gtk: use setlocale() for LC_MESSAGES only
[qemu.git] / hw / ppc / spapr.c
bloba6f19473cf278f7d5220a0cdf457d0f72cc90406
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "sysemu/sysemu.h"
28 #include "sysemu/numa.h"
29 #include "hw/hw.h"
30 #include "hw/fw-path-provider.h"
31 #include "elf.h"
32 #include "net/net.h"
33 #include "sysemu/block-backend.h"
34 #include "sysemu/cpus.h"
35 #include "sysemu/kvm.h"
36 #include "kvm_ppc.h"
37 #include "migration/migration.h"
38 #include "mmu-hash64.h"
39 #include "qom/cpu.h"
41 #include "hw/boards.h"
42 #include "hw/ppc/ppc.h"
43 #include "hw/loader.h"
45 #include "hw/ppc/spapr.h"
46 #include "hw/ppc/spapr_vio.h"
47 #include "hw/pci-host/spapr.h"
48 #include "hw/ppc/xics.h"
49 #include "hw/pci/msi.h"
51 #include "hw/pci/pci.h"
52 #include "hw/scsi/scsi.h"
53 #include "hw/virtio/virtio-scsi.h"
55 #include "exec/address-spaces.h"
56 #include "hw/usb.h"
57 #include "qemu/config-file.h"
58 #include "qemu/error-report.h"
59 #include "trace.h"
60 #include "hw/nmi.h"
62 #include "hw/compat.h"
64 #include <libfdt.h>
66 /* SLOF memory layout:
68 * SLOF raw image loaded at 0, copies its romfs right below the flat
69 * device-tree, then position SLOF itself 31M below that
71 * So we set FW_OVERHEAD to 40MB which should account for all of that
72 * and more
74 * We load our kernel at 4M, leaving space for SLOF initial image
76 #define FDT_MAX_SIZE 0x40000
77 #define RTAS_MAX_SIZE 0x10000
78 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
79 #define FW_MAX_SIZE 0x400000
80 #define FW_FILE_NAME "slof.bin"
81 #define FW_OVERHEAD 0x2800000
82 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
84 #define MIN_RMA_SLOF 128UL
86 #define TIMEBASE_FREQ 512000000ULL
88 #define MAX_CPUS 255
90 #define PHANDLE_XICP 0x00001111
92 #define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
94 static XICSState *try_create_xics(const char *type, int nr_servers,
95 int nr_irqs, Error **errp)
97 Error *err = NULL;
98 DeviceState *dev;
100 dev = qdev_create(NULL, type);
101 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
102 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
103 object_property_set_bool(OBJECT(dev), true, "realized", &err);
104 if (err) {
105 error_propagate(errp, err);
106 object_unparent(OBJECT(dev));
107 return NULL;
109 return XICS_COMMON(dev);
112 static XICSState *xics_system_init(MachineState *machine,
113 int nr_servers, int nr_irqs)
115 XICSState *icp = NULL;
117 if (kvm_enabled()) {
118 Error *err = NULL;
120 if (machine_kernel_irqchip_allowed(machine)) {
121 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
123 if (machine_kernel_irqchip_required(machine) && !icp) {
124 error_report("kernel_irqchip requested but unavailable: %s",
125 error_get_pretty(err));
129 if (!icp) {
130 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
133 return icp;
136 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
137 int smt_threads)
139 int i, ret = 0;
140 uint32_t servers_prop[smt_threads];
141 uint32_t gservers_prop[smt_threads * 2];
142 int index = ppc_get_vcpu_dt_id(cpu);
144 if (cpu->cpu_version) {
145 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
146 if (ret < 0) {
147 return ret;
151 /* Build interrupt servers and gservers properties */
152 for (i = 0; i < smt_threads; i++) {
153 servers_prop[i] = cpu_to_be32(index + i);
154 /* Hack, direct the group queues back to cpu 0 */
155 gservers_prop[i*2] = cpu_to_be32(index + i);
156 gservers_prop[i*2 + 1] = 0;
158 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
159 servers_prop, sizeof(servers_prop));
160 if (ret < 0) {
161 return ret;
163 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
164 gservers_prop, sizeof(gservers_prop));
166 return ret;
169 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
171 int ret = 0;
172 PowerPCCPU *cpu = POWERPC_CPU(cs);
173 int index = ppc_get_vcpu_dt_id(cpu);
174 uint32_t associativity[] = {cpu_to_be32(0x5),
175 cpu_to_be32(0x0),
176 cpu_to_be32(0x0),
177 cpu_to_be32(0x0),
178 cpu_to_be32(cs->numa_node),
179 cpu_to_be32(index)};
181 /* Advertise NUMA via ibm,associativity */
182 if (nb_numa_nodes > 1) {
183 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
184 sizeof(associativity));
187 return ret;
190 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
192 int ret = 0, offset, cpus_offset;
193 CPUState *cs;
194 char cpu_model[32];
195 int smt = kvmppc_smt_threads();
196 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
198 CPU_FOREACH(cs) {
199 PowerPCCPU *cpu = POWERPC_CPU(cs);
200 DeviceClass *dc = DEVICE_GET_CLASS(cs);
201 int index = ppc_get_vcpu_dt_id(cpu);
203 if ((index % smt) != 0) {
204 continue;
207 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
209 cpus_offset = fdt_path_offset(fdt, "/cpus");
210 if (cpus_offset < 0) {
211 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
212 "cpus");
213 if (cpus_offset < 0) {
214 return cpus_offset;
217 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
218 if (offset < 0) {
219 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
220 if (offset < 0) {
221 return offset;
225 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
226 pft_size_prop, sizeof(pft_size_prop));
227 if (ret < 0) {
228 return ret;
231 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
232 if (ret < 0) {
233 return ret;
236 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
237 ppc_get_compat_smt_threads(cpu));
238 if (ret < 0) {
239 return ret;
242 return ret;
246 static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
247 size_t maxsize)
249 size_t maxcells = maxsize / sizeof(uint32_t);
250 int i, j, count;
251 uint32_t *p = prop;
253 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
254 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
256 if (!sps->page_shift) {
257 break;
259 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
260 if (sps->enc[count].page_shift == 0) {
261 break;
264 if ((p - prop) >= (maxcells - 3 - count * 2)) {
265 break;
267 *(p++) = cpu_to_be32(sps->page_shift);
268 *(p++) = cpu_to_be32(sps->slb_enc);
269 *(p++) = cpu_to_be32(count);
270 for (j = 0; j < count; j++) {
271 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
272 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
276 return (p - prop) * sizeof(uint32_t);
279 static hwaddr spapr_node0_size(void)
