Merge remote-tracking branch 'remotes/cohuck-gitlab/tags/s390x-20210316' into staging
[qemu.git] / hw / block / fdc.c
blob198940e73799090eb9ab0515fb12c28ba9966ff3
1 /*
2 * QEMU Floppy disk emulator (Intel 82078)
4 * Copyright (c) 2003, 2007 Jocelyn Mayer
5 * Copyright (c) 2008 Hervé Poussineau
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
26 * The controller is used in Sun4m systems in a slightly different
27 * way. There are changes in DOR register and DMA is not available.
30 #include "qemu/osdep.h"
31 #include "hw/block/fdc.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
34 #include "qemu/timer.h"
35 #include "hw/acpi/aml-build.h"
36 #include "hw/irq.h"
37 #include "hw/isa/isa.h"
38 #include "hw/qdev-properties.h"
39 #include "hw/qdev-properties-system.h"
40 #include "hw/sysbus.h"
41 #include "migration/vmstate.h"
42 #include "hw/block/block.h"
43 #include "sysemu/block-backend.h"
44 #include "sysemu/blockdev.h"
45 #include "sysemu/sysemu.h"
46 #include "qemu/log.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/module.h"
49 #include "trace.h"
50 #include "qom/object.h"
52 /********************************************************/
53 /* debug Floppy devices */
55 #define DEBUG_FLOPPY 0
57 #define FLOPPY_DPRINTF(fmt, ...) \
58 do { \
59 if (DEBUG_FLOPPY) { \
60 fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \
61 } \
62 } while (0)
65 /********************************************************/
66 /* qdev floppy bus */
68 #define TYPE_FLOPPY_BUS "floppy-bus"
69 OBJECT_DECLARE_SIMPLE_TYPE(FloppyBus, FLOPPY_BUS)
71 typedef struct FDCtrl FDCtrl;
72 typedef struct FDrive FDrive;
73 static FDrive *get_drv(FDCtrl *fdctrl, int unit);
75 struct FloppyBus {
76 BusState bus;
77 FDCtrl *fdc;
80 static const TypeInfo floppy_bus_info = {
81 .name = TYPE_FLOPPY_BUS,
82 .parent = TYPE_BUS,
83 .instance_size = sizeof(FloppyBus),
86 static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev)
88 qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL);
89 bus->fdc = fdc;
93 /********************************************************/
94 /* Floppy drive emulation */
96 typedef enum FDriveRate {
97 FDRIVE_RATE_500K = 0x00, /* 500 Kbps */
98 FDRIVE_RATE_300K = 0x01, /* 300 Kbps */
99 FDRIVE_RATE_250K = 0x02, /* 250 Kbps */
100 FDRIVE_RATE_1M = 0x03, /* 1 Mbps */
101 } FDriveRate;
103 typedef enum FDriveSize {
104 FDRIVE_SIZE_UNKNOWN,
105 FDRIVE_SIZE_350,
106 FDRIVE_SIZE_525,
107 } FDriveSize;
109 typedef struct FDFormat {
110 FloppyDriveType drive;
111 uint8_t last_sect;
112 uint8_t max_track;
113 uint8_t max_head;
114 FDriveRate rate;
115 } FDFormat;
117 /* In many cases, the total sector size of a format is enough to uniquely
118 * identify it. However, there are some total sector collisions between
119 * formats of different physical size, and these are noted below by
120 * highlighting the total sector size for entries with collisions. */
121 static const FDFormat fd_formats[] = {
122 /* First entry is default format */
123 /* 1.44 MB 3"1/2 floppy disks */
124 { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */
125 { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */
126 { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, },
127 { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, },
128 { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, },
129 { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, },
130 { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, },
131 { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, },
132 /* 2.88 MB 3"1/2 floppy disks */
133 { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, },
134 { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, },
135 { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, },
136 { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, },
137 { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, },
138 /* 720 kB 3"1/2 floppy disks */
139 { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */
140 { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, },
141 { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, },
142 { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, },
143 { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, },
144 { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, },
145 /* 1.2 MB 5"1/4 floppy disks */
146 { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, },
147 { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */
148 { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, },
149 { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, },
150 { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */
151 /* 720 kB 5"1/4 floppy disks */
152 { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */
153 { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, },
154 /* 360 kB 5"1/4 floppy disks */
155 { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */
156 { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, },
157 { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, },
158 { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, },
159 /* 320 kB 5"1/4 floppy disks */
160 { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, },
161 { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, },
162 /* 360 kB must match 5"1/4 better than 3"1/2... */
163 { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */
164 /* end */
165 { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, },
168 static FDriveSize drive_size(FloppyDriveType drive)
170 switch (drive) {
171 case FLOPPY_DRIVE_TYPE_120:
172 return FDRIVE_SIZE_525;
173 case FLOPPY_DRIVE_TYPE_144:
174 case FLOPPY_DRIVE_TYPE_288:
175 return FDRIVE_SIZE_350;
176 default:
177 return FDRIVE_SIZE_UNKNOWN;
181 #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
182 #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
184 /* Will always be a fixed parameter for us */
185 #define FD_SECTOR_LEN 512
186 #define FD_SECTOR_SC 2 /* Sector size code */
187 #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
189 /* Floppy disk drive emulation */
190 typedef enum FDiskFlags {
191 FDISK_DBL_SIDES = 0x01,
192 } FDiskFlags;
194 struct FDrive {
195 FDCtrl *fdctrl;
196 BlockBackend *blk;
197 BlockConf *conf;
198 /* Drive status */
199 FloppyDriveType drive; /* CMOS drive type */
200 uint8_t perpendicular; /* 2.88 MB access mode */
201 /* Position */
202 uint8_t head;
203 uint8_t track;
204 uint8_t sect;
205 /* Media */
206 FloppyDriveType disk; /* Current disk type */
207 FDiskFlags flags;
208 uint8_t last_sect; /* Nb sector per track */
209 uint8_t max_track; /* Nb of tracks */
210 uint16_t bps; /* Bytes per sector */
211 uint8_t ro; /* Is read-only */
212 uint8_t media_changed; /* Is media changed */
213 uint8_t media_rate; /* Data rate of medium */
215 bool media_validated; /* Have we validated the media? */
219 static FloppyDriveType get_fallback_drive_type(FDrive *drv);
221 /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU
222 * currently goes through some pains to keep seeks within the bounds
223 * established by last_sect and max_track. Correcting this is difficult,
224 * as refactoring FDC code tends to expose nasty bugs in the Linux kernel.
226 * For now: allow empty drives to have large bounds so we can seek around,
227 * with the understanding that when a diskette is inserted, the bounds will
228 * properly tighten to match the geometry of that inserted medium.
230 static void fd_empty_seek_hack(FDrive *drv)
232 drv->last_sect = 0xFF;
233 drv->max_track = 0xFF;
236 static void fd_init(FDrive *drv)
238 /* Drive */
239 drv->perpendicular = 0;
240 /* Disk */
241 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
242 drv->last_sect = 0;
243 drv->max_track = 0;
244 drv->ro = true;
245 drv->media_changed = 1;
248 #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1)
250 static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect,
251 uint8_t last_sect, uint8_t num_sides)
253 return (((track * num_sides) + head) * last_sect) + sect - 1;
256 /* Returns current position, in sectors, for given drive */
257 static int fd_sector(FDrive *drv)
259 return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect,
260 NUM_SIDES(drv));
263 /* Returns current position, in bytes, for given drive */
264 static int fd_offset(FDrive *drv)
266 g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS);
267 return fd_sector(drv) << BDRV_SECTOR_BITS;
270 /* Seek to a new position:
271 * returns 0 if already on right track
272 * returns 1 if track changed
273 * returns 2 if track is invalid
274 * returns 3 if sector is invalid
275 * returns 4 if seek is disabled
277 static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect,
278 int enable_seek)
280 uint32_t sector;
281 int ret;
283 if (track > drv->max_track ||
284 (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
285 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
286 head, track, sect, 1,
287 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
288 drv->max_track, drv->last_sect);
289 return 2;
291 if (sect > drv->last_sect) {
292 FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
293 head, track, sect, 1,
294 (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
295 drv->max_track, drv->last_sect);
296 return 3;
298 sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv));
299 ret = 0;
300 if (sector != fd_sector(drv)) {
301 #if 0
302 if (!enable_seek) {
303 FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x"
304 " (max=%d %02x %02x)\n",
305 head, track, sect, 1, drv->max_track,
306 drv->last_sect);
307 return 4;
309 #endif
310 drv->head = head;
311 if (drv->track != track) {
312 if (drv->blk != NULL && blk_is_inserted(drv->blk)) {
313 drv->media_changed = 0;
315 ret = 1;
317 drv->track = track;
318 drv->sect = sect;
321 if (drv->blk == NULL || !blk_is_inserted(drv->blk)) {
322 ret = 2;
325 return ret;
328 /* Set drive back to track 0 */
329 static void fd_recalibrate(FDrive *drv)
331 FLOPPY_DPRINTF("recalibrate\n");
332 fd_seek(drv, 0, 0, 1, 1);
336 * Determine geometry based on inserted diskette.
337 * Will not operate on an empty drive.
339 * @return: 0 on success, -1 if the drive is empty.
341 static int pick_geometry(FDrive *drv)
343 BlockBackend *blk = drv->blk;
344 const FDFormat *parse;
345 uint64_t nb_sectors, size;
346 int i;
347 int match, size_match, type_match;
348 bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO;
350 /* We can only pick a geometry if we have a diskette. */
351 if (!drv->blk || !blk_is_inserted(drv->blk) ||
352 drv->drive == FLOPPY_DRIVE_TYPE_NONE)
354 return -1;
357 /* We need to determine the likely geometry of the inserted medium.
358 * In order of preference, we look for:
359 * (1) The same drive type and number of sectors,
360 * (2) The same diskette size and number of sectors,
361 * (3) The same drive type.
363 * In all cases, matches that occur higher in the drive table will take
364 * precedence over matches that occur later in the table.
