Rework reset handler management
[qemu.git] / vl.c
blob841146a2b3b82b8c46ebf047fbe81d6a7d8cb834
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
71 #include <sys/prctl.h>
73 /* For the benefit of older linux systems which don't supply it,
74 we use a local copy of hpet.h. */
75 /* #include <linux/hpet.h> */
76 #include "hpet.h"
78 #include <linux/ppdev.h>
79 #include <linux/parport.h>
80 #endif
81 #ifdef __sun__
82 #include <sys/stat.h>
83 #include <sys/ethernet.h>
84 #include <sys/sockio.h>
85 #include <netinet/arp.h>
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/ip_icmp.h> // must come after ip.h
90 #include <netinet/udp.h>
91 #include <netinet/tcp.h>
92 #include <net/if.h>
93 #include <syslog.h>
94 #include <stropts.h>
95 #endif
96 #endif
97 #endif
99 #if defined(__OpenBSD__)
100 #include <util.h>
101 #endif
103 #if defined(CONFIG_VDE)
104 #include <libvdeplug.h>
105 #endif
107 #ifdef _WIN32
108 #include <windows.h>
109 #include <malloc.h>
110 #include <sys/timeb.h>
111 #include <mmsystem.h>
112 #define getopt_long_only getopt_long
113 #define memalign(align, size) malloc(size)
114 #endif
116 #ifdef CONFIG_SDL
117 #if defined(__APPLE__) || defined(main)
118 #include <SDL.h>
119 int qemu_main(int argc, char **argv, char **envp);
120 int main(int argc, char **argv)
122 return qemu_main(argc, argv, NULL);
124 #undef main
125 #define main qemu_main
126 #endif
127 #endif /* CONFIG_SDL */
129 #ifdef CONFIG_COCOA
130 #undef main
131 #define main qemu_main
132 #endif /* CONFIG_COCOA */
134 #include "hw/hw.h"
135 #include "hw/boards.h"
136 #include "hw/usb.h"
137 #include "hw/pcmcia.h"
138 #include "hw/pc.h"
139 #include "hw/audiodev.h"
140 #include "hw/isa.h"
141 #include "hw/baum.h"
142 #include "hw/bt.h"
143 #include "hw/watchdog.h"
144 #include "hw/smbios.h"
145 #include "hw/xen.h"
146 #include "bt-host.h"
147 #include "net.h"
148 #include "monitor.h"
149 #include "console.h"
150 #include "sysemu.h"
151 #include "gdbstub.h"
152 #include "qemu-timer.h"
153 #include "qemu-char.h"
154 #include "cache-utils.h"
155 #include "block.h"
156 #include "dma.h"
157 #include "audio/audio.h"
158 #include "migration.h"
159 #include "kvm.h"
160 #include "balloon.h"
161 #include "qemu-option.h"
163 #include "disas.h"
165 #include "exec-all.h"
167 #include "qemu_socket.h"
169 #include "slirp/libslirp.h"
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
174 #define DEFAULT_RAM_SIZE 128
176 /* Max number of USB devices that can be specified on the commandline. */
177 #define MAX_USB_CMDLINE 8
179 /* Max number of bluetooth switches on the commandline. */
180 #define MAX_BT_CMDLINE 10
182 static const char *data_dir;
183 const char *bios_name = NULL;
184 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185 to store the VM snapshots */
186 DriveInfo drives_table[MAX_DRIVES+1];
187 int nb_drives;
188 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
189 static DisplayState *display_state;
190 DisplayType display_type = DT_DEFAULT;
191 const char* keyboard_layout = NULL;
192 int64_t ticks_per_sec;
193 ram_addr_t ram_size;
194 int nb_nics;
195 NICInfo nd_table[MAX_NICS];
196 int vm_running;
197 static int autostart;
198 static int rtc_utc = 1;
199 static int rtc_date_offset = -1; /* -1 means no change */
200 int cirrus_vga_enabled = 1;
201 int std_vga_enabled = 0;
202 int vmsvga_enabled = 0;
203 int xenfb_enabled = 0;
204 #ifdef TARGET_SPARC
205 int graphic_width = 1024;
206 int graphic_height = 768;
207 int graphic_depth = 8;
208 #else
209 int graphic_width = 800;
210 int graphic_height = 600;
211 int graphic_depth = 15;
212 #endif
213 static int full_screen = 0;
214 #ifdef CONFIG_SDL
215 static int no_frame = 0;
216 #endif
217 int no_quit = 0;
218 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
219 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
220 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
221 #ifdef TARGET_I386
222 int win2k_install_hack = 0;
223 int rtc_td_hack = 0;
224 #endif
225 int usb_enabled = 0;
226 int singlestep = 0;
227 int smp_cpus = 1;
228 const char *vnc_display;
229 int acpi_enabled = 1;
230 int no_hpet = 0;
231 int virtio_balloon = 1;
232 const char *virtio_balloon_devaddr;
233 int fd_bootchk = 1;
234 int no_reboot = 0;
235 int no_shutdown = 0;
236 int cursor_hide = 1;
237 int graphic_rotate = 0;
238 #ifndef _WIN32
239 int daemonize = 0;
240 #endif
241 WatchdogTimerModel *watchdog = NULL;
242 int watchdog_action = WDT_RESET;
243 const char *option_rom[MAX_OPTION_ROMS];
244 int nb_option_roms;
245 int semihosting_enabled = 0;
246 #ifdef TARGET_ARM
247 int old_param = 0;
248 #endif
249 const char *qemu_name;
250 int alt_grab = 0;
251 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
252 unsigned int nb_prom_envs = 0;
253 const char *prom_envs[MAX_PROM_ENVS];
254 #endif
255 int nb_drives_opt;
256 struct drive_opt drives_opt[MAX_DRIVES];
258 int nb_numa_nodes;
259 uint64_t node_mem[MAX_NODES];
260 uint64_t node_cpumask[MAX_NODES];
262 static CPUState *cur_cpu;
263 static CPUState *next_cpu;
264 static int timer_alarm_pending = 1;
265 /* Conversion factor from emulated instructions to virtual clock ticks. */
266 static int icount_time_shift;
267 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
268 #define MAX_ICOUNT_SHIFT 10
269 /* Compensate for varying guest execution speed. */
270 static int64_t qemu_icount_bias;
271 static QEMUTimer *icount_rt_timer;
272 static QEMUTimer *icount_vm_timer;
273 static QEMUTimer *nographic_timer;
275 uint8_t qemu_uuid[16];
277 static QEMUBootSetHandler *boot_set_handler;
278 static void *boot_set_opaque;
280 /***********************************************************/
281 /* x86 ISA bus support */
283 target_phys_addr_t isa_mem_base = 0;
284 PicState2 *isa_pic;
286 /***********************************************************/
287 void hw_error(const char *fmt, ...)