281 MachineState *machine = MACHINE(qdev_get_machine());
283 if (nb_numa_nodes) {
284 int i;
285 for (i = 0; i < nb_numa_nodes; ++i) {
286 if (numa_info[i].node_mem) {
287 return MIN(pow2floor(numa_info[i].node_mem),
288 machine->ram_size);
292 return machine->ram_size;
295 #define _FDT(exp) \
296 do { \
297 int ret = (exp); \
298 if (ret < 0) { \
299 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
300 #exp, fdt_strerror(ret)); \
301 exit(1); \
303 } while (0)
305 static void add_str(GString *s, const gchar *s1)
307 g_string_append_len(s, s1, strlen(s1) + 1);
310 static void *spapr_create_fdt_skel(hwaddr initrd_base,
311 hwaddr initrd_size,
312 hwaddr kernel_size,
313 bool little_endian,
314 const char *kernel_cmdline,
315 uint32_t epow_irq)
317 void *fdt;
318 uint32_t start_prop = cpu_to_be32(initrd_base);
319 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
320 GString *hypertas = g_string_sized_new(256);
321 GString *qemu_hypertas = g_string_sized_new(256);
322 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
323 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
324 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
325 char *buf;
327 add_str(hypertas, "hcall-pft");
328 add_str(hypertas, "hcall-term");
329 add_str(hypertas, "hcall-dabr");
330 add_str(hypertas, "hcall-interrupt");
331 add_str(hypertas, "hcall-tce");
332 add_str(hypertas, "hcall-vio");
333 add_str(hypertas, "hcall-splpar");
334 add_str(hypertas, "hcall-bulk");
335 add_str(hypertas, "hcall-set-mode");
336 add_str(qemu_hypertas, "hcall-memop1");
338 fdt = g_malloc0(FDT_MAX_SIZE);
339 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
341 if (kernel_size) {
342 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
344 if (initrd_size) {
345 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
347 _FDT((fdt_finish_reservemap(fdt)));
349 /* Root node */
350 _FDT((fdt_begin_node(fdt, "")));
351 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
352 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
353 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
356 * Add info to guest to indentify which host is it being run on
357 * and what is the uuid of the guest
359 if (kvmppc_get_host_model(&buf)) {
360 _FDT((fdt_property_string(fdt, "host-model", buf)));
361 g_free(buf);
363 if (kvmppc_get_host_serial(&buf)) {
364 _FDT((fdt_property_string(fdt, "host-serial", buf)));
365 g_free(buf);
368 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
369 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
370 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
371 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
372 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
373 qemu_uuid[14], qemu_uuid[15]);
375 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
376 g_free(buf);
378 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
379 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
381 /* /chosen */
382 _FDT((fdt_begin_node(fdt, "chosen")));
384 /* Set Form1_affinity */
385 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
387 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
388 _FDT((fdt_property(fdt, "linux,initrd-start",
389 &start_prop, sizeof(start_prop))));
390 _FDT((fdt_property(fdt, "linux,initrd-end",
391 &end_prop, sizeof(end_prop))));
392 if (kernel_size) {
393 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
394 cpu_to_be64(kernel_size) };
396 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
397 if (little_endian) {
398 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
401 if (boot_menu) {
402 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
404 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
405 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
406 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
408 _FDT((fdt_end_node(fdt)));
410 /* RTAS */
411 _FDT((fdt_begin_node(fdt, "rtas")));
413 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
414 add_str(hypertas, "hcall-multi-tce");
416 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
417 hypertas->len)));
418 g_string_free(hypertas, TRUE);
419 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
420 qemu_hypertas->len)));
421 g_string_free(qemu_hypertas, TRUE);
423 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
424 refpoints, sizeof(refpoints))));
426 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
427 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
428 RTAS_EVENT_SCAN_RATE)));
431 * According to PAPR, rtas ibm,os-term does not guarantee a return
432 * back to the guest cpu.
434 * While an additional ibm,extended-os-term property indicates that
435 * rtas call return will always occur. Set this property.
437 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
439 _FDT((fdt_end_node(fdt)));
441 /* interrupt controller */
442 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
444 _FDT((fdt_property_string(fdt, "device_type",
445 "PowerPC-External-Interrupt-Presentation")));
446 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
447 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
448 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
449 interrupt_server_ranges_prop,
450 sizeof(interrupt_server_ranges_prop))));
451 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
452 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
453 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
455 _FDT((fdt_end_node(fdt)));
457 /* vdevice */
458 _FDT((fdt_begin_node(fdt, "vdevice")));
460 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
461 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
462 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
463 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
464 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
465 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
467 _FDT((fdt_end_node(fdt)));
469 /* event-sources */
470 spapr_events_fdt_skel(fdt, epow_irq);
472 /* /hypervisor node */
473 if (kvm_enabled()) {
474 uint8_t hypercall[16];
476 /* indicate KVM hypercall interface */
477 _FDT((fdt_begin_node(fdt, "hypervisor")));
478 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
479 if (kvmppc_has_cap_fixup_hcalls()) {
481 * Older KVM versions with older guest kernels were broken with the
482 * magic page, don't allow the guest to map it.