366 blk_get_geometry(blk, &nb_sectors);
367 match = size_match = type_match = -1;
368 for (i = 0; ; i++) {
369 parse = &fd_formats[i];
370 if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) {
371 break;
373 size = (parse->max_head + 1) * parse->max_track * parse->last_sect;
374 if (nb_sectors == size) {
375 if (magic || parse->drive == drv->drive) {
376 /* (1) perfect match -- nb_sectors and drive type */
377 goto out;
378 } else if (drive_size(parse->drive) == drive_size(drv->drive)) {
379 /* (2) size match -- nb_sectors and physical medium size */
380 match = (match == -1) ? i : match;
381 } else {
382 /* This is suspicious -- Did the user misconfigure? */
383 size_match = (size_match == -1) ? i : size_match;
385 } else if (type_match == -1) {
386 if ((parse->drive == drv->drive) ||
387 (magic && (parse->drive == get_fallback_drive_type(drv)))) {
388 /* (3) type match -- nb_sectors mismatch, but matches the type
389 * specified explicitly by the user, or matches the fallback
390 * default type when using the drive autodetect mechanism */
391 type_match = i;
396 /* No exact match found */
397 if (match == -1) {
398 if (size_match != -1) {
399 parse = &fd_formats[size_match];
400 FLOPPY_DPRINTF("User requested floppy drive type '%s', "
401 "but inserted medium appears to be a "
402 "%"PRId64" sector '%s' type\n",
403 FloppyDriveType_str(drv->drive),
404 nb_sectors,
405 FloppyDriveType_str(parse->drive));
407 assert(type_match != -1 && "misconfigured fd_format");
408 match = type_match;
410 parse = &(fd_formats[match]);
412 out:
413 if (parse->max_head == 0) {
414 drv->flags &= ~FDISK_DBL_SIDES;
415 } else {
416 drv->flags |= FDISK_DBL_SIDES;
418 drv->max_track = parse->max_track;
419 drv->last_sect = parse->last_sect;
420 drv->disk = parse->drive;
421 drv->media_rate = parse->rate;
422 return 0;
425 static void pick_drive_type(FDrive *drv)
427 if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) {
428 return;
431 if (pick_geometry(drv) == 0) {
432 drv->drive = drv->disk;
433 } else {
434 drv->drive = get_fallback_drive_type(drv);
437 g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO);
440 /* Revalidate a disk drive after a disk change */
441 static void fd_revalidate(FDrive *drv)
443 int rc;
445 FLOPPY_DPRINTF("revalidate\n");
446 if (drv->blk != NULL) {
447 drv->ro = !blk_is_writable(drv->blk);
448 if (!blk_is_inserted(drv->blk)) {
449 FLOPPY_DPRINTF("No disk in drive\n");
450 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
451 fd_empty_seek_hack(drv);
452 } else if (!drv->media_validated) {
453 rc = pick_geometry(drv);
454 if (rc) {
455 FLOPPY_DPRINTF("Could not validate floppy drive media");
456 } else {
457 drv->media_validated = true;
458 FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n",
459 (drv->flags & FDISK_DBL_SIDES) ? 2 : 1,
460 drv->max_track, drv->last_sect,
461 drv->ro ? "ro" : "rw");
464 } else {
465 FLOPPY_DPRINTF("No drive connected\n");
466 drv->last_sect = 0;
467 drv->max_track = 0;
468 drv->flags &= ~FDISK_DBL_SIDES;
469 drv->drive = FLOPPY_DRIVE_TYPE_NONE;
470 drv->disk = FLOPPY_DRIVE_TYPE_NONE;
474 static void fd_change_cb(void *opaque, bool load, Error **errp)
476 FDrive *drive = opaque;
478 if (!load) {
479 blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort);
480 } else {
481 if (!blkconf_apply_backend_options(drive->conf,
482 !blk_supports_write_perm(drive->blk),
483 false, errp)) {
484 return;
488 drive->media_changed = 1;
489 drive->media_validated = false;
490 fd_revalidate(drive);
493 static const BlockDevOps fd_block_ops = {
494 .change_media_cb = fd_change_cb,
498 #define TYPE_FLOPPY_DRIVE "floppy"
499 OBJECT_DECLARE_SIMPLE_TYPE(FloppyDrive, FLOPPY_DRIVE)
501 struct FloppyDrive {
502 DeviceState qdev;
503 uint32_t unit;
504 BlockConf conf;
505 FloppyDriveType type;
508 static Property floppy_drive_properties[] = {
509 DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1),
510 DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf),
511 DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type,
512 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
513 FloppyDriveType),
514 DEFINE_PROP_END_OF_LIST(),
517 static void floppy_drive_realize(DeviceState *qdev, Error **errp)
519 FloppyDrive *dev = FLOPPY_DRIVE(qdev);
520 FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus);
521 FDrive *drive;
522 bool read_only;
523 int ret;
525 if (dev->unit == -1) {
526 for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) {
527 drive = get_drv(bus->fdc, dev->unit);
528 if (!drive->blk) {
529 break;
534 if (dev->unit >= MAX_FD) {
535 error_setg(errp, "Can't create floppy unit %d, bus supports "
536 "only %d units", dev->unit, MAX_FD);
537 return;
540 drive = get_drv(bus->fdc, dev->unit);
541 if (drive->blk) {
542 error_setg(errp, "Floppy unit %d is in use", dev->unit);
543 return;
546 if (!dev->conf.blk) {
547 /* Anonymous BlockBackend for an empty drive */
548 dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL);
549 ret = blk_attach_dev(dev->conf.blk, qdev);
550 assert(ret == 0);
552 /* Don't take write permissions on an empty drive to allow attaching a
553 * read-only node later */
554 read_only = true;
555 } else {
556 read_only = !blk_bs(dev->conf.blk) ||
557 !blk_supports_write_perm(dev->conf.blk);
560 if (!blkconf_blocksizes(&dev->conf, errp)) {
561 return;
564 if (dev->conf.logical_block_size != 512 ||
565 dev->conf.physical_block_size != 512)
567 error_setg(errp, "Physical and logical block size must "
568 "be 512 for floppy");
569 return;
572 /* rerror/werror aren't supported by fdc and therefore not even registered
573 * with qdev. So set the defaults manually before they are used in
574 * blkconf_apply_backend_options(). */
575 dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO;
576 dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO;
578 if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) {
579 return;
582 /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us
583 * for empty drives. */
584 if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC &&
585 blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) {
586 error_setg(errp, "fdc doesn't support drive option werror");
587 return;
589 if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) {
590 error_setg(errp, "fdc doesn't support drive option rerror");
591 return;
594 drive->conf = &dev->conf;
595 drive->blk = dev->conf.blk;
596 drive->fdctrl = bus->fdc;
598 fd_init(drive);
599 blk_set_dev_ops(drive->blk, &fd_block_ops, drive);
601 /* Keep 'type' qdev property and FDrive->drive in sync */
602 drive->drive = dev->type;
603 pick_drive_type(drive);
604 dev->type = drive->drive;
606 fd_revalidate(drive);
609 static void floppy_drive_class_init(ObjectClass *klass, void *data)
611 DeviceClass *k = DEVICE_CLASS(klass);
612 k->realize = floppy_drive_realize;
613 set_bit(DEVICE_CATEGORY_STORAGE, k->categories);
614 k->bus_type = TYPE_FLOPPY_BUS;
615 device_class_set_props(k, floppy_drive_properties);
616 k->desc = "virtual floppy drive";
619 static const TypeInfo floppy_drive_info = {
620 .name = TYPE_FLOPPY_DRIVE,
621 .parent = TYPE_DEVICE,
622 .instance_size = sizeof(FloppyDrive),
623 .class_init = floppy_drive_class_init,
626 /********************************************************/
627 /* Intel 82078 floppy disk controller emulation */
629 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq);
630 static void fdctrl_to_command_phase(FDCtrl *fdctrl);
631 static int fdctrl_transfer_handler (void *opaque, int nchan,
632 int dma_pos, int dma_len);
633 static void fdctrl_raise_irq(FDCtrl *fdctrl);
634 static FDrive *get_cur_drv(FDCtrl *fdctrl);
636 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl);
637 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl);
638 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl);
639 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value);
640 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl);
641 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value);
642 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl);
643 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value);
644 static uint32_t fdctrl_read_data(FDCtrl *fdctrl);
645 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value);
646 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl);
647 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value);
649 enum {
650 FD_DIR_WRITE = 0,
651 FD_DIR_READ = 1,
652 FD_DIR_SCANE = 2,
653 FD_DIR_SCANL = 3,
654 FD_DIR_SCANH = 4,
655 FD_DIR_VERIFY = 5,
658 enum {
659 FD_STATE_MULTI = 0x01, /* multi track flag */
660 FD_STATE_FORMAT = 0x02, /* format flag */
663 enum {
664 FD_REG_SRA = 0x00,
665 FD_REG_SRB = 0x01,
666 FD_REG_DOR = 0x02,
667 FD_REG_TDR = 0x03,
668 FD_REG_MSR = 0x04,
669 FD_REG_DSR = 0x04,
670 FD_REG_FIFO = 0x05,
671 FD_REG_DIR = 0x07,
672 FD_REG_CCR = 0x07,
675 enum {
676 FD_CMD_READ_TRACK = 0x02,
677 FD_CMD_SPECIFY = 0x03,
678 FD_CMD_SENSE_DRIVE_STATUS = 0x04,
679 FD_CMD_WRITE = 0x05,
680 FD_CMD_READ = 0x06,
681 FD_CMD_RECALIBRATE = 0x07,
682 FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
683 FD_CMD_WRITE_DELETED = 0x09,
684 FD_CMD_READ_ID = 0x0a,
685 FD_CMD_READ_DELETED = 0x0c,
686 FD_CMD_FORMAT_TRACK = 0x0d,
687 FD_CMD_DUMPREG = 0x0e,
688 FD_CMD_SEEK = 0x0f,
689 FD_CMD_VERSION = 0x10,
690 FD_CMD_SCAN_EQUAL = 0x11,
691 FD_CMD_PERPENDICULAR_MODE = 0x12,
692 FD_CMD_CONFIGURE = 0x13,
693 FD_CMD_LOCK = 0x14,
694 FD_CMD_VERIFY = 0x16,
695 FD_CMD_POWERDOWN_MODE = 0x17,
696 FD_CMD_PART_ID = 0x18,
697 FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
698 FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
699 FD_CMD_SAVE = 0x2e,
700 FD_CMD_OPTION = 0x33,
701 FD_CMD_RESTORE = 0x4e,
702 FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
703 FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
704 FD_CMD_FORMAT_AND_WRITE = 0xcd,
705 FD_CMD_RELATIVE_SEEK_IN = 0xcf,
708 enum {
709 FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
710 FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
711 FD_CONFIG_POLL = 0x10, /* Poll enabled */
712 FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
713 FD_CONFIG_EIS = 0x40, /* No implied seeks */
716 enum {
717 FD_SR0_DS0 = 0x01,
718 FD_SR0_DS1 = 0x02,
719 FD_SR0_HEAD = 0x04,
720 FD_SR0_EQPMT = 0x10,
721 FD_SR0_SEEK = 0x20,
722 FD_SR0_ABNTERM = 0x40,
723 FD_SR0_INVCMD = 0x80,
724 FD_SR0_RDYCHG = 0xc0,
727 enum {
728 FD_SR1_MA = 0x01, /* Missing address mark */
729 FD_SR1_NW = 0x02, /* Not writable */
730 FD_SR1_EC = 0x80, /* End of cylinder */
733 enum {
734 FD_SR2_SNS = 0x04, /* Scan not satisfied */
735 FD_SR2_SEH = 0x08, /* Scan equal hit */
738 enum {
739 FD_SRA_DIR = 0x01,
740 FD_SRA_nWP = 0x02,
741 FD_SRA_nINDX = 0x04,
742 FD_SRA_HDSEL = 0x08,
743 FD_SRA_nTRK0 = 0x10,
744 FD_SRA_STEP = 0x20,
745 FD_SRA_nDRV2 = 0x40,
746 FD_SRA_INTPEND = 0x80,
749 enum {
750 FD_SRB_MTR0 = 0x01,
751 FD_SRB_MTR1 = 0x02,
752 FD_SRB_WGATE = 0x04,
753 FD_SRB_RDATA = 0x08,
754 FD_SRB_WDATA = 0x10,
755 FD_SRB_DR0 = 0x20,
758 enum {
759 #if MAX_FD == 4
760 FD_DOR_SELMASK = 0x03,
761 #else
762 FD_DOR_SELMASK = 0x01,
763 #endif
764 FD_DOR_nRESET = 0x04,
765 FD_DOR_DMAEN = 0x08,
766 FD_DOR_MOTEN0 = 0x10,
767 FD_DOR_MOTEN1 = 0x20,
768 FD_DOR_MOTEN2 = 0x40,
769 FD_DOR_MOTEN3 = 0x80,
772 enum {
773 #if MAX_FD == 4
774 FD_TDR_BOOTSEL = 0x0c,
775 #else
776 FD_TDR_BOOTSEL = 0x04,
777 #endif
780 enum {
781 FD_DSR_DRATEMASK= 0x03,
782 FD_DSR_PWRDOWN = 0x40,
783 FD_DSR_SWRESET = 0x80,
786 enum {
787 FD_MSR_DRV0BUSY = 0x01,
788 FD_MSR_DRV1BUSY = 0x02,
789 FD_MSR_DRV2BUSY = 0x04,
790 FD_MSR_DRV3BUSY = 0x08,
791 FD_MSR_CMDBUSY = 0x10,
792 FD_MSR_NONDMA = 0x20,
793 FD_MSR_DIO = 0x40,
794 FD_MSR_RQM = 0x80,
797 enum {
798 FD_DIR_DSKCHG = 0x80,
802 * See chapter 5.0 "Controller phases" of the spec:
804 * Command phase:
805 * The host writes a command and its parameters into the FIFO. The command
806 * phase is completed when all parameters for the command have been supplied,
807 * and execution phase is entered.