289 va_list ap;
290 CPUState *env;
292 va_start(ap, fmt);
293 fprintf(stderr, "qemu: hardware error: ");
294 vfprintf(stderr, fmt, ap);
295 fprintf(stderr, "\n");
296 for(env = first_cpu; env != NULL; env = env->next_cpu) {
297 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
298 #ifdef TARGET_I386
299 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
300 #else
301 cpu_dump_state(env, stderr, fprintf, 0);
302 #endif
304 va_end(ap);
305 abort();
308 static void set_proc_name(const char *s)
310 #ifdef __linux__
311 char name[16];
312 if (!s)
313 return;
314 name[sizeof(name) - 1] = 0;
315 strncpy(name, s, sizeof(name));
316 /* Could rewrite argv[0] too, but that's a bit more complicated.
317 This simple way is enough for `top'. */
318 prctl(PR_SET_NAME, name);
319 #endif
322 /***************/
323 /* ballooning */
325 static QEMUBalloonEvent *qemu_balloon_event;
326 void *qemu_balloon_event_opaque;
328 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
330 qemu_balloon_event = func;
331 qemu_balloon_event_opaque = opaque;
334 void qemu_balloon(ram_addr_t target)
336 if (qemu_balloon_event)
337 qemu_balloon_event(qemu_balloon_event_opaque, target);
340 ram_addr_t qemu_balloon_status(void)
342 if (qemu_balloon_event)
343 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
344 return 0;
347 /***********************************************************/
348 /* keyboard/mouse */
350 static QEMUPutKBDEvent *qemu_put_kbd_event;
351 static void *qemu_put_kbd_event_opaque;
352 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
353 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
355 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
357 qemu_put_kbd_event_opaque = opaque;
358 qemu_put_kbd_event = func;
361 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
362 void *opaque, int absolute,
363 const char *name)
365 QEMUPutMouseEntry *s, *cursor;
367 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
369 s->qemu_put_mouse_event = func;
370 s->qemu_put_mouse_event_opaque = opaque;
371 s->qemu_put_mouse_event_absolute = absolute;
372 s->qemu_put_mouse_event_name = qemu_strdup(name);
373 s->next = NULL;
375 if (!qemu_put_mouse_event_head) {
376 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
377 return s;
380 cursor = qemu_put_mouse_event_head;
381 while (cursor->next != NULL)
382 cursor = cursor->next;
384 cursor->next = s;
385 qemu_put_mouse_event_current = s;
387 return s;
390 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
392 QEMUPutMouseEntry *prev = NULL, *cursor;
394 if (!qemu_put_mouse_event_head || entry == NULL)
395 return;
397 cursor = qemu_put_mouse_event_head;
398 while (cursor != NULL && cursor != entry) {
399 prev = cursor;
400 cursor = cursor->next;
403 if (cursor == NULL) // does not exist or list empty
404 return;
405 else if (prev == NULL) { // entry is head
406 qemu_put_mouse_event_head = cursor->next;
407 if (qemu_put_mouse_event_current == entry)
408 qemu_put_mouse_event_current = cursor->next;
409 qemu_free(entry->qemu_put_mouse_event_name);
410 qemu_free(entry);
411 return;
414 prev->next = entry->next;
416 if (qemu_put_mouse_event_current == entry)
417 qemu_put_mouse_event_current = prev;
419 qemu_free(entry->qemu_put_mouse_event_name);
420 qemu_free(entry);
423 void kbd_put_keycode(int keycode)
425 if (qemu_put_kbd_event) {
426 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
430 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
432 QEMUPutMouseEvent *mouse_event;
433 void *mouse_event_opaque;
434 int width;
436 if (!qemu_put_mouse_event_current) {
437 return;
440 mouse_event =
441 qemu_put_mouse_event_current->qemu_put_mouse_event;
442 mouse_event_opaque =
443 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
445 if (mouse_event) {
446 if (graphic_rotate) {
447 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
448 width = 0x7fff;
449 else
450 width = graphic_width - 1;
451 mouse_event(mouse_event_opaque,
452 width - dy, dx, dz, buttons_state);
453 } else
454 mouse_event(mouse_event_opaque,
455 dx, dy, dz, buttons_state);
459 int kbd_mouse_is_absolute(void)
461 if (!qemu_put_mouse_event_current)
462 return 0;
464 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
467 void do_info_mice(Monitor *mon)
469 QEMUPutMouseEntry *cursor;
470 int index = 0;
472 if (!qemu_put_mouse_event_head) {
473 monitor_printf(mon, "No mouse devices connected\n");
474 return;
477 monitor_printf(mon, "Mouse devices available:\n");
478 cursor = qemu_put_mouse_event_head;
479 while (cursor != NULL) {
480 monitor_printf(mon, "%c Mouse #%d: %s\n",
481 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
482 index, cursor->qemu_put_mouse_event_name);
483 index++;
484 cursor = cursor->next;
488 void do_mouse_set(Monitor *mon, int index)
490 QEMUPutMouseEntry *cursor;
491 int i = 0;
493 if (!qemu_put_mouse_event_head) {
494 monitor_printf(mon, "No mouse devices connected\n");
495 return;
498 cursor = qemu_put_mouse_event_head;
499 while (cursor != NULL && index != i) {
500 i++;
501 cursor = cursor->next;
504 if (cursor != NULL)
505 qemu_put_mouse_event_current = cursor;
506 else
507 monitor_printf(mon, "Mouse at given index not found\n");
510 /* compute with 96 bit intermediate result: (a*b)/c */
511 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
513 union {
514 uint64_t ll;
515 struct {
516 #ifdef WORDS_BIGENDIAN
517 uint32_t high, low;
518 #else
519 uint32_t low, high;
520 #endif
521 } l;
522 } u, res;
523 uint64_t rl, rh;
525 u.ll = a;
526 rl = (uint64_t)u.l.low * (uint64_t)b;
527 rh = (uint64_t)u.l.high * (uint64_t)b;
528 rh += (rl >> 32);
529 res.l.high = rh / c;
530 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
531 return res.ll;
534 /***********************************************************/
535 /* real time host monotonic timer */
537 #define QEMU_TIMER_BASE 1000000000LL
539 #ifdef WIN32
541 static int64_t clock_freq;
543 static void init_get_clock(void)
545 LARGE_INTEGER freq;
546 int ret;
547 ret = QueryPerformanceFrequency(&freq);
548 if (ret == 0) {
549 fprintf(stderr, "Could not calibrate ticks\n");
550 exit(1);
552 clock_freq = freq.QuadPart;
555 static int64_t get_clock(void)
557 LARGE_INTEGER ti;
558 QueryPerformanceCounter(&ti);
559 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
562 #else
564 static int use_rt_clock;