484 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
485 sizeof(hypercall));
486 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
487 sizeof(hypercall))));
489 _FDT((fdt_end_node(fdt)));
492 _FDT((fdt_end_node(fdt))); /* close root node */
493 _FDT((fdt_finish(fdt)));
495 return fdt;
498 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
499 target_ulong addr, target_ulong size)
501 void *fdt, *fdt_skel;
502 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
504 size -= sizeof(hdr);
506 /* Create sceleton */
507 fdt_skel = g_malloc0(size);
508 _FDT((fdt_create(fdt_skel, size)));
509 _FDT((fdt_begin_node(fdt_skel, "")));
510 _FDT((fdt_end_node(fdt_skel)));
511 _FDT((fdt_finish(fdt_skel)));
512 fdt = g_malloc0(size);
513 _FDT((fdt_open_into(fdt_skel, fdt, size)));
514 g_free(fdt_skel);
516 /* Fix skeleton up */
517 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
519 /* Pack resulting tree */
520 _FDT((fdt_pack(fdt)));
522 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
523 trace_spapr_cas_failed(size);
524 return -1;
527 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
528 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
529 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
530 g_free(fdt);
532 return 0;
535 static void spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
536 hwaddr size)
538 uint32_t associativity[] = {
539 cpu_to_be32(0x4), /* length */
540 cpu_to_be32(0x0), cpu_to_be32(0x0),
541 cpu_to_be32(0x0), cpu_to_be32(nodeid)
543 char mem_name[32];
544 uint64_t mem_reg_property[2];
545 int off;
547 mem_reg_property[0] = cpu_to_be64(start);
548 mem_reg_property[1] = cpu_to_be64(size);
550 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
551 off = fdt_add_subnode(fdt, 0, mem_name);
552 _FDT(off);
553 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
554 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
555 sizeof(mem_reg_property))));
556 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
557 sizeof(associativity))));
560 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
562 MachineState *machine = MACHINE(spapr);
563 hwaddr mem_start, node_size;
564 int i, nb_nodes = nb_numa_nodes;
565 NodeInfo *nodes = numa_info;
566 NodeInfo ramnode;
568 /* No NUMA nodes, assume there is just one node with whole RAM */
569 if (!nb_numa_nodes) {
570 nb_nodes = 1;
571 ramnode.node_mem = machine->ram_size;
572 nodes = &ramnode;
575 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
576 if (!nodes[i].node_mem) {
577 continue;
579 if (mem_start >= machine->ram_size) {
580 node_size = 0;
581 } else {
582 node_size = nodes[i].node_mem;
583 if (node_size > machine->ram_size - mem_start) {
584 node_size = machine->ram_size - mem_start;
587 if (!mem_start) {
588 /* ppc_spapr_init() checks for rma_size <= node0_size already */
589 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
590 mem_start += spapr->rma_size;
591 node_size -= spapr->rma_size;
593 for ( ; node_size; ) {
594 hwaddr sizetmp = pow2floor(node_size);
596 /* mem_start != 0 here */
597 if (ctzl(mem_start) < ctzl(sizetmp)) {
598 sizetmp = 1ULL << ctzl(mem_start);
601 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
602 node_size -= sizetmp;
603 mem_start += sizetmp;
607 return 0;
610 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
611 sPAPRMachineState *spapr)
613 PowerPCCPU *cpu = POWERPC_CPU(cs);
614 CPUPPCState *env = &cpu->env;
615 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
616 int index = ppc_get_vcpu_dt_id(cpu);
617 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
618 0xffffffff, 0xffffffff};
619 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
620 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
621 uint32_t page_sizes_prop[64];
622 size_t page_sizes_prop_size;
623 QemuOpts *opts = qemu_opts_find(qemu_find_opts("smp-opts"), NULL);
624 unsigned sockets = opts ? qemu_opt_get_number(opts, "sockets", 0) : 0;
625 uint32_t cpus_per_socket = sockets ? (smp_cpus / sockets) : 1;
626 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
628 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
629 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
631 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
632 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
633 env->dcache_line_size)));
634 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
635 env->dcache_line_size)));
636 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
637 env->icache_line_size)));
638 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
639 env->icache_line_size)));
641 if (pcc->l1_dcache_size) {
642 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
643 pcc->l1_dcache_size)));
644 } else {
645 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
647 if (pcc->l1_icache_size) {
648 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
649 pcc->l1_icache_size)));
650 } else {
651 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
654 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
655 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
656 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
657 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
658 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
660 if (env->spr_cb[SPR_PURR].oea_read) {
661 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
664 if (env->mmu_model & POWERPC_MMU_1TSEG) {
665 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
666 segs, sizeof(segs))));
669 /* Advertise VMX/VSX (vector extensions) if available
670 * 0 / no property == no vector extensions
671 * 1 == VMX / Altivec available
672 * 2 == VSX available */
673 if (env->insns_flags & PPC_ALTIVEC) {
674 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
676 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
679 /* Advertise DFP (Decimal Floating Point) if available
680 * 0 / no property == no DFP
681 * 1 == DFP available */
682 if (env->insns_flags2 & PPC2_DFP) {
683 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
686 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
687 sizeof(page_sizes_prop));
688 if (page_sizes_prop_size) {
689 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
690 page_sizes_prop, page_sizes_prop_size)));
693 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
694 cs->cpu_index / cpus_per_socket)));
696 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
697 pft_size_prop, sizeof(pft_size_prop))));
699 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
701 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
702 ppc_get_compat_smt_threads(cpu)));
705 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
707 CPUState *cs;
708 int cpus_offset;
709 char *nodename;
710 int smt = kvmppc_smt_threads();
712 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
713 _FDT(cpus_offset);
714 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
715 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
718 * We walk the CPUs in reverse order to ensure that CPU DT nodes
719 * created by fdt_add_subnode() end up in the right order in FDT
720 * for the guest kernel the enumerate the CPUs correctly.
