(msr
, FDCtrl
),
1197 VMSTATE_UINT8(status0
, FDCtrl
),
1198 VMSTATE_UINT8(status1
, FDCtrl
),
1199 VMSTATE_UINT8(status2
, FDCtrl
),
1201 VMSTATE_VARRAY_INT32(fifo
, FDCtrl
, fifo_size
, 0, vmstate_info_uint8
,
1203 VMSTATE_UINT32(data_pos
, FDCtrl
),
1204 VMSTATE_UINT32(data_len
, FDCtrl
),
1205 VMSTATE_UINT8(data_state
, FDCtrl
),
1206 VMSTATE_UINT8(data_dir
, FDCtrl
),
1207 VMSTATE_UINT8(eot
, FDCtrl
),
1208 /* States kept only to be returned back */
1209 VMSTATE_UINT8(timer0
, FDCtrl
),
1210 VMSTATE_UINT8(timer1
, FDCtrl
),
1211 VMSTATE_UINT8(precomp_trk
, FDCtrl
),
1212 VMSTATE_UINT8(config
, FDCtrl
),
1213 VMSTATE_UINT8(lock
, FDCtrl
),
1214 VMSTATE_UINT8(pwrd
, FDCtrl
),
1215 VMSTATE_UINT8_EQUAL(num_floppies
, FDCtrl
, NULL
),
1216 VMSTATE_STRUCT_ARRAY(drives
, FDCtrl
, MAX_FD
, 1,
1217 vmstate_fdrive
, FDrive
),
1218 VMSTATE_END_OF_LIST()
1220 .subsections
= (const VMStateDescription
*[]) {
1221 &vmstate_fdc_reset_sensei
,
1222 &vmstate_fdc_result_timer
,
1228 static void fdctrl_external_reset_sysbus(DeviceState
*d
)
1230 FDCtrlSysBus
*sys
= SYSBUS_FDC(d
);
1231 FDCtrl
*s
= &sys
->state
;
1236 static void fdctrl_external_reset_isa(DeviceState
*d
)
1238 FDCtrlISABus
*isa
= ISA_FDC(d
);
1239 FDCtrl
*s
= &isa
->state
;
1244 static void fdctrl_handle_tc(void *opaque
, int irq
, int level
)
1246 //FDCtrl *s = opaque;
1250 FLOPPY_DPRINTF("TC pulsed\n");
1254 /* Change IRQ state */
1255 static void fdctrl_reset_irq(FDCtrl
*fdctrl
)
1257 fdctrl
->status0
= 0;
1258 if (!(fdctrl
->sra
& FD_SRA_INTPEND
))
1260 FLOPPY_DPRINTF("Reset interrupt\n");
1261 qemu_set_irq(fdctrl
->irq
, 0);
1262 fdctrl
->sra
&= ~FD_SRA_INTPEND
;
1265 static void fdctrl_raise_irq(FDCtrl
*fdctrl
)
1267 if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
1268 qemu_set_irq(fdctrl
->irq
, 1);
1269 fdctrl
->sra
|= FD_SRA_INTPEND
;
1272 fdctrl
->reset_sensei
= 0;
1273 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl
->status0
);
1276 /* Reset controller */
1277 static void fdctrl_reset(FDCtrl
*fdctrl
, int do_irq
)
1281 FLOPPY_DPRINTF("reset controller\n");
1282 fdctrl_reset_irq(fdctrl
);
1283 /* Initialise controller */
1286 if (!fdctrl
->drives
[1].blk
) {
1287 fdctrl
->sra
|= FD_SRA_nDRV2
;
1289 fdctrl
->cur_drv
= 0;
1290 fdctrl
->dor
= FD_DOR_nRESET
;
1291 fdctrl
->dor
|= (fdctrl
->dma_chann
!= -1) ? FD_DOR_DMAEN
: 0;
1292 fdctrl
->msr
= FD_MSR_RQM
;
1293 fdctrl
->reset_sensei
= 0;
1294 timer_del(fdctrl
->result_timer
);
1296 fdctrl
->data_pos
= 0;
1297 fdctrl
->data_len
= 0;
1298 fdctrl
->data_state
= 0;
1299 fdctrl
->data_dir
= FD_DIR_WRITE
;
1300 for (i
= 0; i
< MAX_FD
; i
++)
1301 fd_recalibrate(&fdctrl
->drives
[i
]);
1302 fdctrl_to_command_phase(fdctrl
);
1304 fdctrl
->status0
|= FD_SR0_RDYCHG
;
1305 fdctrl_raise_irq(fdctrl
);
1306 fdctrl
->reset_sensei
= FD_RESET_SENSEI_COUNT
;
1310 static inline FDrive
*drv0(FDCtrl
*fdctrl
)
1312 return &fdctrl
->drives
[(fdctrl
->tdr
& FD_TDR_BOOTSEL
) >> 2];
1315 static inline FDrive
*drv1(FDCtrl
*fdctrl
)
1317 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (1 << 2))
1318 return &fdctrl
->drives
[1];
1320 return &fdctrl
->drives
[0];
1324 static inline FDrive
*drv2(FDCtrl
*fdctrl
)
1326 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (2 << 2))
1327 return &fdctrl
->drives
[2];
1329 return &fdctrl
->drives
[1];
1332 static inline FDrive
*drv3(FDCtrl
*fdctrl
)
1334 if ((fdctrl
->tdr
& FD_TDR_BOOTSEL
) < (3 << 2))
1335 return &fdctrl
->drives
[3];
1337 return &fdctrl
->drives
[2];
1341 static FDrive
*get_drv(FDCtrl
*fdctrl
, int unit
)
1344 case 0: return drv0(fdctrl
);
1345 case 1: return drv1(fdctrl
);
1347 case 2: return drv2(fdctrl
);
1348 case 3: return drv3(fdctrl
);
1350 default: return NULL
;
1354 static FDrive
*get_cur_drv(FDCtrl
*fdctrl
)
1356 return get_drv(fdctrl
, fdctrl
->cur_drv
);
1359 /* Status A register : 0x00 (read-only) */
1360 static uint32_t fdctrl_read_statusA(FDCtrl
*fdctrl
)
1362 uint32_t retval
= fdctrl
->sra
;
1364 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval
);
1369 /* Status B register : 0x01 (read-only) */
1370 static uint32_t fdctrl_read_statusB(FDCtrl
*fdctrl
)
1372 uint32_t retval
= fdctrl
->srb
;
1374 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval
);
1379 /* Digital output register : 0x02 */
1380 static uint32_t fdctrl_read_dor(FDCtrl
*fdctrl
)
1382 uint32_t retval
= fdctrl
->dor
;
1384 /* Selected drive */
1385 retval
|= fdctrl
->cur_drv
;
1386 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval
);
1391 static void fdctrl_write_dor(FDCtrl
*fdctrl
, uint32_t value
)
1393 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value
);
1396 if (value
& FD_DOR_MOTEN0
)
1397 fdctrl
->srb
|= FD_SRB_MTR0
;
1399 fdctrl
->srb
&= ~FD_SRB_MTR0
;
1400 if (value
& FD_DOR_MOTEN1
)
1401 fdctrl
->srb
|= FD_SRB_MTR1
;
1403 fdctrl
->srb
&= ~FD_SRB_MTR1
;
1407 fdctrl
->srb
|= FD_SRB_DR0
;
1409 fdctrl
->srb
&= ~FD_SRB_DR0
;
1412 if (!(value
& FD_DOR_nRESET
)) {
1413 if (fdctrl
->dor
& FD_DOR_nRESET
) {
1414 FLOPPY_DPRINTF("controller enter RESET state\n");
1417 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1418 FLOPPY_DPRINTF("controller out of RESET state\n");
1419 fdctrl_reset(fdctrl
, 1);
1420 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1423 /* Selected drive */
1424 fdctrl
->cur_drv
= value
& FD_DOR_SELMASK
;
1426 fdctrl
->dor
= value
;
1429 /* Tape drive register : 0x03 */
1430 static uint32_t fdctrl_read_tape(FDCtrl
*fdctrl
)
1432 uint32_t retval
= fdctrl
->tdr
;
1434 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval
);
1439 static void fdctrl_write_tape(FDCtrl
*fdctrl
, uint32_t value
)
1442 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1443 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1446 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value
);
1447 /* Disk boot selection indicator */
1448 fdctrl
->tdr
= value
& FD_TDR_BOOTSEL
;
1449 /* Tape indicators: never allow */
1452 /* Main status register : 0x04 (read) */
1453 static uint32_t fdctrl_read_main_status(FDCtrl
*fdctrl
)
1455 uint32_t retval
= fdctrl
->msr
;
1457 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1458 fdctrl
->dor
|= FD_DOR_nRESET
;
1460 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval
);
1465 /* Data select rate register : 0x04 (write) */
1466 static void fdctrl_write_rate(FDCtrl
*fdctrl
, uint32_t value
)
1469 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1470 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1473 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value
);
1474 /* Reset: autoclear */
1475 if (value
& FD_DSR_SWRESET
) {
1476 fdctrl
->dor
&= ~FD_DOR_nRESET
;
1477 fdctrl_reset(fdctrl
, 1);
1478 fdctrl
->dor
|= FD_DOR_nRESET
;
1480 if (value
& FD_DSR_PWRDOWN
) {
1481 fdctrl_reset(fdctrl
, 1);
1483 fdctrl
->dsr
= value
;
1486 /* Configuration control register: 0x07 (write) */
1487 static void fdctrl_write_ccr(FDCtrl
*fdctrl
, uint32_t value
)
1490 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
1491 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1494 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value
);
1496 /* Only the rate selection bits used in AT mode, and we
1497 * store those in the DSR.