566 static void init_get_clock(void)
568 use_rt_clock = 0;
569 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
570 || defined(__DragonFly__)
572 struct timespec ts;
573 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
574 use_rt_clock = 1;
577 #endif
580 static int64_t get_clock(void)
582 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
583 || defined(__DragonFly__)
584 if (use_rt_clock) {
585 struct timespec ts;
586 clock_gettime(CLOCK_MONOTONIC, &ts);
587 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
588 } else
589 #endif
591 /* XXX: using gettimeofday leads to problems if the date
592 changes, so it should be avoided. */
593 struct timeval tv;
594 gettimeofday(&tv, NULL);
595 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
598 #endif
600 /* Return the virtual CPU time, based on the instruction counter. */
601 static int64_t cpu_get_icount(void)
603 int64_t icount;
604 CPUState *env = cpu_single_env;;
605 icount = qemu_icount;
606 if (env) {
607 if (!can_do_io(env))
608 fprintf(stderr, "Bad clock read\n");
609 icount -= (env->icount_decr.u16.low + env->icount_extra);
611 return qemu_icount_bias + (icount << icount_time_shift);
614 /***********************************************************/
615 /* guest cycle counter */
617 static int64_t cpu_ticks_prev;
618 static int64_t cpu_ticks_offset;
619 static int64_t cpu_clock_offset;
620 static int cpu_ticks_enabled;
622 /* return the host CPU cycle counter and handle stop/restart */
623 int64_t cpu_get_ticks(void)
625 if (use_icount) {
626 return cpu_get_icount();
628 if (!cpu_ticks_enabled) {
629 return cpu_ticks_offset;
630 } else {
631 int64_t ticks;
632 ticks = cpu_get_real_ticks();
633 if (cpu_ticks_prev > ticks) {
634 /* Note: non increasing ticks may happen if the host uses
635 software suspend */
636 cpu_ticks_offset += cpu_ticks_prev - ticks;
638 cpu_ticks_prev = ticks;
639 return ticks + cpu_ticks_offset;
643 /* return the host CPU monotonic timer and handle stop/restart */
644 static int64_t cpu_get_clock(void)
646 int64_t ti;
647 if (!cpu_ticks_enabled) {
648 return cpu_clock_offset;
649 } else {
650 ti = get_clock();
651 return ti + cpu_clock_offset;
655 /* enable cpu_get_ticks() */
656 void cpu_enable_ticks(void)
658 if (!cpu_ticks_enabled) {
659 cpu_ticks_offset -= cpu_get_real_ticks();
660 cpu_clock_offset -= get_clock();
661 cpu_ticks_enabled = 1;
665 /* disable cpu_get_ticks() : the clock is stopped. You must not call
666 cpu_get_ticks() after that. */
667 void cpu_disable_ticks(void)
669 if (cpu_ticks_enabled) {
670 cpu_ticks_offset = cpu_get_ticks();
671 cpu_clock_offset = cpu_get_clock();
672 cpu_ticks_enabled = 0;
676 /***********************************************************/
677 /* timers */
679 #define QEMU_TIMER_REALTIME 0
680 #define QEMU_TIMER_VIRTUAL 1
682 struct QEMUClock {
683 int type;
684 /* XXX: add frequency */
687 struct QEMUTimer {
688 QEMUClock *clock;
689 int64_t expire_time;
690 QEMUTimerCB *cb;
691 void *opaque;
692 struct QEMUTimer *next;
695 struct qemu_alarm_timer {
696 char const *name;
697 unsigned int flags;
699 int (*start)(struct qemu_alarm_timer *t);
700 void (*stop)(struct qemu_alarm_timer *t);
701 void (*rearm)(struct qemu_alarm_timer *t);
702 void *priv;
705 #define ALARM_FLAG_DYNTICKS 0x1
706 #define ALARM_FLAG_EXPIRED 0x2
708 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
710 return t && (t->flags & ALARM_FLAG_DYNTICKS);
713 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
715 if (!alarm_has_dynticks(t))
716 return;
718 t->rearm(t);
721 /* TODO: MIN_TIMER_REARM_US should be optimized */
722 #define MIN_TIMER_REARM_US 250
724 static struct qemu_alarm_timer *alarm_timer;
726 #ifdef _WIN32
728 struct qemu_alarm_win32 {
729 MMRESULT timerId;
730 unsigned int period;
731 } alarm_win32_data = {0, -1};
733 static int win32_start_timer(struct qemu_alarm_timer *t);
734 static void win32_stop_timer(struct qemu_alarm_timer *t);
735 static void win32_rearm_timer(struct qemu_alarm_timer *t);
737 #else
739 static int unix_start_timer(struct qemu_alarm_timer *t);
740 static void unix_stop_timer(struct qemu_alarm_timer *t);
742 #ifdef __linux__
744 static int dynticks_start_timer(struct qemu_alarm_timer *t);
745 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
746 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
748 static int hpet_start_timer(struct qemu_alarm_timer *t);
749 static void hpet_stop_timer(struct qemu_alarm_timer *t);
751 static int rtc_start_timer(struct qemu_alarm_timer *t);
752 static void rtc_stop_timer(struct qemu_alarm_timer *t);
754 #endif /* __linux__ */
756 #endif /* _WIN32 */
758 /* Correlation between real and virtual time is always going to be
759 fairly approximate, so ignore small variation.
760 When the guest is idle real and virtual time will be aligned in
761 the IO wait loop. */
762 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
764 static void icount_adjust(void)
766 int64_t cur_time;
767 int64_t cur_icount;
768 int64_t delta;
769 static int64_t last_delta;
770 /* If the VM is not running, then do nothing. */
771 if (!vm_running)
772 return;
774 cur_time = cpu_get_clock();
775 cur_icount = qemu_get_clock(vm_clock);
776 delta = cur_icount - cur_time;
777 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
778 if (delta > 0
779 && last_delta + ICOUNT_WOBBLE < delta * 2
780 && icount_time_shift > 0) {
781 /* The guest is getting too far ahead. Slow time down. */
782 icount_time_shift--;
784 if (delta < 0
785 && last_delta - ICOUNT_WOBBLE > delta * 2
786 && icount_time_shift < MAX_ICOUNT_SHIFT) {
787 /* The guest is getting too far behind. Speed time up. */
788 icount_time_shift++;
790 last_delta = delta;
791 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
794 static void icount_adjust_rt(void * opaque)
796 qemu_mod_timer(icount_rt_timer,
797 qemu_get_clock(rt_clock) + 1000);
798 icount_adjust();
801 static void icount_adjust_vm(void * opaque)
803 qemu_mod_timer(icount_vm_timer,
804 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
805 icount_adjust();
808 static void init_icount_adjust(void)
810 /* Have both realtime and virtual time triggers for speed adjustment.
811 The realtime trigger catches emulated time passing too slowly,
812 the virtual time trigger catches emulated time passing too fast.