722 CPU_FOREACH_REVERSE(cs) {
723 PowerPCCPU *cpu = POWERPC_CPU(cs);
724 int index = ppc_get_vcpu_dt_id(cpu);
725 DeviceClass *dc = DEVICE_GET_CLASS(cs);
726 int offset;
728 if ((index % smt) != 0) {
729 continue;
732 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
733 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
734 g_free(nodename);
735 _FDT(offset);
736 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
741 static void spapr_finalize_fdt(sPAPRMachineState *spapr,
742 hwaddr fdt_addr,
743 hwaddr rtas_addr,
744 hwaddr rtas_size)
746 MachineState *machine = MACHINE(qdev_get_machine());
747 const char *boot_device = machine->boot_order;
748 int ret, i;
749 size_t cb = 0;
750 char *bootlist;
751 void *fdt;
752 sPAPRPHBState *phb;
754 fdt = g_malloc(FDT_MAX_SIZE);
756 /* open out the base tree into a temp buffer for the final tweaks */
757 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
759 ret = spapr_populate_memory(spapr, fdt);
760 if (ret < 0) {
761 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
762 exit(1);
765 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
766 if (ret < 0) {
767 fprintf(stderr, "couldn't setup vio devices in fdt\n");
768 exit(1);
771 QLIST_FOREACH(phb, &spapr->phbs, list) {
772 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
775 if (ret < 0) {
776 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
777 exit(1);
780 /* RTAS */
781 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
782 if (ret < 0) {
783 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
786 /* cpus */
787 spapr_populate_cpus_dt_node(fdt, spapr);
789 bootlist = get_boot_devices_list(&cb, true);
790 if (cb && bootlist) {
791 int offset = fdt_path_offset(fdt, "/chosen");
792 if (offset < 0) {
793 exit(1);
795 for (i = 0; i < cb; i++) {
796 if (bootlist[i] == '\n') {
797 bootlist[i] = ' ';
801 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
804 if (boot_device && strlen(boot_device)) {
805 int offset = fdt_path_offset(fdt, "/chosen");
807 if (offset < 0) {
808 exit(1);
810 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
813 if (!spapr->has_graphics) {
814 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
817 _FDT((fdt_pack(fdt)));
819 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
820 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
821 fdt_totalsize(fdt), FDT_MAX_SIZE);
822 exit(1);
825 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
827 g_free(bootlist);
828 g_free(fdt);
831 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
833 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
836 static void emulate_spapr_hypercall(PowerPCCPU *cpu)
838 CPUPPCState *env = &cpu->env;
840 if (msr_pr) {
841 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
842 env->gpr[3] = H_PRIVILEGE;
843 } else {
844 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
848 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
849 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
850 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
851 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
852 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
854 static void spapr_reset_htab(sPAPRMachineState *spapr)
856 long shift;
857 int index;
859 /* allocate hash page table. For now we always make this 16mb,
860 * later we should probably make it scale to the size of guest
861 * RAM */
863 shift = kvmppc_reset_htab(spapr->htab_shift);
865 if (shift > 0) {
866 /* Kernel handles htab, we don't need to allocate one */
867 spapr->htab_shift = shift;
868 kvmppc_kern_htab = true;
870 /* Tell readers to update their file descriptor */
871 if (spapr->htab_fd >= 0) {
872 spapr->htab_fd_stale = true;
874 } else {
875 if (!spapr->htab) {
876 /* Allocate an htab if we don't yet have one */
877 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
880 /* And clear it */
881 memset(spapr->htab, 0, HTAB_SIZE(spapr));
883 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
884 DIRTY_HPTE(HPTE(spapr->htab, index));
888 /* Update the RMA size if necessary */
889 if (spapr->vrma_adjust) {
890 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
891 spapr->htab_shift);
895 static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
897 bool matched = false;
899 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
900 matched = true;
903 if (!matched) {
904 error_report("Device %s is not supported by this machine yet.",
905 qdev_fw_name(DEVICE(sbdev)));
906 exit(1);
909 return 0;
913 * A guest reset will cause spapr->htab_fd to become stale if being used.
914 * Reopen the file descriptor to make sure the whole HTAB is properly read.
916 static int spapr_check_htab_fd(sPAPRMachineState *spapr)
918 int rc = 0;
920 if (spapr->htab_fd_stale) {
921 close(spapr->htab_fd);
922 spapr->htab_fd = kvmppc_get_htab_fd(false);
923 if (spapr->htab_fd < 0) {
924 error_report("Unable to open fd for reading hash table from KVM: "
925 "%s", strerror(errno));
926 rc = -1;
928 spapr->htab_fd_stale = false;
931 return rc;
934 static void ppc_spapr_reset(void)
936 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
937 PowerPCCPU *first_ppc_cpu;
938 uint32_t rtas_limit;
940 /* Check for unknown sysbus devices */
941 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
943 /* Reset the hash table & recalc the RMA */
944 spapr_reset_htab(spapr);
946 qemu_devices_reset();
949 * We place the device tree and RTAS just below either the top of the RMA,
950 * or just below 2GB, whichever is lowere, so that it can be
951 * processed with 32-bit real mode code if necessary
953 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
954 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
955 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
957 /* Load the fdt */
958 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
959 spapr->rtas_size);
961 /* Copy RTAS over */
962 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
963 spapr->rtas_size);
965 /* Set up the entry state */
966 first_ppc_cpu = POWERPC_CPU(first_cpu);
967 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
968 first_ppc_cpu->env.gpr[5] = 0;
969 first_cpu->halted = 0;
970 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
974 static void spapr_cpu_reset(void *opaque)
976 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
977 PowerPCCPU *cpu = opaque;
978 CPUState *cs = CPU(cpu);
979 CPUPPCState *env = &cpu->env;
981 cpu_reset(cs);
983 /* All CPUs start halted. CPU0 is unhalted from the machine level
984 * reset code and the rest are explicitly started up by the guest
985 * using an RTAS call */
986 cs->halted = 1;
988 env->spr[SPR_HIOR] = 0;
990 env->external_htab = (uint8_t *)spapr->htab;
991 if (kvm_enabled() && !env->external_htab) {
993 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
994 * functions do the right thing.
996 env->external_htab = (void *)1;
998 env->htab_base = -1;
1000 * htab_mask is the mask used to normalize hash value to PTEG index.
1001 * htab_shift is log2 of hash table size.
1002 * We have 8 hpte per group, and each hpte is 16 bytes.
1003 * ie have 128 bytes per hpte entry.