1499 fdctrl
->dsr
= (fdctrl
->dsr
& ~FD_DSR_DRATEMASK
) |
1500 (value
& FD_DSR_DRATEMASK
);
1503 static int fdctrl_media_changed(FDrive
*drv
)
1505 return drv
->media_changed
;
1508 /* Digital input register : 0x07 (read-only) */
1509 static uint32_t fdctrl_read_dir(FDCtrl
*fdctrl
)
1511 uint32_t retval
= 0;
1513 if (fdctrl_media_changed(get_cur_drv(fdctrl
))) {
1514 retval
|= FD_DIR_DSKCHG
;
1517 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval
);
1523 /* Clear the FIFO and update the state for receiving the next command */
1524 static void fdctrl_to_command_phase(FDCtrl
*fdctrl
)
1526 fdctrl
->phase
= FD_PHASE_COMMAND
;
1527 fdctrl
->data_dir
= FD_DIR_WRITE
;
1528 fdctrl
->data_pos
= 0;
1529 fdctrl
->data_len
= 1; /* Accept command byte, adjust for params later */
1530 fdctrl
->msr
&= ~(FD_MSR_CMDBUSY
| FD_MSR_DIO
);
1531 fdctrl
->msr
|= FD_MSR_RQM
;
1534 /* Update the state to allow the guest to read out the command status.
1535 * @fifo_len is the number of result bytes to be read out. */
1536 static void fdctrl_to_result_phase(FDCtrl
*fdctrl
, int fifo_len
)
1538 fdctrl
->phase
= FD_PHASE_RESULT
;
1539 fdctrl
->data_dir
= FD_DIR_READ
;
1540 fdctrl
->data_len
= fifo_len
;
1541 fdctrl
->data_pos
= 0;
1542 fdctrl
->msr
|= FD_MSR_CMDBUSY
| FD_MSR_RQM
| FD_MSR_DIO
;
1545 /* Set an error: unimplemented/unknown command */
1546 static void fdctrl_unimplemented(FDCtrl
*fdctrl
, int direction
)
1548 qemu_log_mask(LOG_UNIMP
, "fdc: unimplemented command 0x%02x\n",
1550 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
1551 fdctrl_to_result_phase(fdctrl
, 1);
1554 /* Seek to next sector
1555 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1556 * otherwise returns 1
1558 static int fdctrl_seek_to_next_sect(FDCtrl
*fdctrl
, FDrive
*cur_drv
)
1560 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1561 cur_drv
->head
, cur_drv
->track
, cur_drv
->sect
,
1562 fd_sector(cur_drv
));
1563 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1565 uint8_t new_head
= cur_drv
->head
;
1566 uint8_t new_track
= cur_drv
->track
;
1567 uint8_t new_sect
= cur_drv
->sect
;
1571 if (new_sect
>= cur_drv
->last_sect
||
1572 new_sect
== fdctrl
->eot
) {
1574 if (FD_MULTI_TRACK(fdctrl
->data_state
)) {
1575 if (new_head
== 0 &&
1576 (cur_drv
->flags
& FDISK_DBL_SIDES
) != 0) {
1581 fdctrl
->status0
|= FD_SR0_SEEK
;
1582 if ((cur_drv
->flags
& FDISK_DBL_SIDES
) == 0) {
1587 fdctrl
->status0
|= FD_SR0_SEEK
;
1592 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1593 new_head
, new_track
, new_sect
, fd_sector(cur_drv
));
1598 fd_seek(cur_drv
, new_head
, new_track
, new_sect
, 1);
1602 /* Callback for transfer end (stop or abort) */
1603 static void fdctrl_stop_transfer(FDCtrl
*fdctrl
, uint8_t status0
,
1604 uint8_t status1
, uint8_t status2
)
1607 cur_drv
= get_cur_drv(fdctrl
);
1609 fdctrl
->status0
&= ~(FD_SR0_DS0
| FD_SR0_DS1
| FD_SR0_HEAD
);
1610 fdctrl
->status0
|= GET_CUR_DRV(fdctrl
);
1611 if (cur_drv
->head
) {
1612 fdctrl
->status0
|= FD_SR0_HEAD
;
1614 fdctrl
->status0
|= status0
;
1616 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1617 status0
, status1
, status2
, fdctrl
->status0
);
1618 fdctrl
->fifo
[0] = fdctrl
->status0
;
1619 fdctrl
->fifo
[1] = status1
;
1620 fdctrl
->fifo
[2] = status2
;
1621 fdctrl
->fifo
[3] = cur_drv
->track
;
1622 fdctrl
->fifo
[4] = cur_drv
->head
;
1623 fdctrl
->fifo
[5] = cur_drv
->sect
;
1624 fdctrl
->fifo
[6] = FD_SECTOR_SC
;
1625 fdctrl
->data_dir
= FD_DIR_READ
;
1626 if (fdctrl
->dma_chann
!= -1 && !(fdctrl
->msr
& FD_MSR_NONDMA
)) {
1627 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1628 k
->release_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1630 fdctrl
->msr
|= FD_MSR_RQM
| FD_MSR_DIO
;
1631 fdctrl
->msr
&= ~FD_MSR_NONDMA
;
1633 fdctrl_to_result_phase(fdctrl
, 7);
1634 fdctrl_raise_irq(fdctrl
);
1637 /* Prepare a data transfer (either DMA or FIFO) */
1638 static void fdctrl_start_transfer(FDCtrl
*fdctrl
, int direction
)
1643 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1644 cur_drv
= get_cur_drv(fdctrl
);
1645 kt
= fdctrl
->fifo
[2];
1646 kh
= fdctrl
->fifo
[3];
1647 ks
= fdctrl
->fifo
[4];
1648 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1649 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1650 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1651 NUM_SIDES(cur_drv
)));
1652 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1655 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1656 fdctrl
->fifo
[3] = kt
;
1657 fdctrl
->fifo
[4] = kh
;
1658 fdctrl
->fifo
[5] = ks
;
1662 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1663 fdctrl
->fifo
[3] = kt
;
1664 fdctrl
->fifo
[4] = kh
;
1665 fdctrl
->fifo
[5] = ks
;
1668 /* No seek enabled */
1669 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1670 fdctrl
->fifo
[3] = kt
;
1671 fdctrl
->fifo
[4] = kh
;
1672 fdctrl
->fifo
[5] = ks
;
1675 fdctrl
->status0
|= FD_SR0_SEEK
;
1681 /* Check the data rate. If the programmed data rate does not match
1682 * the currently inserted medium, the operation has to fail. */
1683 if ((fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
1684 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1685 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
1686 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
1687 fdctrl
->fifo
[3] = kt
;
1688 fdctrl
->fifo
[4] = kh
;
1689 fdctrl
->fifo
[5] = ks
;
1693 /* Set the FIFO state */
1694 fdctrl
->data_dir
= direction
;
1695 fdctrl
->data_pos
= 0;
1696 assert(fdctrl
->msr
& FD_MSR_CMDBUSY
);
1697 if (fdctrl
->fifo
[0] & 0x80)
1698 fdctrl
->data_state
|= FD_STATE_MULTI
;
1700 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
1701 if (fdctrl
->fifo
[5] == 0) {
1702 fdctrl
->data_len
= fdctrl
->fifo
[8];
1705 fdctrl
->data_len
= 128 << (fdctrl
->fifo
[5] > 7 ? 7 : fdctrl
->fifo
[5]);
1706 tmp
= (fdctrl
->fifo
[6] - ks
+ 1);
1707 if (fdctrl
->fifo
[0] & 0x80)
1708 tmp
+= fdctrl
->fifo
[6];
1709 fdctrl
->data_len
*= tmp
;
1711 fdctrl
->eot
= fdctrl
->fifo
[6];
1712 if (fdctrl
->dor
& FD_DOR_DMAEN
) {
1713 /* DMA transfer is enabled. */
1714 IsaDmaClass
*k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1716 FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1717 direction
, (128 << fdctrl
->fifo
[5]) *
1718 (cur_drv
->last_sect
- ks
+ 1), fdctrl
->data_len
);
1720 /* No access is allowed until DMA transfer has completed */
1721 fdctrl
->msr
&= ~FD_MSR_RQM
;
1722 if (direction
!= FD_DIR_VERIFY
) {
1724 * Now, we just have to wait for the DMA controller to
1727 k
->hold_DREQ(fdctrl
->dma
, fdctrl
->dma_chann
);
1728 k
->schedule(fdctrl
->dma
);
1730 /* Start transfer */
1731 fdctrl_transfer_handler(fdctrl
, fdctrl
->dma_chann
, 0,
1736 FLOPPY_DPRINTF("start non-DMA transfer\n");
1737 fdctrl
->msr
|= FD_MSR_NONDMA
| FD_MSR_RQM
;
1738 if (direction
!= FD_DIR_WRITE
)
1739 fdctrl