813 Realtime triggers occur even when idle, so use them less frequently
814 than VM triggers. */
815 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
816 qemu_mod_timer(icount_rt_timer,
817 qemu_get_clock(rt_clock) + 1000);
818 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
819 qemu_mod_timer(icount_vm_timer,
820 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
823 static struct qemu_alarm_timer alarm_timers[] = {
824 #ifndef _WIN32
825 #ifdef __linux__
826 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
827 dynticks_stop_timer, dynticks_rearm_timer, NULL},
828 /* HPET - if available - is preferred */
829 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
830 /* ...otherwise try RTC */
831 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
832 #endif
833 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
834 #else
835 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
836 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
837 {"win32", 0, win32_start_timer,
838 win32_stop_timer, NULL, &alarm_win32_data},
839 #endif
840 {NULL, }
843 static void show_available_alarms(void)
845 int i;
847 printf("Available alarm timers, in order of precedence:\n");
848 for (i = 0; alarm_timers[i].name; i++)
849 printf("%s\n", alarm_timers[i].name);
852 static void configure_alarms(char const *opt)
854 int i;
855 int cur = 0;
856 int count = ARRAY_SIZE(alarm_timers) - 1;
857 char *arg;
858 char *name;
859 struct qemu_alarm_timer tmp;
861 if (!strcmp(opt, "?")) {
862 show_available_alarms();
863 exit(0);
866 arg = strdup(opt);
868 /* Reorder the array */
869 name = strtok(arg, ",");
870 while (name) {
871 for (i = 0; i < count && alarm_timers[i].name; i++) {
872 if (!strcmp(alarm_timers[i].name, name))
873 break;
876 if (i == count) {
877 fprintf(stderr, "Unknown clock %s\n", name);
878 goto next;
881 if (i < cur)
882 /* Ignore */
883 goto next;
885 /* Swap */
886 tmp = alarm_timers[i];
887 alarm_timers[i] = alarm_timers[cur];
888 alarm_timers[cur] = tmp;
890 cur++;
891 next:
892 name = strtok(NULL, ",");
895 free(arg);
897 if (cur) {
898 /* Disable remaining timers */
899 for (i = cur; i < count; i++)
900 alarm_timers[i].name = NULL;
901 } else {
902 show_available_alarms();
903 exit(1);
907 QEMUClock *rt_clock;
908 QEMUClock *vm_clock;
910 static QEMUTimer *active_timers[2];
912 static QEMUClock *qemu_new_clock(int type)
914 QEMUClock *clock;
915 clock = qemu_mallocz(sizeof(QEMUClock));
916 clock->type = type;
917 return clock;
920 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
922 QEMUTimer *ts;
924 ts = qemu_mallocz(sizeof(QEMUTimer));
925 ts->clock = clock;
926 ts->cb = cb;
927 ts->opaque = opaque;
928 return ts;
931 void qemu_free_timer(QEMUTimer *ts)
933 qemu_free(ts);
936 /* stop a timer, but do not dealloc it */
937 void qemu_del_timer(QEMUTimer *ts)
939 QEMUTimer **pt, *t;
941 /* NOTE: this code must be signal safe because
942 qemu_timer_expired() can be called from a signal. */
943 pt = &active_timers[ts->clock->type];
944 for(;;) {
945 t = *pt;
946 if (!t)
947 break;
948 if (t == ts) {
949 *pt = t->next;
950 break;
952 pt = &t->next;
956 /* modify the current timer so that it will be fired when current_time
957 >= expire_time. The corresponding callback will be called. */
958 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
960 QEMUTimer **pt, *t;
962 qemu_del_timer(ts);
964 /* add the timer in the sorted list */
965 /* NOTE: this code must be signal safe because
966 qemu_timer_expired() can be called from a signal. */
967 pt = &active_timers[ts->clock->type];
968 for(;;) {
969 t = *pt;
970 if (!t)
971 break;
972 if (t->expire_time > expire_time)
973 break;
974 pt = &t->next;
976 ts->expire_time = expire_time;
977 ts->next = *pt;
978 *pt = ts;
980 /* Rearm if necessary */
981 if (pt == &active_timers[ts->clock->type]) {
982 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
983 qemu_rearm_alarm_timer(alarm_timer);
985 /* Interrupt execution to force deadline recalculation. */
986 if (use_icount)
987 qemu_notify_event();
991 int qemu_timer_pending(QEMUTimer *ts)
993 QEMUTimer *t;
994 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
995 if (t == ts)
996 return 1;
998 return 0;
1001 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1003 if (!timer_head)
1004 return 0;
1005 return (timer_head->expire_time <= current_time);
1008 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1010 QEMUTimer *ts;
1012 for(;;) {
1013 ts = *ptimer_head;
1014 if (!ts || ts->expire_time > current_time)
1015 break;
1016 /* remove timer from the list before calling the callback */
1017 *ptimer_head = ts->next;
1018 ts->next = NULL;
1020 /* run the callback (the timer list can be modified) */
1021 ts->cb(ts->opaque);
1025 int64_t qemu_get_clock(QEMUClock *clock)
1027 switch(clock->type) {
1028 case QEMU_TIMER_REALTIME:
1029 return get_clock() / 1000000;
1030 default:
1031 case QEMU_TIMER_VIRTUAL:
1032 if (use_icount) {
1033 return cpu_get_icount();
1034 } else {
1035 return cpu_get_clock();
1040 static void init_timers(void)
1042 init_get_clock();
1043 ticks_per_sec = QEMU_TIMER_BASE;
1044 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1045 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1048 /* save a timer */
1049 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1051 uint64_t expire_time;
1053 if (qemu_timer_pending(ts)) {
1054 expire_time = ts->expire_time;
1055 } else {
1056 expire_time = -1;
1058 qemu_put_be64(f, expire_time);
1061 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1063 uint64_t expire_time;
1065 expire_time = qemu_get_be64(f);
1066 if (expire_time != -1) {
1067 qemu_mod_timer(ts, expire_time);
1068 } else {
1069 qemu_del_timer(ts);
1073 static void timer_save(QEMUFile *f, void *opaque)
1075 if (cpu_ticks_enabled) {
1076 hw_error("cannot save state if virtual timers are running");
1078 qemu_put_be64(f, cpu_ticks_offset);