809 * Execution phase:
810 * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO
811 * contains the payload now, otherwise it's unused. When all bytes of the
812 * required data have been transferred, the state is switched to either result
813 * phase (if the command produces status bytes) or directly back into the
814 * command phase for the next command.
816 * Result phase:
817 * The host reads out the FIFO, which contains one or more result bytes now.
819 enum {
820 /* Only for migration: reconstruct phase from registers like qemu 2.3 */
821 FD_PHASE_RECONSTRUCT = 0,
823 FD_PHASE_COMMAND = 1,
824 FD_PHASE_EXECUTION = 2,
825 FD_PHASE_RESULT = 3,
828 #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
829 #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
831 struct FDCtrl {
832 MemoryRegion iomem;
833 qemu_irq irq;
834 /* Controller state */
835 QEMUTimer *result_timer;
836 int dma_chann;
837 uint8_t phase;
838 IsaDma *dma;
839 /* Controller's identification */
840 uint8_t version;
841 /* HW */
842 uint8_t sra;
843 uint8_t srb;
844 uint8_t dor;
845 uint8_t dor_vmstate; /* only used as temp during vmstate */
846 uint8_t tdr;
847 uint8_t dsr;
848 uint8_t msr;
849 uint8_t cur_drv;
850 uint8_t status0;
851 uint8_t status1;
852 uint8_t status2;
853 /* Command FIFO */
854 uint8_t *fifo;
855 int32_t fifo_size;
856 uint32_t data_pos;
857 uint32_t data_len;
858 uint8_t data_state;
859 uint8_t data_dir;
860 uint8_t eot; /* last wanted sector */
861 /* States kept only to be returned back */
862 /* precompensation */
863 uint8_t precomp_trk;
864 uint8_t config;
865 uint8_t lock;
866 /* Power down config (also with status regB access mode */
867 uint8_t pwrd;
868 /* Floppy drives */
869 FloppyBus bus;
870 uint8_t num_floppies;
871 FDrive drives[MAX_FD];
872 struct {
873 BlockBackend *blk;
874 FloppyDriveType type;
875 } qdev_for_drives[MAX_FD];
876 int reset_sensei;
877 FloppyDriveType fallback; /* type=auto failure fallback */
878 /* Timers state */
879 uint8_t timer0;
880 uint8_t timer1;
881 PortioList portio_list;
884 static FloppyDriveType get_fallback_drive_type(FDrive *drv)
886 return drv->fdctrl->fallback;
889 #define TYPE_SYSBUS_FDC "base-sysbus-fdc"
890 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlSysBus, SYSBUS_FDC)
892 struct FDCtrlSysBus {
893 /*< private >*/
894 SysBusDevice parent_obj;
895 /*< public >*/
897 struct FDCtrl state;
900 OBJECT_DECLARE_SIMPLE_TYPE(FDCtrlISABus, ISA_FDC)
902 struct FDCtrlISABus {
903 ISADevice parent_obj;
905 uint32_t iobase;
906 uint32_t irq;
907 uint32_t dma;
908 struct FDCtrl state;
909 int32_t bootindexA;
910 int32_t bootindexB;
913 static uint32_t fdctrl_read (void *opaque, uint32_t reg)
915 FDCtrl *fdctrl = opaque;
916 uint32_t retval;
918 reg &= 7;
919 switch (reg) {
920 case FD_REG_SRA:
921 retval = fdctrl_read_statusA(fdctrl);
922 break;
923 case FD_REG_SRB:
924 retval = fdctrl_read_statusB(fdctrl);
925 break;
926 case FD_REG_DOR:
927 retval = fdctrl_read_dor(fdctrl);
928 break;
929 case FD_REG_TDR:
930 retval = fdctrl_read_tape(fdctrl);
931 break;
932 case FD_REG_MSR:
933 retval = fdctrl_read_main_status(fdctrl);
934 break;
935 case FD_REG_FIFO:
936 retval = fdctrl_read_data(fdctrl);
937 break;
938 case FD_REG_DIR:
939 retval = fdctrl_read_dir(fdctrl);
940 break;
941 default:
942 retval = (uint32_t)(-1);
943 break;
945 trace_fdc_ioport_read(reg, retval);
947 return retval;
950 static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
952 FDCtrl *fdctrl = opaque;
954 reg &= 7;
955 trace_fdc_ioport_write(reg, value);
956 switch (reg) {
957 case FD_REG_DOR:
958 fdctrl_write_dor(fdctrl, value);
959 break;
960 case FD_REG_TDR:
961 fdctrl_write_tape(fdctrl, value);
962 break;
963 case FD_REG_DSR:
964 fdctrl_write_rate(fdctrl, value);
965 break;
966 case FD_REG_FIFO:
967 fdctrl_write_data(fdctrl, value);
968 break;
969 case FD_REG_CCR:
970 fdctrl_write_ccr(fdctrl, value);
971 break;
972 default:
973 break;
977 static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg,
978 unsigned ize)
980 return fdctrl_read(opaque, (uint32_t)reg);
983 static void fdctrl_write_mem (void *opaque, hwaddr reg,
984 uint64_t value, unsigned size)
986 fdctrl_write(opaque, (uint32_t)reg, value);
989 static const MemoryRegionOps fdctrl_mem_ops = {
990 .read = fdctrl_read_mem,
991 .write = fdctrl_write_mem,
992 .endianness = DEVICE_NATIVE_ENDIAN,
995 static const MemoryRegionOps fdctrl_mem_strict_ops = {
996 .read = fdctrl_read_mem,
997 .write = fdctrl_write_mem,
998 .endianness = DEVICE_NATIVE_ENDIAN,
999 .valid = {
1000 .min_access_size = 1,
1001 .max_access_size = 1,
1005 static bool fdrive_media_changed_needed(void *opaque)
1007 FDrive *drive = opaque;
1009 return (drive->blk != NULL && drive->media_changed != 1);
1012 static const VMStateDescription vmstate_fdrive_media_changed = {
1013 .name = "fdrive/media_changed",
1014 .version_id = 1,
1015 .minimum_version_id = 1,
1016 .needed = fdrive_media_changed_needed,
1017 .fields = (VMStateField[]) {
1018 VMSTATE_UINT8(media_changed, FDrive),
1019 VMSTATE_END_OF_LIST()
1023 static const VMStateDescription vmstate_fdrive_media_rate = {
1024 .name = "fdrive/media_rate",
1025 .version_id = 1,
1026 .minimum_version_id = 1,
1027 .fields = (VMStateField[]) {
1028 VMSTATE_UINT8(media_rate, FDrive),
1029 VMSTATE_END_OF_LIST()
1033 static bool fdrive_perpendicular_needed(void *opaque)
1035 FDrive *drive = opaque;
1037 return drive->perpendicular != 0;
1040 static const VMStateDescription vmstate_fdrive_perpendicular = {
1041 .name = "fdrive/perpendicular",
1042 .version_id = 1,
1043 .minimum_version_id = 1,
1044 .needed = fdrive_perpendicular_needed,
1045 .fields = (VMStateField[]) {
1046 VMSTATE_UINT8(perpendicular, FDrive),
1047 VMSTATE_END_OF_LIST()
1051 static int fdrive_post_load(void *opaque, int version_id)
1053 fd_revalidate(opaque);
1054 return 0;
1057 static const VMStateDescription vmstate_fdrive = {
1058 .name = "fdrive",
1059 .version_id = 1,
1060 .minimum_version_id = 1,
1061 .post_load = fdrive_post_load,
1062 .fields = (VMStateField[]) {
1063 VMSTATE_UINT8(head, FDrive),
1064 VMSTATE_UINT8(track, FDrive),
1065 VMSTATE_UINT8(sect, FDrive),
1066 VMSTATE_END_OF_LIST()
1068 .subsections = (const VMStateDescription*[]) {
1069 &vmstate_fdrive_media_changed,
1070 &vmstate_fdrive_media_rate,
1071 &vmstate_fdrive_perpendicular,
1072 NULL
1077 * Reconstructs the phase from register values according to the logic that was
1078 * implemented in qemu 2.3. This is the default value that is used if the phase
1079 * subsection is not present on migration.
1081 * Don't change this function to reflect newer qemu versions, it is part of
1082 * the migration ABI.