->msr
|= FD_MSR_DIO
;
1740 /* IO based transfer: calculate len */
1741 fdctrl_raise_irq(fdctrl
);
1744 /* Prepare a transfer of deleted data */
1745 static void fdctrl_start_transfer_del(FDCtrl
*fdctrl
, int direction
)
1747 qemu_log_mask(LOG_UNIMP
, "fdctrl_start_transfer_del() unimplemented\n");
1749 /* We don't handle deleted data,
1750 * so we don't return *ANYTHING*
1752 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1755 /* handlers for DMA transfers */
1756 static int fdctrl_transfer_handler (void *opaque
, int nchan
,
1757 int dma_pos
, int dma_len
)
1761 int len
, start_pos
, rel_pos
;
1762 uint8_t status0
= 0x00, status1
= 0x00, status2
= 0x00;
1766 if (fdctrl
->msr
& FD_MSR_RQM
) {
1767 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1770 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
1771 cur_drv
= get_cur_drv(fdctrl
);
1772 if (fdctrl
->data_dir
== FD_DIR_SCANE
|| fdctrl
->data_dir
== FD_DIR_SCANL
||
1773 fdctrl
->data_dir
== FD_DIR_SCANH
)
1774 status2
= FD_SR2_SNS
;
1775 if (dma_len
> fdctrl
->data_len
)
1776 dma_len
= fdctrl
->data_len
;
1777 if (cur_drv
->blk
== NULL
) {
1778 if (fdctrl
->data_dir
== FD_DIR_WRITE
)
1779 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1781 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1783 goto transfer_error
;
1785 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1786 for (start_pos
= fdctrl
->data_pos
; fdctrl
->data_pos
< dma_len
;) {
1787 len
= dma_len
- fdctrl
->data_pos
;
1788 if (len
+ rel_pos
> FD_SECTOR_LEN
)
1789 len
= FD_SECTOR_LEN
- rel_pos
;
1790 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1791 "(%d-0x%08x 0x%08x)\n", len
, dma_len
, fdctrl
->data_pos
,
1792 fdctrl
->data_len
, GET_CUR_DRV(fdctrl
), cur_drv
->head
,
1793 cur_drv
->track
, cur_drv
->sect
, fd_sector(cur_drv
),
1794 fd_sector(cur_drv
) * FD_SECTOR_LEN
);
1795 if (fdctrl
->data_dir
!= FD_DIR_WRITE
||
1796 len
< FD_SECTOR_LEN
|| rel_pos
!= 0) {
1797 /* READ & SCAN commands and realign to a sector for WRITE */
1798 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
),
1799 fdctrl
->fifo
, BDRV_SECTOR_SIZE
) < 0) {
1800 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1801 fd_sector(cur_drv
));
1802 /* Sure, image size is too small... */
1803 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1806 switch (fdctrl
->data_dir
) {
1809 k
->write_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1810 fdctrl
->data_pos
, len
);
1813 /* WRITE commands */
1815 /* Handle readonly medium early, no need to do DMA, touch the
1816 * LED or attempt any writes. A real floppy doesn't attempt
1817 * to write to readonly media either. */
1818 fdctrl_stop_transfer(fdctrl
,
1819 FD_SR0_ABNTERM
| FD_SR0_SEEK
, FD_SR1_NW
,
1821 goto transfer_error
;
1824 k
->read_memory(fdctrl
->dma
, nchan
, fdctrl
->fifo
+ rel_pos
,
1825 fdctrl
->data_pos
, len
);
1826 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
),
1827 fdctrl
->fifo
, BDRV_SECTOR_SIZE
, 0) < 0) {
1828 FLOPPY_DPRINTF("error writing sector %d\n",
1829 fd_sector(cur_drv
));
1830 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1831 goto transfer_error
;
1835 /* VERIFY commands */
1840 uint8_t tmpbuf
[FD_SECTOR_LEN
];
1842 k
->read_memory(fdctrl
->dma
, nchan
, tmpbuf
, fdctrl
->data_pos
,
1844 ret
= memcmp(tmpbuf
, fdctrl
->fifo
+ rel_pos
, len
);
1846 status2
= FD_SR2_SEH
;
1849 if ((ret
< 0 && fdctrl
->data_dir
== FD_DIR_SCANL
) ||
1850 (ret
> 0 && fdctrl
->data_dir
== FD_DIR_SCANH
)) {
1857 fdctrl
->data_pos
+= len
;
1858 rel_pos
= fdctrl
->data_pos
% FD_SECTOR_LEN
;
1860 /* Seek to next sector */
1861 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
))
1866 len
= fdctrl
->data_pos
- start_pos
;
1867 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1868 fdctrl
->data_pos
, len
, fdctrl
->data_len
);
1869 if (fdctrl
->data_dir
== FD_DIR_SCANE
||
1870 fdctrl
->data_dir
== FD_DIR_SCANL
||
1871 fdctrl
->data_dir
== FD_DIR_SCANH
)
1872 status2
= FD_SR2_SEH
;
1873 fdctrl
->data_len
-= len
;
1874 fdctrl_stop_transfer(fdctrl
, status0
, status1
, status2
);
1880 /* Data register : 0x05 */
1881 static uint32_t fdctrl_read_data(FDCtrl
*fdctrl
)
1884 uint32_t retval
= 0;
1887 cur_drv
= get_cur_drv(fdctrl
);
1888 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
1889 if (!(fdctrl
->msr
& FD_MSR_RQM
) || !(fdctrl
->msr
& FD_MSR_DIO
)) {
1890 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1894 /* If data_len spans multiple sectors, the current position in the FIFO
1895 * wraps around while fdctrl->data_pos is the real position in the whole
1897 pos
= fdctrl
->data_pos
;
1898 pos
%= FD_SECTOR_LEN
;
1900 switch (fdctrl
->phase
) {
1901 case FD_PHASE_EXECUTION
:
1902 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
1904 if (fdctrl
->data_pos
!= 0)
1905 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
1906 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1907 fd_sector(cur_drv
));
1910 if (blk_pread(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
1913 FLOPPY_DPRINTF("error getting sector %d\n",
1914 fd_sector(cur_drv
));
1915 /* Sure, image size is too small... */
1916 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1920 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1921 fdctrl
->msr
&= ~FD_MSR_RQM
;
1922 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
1926 case FD_PHASE_RESULT
:
1927 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
1928 if (++fdctrl
->data_pos
== fdctrl
->data_len
) {
1929 fdctrl
->msr
&= ~FD_MSR_RQM
;
1930 fdctrl_to_command_phase(fdctrl
);
1931 fdctrl_reset_irq(fdctrl
);
1935 case FD_PHASE_COMMAND
:
1940 retval
= fdctrl
->fifo
[pos
];
1941 FLOPPY_DPRINTF("data register: 0x%02x\n", retval
);
1946 static void fdctrl_format_sector(FDCtrl
*fdctrl
)
1951 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
1952 cur_drv
= get_cur_drv(fdctrl
);
1953 kt
= fdctrl
->fifo
[6];
1954 kh
= fdctrl
->fifo
[7];
1955 ks
= fdctrl
->fifo
[8];
1956 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1957 GET_CUR_DRV(fdctrl
), kh
, kt
, ks
,
1958 fd_sector_calc(kh
, kt
, ks
, cur_drv
->last_sect
,
1959 NUM_SIDES(cur_drv
)));
1960 switch (fd_seek(cur_drv
, kh
, kt
, ks
, fdctrl
->config
& FD_CONFIG_EIS
)) {
1963 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1964 fdctrl
->fifo
[3] = kt
;
1965 fdctrl
->fifo
[4] = kh
;
1966 fdctrl
->fifo
[5] = ks
;
1970 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_EC
, 0x00);
1971 fdctrl
->fifo
[3] = kt
;
1972 fdctrl
->fifo
[4] = kh
;
1973 fdctrl
->fifo
[5] = ks
;
1976 /* No seek enabled */
1977 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, 0x00, 0x00);
1978 fdctrl
->fifo
[3] = kt
;
1979 fdctrl
->fifo
[4] = kh
;
1980 fdctrl
->fifo
[5] = ks
;
1983 fdctrl
->status0
|= FD_SR0_SEEK
;
1988 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
1989 if (cur_drv
->blk
== NULL
||