1079 qemu_put_be64(f, ticks_per_sec);
1080 qemu_put_be64(f, cpu_clock_offset);
1083 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1085 if (version_id != 1 && version_id != 2)
1086 return -EINVAL;
1087 if (cpu_ticks_enabled) {
1088 return -EINVAL;
1090 cpu_ticks_offset=qemu_get_be64(f);
1091 ticks_per_sec=qemu_get_be64(f);
1092 if (version_id == 2) {
1093 cpu_clock_offset=qemu_get_be64(f);
1095 return 0;
1098 static void qemu_event_increment(void);
1100 #ifdef _WIN32
1101 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1102 DWORD_PTR dwUser, DWORD_PTR dw1,
1103 DWORD_PTR dw2)
1104 #else
1105 static void host_alarm_handler(int host_signum)
1106 #endif
1108 #if 0
1109 #define DISP_FREQ 1000
1111 static int64_t delta_min = INT64_MAX;
1112 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1113 static int count;
1114 ti = qemu_get_clock(vm_clock);
1115 if (last_clock != 0) {
1116 delta = ti - last_clock;
1117 if (delta < delta_min)
1118 delta_min = delta;
1119 if (delta > delta_max)
1120 delta_max = delta;
1121 delta_cum += delta;
1122 if (++count == DISP_FREQ) {
1123 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1124 muldiv64(delta_min, 1000000, ticks_per_sec),
1125 muldiv64(delta_max, 1000000, ticks_per_sec),
1126 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1127 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1128 count = 0;
1129 delta_min = INT64_MAX;
1130 delta_max = 0;
1131 delta_cum = 0;
1134 last_clock = ti;
1136 #endif
1137 if (alarm_has_dynticks(alarm_timer) ||
1138 (!use_icount &&
1139 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1140 qemu_get_clock(vm_clock))) ||
1141 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1142 qemu_get_clock(rt_clock))) {
1143 qemu_event_increment();
1144 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1146 #ifndef CONFIG_IOTHREAD
1147 if (next_cpu) {
1148 /* stop the currently executing cpu because a timer occured */
1149 cpu_exit(next_cpu);
1150 #ifdef CONFIG_KQEMU
1151 if (next_cpu->kqemu_enabled) {
1152 kqemu_cpu_interrupt(next_cpu);
1154 #endif
1156 #endif
1157 timer_alarm_pending = 1;
1158 qemu_notify_event();
1162 static int64_t qemu_next_deadline(void)
1164 int64_t delta;
1166 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1167 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1168 qemu_get_clock(vm_clock);
1169 } else {
1170 /* To avoid problems with overflow limit this to 2^32. */
1171 delta = INT32_MAX;
1174 if (delta < 0)
1175 delta = 0;
1177 return delta;
1180 #if defined(__linux__) || defined(_WIN32)
1181 static uint64_t qemu_next_deadline_dyntick(void)
1183 int64_t delta;
1184 int64_t rtdelta;
1186 if (use_icount)
1187 delta = INT32_MAX;
1188 else
1189 delta = (qemu_next_deadline() + 999) / 1000;
1191 if (active_timers[QEMU_TIMER_REALTIME]) {
1192 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1193 qemu_get_clock(rt_clock))*1000;
1194 if (rtdelta < delta)
1195 delta = rtdelta;
1198 if (delta < MIN_TIMER_REARM_US)
1199 delta = MIN_TIMER_REARM_US;
1201 return delta;
1203 #endif
1205 #ifndef _WIN32
1207 /* Sets a specific flag */
1208 static int fcntl_setfl(int fd, int flag)
1210 int flags;
1212 flags = fcntl(fd, F_GETFL);
1213 if (flags == -1)
1214 return -errno;
1216 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1217 return -errno;
1219 return 0;
1222 #if defined(__linux__)
1224 #define RTC_FREQ 1024
1226 static void enable_sigio_timer(int fd)
1228 struct sigaction act;
1230 /* timer signal */
1231 sigfillset(&act.sa_mask);
1232 act.sa_flags = 0;
1233 act.sa_handler = host_alarm_handler;
1235 sigaction(SIGIO, &act, NULL);
1236 fcntl_setfl(fd, O_ASYNC);
1237 fcntl(fd, F_SETOWN, getpid());
1240 static int hpet_start_timer(struct qemu_alarm_timer *t)
1242 struct hpet_info info;
1243 int r, fd;
1245 fd = open("/dev/hpet", O_RDONLY);
1246 if (fd < 0)
1247 return -1;
1249 /* Set frequency */
1250 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1251 if (r < 0) {
1252 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1253 "error, but for better emulation accuracy type:\n"
1254 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1255 goto fail;
1258 /* Check capabilities */
1259 r = ioctl(fd, HPET_INFO, &info);
1260 if (r < 0)
1261 goto fail;
1263 /* Enable periodic mode */
1264 r = ioctl(fd, HPET_EPI, 0);
1265 if (info.hi_flags && (r < 0))
1266 goto fail;
1268 /* Enable interrupt */
1269 r = ioctl(fd, HPET_IE_ON, 0);
1270 if (r < 0)
1271 goto fail;
1273 enable_sigio_timer(fd);
1274 t->priv = (void *)(long)fd;
1276 return 0;
1277 fail:
1278 close(fd);
1279 return -1;
1282 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1284 int fd = (long)t->priv;
1286 close(fd);
1289 static int rtc_start_timer(struct qemu_alarm_timer *t)
1291 int rtc_fd;
1292 unsigned long current_rtc_freq = 0;
1294 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1295 if (rtc_fd < 0)
1296 return -1;
1297 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1298 if (current_rtc_freq != RTC_FREQ &&
1299 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1300 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1301 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1302 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1303 goto fail;
1305 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1306 fail:
1307 close(rtc_fd);
1308 return -1;
1311 enable_sigio_timer(rtc_fd);
1313 t->priv = (void *)(long)rtc_fd;
1315 return 0;
1318 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1320 int rtc_fd = (long)t->priv;
1322 close(rtc_fd);
1325 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1327 struct sigevent ev;
1328 timer_t host_timer;
1329 struct sigaction act;
1331 sigfillset(&act.sa_mask);
1332 act.sa_flags = 0;
1333 act.sa_handler = host_alarm_handler;
1335 sigaction(SIGALRM, &act, NULL);
1338 * Initialize ev struct to 0 to avoid valgrind complaining
1339 * about uninitialized data in timer_create call