1005 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
1006 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
1007 (spapr->htab_shift - 18);
1010 static void spapr_create_nvram(sPAPRMachineState *spapr)
1012 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1013 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1015 if (dinfo) {
1016 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
1019 qdev_init_nofail(dev);
1021 spapr->nvram = (struct sPAPRNVRAM *)dev;
1024 static void spapr_rtc_create(sPAPRMachineState *spapr)
1026 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1028 qdev_init_nofail(dev);
1029 spapr->rtc = dev;
1031 object_property_add_alias(qdev_get_machine(), "rtc-time",
1032 OBJECT(spapr->rtc), "date", NULL);
1035 /* Returns whether we want to use VGA or not */
1036 static int spapr_vga_init(PCIBus *pci_bus)
1038 switch (vga_interface_type) {
1039 case VGA_NONE:
1040 return false;
1041 case VGA_DEVICE:
1042 return true;
1043 case VGA_STD:
1044 return pci_vga_init(pci_bus) != NULL;
1045 default:
1046 fprintf(stderr, "This vga model is not supported,"
1047 "currently it only supports -vga std\n");
1048 exit(0);
1052 static int spapr_post_load(void *opaque, int version_id)
1054 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1055 int err = 0;
1057 /* In earlier versions, there was no separate qdev for the PAPR
1058 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1059 * So when migrating from those versions, poke the incoming offset
1060 * value into the RTC device */
1061 if (version_id < 3) {
1062 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1065 return err;
1068 static bool version_before_3(void *opaque, int version_id)
1070 return version_id < 3;
1073 static const VMStateDescription vmstate_spapr = {
1074 .name = "spapr",
1075 .version_id = 3,
1076 .minimum_version_id = 1,
1077 .post_load = spapr_post_load,
1078 .fields = (VMStateField[]) {
1079 /* used to be @next_irq */
1080 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1082 /* RTC offset */
1083 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1085 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1086 VMSTATE_END_OF_LIST()
1090 static int htab_save_setup(QEMUFile *f, void *opaque)
1092 sPAPRMachineState *spapr = opaque;
1094 /* "Iteration" header */
1095 qemu_put_be32(f, spapr->htab_shift);
1097 if (spapr->htab) {
1098 spapr->htab_save_index = 0;
1099 spapr->htab_first_pass = true;
1100 } else {
1101 assert(kvm_enabled());
1103 spapr->htab_fd = kvmppc_get_htab_fd(false);
1104 spapr->htab_fd_stale = false;
1105 if (spapr->htab_fd < 0) {
1106 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1107 strerror(errno));
1108 return -1;
1113 return 0;
1116 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1117 int64_t max_ns)
1119 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1120 int index = spapr->htab_save_index;
1121 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1123 assert(spapr->htab_first_pass);
1125 do {
1126 int chunkstart;
1128 /* Consume invalid HPTEs */
1129 while ((index < htabslots)
1130 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1131 index++;
1132 CLEAN_HPTE(HPTE(spapr->htab, index));
1135 /* Consume valid HPTEs */
1136 chunkstart = index;
1137 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1138 && HPTE_VALID(HPTE(spapr->htab, index))) {
1139 index++;
1140 CLEAN_HPTE(HPTE(spapr->htab, index));
1143 if (index > chunkstart) {
1144 int n_valid = index - chunkstart;
1146 qemu_put_be32(f, chunkstart);
1147 qemu_put_be16(f, n_valid);
1148 qemu_put_be16(f, 0);
1149 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1150 HASH_PTE_SIZE_64 * n_valid);
1152 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1153 break;
1156 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1158 if (index >= htabslots) {
1159 assert(index == htabslots);
1160 index = 0;
1161 spapr->htab_first_pass = false;
1163 spapr->htab_save_index = index;
1166 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1167 int64_t max_ns)
1169 bool final = max_ns < 0;
1170 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1171 int examined = 0, sent = 0;
1172 int index = spapr->htab_save_index;
1173 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1175 assert(!spapr->htab_first_pass);
1177 do {
1178 int chunkstart, invalidstart;
1180 /* Consume non-dirty HPTEs */
1181 while ((index < htabslots)
1182 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1183 index++;
1184 examined++;
1187 chunkstart = index;
1188 /* Consume valid dirty HPTEs */
1189 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1190 && HPTE_DIRTY(HPTE(spapr->htab, index))
1191 && HPTE_VALID(HPTE(spapr->htab, index))) {
1192 CLEAN_HPTE(HPTE(spapr->htab, index));
1193 index++;
1194 examined++;
1197 invalidstart = index;
1198 /* Consume invalid dirty HPTEs */
1199 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1200 && HPTE_DIRTY(HPTE(spapr->htab, index))
1201 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1202 CLEAN_HPTE(HPTE(spapr->htab, index));
1203 index++;
1204 examined++;
1207 if (index > chunkstart) {
1208 int n_valid = invalidstart - chunkstart;
1209 int n_invalid = index - invalidstart;
1211 qemu_put_be32(f, chunkstart);
1212 qemu_put_be16(f, n_valid);
1213 qemu_put_be16(f, n_invalid);
1214 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1215 HASH_PTE_SIZE_64 * n_valid);
1216 sent += index - chunkstart;
1218 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1219 break;
1223 if (examined >= htabslots) {
1224 break;
1227 if (index >= htabslots) {
1228 assert(index == htabslots);
1229 index = 0;
1231 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1233 if (index >= htabslots) {
1234 assert(index == htabslots);
1235 index = 0;
1238 spapr->htab_save_index = index;