1990 blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
1991 BDRV_SECTOR_SIZE
, 0) < 0) {
1992 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv
));
1993 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
| FD_SR0_SEEK
, 0x00, 0x00);
1995 if (cur_drv
->sect
== cur_drv
->last_sect
) {
1996 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
1997 /* Last sector done */
1998 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2001 fdctrl
->data_pos
= 0;
2002 fdctrl
->data_len
= 4;
2007 static void fdctrl_handle_lock(FDCtrl
*fdctrl
, int direction
)
2009 fdctrl
->lock
= (fdctrl
->fifo
[0] & 0x80) ? 1 : 0;
2010 fdctrl
->fifo
[0] = fdctrl
->lock
<< 4;
2011 fdctrl_to_result_phase(fdctrl
, 1);
2014 static void fdctrl_handle_dumpreg(FDCtrl
*fdctrl
, int direction
)
2016 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2018 /* Drives position */
2019 fdctrl
->fifo
[0] = drv0(fdctrl
)->track
;
2020 fdctrl
->fifo
[1] = drv1(fdctrl
)->track
;
2022 fdctrl
->fifo
[2] = drv2(fdctrl
)->track
;
2023 fdctrl
->fifo
[3] = drv3(fdctrl
)->track
;
2025 fdctrl
->fifo
[2] = 0;
2026 fdctrl
->fifo
[3] = 0;
2029 fdctrl
->fifo
[4] = fdctrl
->timer0
;
2030 fdctrl
->fifo
[5] = (fdctrl
->timer1
<< 1) | (fdctrl
->dor
& FD_DOR_DMAEN
? 1 : 0);
2031 fdctrl
->fifo
[6] = cur_drv
->last_sect
;
2032 fdctrl
->fifo
[7] = (fdctrl
->lock
<< 7) |
2033 (cur_drv
->perpendicular
<< 2);
2034 fdctrl
->fifo
[8] = fdctrl
->config
;
2035 fdctrl
->fifo
[9] = fdctrl
->precomp_trk
;
2036 fdctrl_to_result_phase(fdctrl
, 10);
2039 static void fdctrl_handle_version(FDCtrl
*fdctrl
, int direction
)
2041 /* Controller's version */
2042 fdctrl
->fifo
[0] = fdctrl
->version
;
2043 fdctrl_to_result_phase(fdctrl
, 1);
2046 static void fdctrl_handle_partid(FDCtrl
*fdctrl
, int direction
)
2048 fdctrl
->fifo
[0] = 0x41; /* Stepping 1 */
2049 fdctrl_to_result_phase(fdctrl
, 1);
2052 static void fdctrl_handle_restore(FDCtrl
*fdctrl
, int direction
)
2054 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2056 /* Drives position */
2057 drv0(fdctrl
)->track
= fdctrl
->fifo
[3];
2058 drv1(fdctrl
)->track
= fdctrl
->fifo
[4];
2060 drv2(fdctrl
)->track
= fdctrl
->fifo
[5];
2061 drv3(fdctrl
)->track
= fdctrl
->fifo
[6];
2064 fdctrl
->timer0
= fdctrl
->fifo
[7];
2065 fdctrl
->timer1
= fdctrl
->fifo
[8];
2066 cur_drv
->last_sect
= fdctrl
->fifo
[9];
2067 fdctrl
->lock
= fdctrl
->fifo
[10] >> 7;
2068 cur_drv
->perpendicular
= (fdctrl
->fifo
[10] >> 2) & 0xF;
2069 fdctrl
->config
= fdctrl
->fifo
[11];
2070 fdctrl
->precomp_trk
= fdctrl
->fifo
[12];
2071 fdctrl
->pwrd
= fdctrl
->fifo
[13];
2072 fdctrl_to_command_phase(fdctrl
);
2075 static void fdctrl_handle_save(FDCtrl
*fdctrl
, int direction
)
2077 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2079 fdctrl
->fifo
[0] = 0;
2080 fdctrl
->fifo
[1] = 0;
2081 /* Drives position */
2082 fdctrl
->fifo
[2] = drv0(fdctrl
)->track
;
2083 fdctrl
->fifo
[3] = drv1(fdctrl
)->track
;
2085 fdctrl
->fifo
[4] = drv2(fdctrl
)->track
;
2086 fdctrl
->fifo
[5] = drv3(fdctrl
)->track
;
2088 fdctrl
->fifo
[4] = 0;
2089 fdctrl
->fifo
[5] = 0;
2092 fdctrl
->fifo
[6] = fdctrl
->timer0
;
2093 fdctrl
->fifo
[7] = fdctrl
->timer1
;
2094 fdctrl
->fifo
[8] = cur_drv
->last_sect
;
2095 fdctrl
->fifo
[9] = (fdctrl
->lock
<< 7) |
2096 (cur_drv
->perpendicular
<< 2);
2097 fdctrl
->fifo
[10] = fdctrl
->config
;
2098 fdctrl
->fifo
[11] = fdctrl
->precomp_trk
;
2099 fdctrl
->fifo
[12] = fdctrl
->pwrd
;
2100 fdctrl
->fifo
[13] = 0;
2101 fdctrl
->fifo
[14] = 0;
2102 fdctrl_to_result_phase(fdctrl
, 15);
2105 static void fdctrl_handle_readid(FDCtrl
*fdctrl
, int direction
)
2107 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2109 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2110 timer_mod(fdctrl
->result_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
2111 (NANOSECONDS_PER_SECOND
/ 50));
2114 static void fdctrl_handle_format_track(FDCtrl
*fdctrl
, int direction
)
2118 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2119 cur_drv
= get_cur_drv(fdctrl
);
2120 fdctrl
->data_state
|= FD_STATE_FORMAT
;
2121 if (fdctrl
->fifo
[0] & 0x80)
2122 fdctrl
->data_state
|= FD_STATE_MULTI
;
2124 fdctrl
->data_state
&= ~FD_STATE_MULTI
;
2126 fdctrl
->fifo
[2] > 7 ? 16384 : 128 << fdctrl
->fifo
[2];
2128 cur_drv
->last_sect
=
2129 cur_drv
->flags
& FDISK_DBL_SIDES
? fdctrl
->fifo
[3] :
2130 fdctrl
->fifo
[3] / 2;
2132 cur_drv
->last_sect
= fdctrl
->fifo
[3];
2134 /* TODO: implement format using DMA expected by the Bochs BIOS
2135 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2136 * the sector with the specified fill byte
2138 fdctrl
->data_state
&= ~FD_STATE_FORMAT
;
2139 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2142 static void fdctrl_handle_specify(FDCtrl
*fdctrl
, int direction
)
2144 fdctrl
->timer0
= (fdctrl
->fifo
[1] >> 4) & 0xF;
2145 fdctrl
->timer1
= fdctrl
->fifo
[2] >> 1;
2146 if (fdctrl
->fifo
[2] & 1)
2147 fdctrl
->dor
&= ~FD_DOR_DMAEN
;
2149 fdctrl
->dor
|= FD_DOR_DMAEN
;
2150 /* No result back */
2151 fdctrl_to_command_phase(fdctrl
);
2154 static void fdctrl_handle_sense_drive_status(FDCtrl
*fdctrl
, int direction
)
2158 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2159 cur_drv
= get_cur_drv(fdctrl
);
2160 cur_drv
->head
= (fdctrl
->fifo
[1] >> 2) & 1;
2161 /* 1 Byte status back */
2162 fdctrl
->fifo
[0] = (cur_drv
->ro
<< 6) |
2163 (cur_drv
->track
== 0 ? 0x10 : 0x00) |
2164 (cur_drv
->head
<< 2) |
2165 GET_CUR_DRV(fdctrl
) |
2167 fdctrl_to_result_phase(fdctrl
, 1);
2170 static void fdctrl_handle_recalibrate(FDCtrl
*fdctrl
, int direction
)
2174 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2175 cur_drv
= get_cur_drv(fdctrl
);
2176 fd_recalibrate(cur_drv
);
2177 fdctrl_to_command_phase(fdctrl
);
2178 /* Raise Interrupt */
2179 fdctrl
->status0
|= FD_SR0_SEEK
;
2180 fdctrl_raise_irq(fdctrl
);
2183 static void fdctrl_handle_sense_interrupt_status(FDCtrl
*fdctrl
, int direction
)
2185 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2187 if (fdctrl
->reset_sensei
> 0) {
2189 FD_SR0_RDYCHG
+ FD_RESET_SENSEI_COUNT
- fdctrl
->reset_sensei
;
2190 fdctrl
->reset_sensei
--;
2191 } else if (!(fdctrl
->sra
& FD_SRA_INTPEND
)) {
2192 fdctrl
->fifo
[0] = FD_SR0_INVCMD
;
2193 fdctrl_to_result_phase(fdctrl
, 1);
2197 (fdctrl
->status0
& ~(FD_SR0_HEAD
| FD_SR0_DS1
| FD_SR0_DS0
))
2198 | GET_CUR_DRV(fdctrl
);
2201 fdctrl
->fifo
[1] = cur_drv
->track
;
2202 fdctrl_to_result_phase(fdctrl
, 2);
2203 fdctrl_reset_irq(fdctrl
);
2204 fdctrl
->status0
= FD_SR0_RDYCHG
;
2207 static void fdctrl_handle_seek(FDCtrl
*fdctrl
, int direction
)
2211 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2212 cur_drv
= get_cur_drv(fdctrl
);
2213 fdctrl_to_command_phase(fdctrl
);
2214 /* The seek command just sends step pulses to the drive and doesn't care if
2215 * there is a medium inserted of if it's banging the head against the drive.