1341 memset(&ev, 0, sizeof(ev));
1342 ev.sigev_value.sival_int = 0;
1343 ev.sigev_notify = SIGEV_SIGNAL;
1344 ev.sigev_signo = SIGALRM;
1346 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1347 perror("timer_create");
1349 /* disable dynticks */
1350 fprintf(stderr, "Dynamic Ticks disabled\n");
1352 return -1;
1355 t->priv = (void *)(long)host_timer;
1357 return 0;
1360 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1362 timer_t host_timer = (timer_t)(long)t->priv;
1364 timer_delete(host_timer);
1367 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1369 timer_t host_timer = (timer_t)(long)t->priv;
1370 struct itimerspec timeout;
1371 int64_t nearest_delta_us = INT64_MAX;
1372 int64_t current_us;
1374 if (!active_timers[QEMU_TIMER_REALTIME] &&
1375 !active_timers[QEMU_TIMER_VIRTUAL])
1376 return;
1378 nearest_delta_us = qemu_next_deadline_dyntick();
1380 /* check whether a timer is already running */
1381 if (timer_gettime(host_timer, &timeout)) {
1382 perror("gettime");
1383 fprintf(stderr, "Internal timer error: aborting\n");
1384 exit(1);
1386 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1387 if (current_us && current_us <= nearest_delta_us)
1388 return;
1390 timeout.it_interval.tv_sec = 0;
1391 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1392 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1393 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1394 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1395 perror("settime");
1396 fprintf(stderr, "Internal timer error: aborting\n");
1397 exit(1);
1401 #endif /* defined(__linux__) */
1403 static int unix_start_timer(struct qemu_alarm_timer *t)
1405 struct sigaction act;
1406 struct itimerval itv;
1407 int err;
1409 /* timer signal */
1410 sigfillset(&act.sa_mask);
1411 act.sa_flags = 0;
1412 act.sa_handler = host_alarm_handler;
1414 sigaction(SIGALRM, &act, NULL);
1416 itv.it_interval.tv_sec = 0;
1417 /* for i386 kernel 2.6 to get 1 ms */
1418 itv.it_interval.tv_usec = 999;
1419 itv.it_value.tv_sec = 0;
1420 itv.it_value.tv_usec = 10 * 1000;
1422 err = setitimer(ITIMER_REAL, &itv, NULL);
1423 if (err)
1424 return -1;
1426 return 0;
1429 static void unix_stop_timer(struct qemu_alarm_timer *t)
1431 struct itimerval itv;
1433 memset(&itv, 0, sizeof(itv));
1434 setitimer(ITIMER_REAL, &itv, NULL);
1437 #endif /* !defined(_WIN32) */
1440 #ifdef _WIN32
1442 static int win32_start_timer(struct qemu_alarm_timer *t)
1444 TIMECAPS tc;
1445 struct qemu_alarm_win32 *data = t->priv;
1446 UINT flags;
1448 memset(&tc, 0, sizeof(tc));
1449 timeGetDevCaps(&tc, sizeof(tc));
1451 if (data->period < tc.wPeriodMin)
1452 data->period = tc.wPeriodMin;
1454 timeBeginPeriod(data->period);
1456 flags = TIME_CALLBACK_FUNCTION;
1457 if (alarm_has_dynticks(t))
1458 flags |= TIME_ONESHOT;
1459 else
1460 flags |= TIME_PERIODIC;
1462 data->timerId = timeSetEvent(1, // interval (ms)
1463 data->period, // resolution
1464 host_alarm_handler, // function
1465 (DWORD)t, // parameter
1466 flags);
1468 if (!data->timerId) {
1469 perror("Failed to initialize win32 alarm timer");
1470 timeEndPeriod(data->period);
1471 return -1;
1474 return 0;
1477 static void win32_stop_timer(struct qemu_alarm_timer *t)
1479 struct qemu_alarm_win32 *data = t->priv;
1481 timeKillEvent(data->timerId);
1482 timeEndPeriod(data->period);
1485 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1487 struct qemu_alarm_win32 *data = t->priv;
1488 uint64_t nearest_delta_us;
1490 if (!active_timers[QEMU_TIMER_REALTIME] &&
1491 !active_timers[QEMU_TIMER_VIRTUAL])
1492 return;
1494 nearest_delta_us = qemu_next_deadline_dyntick();
1495 nearest_delta_us /= 1000;
1497 timeKillEvent(data->timerId);
1499 data->timerId = timeSetEvent(1,
1500 data->period,
1501 host_alarm_handler,
1502 (DWORD)t,
1503 TIME_ONESHOT | TIME_PERIODIC);
1505 if (!data->timerId) {
1506 perror("Failed to re-arm win32 alarm timer");
1508 timeEndPeriod(data->period);
1509 exit(1);
1513 #endif /* _WIN32 */
1515 static int init_timer_alarm(void)
1517 struct qemu_alarm_timer *t = NULL;
1518 int i, err = -1;
1520 for (i = 0; alarm_timers[i].name; i++) {
1521 t = &alarm_timers[i];
1523 err = t->start(t);
1524 if (!err)
1525 break;
1528 if (err) {
1529 err = -ENOENT;
1530 goto fail;
1533 alarm_timer = t;
1535 return 0;
1537 fail:
1538 return err;
1541 static void quit_timers(void)
1543 alarm_timer->stop(alarm_timer);
1544 alarm_timer = NULL;
1547 /***********************************************************/
1548 /* host time/date access */
1549 void qemu_get_timedate(struct tm *tm, int offset)
1551 time_t ti;
1552 struct tm *ret;
1554 time(&ti);
1555 ti += offset;
1556 if (rtc_date_offset == -1) {
1557 if (rtc_utc)
1558 ret = gmtime(&ti);
1559 else
1560 ret = localtime(&ti);
1561 } else {
1562 ti -= rtc_date_offset;
1563 ret = gmtime(&ti);
1566 memcpy(tm, ret, sizeof(struct tm));
1569 int qemu_timedate_diff(struct tm *tm)
1571 time_t seconds;
1573 if (rtc_date_offset == -1)
1574 if (rtc_utc)
1575 seconds = mktimegm(tm);
1576 else
1577 seconds = mktime(tm);
1578 else
1579 seconds = mktimegm(tm) + rtc_date_offset;
1581 return seconds - time(NULL);
1584 #ifdef _WIN32
1585 static void socket_cleanup(void)
1587 WSACleanup();
1590 static int socket_init(void)
1592 WSADATA Data;
1593 int ret, err;
1595 ret = WSAStartup(MAKEWORD(2,2), &Data);
1596 if (ret != 0) {
1597 err = WSAGetLastError();
1598 fprintf(stderr, "WSAStartup: %d\n", err);
1599 return -1;
1601 atexit(socket_cleanup);
1602 return 0;
1604 #endif
1606 int get_next_param_value(char *buf, int buf_size,
1607 const char *tag, const char **pstr)
1609 const char *p;
1610 char option[128];
1612 p = *pstr;
1613 for(;;) {
1614 p = get_opt_name(option, sizeof(option), p, '=');
1615 if (*p != '=')
1616 break;
1617 p++;
1618 if (!strcmp(tag, option)) {
1619 *pstr = get_opt_value(buf, buf_size, p);
1620 if (**pstr == ',') {
1621 (*pstr)++;