1240 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1243 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1244 #define MAX_KVM_BUF_SIZE 2048
1246 static int htab_save_iterate(QEMUFile *f, void *opaque)
1248 sPAPRMachineState *spapr = opaque;
1249 int rc = 0;
1251 /* Iteration header */
1252 qemu_put_be32(f, 0);
1254 if (!spapr->htab) {
1255 assert(kvm_enabled());
1257 rc = spapr_check_htab_fd(spapr);
1258 if (rc < 0) {
1259 return rc;
1262 rc = kvmppc_save_htab(f, spapr->htab_fd,
1263 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1264 if (rc < 0) {
1265 return rc;
1267 } else if (spapr->htab_first_pass) {
1268 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1269 } else {
1270 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1273 /* End marker */
1274 qemu_put_be32(f, 0);
1275 qemu_put_be16(f, 0);
1276 qemu_put_be16(f, 0);
1278 return rc;
1281 static int htab_save_complete(QEMUFile *f, void *opaque)
1283 sPAPRMachineState *spapr = opaque;
1285 /* Iteration header */
1286 qemu_put_be32(f, 0);
1288 if (!spapr->htab) {
1289 int rc;
1291 assert(kvm_enabled());
1293 rc = spapr_check_htab_fd(spapr);
1294 if (rc < 0) {
1295 return rc;
1298 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1299 if (rc < 0) {
1300 return rc;
1302 close(spapr->htab_fd);
1303 spapr->htab_fd = -1;
1304 } else {
1305 htab_save_later_pass(f, spapr, -1);
1308 /* End marker */
1309 qemu_put_be32(f, 0);
1310 qemu_put_be16(f, 0);
1311 qemu_put_be16(f, 0);
1313 return 0;
1316 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1318 sPAPRMachineState *spapr = opaque;
1319 uint32_t section_hdr;
1320 int fd = -1;
1322 if (version_id < 1 || version_id > 1) {
1323 fprintf(stderr, "htab_load() bad version\n");
1324 return -EINVAL;
1327 section_hdr = qemu_get_be32(f);
1329 if (section_hdr) {
1330 /* First section, just the hash shift */
1331 if (spapr->htab_shift != section_hdr) {
1332 return -EINVAL;
1334 return 0;
1337 if (!spapr->htab) {
1338 assert(kvm_enabled());
1340 fd = kvmppc_get_htab_fd(true);
1341 if (fd < 0) {
1342 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1343 strerror(errno));
1347 while (true) {
1348 uint32_t index;
1349 uint16_t n_valid, n_invalid;
1351 index = qemu_get_be32(f);
1352 n_valid = qemu_get_be16(f);
1353 n_invalid = qemu_get_be16(f);
1355 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1356 /* End of Stream */
1357 break;
1360 if ((index + n_valid + n_invalid) >
1361 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1362 /* Bad index in stream */
1363 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
1364 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1365 spapr->htab_shift);
1366 return -EINVAL;
1369 if (spapr->htab) {
1370 if (n_valid) {
1371 qemu_get_buffer(f, HPTE(spapr->htab, index),
1372 HASH_PTE_SIZE_64 * n_valid);
1374 if (n_invalid) {
1375 memset(HPTE(spapr->htab, index + n_valid), 0,
1376 HASH_PTE_SIZE_64 * n_invalid);
1378 } else {
1379 int rc;
1381 assert(fd >= 0);
1383 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1384 if (rc < 0) {
1385 return rc;
1390 if (!spapr->htab) {
1391 assert(fd >= 0);
1392 close(fd);
1395 return 0;
1398 static SaveVMHandlers savevm_htab_handlers = {
1399 .save_live_setup = htab_save_setup,
1400 .save_live_iterate = htab_save_iterate,
1401 .save_live_complete = htab_save_complete,
1402 .load_state = htab_load,
1405 static void spapr_boot_set(void *opaque, const char *boot_device,
1406 Error **errp)
1408 MachineState *machine = MACHINE(qdev_get_machine());
1409 machine->boot_order = g_strdup(boot_device);
1412 static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1414 CPUPPCState *env = &cpu->env;
1416 /* Set time-base frequency to 512 MHz */
1417 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1419 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1420 * MSR[IP] should never be set.
1422 env->msr_mask &= ~(1 << 6);
1424 /* Tell KVM that we're in PAPR mode */
1425 if (kvm_enabled()) {
1426 kvmppc_set_papr(cpu);
1429 if (cpu->max_compat) {
1430 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1431 exit(1);
1435 xics_cpu_setup(spapr->icp, cpu);
1437 qemu_register_reset(spapr_cpu_reset, cpu);
1440 /* pSeries LPAR / sPAPR hardware init */
1441 static void ppc_spapr_init(MachineState *machine)
1443 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1444 const char *kernel_filename = machine->kernel_filename;
1445 const char *kernel_cmdline = machine->kernel_cmdline;
1446 const char *initrd_filename = machine->initrd_filename;
1447 PowerPCCPU *cpu;
1448 PCIHostState *phb;
1449 int i;
1450 MemoryRegion *sysmem = get_system_memory();
1451 MemoryRegion *ram = g_new(MemoryRegion, 1);
1452 MemoryRegion *rma_region;
1453 void *rma = NULL;
1454 hwaddr rma_alloc_size;
1455 hwaddr node0_size = spapr_node0_size();
1456 uint32_t initrd_base = 0;
1457 long kernel_size = 0, initrd_size = 0;
1458 long load_limit, fw_size;
1459 bool kernel_le = false;
1460 char *filename;
1462 msi_supported = true;
1464 QLIST_INIT(&spapr->phbs);
1466 cpu_ppc_hypercall = emulate_spapr_hypercall;
1468 /* Allocate RMA if necessary */
1469 rma_alloc_size = kvmppc_alloc_rma(&rma);
1471 if (rma_alloc_size == -1) {
1472 error_report("Unable to create RMA");
1473 exit(1);
1476 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
1477 spapr->rma_size = rma_alloc_size;
1478 } else {
1479 spapr->rma_size = node0_size;
1481 /* With KVM, we don't actually know whether KVM supports an
1482 * unbounded RMA (PR KVM) or is limited by the hash table size
1483 * (HV KVM using VRMA), so we always assume the latter
1485 * In that case, we also limit the initial allocations for RTAS
1486 * etc... to 256M since we have no way to know what the VRMA size
1487 * is going to be as it depends on the size of the hash table
1488 * isn't determined yet.