2217 fd_seek(cur_drv
, cur_drv
->head
, fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2218 /* Raise Interrupt */
2219 fdctrl
->status0
|= FD_SR0_SEEK
;
2220 fdctrl_raise_irq(fdctrl
);
2223 static void fdctrl_handle_perpendicular_mode(FDCtrl
*fdctrl
, int direction
)
2225 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2227 if (fdctrl
->fifo
[1] & 0x80)
2228 cur_drv
->perpendicular
= fdctrl
->fifo
[1] & 0x7;
2229 /* No result back */
2230 fdctrl_to_command_phase(fdctrl
);
2233 static void fdctrl_handle_configure(FDCtrl
*fdctrl
, int direction
)
2235 fdctrl
->config
= fdctrl
->fifo
[2];
2236 fdctrl
->precomp_trk
= fdctrl
->fifo
[3];
2237 /* No result back */
2238 fdctrl_to_command_phase(fdctrl
);
2241 static void fdctrl_handle_powerdown_mode(FDCtrl
*fdctrl
, int direction
)
2243 fdctrl
->pwrd
= fdctrl
->fifo
[1];
2244 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2245 fdctrl_to_result_phase(fdctrl
, 1);
2248 static void fdctrl_handle_option(FDCtrl
*fdctrl
, int direction
)
2250 /* No result back */
2251 fdctrl_to_command_phase(fdctrl
);
2254 static void fdctrl_handle_drive_specification_command(FDCtrl
*fdctrl
, int direction
)
2256 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2259 pos
= fdctrl
->data_pos
- 1;
2260 pos
%= FD_SECTOR_LEN
;
2261 if (fdctrl
->fifo
[pos
] & 0x80) {
2262 /* Command parameters done */
2263 if (fdctrl
->fifo
[pos
] & 0x40) {
2264 fdctrl
->fifo
[0] = fdctrl
->fifo
[1];
2265 fdctrl
->fifo
[2] = 0;
2266 fdctrl
->fifo
[3] = 0;
2267 fdctrl_to_result_phase(fdctrl
, 4);
2269 fdctrl_to_command_phase(fdctrl
);
2271 } else if (fdctrl
->data_len
> 7) {
2273 fdctrl
->fifo
[0] = 0x80 |
2274 (cur_drv
->head
<< 2) | GET_CUR_DRV(fdctrl
);
2275 fdctrl_to_result_phase(fdctrl
, 1);
2279 static void fdctrl_handle_relative_seek_in(FDCtrl
*fdctrl
, int direction
)
2283 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2284 cur_drv
= get_cur_drv(fdctrl
);
2285 if (fdctrl
->fifo
[2] + cur_drv
->track
>= cur_drv
->max_track
) {
2286 fd_seek(cur_drv
, cur_drv
->head
, cur_drv
->max_track
- 1,
2289 fd_seek(cur_drv
, cur_drv
->head
,
2290 cur_drv
->track
+ fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2292 fdctrl_to_command_phase(fdctrl
);
2293 /* Raise Interrupt */
2294 fdctrl
->status0
|= FD_SR0_SEEK
;
2295 fdctrl_raise_irq(fdctrl
);
2298 static void fdctrl_handle_relative_seek_out(FDCtrl
*fdctrl
, int direction
)
2302 SET_CUR_DRV(fdctrl
, fdctrl
->fifo
[1] & FD_DOR_SELMASK
);
2303 cur_drv
= get_cur_drv(fdctrl
);
2304 if (fdctrl
->fifo
[2] > cur_drv
->track
) {
2305 fd_seek(cur_drv
, cur_drv
->head
, 0, cur_drv
->sect
, 1);
2307 fd_seek(cur_drv
, cur_drv
->head
,
2308 cur_drv
->track
- fdctrl
->fifo
[2], cur_drv
->sect
, 1);
2310 fdctrl_to_command_phase(fdctrl
);
2311 /* Raise Interrupt */
2312 fdctrl
->status0
|= FD_SR0_SEEK
;
2313 fdctrl_raise_irq(fdctrl
);
2317 * Handlers for the execution phase of each command
2319 typedef struct FDCtrlCommand
{
2324 void (*handler
)(FDCtrl
*fdctrl
, int direction
);
2328 static const FDCtrlCommand handlers
[] = {
2329 { FD_CMD_READ
, 0x1f, "READ", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2330 { FD_CMD_WRITE
, 0x3f, "WRITE", 8, fdctrl_start_transfer
, FD_DIR_WRITE
},
2331 { FD_CMD_SEEK
, 0xff, "SEEK", 2, fdctrl_handle_seek
},
2332 { FD_CMD_SENSE_INTERRUPT_STATUS
, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status
},
2333 { FD_CMD_RECALIBRATE
, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate
},
2334 { FD_CMD_FORMAT_TRACK
, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track
},
2335 { FD_CMD_READ_TRACK
, 0xbf, "READ TRACK", 8, fdctrl_start_transfer
, FD_DIR_READ
},
2336 { FD_CMD_RESTORE
, 0xff, "RESTORE", 17, fdctrl_handle_restore
}, /* part of READ DELETED DATA */
2337 { FD_CMD_SAVE
, 0xff, "SAVE", 0, fdctrl_handle_save
}, /* part of READ DELETED DATA */
2338 { FD_CMD_READ_DELETED
, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_READ
},
2339 { FD_CMD_SCAN_EQUAL
, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANE
},
2340 { FD_CMD_VERIFY
, 0x1f, "VERIFY", 8, fdctrl_start_transfer
, FD_DIR_VERIFY
},
2341 { FD_CMD_SCAN_LOW_OR_EQUAL
, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANL
},
2342 { FD_CMD_SCAN_HIGH_OR_EQUAL
, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer
, FD_DIR_SCANH
},
2343 { FD_CMD_WRITE_DELETED
, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del
, FD_DIR_WRITE
},
2344 { FD_CMD_READ_ID
, 0xbf, "READ ID", 1, fdctrl_handle_readid
},
2345 { FD_CMD_SPECIFY
, 0xff, "SPECIFY", 2, fdctrl_handle_specify
},
2346 { FD_CMD_SENSE_DRIVE_STATUS
, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status
},
2347 { FD_CMD_PERPENDICULAR_MODE
, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode
},
2348 { FD_CMD_CONFIGURE
, 0xff, "CONFIGURE", 3, fdctrl_handle_configure
},
2349 { FD_CMD_POWERDOWN_MODE
, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode
},
2350 { FD_CMD_OPTION
, 0xff, "OPTION", 1, fdctrl_handle_option
},
2351 { FD_CMD_DRIVE_SPECIFICATION_COMMAND
, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command
},
2352 { FD_CMD_RELATIVE_SEEK_OUT
, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out
},
2353 { FD_CMD_FORMAT_AND_WRITE
, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented
},
2354 { FD_CMD_RELATIVE_SEEK_IN
, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in
},
2355 { FD_CMD_LOCK
, 0x7f, "LOCK", 0, fdctrl_handle_lock
},
2356 { FD_CMD_DUMPREG
, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg
},
2357 { FD_CMD_VERSION
, 0xff, "VERSION", 0, fdctrl_handle_version
},
2358 { FD_CMD_PART_ID
, 0xff, "PART ID", 0, fdctrl_handle_partid