1623 return strlen(buf);
1624 } else {
1625 p = get_opt_value(NULL, 0, p);
1627 if (*p != ',')
1628 break;
1629 p++;
1631 return 0;
1634 int get_param_value(char *buf, int buf_size,
1635 const char *tag, const char *str)
1637 return get_next_param_value(buf, buf_size, tag, &str);
1640 int check_params(char *buf, int buf_size,
1641 const char * const *params, const char *str)
1643 const char *p;
1644 int i;
1646 p = str;
1647 while (*p != '\0') {
1648 p = get_opt_name(buf, buf_size, p, '=');
1649 if (*p != '=') {
1650 return -1;
1652 p++;
1653 for (i = 0; params[i] != NULL; i++) {
1654 if (!strcmp(params[i], buf)) {
1655 break;
1658 if (params[i] == NULL) {
1659 return -1;
1661 p = get_opt_value(NULL, 0, p);
1662 if (*p != ',') {
1663 break;
1665 p++;
1667 return 0;
1670 /***********************************************************/
1671 /* Bluetooth support */
1672 static int nb_hcis;
1673 static int cur_hci;
1674 static struct HCIInfo *hci_table[MAX_NICS];
1676 static struct bt_vlan_s {
1677 struct bt_scatternet_s net;
1678 int id;
1679 struct bt_vlan_s *next;
1680 } *first_bt_vlan;
1682 /* find or alloc a new bluetooth "VLAN" */
1683 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1685 struct bt_vlan_s **pvlan, *vlan;
1686 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1687 if (vlan->id == id)
1688 return &vlan->net;
1690 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1691 vlan->id = id;
1692 pvlan = &first_bt_vlan;
1693 while (*pvlan != NULL)
1694 pvlan = &(*pvlan)->next;
1695 *pvlan = vlan;
1696 return &vlan->net;
1699 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1703 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1705 return -ENOTSUP;
1708 static struct HCIInfo null_hci = {
1709 .cmd_send = null_hci_send,
1710 .sco_send = null_hci_send,
1711 .acl_send = null_hci_send,
1712 .bdaddr_set = null_hci_addr_set,
1715 struct HCIInfo *qemu_next_hci(void)
1717 if (cur_hci == nb_hcis)
1718 return &null_hci;
1720 return hci_table[cur_hci++];
1723 static struct HCIInfo *hci_init(const char *str)
1725 char *endp;
1726 struct bt_scatternet_s *vlan = 0;
1728 if (!strcmp(str, "null"))
1729 /* null */
1730 return &null_hci;
1731 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1732 /* host[:hciN] */
1733 return bt_host_hci(str[4] ? str + 5 : "hci0");
1734 else if (!strncmp(str, "hci", 3)) {
1735 /* hci[,vlan=n] */
1736 if (str[3]) {
1737 if (!strncmp(str + 3, ",vlan=", 6)) {
1738 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1739 if (*endp)
1740 vlan = 0;
1742 } else
1743 vlan = qemu_find_bt_vlan(0);
1744 if (vlan)
1745 return bt_new_hci(vlan);
1748 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1750 return 0;
1753 static int bt_hci_parse(const char *str)
1755 struct HCIInfo *hci;
1756 bdaddr_t bdaddr;
1758 if (nb_hcis >= MAX_NICS) {
1759 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1760 return -1;
1763 hci = hci_init(str);
1764 if (!hci)
1765 return -1;
1767 bdaddr.b[0] = 0x52;
1768 bdaddr.b[1] = 0x54;
1769 bdaddr.b[2] = 0x00;
1770 bdaddr.b[3] = 0x12;
1771 bdaddr.b[4] = 0x34;
1772 bdaddr.b[5] = 0x56 + nb_hcis;
1773 hci->bdaddr_set(hci, bdaddr.b);
1775 hci_table[nb_hcis++] = hci;
1777 return 0;
1780 static void bt_vhci_add(int vlan_id)
1782 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1784 if (!vlan->slave)
1785 fprintf(stderr, "qemu: warning: adding a VHCI to "
1786 "an empty scatternet %i\n", vlan_id);
1788 bt_vhci_init(bt_new_hci(vlan));
1791 static struct bt_device_s *bt_device_add(const char *opt)
1793 struct bt_scatternet_s *vlan;
1794 int vlan_id = 0;
1795 char *endp = strstr(opt, ",vlan=");
1796 int len = (endp ? endp - opt : strlen(opt)) + 1;
1797 char devname[10];
1799 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1801 if (endp) {
1802 vlan_id = strtol(endp + 6, &endp, 0);
1803 if (*endp) {
1804 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1805 return 0;
1809 vlan = qemu_find_bt_vlan(vlan_id);
1811 if (!vlan->slave)
1812 fprintf(stderr, "qemu: warning: adding a slave device to "
1813 "an empty scatternet %i\n", vlan_id);
1815 if (!strcmp(devname, "keyboard"))
1816 return bt_keyboard_init(vlan);
1818 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1819 return 0;
1822 static int bt_parse(const char *opt)
1824 const char *endp, *p;
1825 int vlan;
1827 if (strstart(opt, "hci", &endp)) {
1828 if (!*endp || *endp == ',') {
1829 if (*endp)
1830 if (!strstart(endp, ",vlan=", 0))
1831 opt = endp + 1;
1833 return bt_hci_parse(opt);
1835 } else if (strstart(opt, "vhci", &endp)) {
1836 if (!*endp || *endp == ',') {
1837 if (*endp) {
1838 if (strstart(endp, ",vlan=", &p)) {
1839 vlan = strtol(p, (char **) &endp, 0);
1840 if (*endp) {
1841 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1842 return 1;
1844 } else {
1845 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1846 return 1;
1848 } else
1849 vlan = 0;
1851 bt_vhci_add(vlan);
1852 return 0;
1854 } else if (strstart(opt, "device:", &endp))
1855 return !bt_device_add(endp);
1857 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1858 return 1;
1861 /***********************************************************/
1862 /* QEMU Block devices */
1864 #define HD_ALIAS "index=%d,media=disk"
1865 #define CDROM_ALIAS "index=2,media=cdrom"
1866 #define FD_ALIAS "index=%d,if=floppy"
1867 #define PFLASH_ALIAS "if=pflash"
1868 #define MTD_ALIAS "if=mtd"
1869 #define SD_ALIAS "index=0,if=sd"
1871 static int drive_opt_get_free_idx(void)
1873 int index;
1875 for (index = 0; index < MAX_DRIVES; index++)
1876 if (!drives_opt[index].used) {
1877 drives_opt[index].used = 1;
1878 return index;
1881 return -1;
1884 static int drive_get_free_idx(void)
1886 int index;
1888 for (index = 0; index < MAX_DRIVES; index++)
1889 if (!drives_table[index].used) {
1890 drives_table[index].used = 1;
1891 return index;
1894 return -1;
1897 int drive_add(const char *file, const char *fmt, ...)