1084 static int reconstruct_phase(FDCtrl *fdctrl)
1086 if (fdctrl->msr & FD_MSR_NONDMA) {
1087 return FD_PHASE_EXECUTION;
1088 } else if ((fdctrl->msr & FD_MSR_RQM) == 0) {
1089 /* qemu 2.3 disabled RQM only during DMA transfers */
1090 return FD_PHASE_EXECUTION;
1091 } else if (fdctrl->msr & FD_MSR_DIO) {
1092 return FD_PHASE_RESULT;
1093 } else {
1094 return FD_PHASE_COMMAND;
1098 static int fdc_pre_save(void *opaque)
1100 FDCtrl *s = opaque;
1102 s->dor_vmstate = s->dor | GET_CUR_DRV(s);
1104 return 0;
1107 static int fdc_pre_load(void *opaque)
1109 FDCtrl *s = opaque;
1110 s->phase = FD_PHASE_RECONSTRUCT;
1111 return 0;
1114 static int fdc_post_load(void *opaque, int version_id)
1116 FDCtrl *s = opaque;
1118 SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK);
1119 s->dor = s->dor_vmstate & ~FD_DOR_SELMASK;
1121 if (s->phase == FD_PHASE_RECONSTRUCT) {
1122 s->phase = reconstruct_phase(s);
1125 return 0;
1128 static bool fdc_reset_sensei_needed(void *opaque)
1130 FDCtrl *s = opaque;
1132 return s->reset_sensei != 0;
1135 static const VMStateDescription vmstate_fdc_reset_sensei = {
1136 .name = "fdc/reset_sensei",
1137 .version_id = 1,
1138 .minimum_version_id = 1,
1139 .needed = fdc_reset_sensei_needed,
1140 .fields = (VMStateField[]) {
1141 VMSTATE_INT32(reset_sensei, FDCtrl),
1142 VMSTATE_END_OF_LIST()
1146 static bool fdc_result_timer_needed(void *opaque)
1148 FDCtrl *s = opaque;
1150 return timer_pending(s->result_timer);
1153 static const VMStateDescription vmstate_fdc_result_timer = {
1154 .name = "fdc/result_timer",
1155 .version_id = 1,
1156 .minimum_version_id = 1,
1157 .needed = fdc_result_timer_needed,
1158 .fields = (VMStateField[]) {
1159 VMSTATE_TIMER_PTR(result_timer, FDCtrl),
1160 VMSTATE_END_OF_LIST()
1164 static bool fdc_phase_needed(void *opaque)
1166 FDCtrl *fdctrl = opaque;
1168 return reconstruct_phase(fdctrl) != fdctrl->phase;
1171 static const VMStateDescription vmstate_fdc_phase = {
1172 .name = "fdc/phase",
1173 .version_id = 1,
1174 .minimum_version_id = 1,
1175 .needed = fdc_phase_needed,
1176 .fields = (VMStateField[]) {
1177 VMSTATE_UINT8(phase, FDCtrl),
1178 VMSTATE_END_OF_LIST()
1182 static const VMStateDescription vmstate_fdc = {
1183 .name = "fdc",
1184 .version_id = 2,
1185 .minimum_version_id = 2,
1186 .pre_save = fdc_pre_save,
1187 .pre_load = fdc_pre_load,
1188 .post_load = fdc_post_load,
1189 .fields = (VMStateField[]) {
1190 /* Controller State */
1191 VMSTATE_UINT8(sra, FDCtrl),
1192 VMSTATE_UINT8(srb, FDCtrl),
1193 VMSTATE_UINT8(dor_vmstate, FDCtrl),
1194 VMSTATE_UINT8(tdr, FDCtrl),
1195 VMSTATE_UINT8(dsr, FDCtrl),
1196 VMSTATE_UINT8(msr, FDCtrl),
1197 VMSTATE_UINT8(status0, FDCtrl),
1198 VMSTATE_UINT8(status1, FDCtrl),
1199 VMSTATE_UINT8(status2, FDCtrl),
1200 /* Command FIFO */
1201 VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8,
1202 uint8_t),
1203 VMSTATE_UINT32(data_pos, FDCtrl),
1204 VMSTATE_UINT32(data_len, FDCtrl),
1205 VMSTATE_UINT8(data_state, FDCtrl),
1206 VMSTATE_UINT8(data_dir, FDCtrl),
1207 VMSTATE_UINT8(eot, FDCtrl),
1208 /* States kept only to be returned back */
1209 VMSTATE_UINT8(timer0, FDCtrl),
1210 VMSTATE_UINT8(timer1, FDCtrl),
1211 VMSTATE_UINT8(precomp_trk, FDCtrl),
1212 VMSTATE_UINT8(config, FDCtrl),
1213 VMSTATE_UINT8(lock, FDCtrl),
1214 VMSTATE_UINT8(pwrd, FDCtrl),
1215 VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL),
1216 VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1,
1217 vmstate_fdrive, FDrive),
1218 VMSTATE_END_OF_LIST()
1220 .subsections = (const VMStateDescription*[]) {
1221 &vmstate_fdc_reset_sensei,
1222 &vmstate_fdc_result_timer,
1223 &vmstate_fdc_phase,
1224 NULL
1228 static void fdctrl_external_reset_sysbus(DeviceState *d)
1230 FDCtrlSysBus *sys = SYSBUS_FDC(d);
1231 FDCtrl *s = &sys->state;
1233 fdctrl_reset(s, 0);
1236 static void fdctrl_external_reset_isa(DeviceState *d)
1238 FDCtrlISABus *isa = ISA_FDC(d);
1239 FDCtrl *s = &isa->state;
1241 fdctrl_reset(s, 0);
1244 static void fdctrl_handle_tc(void *opaque, int irq, int level)
1246 //FDCtrl *s = opaque;
1248 if (level) {
1249 // XXX
1250 FLOPPY_DPRINTF("TC pulsed\n");
1254 /* Change IRQ state */
1255 static void fdctrl_reset_irq(FDCtrl *fdctrl)
1257 fdctrl->status0 = 0;
1258 if (!(fdctrl->sra & FD_SRA_INTPEND))
1259 return;
1260 FLOPPY_DPRINTF("Reset interrupt\n");
1261 qemu_set_irq(fdctrl->irq, 0);
1262 fdctrl->sra &= ~FD_SRA_INTPEND;
1265 static void fdctrl_raise_irq(FDCtrl *fdctrl)
1267 if (!(fdctrl->sra & FD_SRA_INTPEND)) {
1268 qemu_set_irq(fdctrl->irq, 1);
1269 fdctrl->sra |= FD_SRA_INTPEND;
1272 fdctrl->reset_sensei = 0;
1273 FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
1276 /* Reset controller */
1277 static void fdctrl_reset(FDCtrl *fdctrl, int do_irq)
1279 int i;
1281 FLOPPY_DPRINTF("reset controller\n");
1282 fdctrl_reset_irq(fdctrl);
1283 /* Initialise controller */
1284 fdctrl->sra = 0;
1285 fdctrl->srb = 0xc0;
1286 if (!fdctrl->drives[1].blk) {
1287 fdctrl->sra |= FD_SRA_nDRV2;
1289 fdctrl->cur_drv = 0;
1290 fdctrl->dor = FD_DOR_nRESET;
1291 fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
1292 fdctrl->msr = FD_MSR_RQM;
1293 fdctrl->reset_sensei = 0;
1294 timer_del(fdctrl->result_timer);
1295 /* FIFO state */
1296 fdctrl->data_pos = 0;
1297 fdctrl->data_len = 0;
1298 fdctrl->data_state = 0;
1299 fdctrl->data_dir = FD_DIR_WRITE;
1300 for (i = 0; i < MAX_FD; i++)
1301 fd_recalibrate(&fdctrl->drives[i]);
1302 fdctrl_to_command_phase(fdctrl);
1303 if (do_irq) {
1304 fdctrl->status0 |= FD_SR0_RDYCHG;
1305 fdctrl_raise_irq(fdctrl);
1306 fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
1310 static inline FDrive *drv0(FDCtrl *fdctrl)
1312 return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
1315 static inline FDrive *drv1(FDCtrl *fdctrl)
1317 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
1318 return &fdctrl->drives[1];
1319 else
1320 return &fdctrl->drives[0];
1323 #if MAX_FD == 4
1324 static inline FDrive *drv2(FDCtrl *fdctrl)
1326 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
1327 return &fdctrl->drives[2];
1328 else
1329 return &fdctrl->drives[1];
1332 static inline FDrive *drv3(FDCtrl *fdctrl)
1334 if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
1335 return &fdctrl->drives[3];
1336 else
1337 return &fdctrl->drives[2];
1339 #endif
1341 static FDrive *get_drv(FDCtrl *fdctrl, int unit)
1343 switch (unit) {
1344 case 0: return drv0(fdctrl);
1345 case 1: return drv1(fdctrl);
1346 #if MAX_FD == 4
1347 case 2: return drv2(fdctrl);
1348 case 3: return drv3(fdctrl);
1349 #endif
1350 default: return NULL;
1354 static FDrive *get_cur_drv(FDCtrl *fdctrl)
1356 return get_drv(fdctrl, fdctrl->cur_drv);
1359 /* Status A register : 0x00 (read-only) */
1360 static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl)
1362 uint32_t retval = fdctrl->sra;
1364 FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
1366 return retval;
1369 /* Status B register : 0x01 (read-only) */
1370 static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl)
1372 uint32_t retval = fdctrl->srb;
1374 FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
1376 return retval;
1379 /* Digital output register : 0x02 */
1380 static uint32_t fdctrl_read_dor(FDCtrl *fdctrl)
1382 uint32_t retval = fdctrl->dor;
1384 /* Selected drive */
1385 retval |= fdctrl->cur_drv;
1386 FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
1388 return retval;
1391 static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value)
1393 FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
1395 /* Motors */
1396 if (value & FD_DOR_MOTEN0)
1397 fdctrl->srb |= FD_SRB_MTR0;
1398 else
1399 fdctrl->srb &= ~FD_SRB_MTR0;
1400 if (value & FD_DOR_MOTEN1)
1401 fdctrl->srb |= FD_SRB_MTR1;
1402 else
1403 fdctrl->srb &= ~FD_SRB_MTR1;
1405 /* Drive */
1406 if (value & 1)
1407 fdctrl->srb |= FD_SRB_DR0;
1408 else
1409 fdctrl->srb &= ~FD_SRB_DR0;
1411 /* Reset */
1412 if (!(value & FD_DOR_nRESET)) {
1413 if (fdctrl->dor & FD_DOR_nRESET) {
1414 FLOPPY_DPRINTF("controller enter RESET state\n");
1416 } else {
1417 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1418 FLOPPY_DPRINTF("controller out of RESET state\n");
1419 fdctrl_reset(fdctrl, 1);
1420 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1423 /* Selected drive */
1424 fdctrl->cur_drv = value & FD_DOR_SELMASK;
1426 fdctrl->dor = value;
1429 /* Tape drive register : 0x03 */
1430 static uint32_t fdctrl_read_tape(FDCtrl *fdctrl)
1432 uint32_t retval = fdctrl->tdr;
1434 FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
1436 return retval;
1439 static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value)
1441 /* Reset mode */
1442 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1443 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1444 return;
1446 FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
1447 /* Disk boot selection indicator */
1448 fdctrl->tdr = value & FD_TDR_BOOTSEL;
1449 /* Tape indicators: never allow */
1452 /* Main status register : 0x04 (read) */
1453 static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl)
1455 uint32_t retval = fdctrl->msr;
1457 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1458 fdctrl->dor |= FD_DOR_nRESET;
1460 FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
1462 return retval;
1465 /* Data select rate register : 0x04 (write) */
1466 static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value)
1468 /* Reset mode */
1469 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1470 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1471 return;
1473 FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
1474 /* Reset: autoclear */
1475 if (value & FD_DSR_SWRESET) {
1476 fdctrl->dor &= ~FD_DOR_nRESET;
1477 fdctrl_reset(fdctrl, 1);
1478 fdctrl->dor |= FD_DOR_nRESET;
1480 if (value & FD_DSR_PWRDOWN) {
1481 fdctrl_reset(fdctrl, 1);
1483 fdctrl->dsr = value;
1486 /* Configuration control register: 0x07 (write) */
1487 static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value)
1489 /* Reset mode */
1490 if (!(fdctrl->dor & FD_DOR_nRESET)) {
1491 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
1492 return;
1494 FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value);
1496 /* Only the rate selection bits used in AT mode, and we
1497 * store those in the DSR.
1499 fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) |
1500 (value & FD_DSR_DRATEMASK);
1503 static int fdctrl_media_changed(FDrive *drv)
1505 return drv->media_changed;
1508 /* Digital input register : 0x07 (read-only) */
1509 static uint32_t fdctrl_read_dir(FDCtrl *fdctrl)
1511 uint32_t retval = 0;
1513 if (fdctrl_media_changed(get_cur_drv(fdctrl))) {
1514 retval |= FD_DIR_DSKCHG;
1516 if (retval != 0) {
1517 FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
1520 return retval;
1523 /* Clear the FIFO and update the state for receiving the next command */
1524 static void fdctrl_to_command_phase(FDCtrl *fdctrl)
1526 fdctrl->phase = FD_PHASE_COMMAND;
1527 fdctrl->data_dir = FD_DIR_WRITE;
1528 fdctrl->data_pos = 0;
1529 fdctrl->data_len = 1; /* Accept command byte, adjust for params later */
1530 fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
1531 fdctrl->msr |= FD_MSR_RQM;
1534 /* Update the state to allow the guest to read out the command status.