},
2359 { FD_CMD_WRITE
, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer
, FD_DIR_WRITE
}, /* not in specification ; BeOS 4.5 bug */
2360 { 0, 0, "unknown", 0, fdctrl_unimplemented
}, /* default handler */
2362 /* Associate command to an index in the 'handlers' array */
2363 static uint8_t command_to_handler
[256];
2365 static const FDCtrlCommand
*get_command(uint8_t cmd
)
2369 idx
= command_to_handler
[cmd
];
2370 FLOPPY_DPRINTF("%s command\n", handlers
[idx
].name
);
2371 return &handlers
[idx
];
2374 static void fdctrl_write_data(FDCtrl
*fdctrl
, uint32_t value
)
2377 const FDCtrlCommand
*cmd
;
2381 if (!(fdctrl
->dor
& FD_DOR_nRESET
)) {
2382 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2385 if (!(fdctrl
->msr
& FD_MSR_RQM
) || (fdctrl
->msr
& FD_MSR_DIO
)) {
2386 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2389 fdctrl
->dsr
&= ~FD_DSR_PWRDOWN
;
2391 FLOPPY_DPRINTF("%s: %02x\n", __func__
, value
);
2393 /* If data_len spans multiple sectors, the current position in the FIFO
2394 * wraps around while fdctrl->data_pos is the real position in the whole
2396 pos
= fdctrl
->data_pos
++;
2397 pos
%= FD_SECTOR_LEN
;
2398 fdctrl
->fifo
[pos
] = value
;
2400 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2401 fdctrl
->msr
&= ~FD_MSR_RQM
;
2404 switch (fdctrl
->phase
) {
2405 case FD_PHASE_EXECUTION
:
2406 /* For DMA requests, RQM should be cleared during execution phase, so
2407 * we would have errored out above. */
2408 assert(fdctrl
->msr
& FD_MSR_NONDMA
);
2410 /* FIFO data write */
2411 if (pos
== FD_SECTOR_LEN
- 1 ||
2412 fdctrl
->data_pos
== fdctrl
->data_len
) {
2413 cur_drv
= get_cur_drv(fdctrl
);
2414 if (blk_pwrite(cur_drv
->blk
, fd_offset(cur_drv
), fdctrl
->fifo
,
2415 BDRV_SECTOR_SIZE
, 0) < 0) {
2416 FLOPPY_DPRINTF("error writing sector %d\n",
2417 fd_sector(cur_drv
));
2420 if (!fdctrl_seek_to_next_sect(fdctrl
, cur_drv
)) {
2421 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2422 fd_sector(cur_drv
));
2427 /* Switch to result phase when done with the transfer */
2428 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2429 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2433 case FD_PHASE_COMMAND
:
2434 assert(!(fdctrl
->msr
& FD_MSR_NONDMA
));
2435 assert(fdctrl
->data_pos
< FD_SECTOR_LEN
);
2438 /* The first byte specifies the command. Now we start reading
2439 * as many parameters as this command requires. */
2440 cmd
= get_command(value
);
2441 fdctrl
->data_len
= cmd
->parameters
+ 1;
2442 if (cmd
->parameters
) {
2443 fdctrl
->msr
|= FD_MSR_RQM
;
2445 fdctrl
->msr
|= FD_MSR_CMDBUSY
;
2448 if (fdctrl
->data_pos
== fdctrl
->data_len
) {
2449 /* We have all parameters now, execute the command */
2450 fdctrl
->phase
= FD_PHASE_EXECUTION
;
2452 if (fdctrl
->data_state
& FD_STATE_FORMAT
) {
2453 fdctrl_format_sector(fdctrl
);
2457 cmd
= get_command(fdctrl
->fifo
[0]);
2458 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd
->name
);
2459 cmd
->handler(fdctrl
, cmd
->direction
);
2463 case FD_PHASE_RESULT
:
2469 static void fdctrl_result_timer(void *opaque
)
2471 FDCtrl
*fdctrl
= opaque
;
2472 FDrive
*cur_drv
= get_cur_drv(fdctrl
);
2474 /* Pretend we are spinning.
2475 * This is needed for Coherent, which uses READ ID to check for
2476 * sector interleaving.
2478 if (cur_drv
->last_sect
!= 0) {
2479 cur_drv
->sect
= (cur_drv
->sect
% cur_drv
->last_sect
) + 1;
2481 /* READ_ID can't automatically succeed! */
2482 if ((fdctrl
->dsr
& FD_DSR_DRATEMASK
) != cur_drv
->media_rate
) {
2483 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2484 fdctrl
->dsr
& FD_DSR_DRATEMASK
, cur_drv
->media_rate
);
2485 fdctrl_stop_transfer(fdctrl
, FD_SR0_ABNTERM
, FD_SR1_MA
, 0x00);
2487 fdctrl_stop_transfer(fdctrl
, 0x00, 0x00, 0x00);
2491 /* Init functions */
2493 static void fdctrl_init_drives(FloppyBus
*bus
, DriveInfo
**fds
)
2498 for (i
= 0; i
< MAX_FD
; i
++) {
2500 dev
= qdev_new("floppy");
2501 qdev_prop_set_uint32(dev
, "unit", i
);
2502 qdev_prop_set_enum(dev
, "drive-type", FLOPPY_DRIVE_TYPE_AUTO
);
2503 qdev_prop_set_drive_err(dev
, "drive", blk_by_legacy_dinfo(fds
[i
]),
2505 qdev_realize_and_unref(dev
, &bus
->bus
, &error_fatal
);
2510 void isa_fdc_init_drives(ISADevice
*fdc
, DriveInfo
**fds
)
2512 fdctrl_init_drives(&ISA_FDC(fdc
)->state
.bus
, fds
);
2515 static void fdctrl_connect_drives(FDCtrl
*fdctrl
, DeviceState
*fdc_dev
,
2523 const char *fdc_name
, *drive_suffix
;
2525 for (i
= 0; i
< MAX_FD
; i
++) {
2526 drive
= &fdctrl
->drives
[i
];
2527 drive
->fdctrl
= fdctrl
;
2529 /* If the drive is not present, we skip creating the qdev device, but
2530 * still have to initialise the controller. */
2531 blk
= fdctrl
->qdev_for_drives
[i
].blk
;
2534 fd_revalidate(drive
);
2538 fdc_name
= object_get_typename(OBJECT(fdc_dev
));
2539 drive_suffix
= !strcmp(fdc_name
, "SUNW,fdtwo") ? "" : i
? "B" : "A";
2540 warn_report("warning: property %s.drive%s is deprecated",
2541 fdc_name
, drive_suffix
);
2542 error_printf("Use -device floppy,unit=%d,drive=... instead.\n", i
);
2544 dev
= qdev_new("floppy");
2545 qdev_prop_set_uint32(dev
, "unit", i
);
2546 qdev_prop_set_enum(dev
, "drive-type", fdctrl
->qdev_for_drives
[i
].type
);
2549 * Hack alert: we move the backend from the floppy controller
2550 * device to the floppy device. We first need to detach the
2551 * controller, or else floppy_create()'s qdev_prop_set_drive()
2552 * will die when it attaches floppy device. We also need to
2553 * take another reference so that blk_detach_dev() doesn't
2554 * free blk while we still need it.
2556 * The hack is probably a bad idea.