1490 if (kvm_enabled()) {
1491 spapr->vrma_adjust = 1;
1492 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1496 if (spapr->rma_size > node0_size) {
1497 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1498 spapr->rma_size);
1499 exit(1);
1502 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1503 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
1505 /* We aim for a hash table of size 1/128 the size of RAM. The
1506 * normal rule of thumb is 1/64 the size of RAM, but that's much
1507 * more than needed for the Linux guests we support. */
1508 spapr->htab_shift = 18; /* Minimum architected size */
1509 while (spapr->htab_shift <= 46) {
1510 if ((1ULL << (spapr->htab_shift + 7)) >= machine->ram_size) {
1511 break;
1513 spapr->htab_shift++;
1516 /* Set up Interrupt Controller before we create the VCPUs */
1517 spapr->icp = xics_system_init(machine,
1518 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
1519 smp_threads),
1520 XICS_IRQS);
1522 /* init CPUs */
1523 if (machine->cpu_model == NULL) {
1524 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
1526 for (i = 0; i < smp_cpus; i++) {
1527 cpu = cpu_ppc_init(machine->cpu_model);
1528 if (cpu == NULL) {
1529 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1530 exit(1);
1532 spapr_cpu_init(spapr, cpu);
1535 if (kvm_enabled()) {
1536 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1537 kvmppc_enable_logical_ci_hcalls();
1540 /* allocate RAM */
1541 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
1542 machine->ram_size);
1543 memory_region_add_subregion(sysmem, 0, ram);
1545 if (rma_alloc_size && rma) {
1546 rma_region = g_new(MemoryRegion, 1);
1547 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1548 rma_alloc_size, rma);
1549 vmstate_register_ram_global(rma_region);
1550 memory_region_add_subregion(sysmem, 0, rma_region);
1553 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
1554 if (!filename) {
1555 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
1556 exit(1);
1558 spapr->rtas_size = get_image_size(filename);
1559 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1560 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
1561 error_report("Could not load LPAR rtas '%s'", filename);
1562 exit(1);
1564 if (spapr->rtas_size > RTAS_MAX_SIZE) {
1565 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1566 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
1567 exit(1);
1569 g_free(filename);
1571 /* Set up EPOW events infrastructure */
1572 spapr_events_init(spapr);
1574 /* Set up the RTC RTAS interfaces */
1575 spapr_rtc_create(spapr);
1577 /* Set up VIO bus */
1578 spapr->vio_bus = spapr_vio_bus_init();
1580 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
1581 if (serial_hds[i]) {
1582 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
1586 /* We always have at least the nvram device on VIO */
1587 spapr_create_nvram(spapr);
1589 /* Set up PCI */
1590 spapr_pci_rtas_init();
1592 phb = spapr_create_phb(spapr, 0);
1594 for (i = 0; i < nb_nics; i++) {
1595 NICInfo *nd = &nd_table[i];
1597 if (!nd->model) {
1598 nd->model = g_strdup("ibmveth");
1601 if (strcmp(nd->model, "ibmveth") == 0) {
1602 spapr_vlan_create(spapr->vio_bus, nd);
1603 } else {
1604 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
1608 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
1609 spapr_vscsi_create(spapr->vio_bus);
1612 /* Graphics */
1613 if (spapr_vga_init(phb->bus)) {
1614 spapr->has_graphics = true;
1615 machine->usb |= defaults_enabled() && !machine->usb_disabled;
1618 if (machine->usb) {
1619 pci_create_simple(phb->bus, -1, "pci-ohci");
1621 if (spapr->has_graphics) {
1622 USBBus *usb_bus = usb_bus_find(-1);
1624 usb_create_simple(usb_bus, "usb-kbd");
1625 usb_create_simple(usb_bus, "usb-mouse");
1629 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
1630 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1631 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1632 exit(1);
1635 if (kernel_filename) {
1636 uint64_t lowaddr = 0;
1638 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1639 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
1640 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
1641 kernel_size = load_elf(kernel_filename,
1642 translate_kernel_address, NULL,
1643 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1644 kernel_le = kernel_size > 0;
1646 if (kernel_size < 0) {
1647 fprintf(stderr, "qemu: error loading %s: %s\n",
1648 kernel_filename, load_elf_strerror(kernel_size));
1649 exit(1);
1652 /* load initrd */
1653 if (initrd_filename) {
1654 /* Try to locate the initrd in the gap between the kernel
1655 * and the firmware. Add a bit of space just in case
1657 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
1658 initrd_size = load_image_targphys(initrd_filename, initrd_base,
1659 load_limit - initrd_base);
1660 if (initrd_size < 0) {
1661 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1662 initrd_filename);
1663 exit(1);
1665 } else {
1666 initrd_base = 0;
1667 initrd_size = 0;
1671 if (bios_name == NULL) {
1672 bios_name = FW_FILE_NAME;
1674 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1675 if (!filename) {
1676 error_report("Could not find LPAR firmware '%s'", bios_name);
1677 exit(1);
1679 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
1680 if (fw_size <= 0) {
1681 error_report("Could not load LPAR firmware '%s'", filename);
1682 exit(1);
1684 g_free(filename);
1686 /* FIXME: Should register things through the MachineState's qdev
1687 * interface, this is a legacy from the sPAPREnvironment structure
1688 * which predated MachineState but had a similar function */
1689 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1690 register_savevm_live(NULL, "spapr/htab", -1, 1,
1691 &savevm_htab_handlers, spapr);
1693 /* Prepare the device tree */
1694 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
1695 kernel_size, kernel_le,
1696 kernel_cmdline,
1697 spapr->check_exception_irq);
1698 assert(spapr->fdt_skel != NULL);
1700 /* used by RTAS */
1701 QTAILQ_INIT(&spapr->ccs_list);
1702 qemu_register_reset(spapr_ccs_reset_hook, spapr);
1704 qemu_register_boot_set(spapr_boot_set, spapr);
1707 static int spapr_kvm_type(const char *vm_type)
1709 if (!vm_type) {
1710 return 0;
1713 if (!strcmp(vm_type, "HV")) {
1714 return 1;
1717 if (!strcmp(vm_type, "PR")) {
1718 return 2;
1721 error_report("Unknown kvm-type specified '%s'", vm_type);
1722 exit(1);
1726 * Implementation of an interface to adjust firmware path
1727 * for the bootindex property handling.