1535 * @fifo_len is the number of result bytes to be read out. */
1536 static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len)
1538 fdctrl->phase = FD_PHASE_RESULT;
1539 fdctrl->data_dir = FD_DIR_READ;
1540 fdctrl->data_len = fifo_len;
1541 fdctrl->data_pos = 0;
1542 fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
1545 /* Set an error: unimplemented/unknown command */
1546 static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction)
1548 qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n",
1549 fdctrl->fifo[0]);
1550 fdctrl->fifo[0] = FD_SR0_INVCMD;
1551 fdctrl_to_result_phase(fdctrl, 1);
1554 /* Seek to next sector
1555 * returns 0 when end of track reached (for DBL_SIDES on head 1)
1556 * otherwise returns 1
1558 static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv)
1560 FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
1561 cur_drv->head, cur_drv->track, cur_drv->sect,
1562 fd_sector(cur_drv));
1563 /* XXX: cur_drv->sect >= cur_drv->last_sect should be an
1564 error in fact */
1565 uint8_t new_head = cur_drv->head;
1566 uint8_t new_track = cur_drv->track;
1567 uint8_t new_sect = cur_drv->sect;
1569 int ret = 1;
1571 if (new_sect >= cur_drv->last_sect ||
1572 new_sect == fdctrl->eot) {
1573 new_sect = 1;
1574 if (FD_MULTI_TRACK(fdctrl->data_state)) {
1575 if (new_head == 0 &&
1576 (cur_drv->flags & FDISK_DBL_SIDES) != 0) {
1577 new_head = 1;
1578 } else {
1579 new_head = 0;
1580 new_track++;
1581 fdctrl->status0 |= FD_SR0_SEEK;
1582 if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) {
1583 ret = 0;
1586 } else {
1587 fdctrl->status0 |= FD_SR0_SEEK;
1588 new_track++;
1589 ret = 0;
1591 if (ret == 1) {
1592 FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
1593 new_head, new_track, new_sect, fd_sector(cur_drv));
1595 } else {
1596 new_sect++;
1598 fd_seek(cur_drv, new_head, new_track, new_sect, 1);
1599 return ret;
1602 /* Callback for transfer end (stop or abort) */
1603 static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0,
1604 uint8_t status1, uint8_t status2)
1606 FDrive *cur_drv;
1607 cur_drv = get_cur_drv(fdctrl);
1609 fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD);
1610 fdctrl->status0 |= GET_CUR_DRV(fdctrl);
1611 if (cur_drv->head) {
1612 fdctrl->status0 |= FD_SR0_HEAD;
1614 fdctrl->status0 |= status0;
1616 FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
1617 status0, status1, status2, fdctrl->status0);
1618 fdctrl->fifo[0] = fdctrl->status0;
1619 fdctrl->fifo[1] = status1;
1620 fdctrl->fifo[2] = status2;
1621 fdctrl->fifo[3] = cur_drv->track;
1622 fdctrl->fifo[4] = cur_drv->head;
1623 fdctrl->fifo[5] = cur_drv->sect;
1624 fdctrl->fifo[6] = FD_SECTOR_SC;
1625 fdctrl->data_dir = FD_DIR_READ;
1626 if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) {
1627 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1628 k->release_DREQ(fdctrl->dma, fdctrl->dma_chann);
1630 fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
1631 fdctrl->msr &= ~FD_MSR_NONDMA;
1633 fdctrl_to_result_phase(fdctrl, 7);
1634 fdctrl_raise_irq(fdctrl);
1637 /* Prepare a data transfer (either DMA or FIFO) */
1638 static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction)
1640 FDrive *cur_drv;
1641 uint8_t kh, kt, ks;
1643 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1644 cur_drv = get_cur_drv(fdctrl);
1645 kt = fdctrl->fifo[2];
1646 kh = fdctrl->fifo[3];
1647 ks = fdctrl->fifo[4];
1648 FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
1649 GET_CUR_DRV(fdctrl), kh, kt, ks,
1650 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1651 NUM_SIDES(cur_drv)));
1652 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1653 case 2:
1654 /* sect too big */
1655 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1656 fdctrl->fifo[3] = kt;
1657 fdctrl->fifo[4] = kh;
1658 fdctrl->fifo[5] = ks;
1659 return;
1660 case 3:
1661 /* track too big */
1662 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1663 fdctrl->fifo[3] = kt;
1664 fdctrl->fifo[4] = kh;
1665 fdctrl->fifo[5] = ks;
1666 return;
1667 case 4:
1668 /* No seek enabled */
1669 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1670 fdctrl->fifo[3] = kt;
1671 fdctrl->fifo[4] = kh;
1672 fdctrl->fifo[5] = ks;
1673 return;
1674 case 1:
1675 fdctrl->status0 |= FD_SR0_SEEK;
1676 break;
1677 default:
1678 break;
1681 /* Check the data rate. If the programmed data rate does not match
1682 * the currently inserted medium, the operation has to fail. */
1683 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
1684 FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n",
1685 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
1686 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
1687 fdctrl->fifo[3] = kt;
1688 fdctrl->fifo[4] = kh;
1689 fdctrl->fifo[5] = ks;
1690 return;
1693 /* Set the FIFO state */
1694 fdctrl->data_dir = direction;
1695 fdctrl->data_pos = 0;
1696 assert(fdctrl->msr & FD_MSR_CMDBUSY);
1697 if (fdctrl->fifo[0] & 0x80)
1698 fdctrl->data_state |= FD_STATE_MULTI;
1699 else
1700 fdctrl->data_state &= ~FD_STATE_MULTI;
1701 if (fdctrl->fifo[5] == 0) {
1702 fdctrl->data_len = fdctrl->fifo[8];
1703 } else {
1704 int tmp;
1705 fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
1706 tmp = (fdctrl->fifo[6] - ks + 1);
1707 if (fdctrl->fifo[0] & 0x80)
1708 tmp += fdctrl->fifo[6];
1709 fdctrl->data_len *= tmp;
1711 fdctrl->eot = fdctrl->fifo[6];
1712 if (fdctrl->dor & FD_DOR_DMAEN) {
1713 /* DMA transfer is enabled. */
1714 IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma);
1716 FLOPPY_DPRINTF("direction=%d (%d - %d)\n",
1717 direction, (128 << fdctrl->fifo[5]) *
1718 (cur_drv->last_sect - ks + 1), fdctrl->data_len);
1720 /* No access is allowed until DMA transfer has completed */
1721 fdctrl->msr &= ~FD_MSR_RQM;
1722 if (direction != FD_DIR_VERIFY) {
1724 * Now, we just have to wait for the DMA controller to
1725 * recall us...
1727 k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann);
1728 k->schedule(fdctrl->dma);
1729 } else {
1730 /* Start transfer */
1731 fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0,
1732 fdctrl->data_len);
1734 return;
1736 FLOPPY_DPRINTF("start non-DMA transfer\n");
1737 fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM;
1738 if (direction != FD_DIR_WRITE)
1739 fdctrl->msr |= FD_MSR_DIO;
1740 /* IO based transfer: calculate len */
1741 fdctrl_raise_irq(fdctrl);
1744 /* Prepare a transfer of deleted data */
1745 static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction)
1747 qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n");
1749 /* We don't handle deleted data,
1750 * so we don't return *ANYTHING*
1752 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1755 /* handlers for DMA transfers */
1756 static int fdctrl_transfer_handler (void *opaque, int nchan,
1757 int dma_pos, int dma_len)
1759 FDCtrl *fdctrl;
1760 FDrive *cur_drv;
1761 int len, start_pos, rel_pos;
1762 uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
1763 IsaDmaClass *k;
1765 fdctrl = opaque;
1766 if (fdctrl->msr & FD_MSR_RQM) {
1767 FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
1768 return 0;
1770 k = ISADMA_GET_CLASS(fdctrl->dma);
1771 cur_drv = get_cur_drv(fdctrl);
1772 if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
1773 fdctrl->data_dir == FD_DIR_SCANH)
1774 status2 = FD_SR2_SNS;
1775 if (dma_len > fdctrl->data_len)
1776 dma_len = fdctrl->data_len;
1777 if (cur_drv->blk == NULL) {
1778 if (fdctrl->data_dir == FD_DIR_WRITE)
1779 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1780 else
1781 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1782 len = 0;
1783 goto transfer_error;
1785 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1786 for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
1787 len = dma_len - fdctrl->data_pos;
1788 if (len + rel_pos > FD_SECTOR_LEN)
1789 len = FD_SECTOR_LEN - rel_pos;
1790 FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
1791 "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
1792 fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
1793 cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
1794 fd_sector(cur_drv) * FD_SECTOR_LEN);
1795 if (fdctrl->data_dir != FD_DIR_WRITE ||
1796 len < FD_SECTOR_LEN || rel_pos != 0) {
1797 /* READ & SCAN commands and realign to a sector for WRITE */
1798 if (blk_pread(cur_drv->blk, fd_offset(cur_drv),
1799 fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) {
1800 FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
1801 fd_sector(cur_drv));
1802 /* Sure, image size is too small... */
1803 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1806 switch (fdctrl->data_dir) {
1807 case FD_DIR_READ:
1808 /* READ commands */
1809 k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1810 fdctrl->data_pos, len);
1811 break;
1812 case FD_DIR_WRITE:
1813 /* WRITE commands */
1814 if (cur_drv->ro) {
1815 /* Handle readonly medium early, no need to do DMA, touch the
1816 * LED or attempt any writes. A real floppy doesn't attempt
1817 * to write to readonly media either. */
1818 fdctrl_stop_transfer(fdctrl,
1819 FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW,
1820 0x00);
1821 goto transfer_error;
1824 k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos,
1825 fdctrl->data_pos, len);
1826 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv),
1827 fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) {
1828 FLOPPY_DPRINTF("error writing sector %d\n",
1829 fd_sector(cur_drv));
1830 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1831 goto transfer_error;
1833 break;
1834 case FD_DIR_VERIFY:
1835 /* VERIFY commands */
1836 break;
1837 default:
1838 /* SCAN commands */
1840 uint8_t tmpbuf[FD_SECTOR_LEN];
1841 int ret;
1842 k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos,
1843 len);
1844 ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
1845 if (ret == 0) {
1846 status2 = FD_SR2_SEH;
1847 goto end_transfer;
1849 if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
1850 (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
1851 status2 = 0x00;
1852 goto end_transfer;
1855 break;
1857 fdctrl->data_pos += len;
1858 rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
1859 if (rel_pos == 0) {
1860 /* Seek to next sector */
1861 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
1862 break;
1865 end_transfer:
1866 len = fdctrl->data_pos - start_pos;
1867 FLOPPY_DPRINTF("end transfer %d %d %d\n",
1868 fdctrl->data_pos, len, fdctrl->data_len);
1869 if (fdctrl->data_dir == FD_DIR_SCANE ||
1870 fdctrl->data_dir == FD_DIR_SCANL ||
1871 fdctrl->data_dir == FD_DIR_SCANH)
1872 status2 = FD_SR2_SEH;
1873 fdctrl->data_len -= len;
1874 fdctrl_stop_transfer(fdctrl, status0, status1, status2);
1875 transfer_error:
1877 return len;
1880 /* Data register : 0x05 */
1881 static uint32_t fdctrl_read_data(FDCtrl *fdctrl)
1883 FDrive *cur_drv;
1884 uint32_t retval = 0;
1885 uint32_t pos;
1887 cur_drv = get_cur_drv(fdctrl);
1888 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
1889 if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
1890 FLOPPY_DPRINTF("error: controller not ready for reading\n");
1891 return 0;
1894 /* If data_len spans multiple sectors, the current position in the FIFO
1895 * wraps around while fdctrl->data_pos is the real position in the whole
1896 * request. */
1897 pos = fdctrl->data_pos;
1898 pos %= FD_SECTOR_LEN;
1900 switch (fdctrl->phase) {
1901 case FD_PHASE_EXECUTION:
1902 assert(fdctrl->msr & FD_MSR_NONDMA);
1903 if (pos == 0) {
1904 if (fdctrl->data_pos != 0)
1905 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
1906 FLOPPY_DPRINTF("error seeking to next sector %d\n",
1907 fd_sector(cur_drv));
1908 return 0;
1910 if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1911 BDRV_SECTOR_SIZE)
1912 < 0) {
1913 FLOPPY_DPRINTF("error getting sector %d\n",
1914 fd_sector(cur_drv));
1915 /* Sure, image size is too small... */
1916 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1920 if (++fdctrl->data_pos == fdctrl->data_len) {
1921 fdctrl->msr &= ~FD_MSR_RQM;
1922 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1924 break;
1926 case FD_PHASE_RESULT:
1927 assert(!(fdctrl->msr & FD_MSR_NONDMA));
1928 if (++fdctrl->data_pos == fdctrl->data_len) {
1929 fdctrl->msr &= ~FD_MSR_RQM;
1930 fdctrl_to_command_phase(fdctrl);
1931 fdctrl_reset_irq(fdctrl);
1933 break;
1935 case FD_PHASE_COMMAND:
1936 default:
1937 abort();
1940 retval = fdctrl->fifo[pos];
1941 FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
1943 return retval;
1946 static void fdctrl_format_sector(FDCtrl *fdctrl)
1948 FDrive *cur_drv;
1949 uint8_t kh, kt, ks;
1951 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
1952 cur_drv = get_cur_drv(fdctrl);
1953 kt = fdctrl->fifo[6];
1954 kh = fdctrl->fifo[7];
1955 ks = fdctrl->fifo[8];
1956 FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
1957 GET_CUR_DRV(fdctrl), kh, kt, ks,
1958 fd_sector_calc(kh, kt, ks, cur_drv->last_sect,
1959 NUM_SIDES(cur_drv)));
1960 switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
1961 case 2:
1962 /* sect too big */
1963 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1964 fdctrl->fifo[3] = kt;
1965 fdctrl->fifo[4] = kh;
1966 fdctrl->fifo[5] = ks;
1967 return;
1968 case 3:
1969 /* track too big */
1970 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
1971 fdctrl->fifo[3] = kt;
1972 fdctrl->fifo[4] = kh;
1973 fdctrl->fifo[5] = ks;
1974 return;
1975 case 4:
1976 /* No seek enabled */
1977 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
1978 fdctrl->fifo[3] = kt;
1979 fdctrl->fifo[4] = kh;
1980 fdctrl->fifo[5] = ks;
1981 return;
1982 case 1:
1983 fdctrl->status0 |= FD_SR0_SEEK;
1984 break;
1985 default:
1986 break;
1988 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
1989 if (cur_drv->blk == NULL ||
1990 blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
1991 BDRV_SECTOR_SIZE, 0) < 0) {
1992 FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv));
1993 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
1994 } else {
1995 if (cur_drv->sect == cur_drv->last_sect) {
1996 fdctrl->data_state &= ~FD_STATE_FORMAT;
1997 /* Last sector done */
1998 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
1999 } else {
2000 /* More to do */
2001 fdctrl->data_pos = 0;
2002 fdctrl->data_len = 4;
2007 static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction)
2009 fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
2010 fdctrl->fifo[0] = fdctrl->lock << 4;
2011 fdctrl_to_result_phase(fdctrl, 1);
2014 static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction)
2016 FDrive *cur_drv = get_cur_drv(fdctrl);
2018 /* Drives position */
2019 fdctrl->fifo[0] = drv0(fdctrl)->track;
2020 fdctrl->fifo[1] = drv1(fdctrl)->track;
2021 #if MAX_FD == 4
2022 fdctrl->fifo[2] = drv2(fdctrl)->track;
2023 fdctrl->fifo[3] = drv3(fdctrl)->track;
2024 #else
2025 fdctrl->fifo[2] = 0;
2026 fdctrl->fifo[3] = 0;
2027 #endif
2028 /* timers */
2029 fdctrl->fifo[4] = fdctrl->timer0;
2030 fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
2031 fdctrl->fifo[6] = cur_drv->last_sect;
2032 fdctrl->fifo[7] = (fdctrl->lock << 7) |
2033 (cur_drv->perpendicular << 2);
2034 fdctrl->fifo[8] = fdctrl->config;
2035 fdctrl->fifo[9] = fdctrl->precomp_trk;
2036 fdctrl_to_result_phase(fdctrl, 10);
2039 static void fdctrl_handle_version(FDCtrl *fdctrl, int direction)
2041 /* Controller's version */
2042 fdctrl->fifo[0] = fdctrl->version;
2043 fdctrl_to_result_phase(fdctrl, 1);
2046 static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction)
2048 fdctrl->fifo[0] = 0x41; /* Stepping 1 */
2049 fdctrl_to_result_phase(fdctrl, 1);
2052 static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction)
2054 FDrive *cur_drv = get_cur_drv(fdctrl);
2056 /* Drives position */
2057 drv0(fdctrl)->track = fdctrl->fifo[3];
2058 drv1(fdctrl)->track = fdctrl->fifo[4];
2059 #if MAX_FD == 4
2060 drv2(fdctrl)->track = fdctrl->fifo[5];
2061 drv3(fdctrl)->track = fdctrl->fifo[6];
2062 #endif
2063 /* timers */
2064 fdctrl->timer0 = fdctrl->fifo[7];
2065 fdctrl->timer1 = fdctrl->fifo[8];
2066 cur_drv->last_sect = fdctrl->fifo[9];
2067 fdctrl->lock = fdctrl->fifo[10] >> 7;
2068 cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
2069 fdctrl->config = fdctrl->fifo[11];
2070 fdctrl->precomp_trk = fdctrl->fifo[12];
2071 fdctrl->pwrd = fdctrl->fifo[13];
2072 fdctrl_to_command_phase(fdctrl);
2075 static void fdctrl_handle_save(FDCtrl *fdctrl, int direction)
2077 FDrive *cur_drv = get_cur_drv(fdctrl);
2079 fdctrl->fifo[0] = 0;
2080 fdctrl->fifo[1] = 0;
2081 /* Drives position */
2082 fdctrl->fifo[2] = drv0(fdctrl)->track;
2083 fdctrl->fifo[3] = drv1(fdctrl)->track;
2084 #if MAX_FD == 4
2085 fdctrl->fifo[4] = drv2(fdctrl)->track;
2086 fdctrl->fifo[5] = drv3(fdctrl)->track;
2087 #else
2088 fdctrl->fifo[4] = 0;
2089 fdctrl->fifo[5] = 0;
2090 #endif
2091 /* timers */
2092 fdctrl->fifo[6] = fdctrl->timer0;
2093 fdctrl->fifo[7] = fdctrl->timer1;
2094 fdctrl->fifo[8] = cur_drv->last_sect;
2095 fdctrl->fifo[9] = (fdctrl->lock << 7) |
2096 (cur_drv->perpendicular << 2);
2097 fdctrl->fifo[10] = fdctrl->config;
2098 fdctrl->fifo[11] = fdctrl->precomp_trk;
2099 fdctrl->fifo[12] = fdctrl->pwrd;
2100 fdctrl->fifo[13] = 0;
2101 fdctrl->fifo[14] = 0;
2102 fdctrl_to_result_phase(fdctrl, 15);
2105 static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction)
2107 FDrive *cur_drv = get_cur_drv(fdctrl);
2109 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2110 timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
2111 (NANOSECONDS_PER_SECOND / 50));
2114 static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction)
2116 FDrive *cur_drv;
2118 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2119 cur_drv = get_cur_drv(fdctrl);
2120 fdctrl->data_state |= FD_STATE_FORMAT;
2121 if (fdctrl->fifo[0] & 0x80)
2122 fdctrl->data_state |= FD_STATE_MULTI;
2123 else
2124 fdctrl->data_state &= ~FD_STATE_MULTI;
2125 cur_drv->bps =
2126 fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
2127 #if 0
2128 cur_drv->last_sect =
2129 cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
2130 fdctrl->fifo[3] / 2;
2131 #else
2132 cur_drv->last_sect = fdctrl->fifo[3];
2133 #endif
2134 /* TODO: implement format using DMA expected by the Bochs BIOS
2135 * and Linux fdformat (read 3 bytes per sector via DMA and fill
2136 * the sector with the specified fill byte
2138 fdctrl->data_state &= ~FD_STATE_FORMAT;
2139 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2142 static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction)
2144 fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
2145 fdctrl->timer1 = fdctrl->fifo[2] >> 1;
2146 if (fdctrl->fifo[2] & 1)
2147 fdctrl->dor &= ~FD_DOR_DMAEN;
2148 else
2149 fdctrl->dor |= FD_DOR_DMAEN;
2150 /* No result back */
2151 fdctrl_to_command_phase(fdctrl);
2154 static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction)
2156 FDrive *cur_drv;
2158 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2159 cur_drv = get_cur_drv(fdctrl);
2160 cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
2161 /* 1 Byte status back */
2162 fdctrl->fifo[0] = (cur_drv->ro << 6) |
2163 (cur_drv->track == 0 ? 0x10 : 0x00) |
2164 (cur_drv->head << 2) |
2165 GET_CUR_DRV(fdctrl) |
2166 0x28;
2167 fdctrl_to_result_phase(fdctrl, 1);
2170 static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction)
2172 FDrive *cur_drv;
2174 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2175 cur_drv = get_cur_drv(fdctrl);
2176 fd_recalibrate(cur_drv);
2177 fdctrl_to_command_phase(fdctrl);
2178 /* Raise Interrupt */
2179 fdctrl->status0 |= FD_SR0_SEEK;
2180 fdctrl_raise_irq(fdctrl);
2183 static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction)
2185 FDrive *cur_drv = get_cur_drv(fdctrl);
2187 if (fdctrl->reset_sensei > 0) {
2188 fdctrl->fifo[0] =
2189 FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
2190 fdctrl->reset_sensei--;
2191 } else if (!(fdctrl->sra & FD_SRA_INTPEND)) {
2192 fdctrl->fifo[0] = FD_SR0_INVCMD;
2193 fdctrl_to_result_phase(fdctrl, 1);
2194 return;
2195 } else {
2196 fdctrl->fifo[0] =
2197 (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0))
2198 | GET_CUR_DRV(fdctrl);
2201 fdctrl->fifo[1] = cur_drv->track;
2202 fdctrl_to_result_phase(fdctrl, 2);
2203 fdctrl_reset_irq(fdctrl);
2204 fdctrl->status0 = FD_SR0_RDYCHG;
2207 static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction)
2209 FDrive *cur_drv;
2211 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2212 cur_drv = get_cur_drv(fdctrl);
2213 fdctrl_to_command_phase(fdctrl);
2214 /* The seek command just sends step pulses to the drive and doesn't care if
2215 * there is a medium inserted of if it's banging the head against the drive.