2559 blk_detach_dev(blk
, fdc_dev
);
2560 fdctrl
->qdev_for_drives
[i
].blk
= NULL
;
2561 ok
= qdev_prop_set_drive_err(dev
, "drive", blk
, errp
);
2567 if (!qdev_realize_and_unref(dev
, &fdctrl
->bus
.bus
, errp
)) {
2573 void fdctrl_init_sysbus(qemu_irq irq
, int dma_chann
,
2574 hwaddr mmio_base
, DriveInfo
**fds
)
2581 dev
= qdev_new("sysbus-fdc");
2582 sys
= SYSBUS_FDC(dev
);
2583 fdctrl
= &sys
->state
;
2584 fdctrl
->dma_chann
= dma_chann
; /* FIXME */
2585 sbd
= SYS_BUS_DEVICE(dev
);
2586 sysbus_realize_and_unref(sbd
, &error_fatal
);
2587 sysbus_connect_irq(sbd
, 0, irq
);
2588 sysbus_mmio_map(sbd
, 0, mmio_base
);
2590 fdctrl_init_drives(&sys
->state
.bus
, fds
);
2593 void sun4m_fdctrl_init(qemu_irq irq
, hwaddr io_base
,
2594 DriveInfo
**fds
, qemu_irq
*fdc_tc
)
2599 dev
= qdev_new("SUNW,fdtwo");
2600 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev
), &error_fatal
);
2601 sys
= SYSBUS_FDC(dev
);
2602 sysbus_connect_irq(SYS_BUS_DEVICE(sys
), 0, irq
);
2603 sysbus_mmio_map(SYS_BUS_DEVICE(sys
), 0, io_base
);
2604 *fdc_tc
= qdev_get_gpio_in(dev
, 0);
2606 fdctrl_init_drives(&sys
->state
.bus
, fds
);
2609 static void fdctrl_realize_common(DeviceState
*dev
, FDCtrl
*fdctrl
,
2613 static int command_tables_inited
= 0;
2615 if (fdctrl
->fallback
== FLOPPY_DRIVE_TYPE_AUTO
) {
2616 error_setg(errp
, "Cannot choose a fallback FDrive type of 'auto'");
2620 /* Fill 'command_to_handler' lookup table */
2621 if (!command_tables_inited
) {
2622 command_tables_inited
= 1;
2623 for (i
= ARRAY_SIZE(handlers
) - 1; i
>= 0; i
--) {
2624 for (j
= 0; j
< sizeof(command_to_handler
); j
++) {
2625 if ((j
& handlers
[i
].mask
) == handlers
[i
].value
) {
2626 command_to_handler
[j
] = i
;
2632 FLOPPY_DPRINTF("init controller\n");
2633 fdctrl
->fifo
= qemu_memalign(512, FD_SECTOR_LEN
);
2634 memset(fdctrl
->fifo
, 0, FD_SECTOR_LEN
);
2635 fdctrl
->fifo_size
= 512;
2636 fdctrl
->result_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
2637 fdctrl_result_timer
, fdctrl
);
2639 fdctrl
->version
= 0x90; /* Intel 82078 controller */
2640 fdctrl
->config
= FD_CONFIG_EIS
| FD_CONFIG_EFIFO
; /* Implicit seek, polling & FIFO enabled */
2641 fdctrl
->num_floppies
= MAX_FD
;
2643 if (fdctrl
->dma_chann
!= -1) {
2645 assert(fdctrl
->dma
);
2646 k
= ISADMA_GET_CLASS(fdctrl
->dma
);
2647 k
->register_channel(fdctrl
->dma
, fdctrl
->dma_chann
,
2648 &fdctrl_transfer_handler
, fdctrl
);
2651 floppy_bus_create(fdctrl
, &fdctrl
->bus
, dev
);
2652 fdctrl_connect_drives(fdctrl
, dev
, errp
);
2655 static const MemoryRegionPortio fdc_portio_list
[] = {
2656 { 1, 5, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2657 { 7, 1, 1, .read
= fdctrl_read
, .write
= fdctrl_write
},
2658 PORTIO_END_OF_LIST(),
2661 static void isabus_fdc_realize(DeviceState
*dev
, Error
**errp
)
2663 ISADevice
*isadev
= ISA_DEVICE(dev
);
2664 FDCtrlISABus
*isa
= ISA_FDC(dev
);
2665 FDCtrl
*fdctrl
= &isa
->state
;
2668 isa_register_portio_list(isadev
, &fdctrl
->portio_list
,
2669 isa
->iobase
, fdc_portio_list
, fdctrl
,
2672 isa_init_irq(isadev
, &fdctrl
->irq
, isa
->irq
);
2673 fdctrl
->dma_chann
= isa
->dma
;
2674 if (fdctrl
->dma_chann
!= -1) {
2675 fdctrl
->dma
= isa_get_dma(isa_bus_from_device(isadev
), isa
->dma
);
2677 error_setg(errp
, "ISA controller does not support DMA");
2682 qdev_set_legacy_instance_id(dev
, isa
->iobase
, 2);
2683 fdctrl_realize_common(dev
, fdctrl
, &err
);
2685 error_propagate(errp
, err
);
2690 static void sysbus_fdc_initfn(Object
*obj
)
2692 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2693 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2694 FDCtrl
*fdctrl
= &sys
->state
;
2696 fdctrl
->dma_chann
= -1;
2698 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_ops
, fdctrl
,
2700 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2703 static void sun4m_fdc_initfn(Object
*obj
)
2705 SysBusDevice
*sbd
= SYS_BUS_DEVICE(obj
);
2706 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2707 FDCtrl
*fdctrl
= &sys
->state
;
2709 fdctrl
->dma_chann
= -1;
2711 memory_region_init_io(&fdctrl
->iomem
, obj
, &fdctrl_mem_strict_ops
,
2712 fdctrl
, "fdctrl", 0x08);
2713 sysbus_init_mmio(sbd
, &fdctrl
->iomem
);
2716 static void sysbus_fdc_common_initfn(Object
*obj
)
2718 DeviceState
*dev
= DEVICE(obj
);
2719 SysBusDevice
*sbd
= SYS_BUS_DEVICE(dev
);
2720 FDCtrlSysBus
*sys
= SYSBUS_FDC(obj
);
2721 FDCtrl
*fdctrl
= &sys
->state
;
2723 qdev_set_legacy_instance_id(dev
, 0 /* io */, 2); /* FIXME */
2725 sysbus_init_irq(sbd
, &fdctrl
->irq
);
2726 qdev_init_gpio_in(dev
, fdctrl_handle_tc
, 1);
2729 static void sysbus_fdc_common_realize(DeviceState
*dev
, Error
**errp
)
2731 FDCtrlSysBus
*sys
= SYSBUS_FDC(dev
);
2732 FDCtrl
*fdctrl
= &sys
->state
;
2734 fdctrl_realize_common(dev
, fdctrl
, errp
);
2737 FloppyDriveType
isa_fdc_get_drive_type(ISADevice
*fdc
, int i
)
2739 FDCtrlISABus
*isa
= ISA_FDC(fdc
);
2741 return isa
->state
.drives
[i
].drive
;
2744 static void isa_fdc_get_drive_max_chs(FloppyDriveType type
, uint8_t *maxc
,
2745 uint8_t *maxh
, uint8_t *maxs
)
2747 const FDFormat
*fdf
;
2749 *maxc
= *maxh
= *maxs
= 0;
2750 for (fdf
= fd_formats
; fdf
->drive
!= FLOPPY_DRIVE_TYPE_NONE
; fdf
++) {
2751 if (fdf
->drive
!= type
) {
2754 if (*maxc
< fdf
->max_track
) {
2755 *maxc
= fdf
->max_track
;
2757 if (*maxh
< fdf
->max_head
) {
2758 *maxh
= fdf
->max_head
;
2760 if (*maxs
< fdf
->last_sect
) {
2761 *maxs
= fdf
->last_sect
;
2767 static Aml
*build_fdinfo_aml(int idx
, FloppyDriveType type
)
2770 uint8_t maxc
, maxh
, maxs
;
2772 isa_fdc_get_drive_max_chs(type
, &maxc
, &maxh
, &maxs
);
2774 dev
= aml_device("FLP%c", 'A' + idx
);
2776 aml_append(dev
, aml_name_decl("_ADR", aml_int(idx
)));
2778 fdi
= aml_package(16);
2779 aml_append(fdi
, aml_int(idx
)); /* Drive Number */
2781 aml_int(cmos_get_fd_drive_type(type
))); /* Device Type */
2783 * the values below are the limits of the drive, and are thus independent
2784 * of the inserted media
2786 aml_append(fdi
, aml_int(maxc
)); /* Maximum Cylinder Number */
2787 aml_append(fdi
, aml_int(maxs
)); /* Maximum Sector Number */
2788 aml_append(fdi
, aml_int(maxh
)); /* Maximum Head Number */
2790 * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
2791 * the drive type, so shall we
2793 aml_append(fdi
, aml_int(0xAF)); /* disk_specify_1 */
2794 aml_append(fdi
, aml_int(0x02)); /* disk_specify_2 */
2795 aml_append(fdi
, aml_int(0x25)); /* disk_motor_wait */
2796 aml_append(fdi
, aml_int(0x02)); /* disk_sector_siz */
2797 aml_append(fdi
, aml_int(0x12)); /* disk_eot */
2798 aml_append(fdi
, aml_int(0x1B)); /* disk_rw_gap */
2799 aml_append(fdi
, aml_int(0xFF)); /* disk_dtl */
2800 aml_append(fdi
, aml_int(0x6C)); /* disk_formt_gap */
2801 aml_append(fdi
, aml_int(0xF6)); /* disk_fill */