1729 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1730 DeviceState *dev)
1732 #define CAST(type, obj, name) \
1733 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1734 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1735 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1737 if (d) {
1738 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1739 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1740 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1742 if (spapr) {
1744 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1745 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1746 * in the top 16 bits of the 64-bit LUN
1748 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1749 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1750 (uint64_t)id << 48);
1751 } else if (virtio) {
1753 * We use SRP luns of the form 01000000 | (target << 8) | lun
1754 * in the top 32 bits of the 64-bit LUN
1755 * Note: the quote above is from SLOF and it is wrong,
1756 * the actual binding is:
1757 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
1759 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
1760 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1761 (uint64_t)id << 32);
1762 } else if (usb) {
1764 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
1765 * in the top 32 bits of the 64-bit LUN
1767 unsigned usb_port = atoi(usb->port->path);
1768 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
1769 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1770 (uint64_t)id << 32);
1774 if (phb) {
1775 /* Replace "pci" with "pci@800000020000000" */
1776 return g_strdup_printf("pci@%"PRIX64, phb->buid);
1779 return NULL;
1782 static char *spapr_get_kvm_type(Object *obj, Error **errp)
1784 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
1786 return g_strdup(spapr->kvm_type);
1789 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
1791 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
1793 g_free(spapr->kvm_type);
1794 spapr->kvm_type = g_strdup(value);
1797 static void spapr_machine_initfn(Object *obj)
1799 object_property_add_str(obj, "kvm-type",
1800 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
1801 object_property_set_description(obj, "kvm-type",
1802 "Specifies the KVM virtualization mode (HV, PR)",
1803 NULL);
1806 static void ppc_cpu_do_nmi_on_cpu(void *arg)
1808 CPUState *cs = arg;
1810 cpu_synchronize_state(cs);
1811 ppc_cpu_do_system_reset(cs);
1814 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
1816 CPUState *cs;
1818 CPU_FOREACH(cs) {
1819 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
1823 static void spapr_machine_class_init(ObjectClass *oc, void *data)
1825 MachineClass *mc = MACHINE_CLASS(oc);
1826 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
1827 NMIClass *nc = NMI_CLASS(oc);
1829 mc->init = ppc_spapr_init;
1830 mc->reset = ppc_spapr_reset;
1831 mc->block_default_type = IF_SCSI;
1832 mc->max_cpus = MAX_CPUS;
1833 mc->no_parallel = 1;
1834 mc->default_boot_order = "";
1835 mc->default_ram_size = 512 * M_BYTE;
1836 mc->kvm_type = spapr_kvm_type;
1837 mc->has_dynamic_sysbus = true;
1839 fwc->get_dev_path = spapr_get_fw_dev_path;
1840 nc->nmi_monitor_handler = spapr_nmi;
1843 static const TypeInfo spapr_machine_info = {
1844 .name = TYPE_SPAPR_MACHINE,
1845 .parent = TYPE_MACHINE,
1846 .abstract = true,
1847 .instance_size = sizeof(sPAPRMachineState),
1848 .instance_init = spapr_machine_initfn,
1849 .class_size = sizeof(sPAPRMachineClass),
1850 .class_init = spapr_machine_class_init,
1851 .interfaces = (InterfaceInfo[]) {
1852 { TYPE_FW_PATH_PROVIDER },
1853 { TYPE_NMI },
1858 #define SPAPR_COMPAT_2_3 \
1859 HW_COMPAT_2_3 \
1861 .driver = "spapr-pci-host-bridge",\
1862 .property = "dynamic-reconfiguration",\
1863 .value = "off",\
1866 #define SPAPR_COMPAT_2_2 \
1867 SPAPR_COMPAT_2_3 \
1868 HW_COMPAT_2_2 \
1870 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
1871 .property = "mem_win_size",\
1872 .value = "0x20000000",\
1875 #define SPAPR_COMPAT_2_1 \
1876 SPAPR_COMPAT_2_2 \
1877 HW_COMPAT_2_1
1879 static void spapr_compat_2_3(Object *obj)
1881 savevm_skip_section_footers();
1882 global_state_set_optional();
1885 static void spapr_compat_2_2(Object *obj)
1887 spapr_compat_2_3(obj);
1890 static void spapr_compat_2_1(Object *obj)
1892 spapr_compat_2_2(obj);
1895 static void spapr_machine_2_3_instance_init(Object *obj)
1897 spapr_compat_2_3(obj);
1898 spapr_machine_initfn(obj);
1901 static void spapr_machine_2_2_instance_init(Object *obj)
1903 spapr_compat_2_2(obj);
1904 spapr_machine_initfn(obj);
1907 static void spapr_machine_2_1_instance_init(Object *obj)
1909 spapr_compat_2_1(obj);
1910 spapr_machine_initfn(obj);
1913 static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
1915 MachineClass *mc = MACHINE_CLASS(oc);
1916 static GlobalProperty compat_props[] = {
1917 SPAPR_COMPAT_2_1
1918 { /* end of list */ }
1921 mc->name = "pseries-2.1";
1922 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
1923 mc->compat_props = compat_props;
1926 static const TypeInfo spapr_machine_2_1_info = {
1927 .name = TYPE_SPAPR_MACHINE "2.1",
1928 .parent = TYPE_SPAPR_MACHINE,
1929 .class_init = spapr_machine_2_1_class_init,
1930 .instance_init = spapr_machine_2_1_instance_init,
1933 static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
1935 static GlobalProperty compat_props[] = {
1936 SPAPR_COMPAT_2_2
1937 { /* end of list */ }
1939 MachineClass *mc = MACHINE_CLASS(oc);
1941 mc->name = "pseries-2.2";
1942 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
1943 mc->compat_props = compat_props;
1946 static const TypeInfo spapr_machine_2_2_info = {
1947 .name = TYPE_SPAPR_MACHINE "2.2",
1948 .parent = TYPE_SPAPR_MACHINE,
1949 .class_init = spapr_machine_2_2_class_init,
1950 .instance_init = spapr_machine_2_2_instance_init,
1953 static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
1955 static GlobalProperty compat_props[] = {
1956 SPAPR_COMPAT_2_3
1957 { /* end of list */ }
1959 MachineClass *mc = MACHINE_CLASS(oc);
1961 mc->name = "pseries-2.3";
1962 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
1963 mc->compat_props = compat_props;
1966 static const TypeInfo spapr_machine_2_3_info = {
1967 .name = TYPE_SPAPR_MACHINE "2.3",
1968 .parent = TYPE_SPAPR_MACHINE,
1969 .class_init = spapr_machine_2_3_class_init,
1970 .instance_init = spapr_machine_2_3_instance_init,
1973 static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
1975 MachineClass *mc = MACHINE_CLASS(oc);
1977 mc->name = "pseries-2.4";
1978 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
1979 mc->alias = "pseries";
1980 mc->is_default = 1;
1983 static const TypeInfo spapr_machine_2_4_info = {
1984 .name = TYPE_SPAPR_MACHINE "2.4",
1985 .parent = TYPE_SPAPR_MACHINE,
1986 .class_init = spapr_machine_2_4_class_init,
1989 static void spapr_machine_register_types(void)
1991 type_register_static(&spapr_machine_info);
1992 type_register_static(&spapr_machine_2_1_info);
1993 type_register_static(&spapr_machine_2_2_info);
1994 type_register_static(&spapr_machine_2_3_info);
1995 type_register_static(&spapr_machine_2_4_info);
1998 type_init(spapr_machine_register_types)