2217 fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1);
2218 /* Raise Interrupt */
2219 fdctrl->status0 |= FD_SR0_SEEK;
2220 fdctrl_raise_irq(fdctrl);
2223 static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction)
2225 FDrive *cur_drv = get_cur_drv(fdctrl);
2227 if (fdctrl->fifo[1] & 0x80)
2228 cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
2229 /* No result back */
2230 fdctrl_to_command_phase(fdctrl);
2233 static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction)
2235 fdctrl->config = fdctrl->fifo[2];
2236 fdctrl->precomp_trk = fdctrl->fifo[3];
2237 /* No result back */
2238 fdctrl_to_command_phase(fdctrl);
2241 static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction)
2243 fdctrl->pwrd = fdctrl->fifo[1];
2244 fdctrl->fifo[0] = fdctrl->fifo[1];
2245 fdctrl_to_result_phase(fdctrl, 1);
2248 static void fdctrl_handle_option(FDCtrl *fdctrl, int direction)
2250 /* No result back */
2251 fdctrl_to_command_phase(fdctrl);
2254 static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction)
2256 FDrive *cur_drv = get_cur_drv(fdctrl);
2257 uint32_t pos;
2259 pos = fdctrl->data_pos - 1;
2260 pos %= FD_SECTOR_LEN;
2261 if (fdctrl->fifo[pos] & 0x80) {
2262 /* Command parameters done */
2263 if (fdctrl->fifo[pos] & 0x40) {
2264 fdctrl->fifo[0] = fdctrl->fifo[1];
2265 fdctrl->fifo[2] = 0;
2266 fdctrl->fifo[3] = 0;
2267 fdctrl_to_result_phase(fdctrl, 4);
2268 } else {
2269 fdctrl_to_command_phase(fdctrl);
2271 } else if (fdctrl->data_len > 7) {
2272 /* ERROR */
2273 fdctrl->fifo[0] = 0x80 |
2274 (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
2275 fdctrl_to_result_phase(fdctrl, 1);
2279 static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction)
2281 FDrive *cur_drv;
2283 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2284 cur_drv = get_cur_drv(fdctrl);
2285 if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
2286 fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1,
2287 cur_drv->sect, 1);
2288 } else {
2289 fd_seek(cur_drv, cur_drv->head,
2290 cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1);
2292 fdctrl_to_command_phase(fdctrl);
2293 /* Raise Interrupt */
2294 fdctrl->status0 |= FD_SR0_SEEK;
2295 fdctrl_raise_irq(fdctrl);
2298 static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction)
2300 FDrive *cur_drv;
2302 SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
2303 cur_drv = get_cur_drv(fdctrl);
2304 if (fdctrl->fifo[2] > cur_drv->track) {
2305 fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1);
2306 } else {
2307 fd_seek(cur_drv, cur_drv->head,
2308 cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1);
2310 fdctrl_to_command_phase(fdctrl);
2311 /* Raise Interrupt */
2312 fdctrl->status0 |= FD_SR0_SEEK;
2313 fdctrl_raise_irq(fdctrl);
2317 * Handlers for the execution phase of each command
2319 typedef struct FDCtrlCommand {
2320 uint8_t value;
2321 uint8_t mask;
2322 const char* name;
2323 int parameters;
2324 void (*handler)(FDCtrl *fdctrl, int direction);
2325 int direction;
2326 } FDCtrlCommand;
2328 static const FDCtrlCommand handlers[] = {
2329 { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
2330 { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
2331 { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
2332 { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
2333 { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
2334 { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
2335 { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
2336 { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
2337 { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
2338 { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
2339 { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
2340 { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY },
2341 { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
2342 { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
2343 { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
2344 { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
2345 { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
2346 { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
2347 { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
2348 { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
2349 { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
2350 { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
2351 { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
2352 { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
2353 { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
2354 { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
2355 { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
2356 { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
2357 { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
2358 { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
2359 { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
2360 { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
2362 /* Associate command to an index in the 'handlers' array */
2363 static uint8_t command_to_handler[256];
2365 static const FDCtrlCommand *get_command(uint8_t cmd)
2367 int idx;
2369 idx = command_to_handler[cmd];
2370 FLOPPY_DPRINTF("%s command\n", handlers[idx].name);
2371 return &handlers[idx];
2374 static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value)
2376 FDrive *cur_drv;
2377 const FDCtrlCommand *cmd;
2378 uint32_t pos;
2380 /* Reset mode */
2381 if (!(fdctrl->dor & FD_DOR_nRESET)) {
2382 FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
2383 return;
2385 if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
2386 FLOPPY_DPRINTF("error: controller not ready for writing\n");
2387 return;
2389 fdctrl->dsr &= ~FD_DSR_PWRDOWN;
2391 FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
2393 /* If data_len spans multiple sectors, the current position in the FIFO
2394 * wraps around while fdctrl->data_pos is the real position in the whole
2395 * request. */
2396 pos = fdctrl->data_pos++;
2397 pos %= FD_SECTOR_LEN;
2398 fdctrl->fifo[pos] = value;
2400 if (fdctrl->data_pos == fdctrl->data_len) {
2401 fdctrl->msr &= ~FD_MSR_RQM;
2404 switch (fdctrl->phase) {
2405 case FD_PHASE_EXECUTION:
2406 /* For DMA requests, RQM should be cleared during execution phase, so
2407 * we would have errored out above. */
2408 assert(fdctrl->msr & FD_MSR_NONDMA);
2410 /* FIFO data write */
2411 if (pos == FD_SECTOR_LEN - 1 ||
2412 fdctrl->data_pos == fdctrl->data_len) {
2413 cur_drv = get_cur_drv(fdctrl);
2414 if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo,
2415 BDRV_SECTOR_SIZE, 0) < 0) {
2416 FLOPPY_DPRINTF("error writing sector %d\n",
2417 fd_sector(cur_drv));
2418 break;
2420 if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
2421 FLOPPY_DPRINTF("error seeking to next sector %d\n",
2422 fd_sector(cur_drv));
2423 break;
2427 /* Switch to result phase when done with the transfer */
2428 if (fdctrl->data_pos == fdctrl->data_len) {
2429 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2431 break;
2433 case FD_PHASE_COMMAND:
2434 assert(!(fdctrl->msr & FD_MSR_NONDMA));
2435 assert(fdctrl->data_pos < FD_SECTOR_LEN);
2437 if (pos == 0) {
2438 /* The first byte specifies the command. Now we start reading
2439 * as many parameters as this command requires. */
2440 cmd = get_command(value);
2441 fdctrl->data_len = cmd->parameters + 1;
2442 if (cmd->parameters) {
2443 fdctrl->msr |= FD_MSR_RQM;
2445 fdctrl->msr |= FD_MSR_CMDBUSY;
2448 if (fdctrl->data_pos == fdctrl->data_len) {
2449 /* We have all parameters now, execute the command */
2450 fdctrl->phase = FD_PHASE_EXECUTION;
2452 if (fdctrl->data_state & FD_STATE_FORMAT) {
2453 fdctrl_format_sector(fdctrl);
2454 break;
2457 cmd = get_command(fdctrl->fifo[0]);
2458 FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name);
2459 cmd->handler(fdctrl, cmd->direction);
2461 break;
2463 case FD_PHASE_RESULT:
2464 default:
2465 abort();
2469 static void fdctrl_result_timer(void *opaque)
2471 FDCtrl *fdctrl = opaque;
2472 FDrive *cur_drv = get_cur_drv(fdctrl);
2474 /* Pretend we are spinning.
2475 * This is needed for Coherent, which uses READ ID to check for
2476 * sector interleaving.
2478 if (cur_drv->last_sect != 0) {
2479 cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
2481 /* READ_ID can't automatically succeed! */
2482 if ((fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) {
2483 FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n",
2484 fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate);
2485 fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00);
2486 } else {
2487 fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
2491 /* Init functions */
2493 static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds)
2495 DeviceState *dev;
2496 int i;
2498 for (i = 0; i < MAX_FD; i++) {
2499 if (fds[i]) {
2500 dev = qdev_new("floppy");
2501 qdev_prop_set_uint32(dev, "unit", i);
2502 qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO);
2503 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(fds[i]),
2504 &error_fatal);
2505 qdev_realize_and_unref(dev, &bus->bus, &error_fatal);
2510 void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds)
2512 fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds);
2515 static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev,
2516 Error **errp)
2518 unsigned int i;
2519 FDrive *drive;
2520 DeviceState *dev;
2521 BlockBackend *blk;
2522 bool ok;
2523 const char *fdc_name, *drive_suffix;
2525 for (i = 0; i < MAX_FD; i++) {
2526 drive = &fdctrl->drives[i];
2527 drive->fdctrl = fdctrl;
2529 /* If the drive is not present, we skip creating the qdev device, but
2530 * still have to initialise the controller. */
2531 blk = fdctrl->qdev_for_drives[i].blk;
2532 if (!blk) {
2533 fd_init(drive);
2534 fd_revalidate(drive);
2535 continue;
2538 fdc_name = object_get_typename(OBJECT(fdc_dev));
2539 drive_suffix = !strcmp(fdc_name, "SUNW,fdtwo") ? "" : i ? "B" : "A";
2540 warn_report("warning: property %s.drive%s is deprecated",
2541 fdc_name, drive_suffix);
2542 error_printf("Use -device floppy,unit=%d,drive=... instead.\n", i);
2544 dev = qdev_new("floppy");
2545 qdev_prop_set_uint32(dev, "unit", i);
2546 qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type);
2549 * Hack alert: we move the backend from the floppy controller
2550 * device to the floppy device. We first need to detach the
2551 * controller, or else floppy_create()'s qdev_prop_set_drive()
2552 * will die when it attaches floppy device. We also need to
2553 * take another reference so that blk_detach_dev() doesn't
2554 * free blk while we still need it.
2556 * The hack is probably a bad idea.
2558 blk_ref(blk);
2559 blk_detach_dev(blk, fdc_dev);
2560 fdctrl->qdev_for_drives[i].blk = NULL;
2561 ok = qdev_prop_set_drive_err(dev, "drive", blk, errp);
2562 blk_unref(blk);
2563 if (!ok) {
2564 return;
2567 if (!qdev_realize_and_unref(dev, &fdctrl->bus.bus, errp)) {
2568 return;
2573 void fdctrl_init_sysbus(qemu_irq irq, int dma_chann,
2574 hwaddr mmio_base, DriveInfo **fds)
2576 FDCtrl *fdctrl;
2577 DeviceState *dev;
2578 SysBusDevice *sbd;
2579 FDCtrlSysBus *sys;
2581 dev = qdev_new("sysbus-fdc");
2582 sys = SYSBUS_FDC(dev);
2583 fdctrl = &sys->state;
2584 fdctrl->dma_chann = dma_chann; /* FIXME */
2585 sbd = SYS_BUS_DEVICE(dev);
2586 sysbus_realize_and_unref(sbd, &error_fatal);
2587 sysbus_connect_irq(sbd, 0, irq);
2588 sysbus_mmio_map(sbd, 0, mmio_base);
2590 fdctrl_init_drives(&sys->state.bus, fds);
2593 void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base,
2594 DriveInfo **fds, qemu_irq *fdc_tc)
2596 DeviceState *dev;
2597 FDCtrlSysBus *sys;
2599 dev = qdev_new("SUNW,fdtwo");
2600 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2601 sys = SYSBUS_FDC(dev);
2602 sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq);
2603 sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base);
2604 *fdc_tc = qdev_get_gpio_in(dev, 0);
2606 fdctrl_init_drives(&sys->state.bus, fds);
2609 static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl,
2610 Error **errp)
2612 int i, j;
2613 static int command_tables_inited = 0;
2615 if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) {
2616 error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'");