2802 aml_append(fdi
, aml_int(0x0F)); /* disk_head_sttl */
2803 aml_append(fdi
, aml_int(0x08)); /* disk_motor_strt */
2805 aml_append(dev
, aml_name_decl("_FDI", fdi
));
2809 int cmos_get_fd_drive_type(FloppyDriveType fd0
)
2814 case FLOPPY_DRIVE_TYPE_144
:
2815 /* 1.44 Mb 3"5 drive */
2818 case FLOPPY_DRIVE_TYPE_288
:
2819 /* 2.88 Mb 3"5 drive */
2822 case FLOPPY_DRIVE_TYPE_120
:
2823 /* 1.2 Mb 5"5 drive */
2826 case FLOPPY_DRIVE_TYPE_NONE
:
2834 static void fdc_isa_build_aml(ISADevice
*isadev
, Aml
*scope
)
2840 #define ACPI_FDE_MAX_FD 4
2841 uint32_t fde_buf
[5] = {
2842 0, 0, 0, 0, /* presence of floppy drives #0 - #3 */
2843 cpu_to_le32(2) /* tape presence (2 == never present) */
2846 crs
= aml_resource_template();
2847 aml_append(crs
, aml_io(AML_DECODE16
, 0x03F2, 0x03F2, 0x00, 0x04));
2848 aml_append(crs
, aml_io(AML_DECODE16
, 0x03F7, 0x03F7, 0x00, 0x01));
2849 aml_append(crs
, aml_irq_no_flags(6));
2851 aml_dma(AML_COMPATIBILITY
, AML_NOTBUSMASTER
, AML_TRANSFER8
, 2));
2853 dev
= aml_device("FDC0");
2854 aml_append(dev
, aml_name_decl("_HID", aml_eisaid("PNP0700")));
2855 aml_append(dev
, aml_name_decl("_CRS", crs
));
2857 for (i
= 0; i
< MIN(MAX_FD
, ACPI_FDE_MAX_FD
); i
++) {
2858 FloppyDriveType type
= isa_fdc_get_drive_type(isadev
, i
);
2860 if (type
< FLOPPY_DRIVE_TYPE_NONE
) {
2861 fde_buf
[i
] = cpu_to_le32(1); /* drive present */
2862 aml_append(dev
, build_fdinfo_aml(i
, type
));
2865 aml_append(dev
, aml_name_decl("_FDE",
2866 aml_buffer(sizeof(fde_buf
), (uint8_t *)fde_buf
)));
2868 aml_append(scope
, dev
);
2871 static const VMStateDescription vmstate_isa_fdc
={
2874 .minimum_version_id
= 2,
2875 .fields
= (VMStateField
[]) {
2876 VMSTATE_STRUCT(state
, FDCtrlISABus
, 0, vmstate_fdc
, FDCtrl
),
2877 VMSTATE_END_OF_LIST()
2881 static Property isa_fdc_properties
[] = {
2882 DEFINE_PROP_UINT32("iobase", FDCtrlISABus
, iobase
, 0x3f0),
2883 DEFINE_PROP_UINT32("irq", FDCtrlISABus
, irq
, 6),
2884 DEFINE_PROP_UINT32("dma", FDCtrlISABus
, dma
, 2),
2885 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus
, state
.qdev_for_drives
[0].blk
),
2886 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus
, state
.qdev_for_drives
[1].blk
),
2887 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus
, state
.qdev_for_drives
[0].type
,
2888 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2890 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus
, state
.qdev_for_drives
[1].type
,
2891 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2893 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2894 FLOPPY_DRIVE_TYPE_288
, qdev_prop_fdc_drive_type
,
2896 DEFINE_PROP_END_OF_LIST(),
2899 static void isabus_fdc_class_init(ObjectClass
*klass
, void *data
)
2901 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2902 ISADeviceClass
*isa
= ISA_DEVICE_CLASS(klass
);
2904 dc
->realize
= isabus_fdc_realize
;
2905 dc
->fw_name
= "fdc";
2906 dc
->reset
= fdctrl_external_reset_isa
;
2907 dc
->vmsd
= &vmstate_isa_fdc
;
2908 isa
->build_aml
= fdc_isa_build_aml
;
2909 device_class_set_props(dc
, isa_fdc_properties
);
2910 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2913 static void isabus_fdc_instance_init(Object
*obj
)
2915 FDCtrlISABus
*isa
= ISA_FDC(obj
);
2917 device_add_bootindex_property(obj
, &isa
->bootindexA
,
2918 "bootindexA", "/floppy@0",
2920 device_add_bootindex_property(obj
, &isa
->bootindexB
,
2921 "bootindexB", "/floppy@1",
2925 static const TypeInfo isa_fdc_info
= {
2926 .name
= TYPE_ISA_FDC
,
2927 .parent
= TYPE_ISA_DEVICE
,
2928 .instance_size
= sizeof(FDCtrlISABus
),
2929 .class_init
= isabus_fdc_class_init
,
2930 .instance_init
= isabus_fdc_instance_init
,
2933 static const VMStateDescription vmstate_sysbus_fdc
={
2936 .minimum_version_id
= 2,
2937 .fields
= (VMStateField
[]) {
2938 VMSTATE_STRUCT(state
, FDCtrlSysBus
, 0, vmstate_fdc
, FDCtrl
),
2939 VMSTATE_END_OF_LIST()
2943 static Property sysbus_fdc_properties
[] = {
2944 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2945 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus
, state
.qdev_for_drives
[1].blk
),
2946 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2947 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2949 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus
, state
.qdev_for_drives
[1].type
,
2950 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2952 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2953 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2955 DEFINE_PROP_END_OF_LIST(),
2958 static void sysbus_fdc_class_init(ObjectClass
*klass
, void *data
)
2960 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2962 device_class_set_props(dc
, sysbus_fdc_properties
);
2963 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2966 static const TypeInfo sysbus_fdc_info
= {
2967 .name
= "sysbus-fdc",
2968 .parent
= TYPE_SYSBUS_FDC
,
2969 .instance_init
= sysbus_fdc_initfn
,
2970 .class_init
= sysbus_fdc_class_init
,
2973 static Property sun4m_fdc_properties
[] = {
2974 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus
, state
.qdev_for_drives
[0].blk
),
2975 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus
, state
.qdev_for_drives
[0].type
,
2976 FLOPPY_DRIVE_TYPE_AUTO
, qdev_prop_fdc_drive_type
,
2978 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus
, state
.fallback
,
2979 FLOPPY_DRIVE_TYPE_144
, qdev_prop_fdc_drive_type
,
2981 DEFINE_PROP_END_OF_LIST(),
2984 static void sun4m_fdc_class_init(ObjectClass
*klass
, void *data
)
2986 DeviceClass
*dc
= DEVICE_CLASS(klass
);
2988 device_class_set_props(dc
, sun4m_fdc_properties
);
2989 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
2992 static const TypeInfo sun4m_fdc_info
= {
2993 .name
= "SUNW,fdtwo",
2994 .parent
= TYPE_SYSBUS_FDC
,
2995 .instance_init
= sun4m_fdc_initfn
,
2996 .class_init
= sun4m_fdc_class_init
,
2999 static void sysbus_fdc_common_class_init(ObjectClass
*klass
, void *data
)
3001 DeviceClass
*dc
= DEVICE_CLASS(klass
);
3003 dc
->realize
= sysbus_fdc_common_realize
;
3004 dc
->reset
= fdctrl_external_reset_sysbus
;
3005 dc
->vmsd
= &vmstate_sysbus_fdc
;
3008 static const TypeInfo sysbus_fdc_type_info
= {
3009 .name
= TYPE_SYSBUS_FDC
,
3010 .parent
= TYPE_SYS_BUS_DEVICE
,
3011 .instance_size
= sizeof(FDCtrlSysBus
),
3012 .instance_init
= sysbus_fdc_common_initfn
,
3014 .class_init
= sysbus_fdc_common_class_init
,
3017 static void fdc_register_types(void)
3019 type_register_static(&isa_fdc_info
);
3020 type_register_static(&sysbus_fdc_type_info
);
3021 type_register_static(&sysbus_fdc_info
);
3022 type_register_static(&sun4m_fdc_info
);
3023 type_register_static(&floppy_bus_info
);
3024 type_register_static(&floppy_drive_info
);
3027 type_init(fdc_register_types
)