2617 return;
2620 /* Fill 'command_to_handler' lookup table */
2621 if (!command_tables_inited) {
2622 command_tables_inited = 1;
2623 for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
2624 for (j = 0; j < sizeof(command_to_handler); j++) {
2625 if ((j & handlers[i].mask) == handlers[i].value) {
2626 command_to_handler[j] = i;
2632 FLOPPY_DPRINTF("init controller\n");
2633 fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
2634 memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
2635 fdctrl->fifo_size = 512;
2636 fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
2637 fdctrl_result_timer, fdctrl);
2639 fdctrl->version = 0x90; /* Intel 82078 controller */
2640 fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
2641 fdctrl->num_floppies = MAX_FD;
2643 if (fdctrl->dma_chann != -1) {
2644 IsaDmaClass *k;
2645 assert(fdctrl->dma);
2646 k = ISADMA_GET_CLASS(fdctrl->dma);
2647 k->register_channel(fdctrl->dma, fdctrl->dma_chann,
2648 &fdctrl_transfer_handler, fdctrl);
2651 floppy_bus_create(fdctrl, &fdctrl->bus, dev);
2652 fdctrl_connect_drives(fdctrl, dev, errp);
2655 static const MemoryRegionPortio fdc_portio_list[] = {
2656 { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write },
2657 { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write },
2658 PORTIO_END_OF_LIST(),
2661 static void isabus_fdc_realize(DeviceState *dev, Error **errp)
2663 ISADevice *isadev = ISA_DEVICE(dev);
2664 FDCtrlISABus *isa = ISA_FDC(dev);
2665 FDCtrl *fdctrl = &isa->state;
2666 Error *err = NULL;
2668 isa_register_portio_list(isadev, &fdctrl->portio_list,
2669 isa->iobase, fdc_portio_list, fdctrl,
2670 "fdc");
2672 isa_init_irq(isadev, &fdctrl->irq, isa->irq);
2673 fdctrl->dma_chann = isa->dma;
2674 if (fdctrl->dma_chann != -1) {
2675 fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma);
2676 if (!fdctrl->dma) {
2677 error_setg(errp, "ISA controller does not support DMA");
2678 return;
2682 qdev_set_legacy_instance_id(dev, isa->iobase, 2);
2683 fdctrl_realize_common(dev, fdctrl, &err);
2684 if (err != NULL) {
2685 error_propagate(errp, err);
2686 return;
2690 static void sysbus_fdc_initfn(Object *obj)
2692 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2693 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2694 FDCtrl *fdctrl = &sys->state;
2696 fdctrl->dma_chann = -1;
2698 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl,
2699 "fdc", 0x08);
2700 sysbus_init_mmio(sbd, &fdctrl->iomem);
2703 static void sun4m_fdc_initfn(Object *obj)
2705 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2706 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2707 FDCtrl *fdctrl = &sys->state;
2709 fdctrl->dma_chann = -1;
2711 memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops,
2712 fdctrl, "fdctrl", 0x08);
2713 sysbus_init_mmio(sbd, &fdctrl->iomem);
2716 static void sysbus_fdc_common_initfn(Object *obj)
2718 DeviceState *dev = DEVICE(obj);
2719 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2720 FDCtrlSysBus *sys = SYSBUS_FDC(obj);
2721 FDCtrl *fdctrl = &sys->state;
2723 qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */
2725 sysbus_init_irq(sbd, &fdctrl->irq);
2726 qdev_init_gpio_in(dev, fdctrl_handle_tc, 1);
2729 static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp)
2731 FDCtrlSysBus *sys = SYSBUS_FDC(dev);
2732 FDCtrl *fdctrl = &sys->state;
2734 fdctrl_realize_common(dev, fdctrl, errp);
2737 FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i)
2739 FDCtrlISABus *isa = ISA_FDC(fdc);
2741 return isa->state.drives[i].drive;
2744 static void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc,
2745 uint8_t *maxh, uint8_t *maxs)
2747 const FDFormat *fdf;
2749 *maxc = *maxh = *maxs = 0;
2750 for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) {
2751 if (fdf->drive != type) {
2752 continue;
2754 if (*maxc < fdf->max_track) {
2755 *maxc = fdf->max_track;
2757 if (*maxh < fdf->max_head) {
2758 *maxh = fdf->max_head;
2760 if (*maxs < fdf->last_sect) {
2761 *maxs = fdf->last_sect;
2764 (*maxc)--;
2767 static Aml *build_fdinfo_aml(int idx, FloppyDriveType type)
2769 Aml *dev, *fdi;
2770 uint8_t maxc, maxh, maxs;
2772 isa_fdc_get_drive_max_chs(type, &maxc, &maxh, &maxs);
2774 dev = aml_device("FLP%c", 'A' + idx);
2776 aml_append(dev, aml_name_decl("_ADR", aml_int(idx)));
2778 fdi = aml_package(16);
2779 aml_append(fdi, aml_int(idx)); /* Drive Number */
2780 aml_append(fdi,
2781 aml_int(cmos_get_fd_drive_type(type))); /* Device Type */
2783 * the values below are the limits of the drive, and are thus independent
2784 * of the inserted media
2786 aml_append(fdi, aml_int(maxc)); /* Maximum Cylinder Number */
2787 aml_append(fdi, aml_int(maxs)); /* Maximum Sector Number */
2788 aml_append(fdi, aml_int(maxh)); /* Maximum Head Number */
2790 * SeaBIOS returns the below values for int 0x13 func 0x08 regardless of
2791 * the drive type, so shall we
2793 aml_append(fdi, aml_int(0xAF)); /* disk_specify_1 */
2794 aml_append(fdi, aml_int(0x02)); /* disk_specify_2 */
2795 aml_append(fdi, aml_int(0x25)); /* disk_motor_wait */
2796 aml_append(fdi, aml_int(0x02)); /* disk_sector_siz */
2797 aml_append(fdi, aml_int(0x12)); /* disk_eot */
2798 aml_append(fdi, aml_int(0x1B)); /* disk_rw_gap */
2799 aml_append(fdi, aml_int(0xFF)); /* disk_dtl */
2800 aml_append(fdi, aml_int(0x6C)); /* disk_formt_gap */
2801 aml_append(fdi, aml_int(0xF6)); /* disk_fill */
2802 aml_append(fdi, aml_int(0x0F)); /* disk_head_sttl */
2803 aml_append(fdi, aml_int(0x08)); /* disk_motor_strt */
2805 aml_append(dev, aml_name_decl("_FDI", fdi));
2806 return dev;
2809 int cmos_get_fd_drive_type(FloppyDriveType fd0)
2811 int val;
2813 switch (fd0) {
2814 case FLOPPY_DRIVE_TYPE_144:
2815 /* 1.44 Mb 3"5 drive */
2816 val = 4;
2817 break;
2818 case FLOPPY_DRIVE_TYPE_288:
2819 /* 2.88 Mb 3"5 drive */
2820 val = 5;
2821 break;
2822 case FLOPPY_DRIVE_TYPE_120:
2823 /* 1.2 Mb 5"5 drive */
2824 val = 2;
2825 break;
2826 case FLOPPY_DRIVE_TYPE_NONE:
2827 default:
2828 val = 0;
2829 break;
2831 return val;
2834 static void fdc_isa_build_aml(ISADevice *isadev, Aml *scope)
2836 Aml *dev;
2837 Aml *crs;
2838 int i;
2840 #define ACPI_FDE_MAX_FD 4
2841 uint32_t fde_buf[5] = {
2842 0, 0, 0, 0, /* presence of floppy drives #0 - #3 */
2843 cpu_to_le32(2) /* tape presence (2 == never present) */
2846 crs = aml_resource_template();
2847 aml_append(crs, aml_io(AML_DECODE16, 0x03F2, 0x03F2, 0x00, 0x04));
2848 aml_append(crs, aml_io(AML_DECODE16, 0x03F7, 0x03F7, 0x00, 0x01));
2849 aml_append(crs, aml_irq_no_flags(6));
2850 aml_append(crs,
2851 aml_dma(AML_COMPATIBILITY, AML_NOTBUSMASTER, AML_TRANSFER8, 2));
2853 dev = aml_device("FDC0");
2854 aml_append(dev, aml_name_decl("_HID", aml_eisaid("PNP0700")));
2855 aml_append(dev, aml_name_decl("_CRS", crs));
2857 for (i = 0; i < MIN(MAX_FD, ACPI_FDE_MAX_FD); i++) {
2858 FloppyDriveType type = isa_fdc_get_drive_type(isadev, i);
2860 if (type < FLOPPY_DRIVE_TYPE_NONE) {
2861 fde_buf[i] = cpu_to_le32(1); /* drive present */
2862 aml_append(dev, build_fdinfo_aml(i, type));
2865 aml_append(dev, aml_name_decl("_FDE",
2866 aml_buffer(sizeof(fde_buf), (uint8_t *)fde_buf)));
2868 aml_append(scope, dev);
2871 static const VMStateDescription vmstate_isa_fdc ={
2872 .name = "fdc",
2873 .version_id = 2,
2874 .minimum_version_id = 2,
2875 .fields = (VMStateField[]) {
2876 VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl),
2877 VMSTATE_END_OF_LIST()
2881 static Property isa_fdc_properties[] = {
2882 DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0),
2883 DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6),
2884 DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2),
2885 DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk),
2886 DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk),
2887 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type,
2888 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2889 FloppyDriveType),
2890 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type,
2891 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2892 FloppyDriveType),
2893 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2894 FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type,
2895 FloppyDriveType),
2896 DEFINE_PROP_END_OF_LIST(),
2899 static void isabus_fdc_class_init(ObjectClass *klass, void *data)
2901 DeviceClass *dc = DEVICE_CLASS(klass);
2902 ISADeviceClass *isa = ISA_DEVICE_CLASS(klass);
2904 dc->realize = isabus_fdc_realize;
2905 dc->fw_name = "fdc";
2906 dc->reset = fdctrl_external_reset_isa;
2907 dc->vmsd = &vmstate_isa_fdc;
2908 isa->build_aml = fdc_isa_build_aml;
2909 device_class_set_props(dc, isa_fdc_properties);
2910 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2913 static void isabus_fdc_instance_init(Object *obj)
2915 FDCtrlISABus *isa = ISA_FDC(obj);
2917 device_add_bootindex_property(obj, &isa->bootindexA,
2918 "bootindexA", "/floppy@0",
2919 DEVICE(obj));
2920 device_add_bootindex_property(obj, &isa->bootindexB,
2921 "bootindexB", "/floppy@1",
2922 DEVICE(obj));
2925 static const TypeInfo isa_fdc_info = {
2926 .name = TYPE_ISA_FDC,
2927 .parent = TYPE_ISA_DEVICE,
2928 .instance_size = sizeof(FDCtrlISABus),
2929 .class_init = isabus_fdc_class_init,
2930 .instance_init = isabus_fdc_instance_init,
2933 static const VMStateDescription vmstate_sysbus_fdc ={
2934 .name = "fdc",
2935 .version_id = 2,
2936 .minimum_version_id = 2,
2937 .fields = (VMStateField[]) {
2938 VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl),
2939 VMSTATE_END_OF_LIST()
2943 static Property sysbus_fdc_properties[] = {
2944 DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2945 DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk),
2946 DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type,
2947 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2948 FloppyDriveType),
2949 DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type,
2950 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2951 FloppyDriveType),
2952 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2953 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2954 FloppyDriveType),
2955 DEFINE_PROP_END_OF_LIST(),
2958 static void sysbus_fdc_class_init(ObjectClass *klass, void *data)
2960 DeviceClass *dc = DEVICE_CLASS(klass);
2962 device_class_set_props(dc, sysbus_fdc_properties);
2963 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2966 static const TypeInfo sysbus_fdc_info = {
2967 .name = "sysbus-fdc",
2968 .parent = TYPE_SYSBUS_FDC,
2969 .instance_init = sysbus_fdc_initfn,
2970 .class_init = sysbus_fdc_class_init,
2973 static Property sun4m_fdc_properties[] = {
2974 DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk),
2975 DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type,
2976 FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type,
2977 FloppyDriveType),
2978 DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback,
2979 FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type,
2980 FloppyDriveType),
2981 DEFINE_PROP_END_OF_LIST(),
2984 static void sun4m_fdc_class_init(ObjectClass *klass, void *data)
2986 DeviceClass *dc = DEVICE_CLASS(klass);
2988 device_class_set_props(dc, sun4m_fdc_properties);
2989 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
2992 static const TypeInfo sun4m_fdc_info = {
2993 .name = "SUNW,fdtwo",
2994 .parent = TYPE_SYSBUS_FDC,
2995 .instance_init = sun4m_fdc_initfn,
2996 .class_init = sun4m_fdc_class_init,
2999 static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data)
3001 DeviceClass *dc = DEVICE_CLASS(klass);
3003 dc->realize = sysbus_fdc_common_realize;
3004 dc->reset = fdctrl_external_reset_sysbus;
3005 dc->vmsd = &vmstate_sysbus_fdc;
3008 static const TypeInfo sysbus_fdc_type_info = {
3009 .name = TYPE_SYSBUS_FDC,
3010 .parent = TYPE_SYS_BUS_DEVICE,
3011 .instance_size = sizeof(FDCtrlSysBus),
3012 .instance_init = sysbus_fdc_common_initfn,
3013 .abstract = true,
3014 .class_init = sysbus_fdc_common_class_init,
3017 static void fdc_register_types(void)
3019 type_register_static(&isa_fdc_info);
3020 type_register_static(&sysbus_fdc_type_info);
3021 type_register_static(&sysbus_fdc_info);
3022 type_register_static(&sun4m_fdc_info);
3023 type_register_static(&floppy_bus_info);
3024 type_register_static(&floppy_drive_info);
3027 type_init(fdc_register_types)