1899 va_list ap;
1900 int index = drive_opt_get_free_idx();
1902 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
1903 fprintf(stderr, "qemu: too many drives\n");
1904 return -1;
1907 drives_opt[index].file = file;
1908 va_start(ap, fmt);
1909 vsnprintf(drives_opt[index].opt,
1910 sizeof(drives_opt[0].opt), fmt, ap);
1911 va_end(ap);
1913 nb_drives_opt++;
1914 return index;
1917 void drive_remove(int index)
1919 drives_opt[index].used = 0;
1920 nb_drives_opt--;
1923 int drive_get_index(BlockInterfaceType type, int bus, int unit)
1925 int index;
1927 /* seek interface, bus and unit */
1929 for (index = 0; index < MAX_DRIVES; index++)
1930 if (drives_table[index].type == type &&
1931 drives_table[index].bus == bus &&
1932 drives_table[index].unit == unit &&
1933 drives_table[index].used)
1934 return index;
1936 return -1;
1939 int drive_get_max_bus(BlockInterfaceType type)
1941 int max_bus;
1942 int index;
1944 max_bus = -1;
1945 for (index = 0; index < nb_drives; index++) {
1946 if(drives_table[index].type == type &&
1947 drives_table[index].bus > max_bus)
1948 max_bus = drives_table[index].bus;
1950 return max_bus;
1953 const char *drive_get_serial(BlockDriverState *bdrv)
1955 int index;
1957 for (index = 0; index < nb_drives; index++)
1958 if (drives_table[index].bdrv == bdrv)
1959 return drives_table[index].serial;
1961 return "\0";
1964 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1966 int index;
1968 for (index = 0; index < nb_drives; index++)
1969 if (drives_table[index].bdrv == bdrv)
1970 return drives_table[index].onerror;
1972 return BLOCK_ERR_STOP_ENOSPC;
1975 static void bdrv_format_print(void *opaque, const char *name)
1977 fprintf(stderr, " %s", name);
1980 void drive_uninit(BlockDriverState *bdrv)
1982 int i;
1984 for (i = 0; i < MAX_DRIVES; i++)
1985 if (drives_table[i].bdrv == bdrv) {
1986 drives_table[i].bdrv = NULL;
1987 drives_table[i].used = 0;
1988 drive_remove(drives_table[i].drive_opt_idx);
1989 nb_drives--;
1990 break;
1994 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
1996 char buf[128];
1997 char file[1024];
1998 char devname[128];
1999 char serial[21];
2000 const char *mediastr = "";
2001 BlockInterfaceType type;
2002 enum { MEDIA_DISK, MEDIA_CDROM } media;
2003 int bus_id, unit_id;
2004 int cyls, heads, secs, translation;
2005 BlockDriverState *bdrv;
2006 BlockDriver *drv = NULL;
2007 QEMUMachine *machine = opaque;
2008 int max_devs;
2009 int index;
2010 int cache;
2011 int bdrv_flags, onerror;
2012 const char *devaddr;
2013 int drives_table_idx;
2014 char *str = arg->opt;
2015 static const char * const params[] = { "bus", "unit", "if", "index",
2016 "cyls", "heads", "secs", "trans",
2017 "media", "snapshot", "file",
2018 "cache", "format", "serial",
2019 "werror", "addr",
2020 NULL };
2022 if (check_params(buf, sizeof(buf), params, str) < 0) {
2023 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2024 buf, str);
2025 return -1;
2028 file[0] = 0;
2029 cyls = heads = secs = 0;
2030 bus_id = 0;
2031 unit_id = -1;
2032 translation = BIOS_ATA_TRANSLATION_AUTO;
2033 index = -1;
2034 cache = 1;
2036 if (machine->use_scsi) {
2037 type = IF_SCSI;
2038 max_devs = MAX_SCSI_DEVS;
2039 pstrcpy(devname, sizeof(devname), "scsi");
2040 } else {
2041 type = IF_IDE;
2042 max_devs = MAX_IDE_DEVS;
2043 pstrcpy(devname, sizeof(devname), "ide");
2045 media = MEDIA_DISK;
2047 /* extract parameters */
2049 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2050 bus_id = strtol(buf, NULL, 0);
2051 if (bus_id < 0) {
2052 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2053 return -1;
2057 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2058 unit_id = strtol(buf, NULL, 0);
2059 if (unit_id < 0) {
2060 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2061 return -1;
2065 if (get_param_value(buf, sizeof(buf), "if", str)) {
2066 pstrcpy(devname, sizeof(devname), buf);
2067 if (!strcmp(buf, "ide")) {
2068 type = IF_IDE;
2069 max_devs = MAX_IDE_DEVS;
2070 } else if (!strcmp(buf, "scsi")) {
2071 type = IF_SCSI;
2072 max_devs = MAX_SCSI_DEVS;
2073 } else if (!strcmp(buf, "floppy")) {
2074 type = IF_FLOPPY;
2075 max_devs = 0;
2076 } else if (!strcmp(buf, "pflash")) {
2077 type = IF_PFLASH;
2078 max_devs = 0;
2079 } else if (!strcmp(buf, "mtd")) {
2080 type = IF_MTD;
2081 max_devs = 0;
2082 } else if (!strcmp(buf, "sd")) {
2083 type = IF_SD;
2084 max_devs = 0;
2085 } else if (!strcmp(buf, "virtio")) {
2086 type = IF_VIRTIO;
2087 max_devs = 0;
2088 } else if (!strcmp(buf, "xen")) {
2089 type = IF_XEN;
2090 max_devs = 0;
2091 } else {
2092 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2093 return -1;
2097 if (get_param_value(buf, sizeof(buf), "index", str)) {
2098 index = strtol(buf, NULL, 0);
2099 if (index < 0) {
2100 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2101 return -1;
2105 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2106 cyls = strtol(buf, NULL, 0);
2109 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2110 heads = strtol(buf, NULL, 0);
2113 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2114 secs = strtol(buf, NULL, 0);
2117 if (cyls || heads || secs) {
2118 if (cyls < 1 || cyls > 16383) {
2119 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2120 return -1;
2122 if (heads < 1 || heads > 16) {
2123 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2124 return -1;
2126 if (secs < 1 || secs > 63) {
2127 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2128 return -1;
2132 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2133 if (!cyls) {
2134 fprintf(stderr,
2135 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2136 str);
2137 return -1;
2139 if (!strcmp(buf, "none"))
2140 translation = BIOS_ATA_TRANSLATION_NONE;
2141 else if (!strcmp(buf, "lba"))
2142 translation = BIOS_ATA_TRANSLATION_LBA;
2143 else if (!strcmp(buf, "auto"))
2144 translation = BIOS_ATA_TRANSLATION_AUTO;
2145 else {
2146 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2147 return -1;
2151 if (get_param_value(buf, sizeof(buf), "media", str)) {
2152 if (!strcmp(buf, "disk")) {
2153 media = MEDIA_DISK;
2154 } else if (!strcmp(buf, "cdrom")) {
2155 if (cyls || secs || heads) {
2156 fprintf(stderr,
2157 "qemu: '%s' invalid physical CHS format\n", str);
2158 return -1;
2160 media = MEDIA_CDROM;
2161 } else {
2162 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2163 return -1;
2167 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2168 if (!strcmp(buf, "on"))
2169 snapshot = 1;
2170 else if (!strcmp(buf, "off"))
2171 snapshot = 0;
2172 else {
2173 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2174 return -1;
2178 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2179 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2180 cache = 0;
2181 else if (!strcmp(buf, "writethrough"))
2182 cache = 1;
2183 else if (!strcmp(buf, "writeback"))
2184 cache = 2;
2185 else {
2186 fprintf(stderr, "qemu: invalid cache option\n");
2187 return -1;
2191 if (get_param_value(buf, sizeof(buf), "format", str)) {
2192 if (strcmp(buf, "?") == 0) {
2193 fprintf(stderr, "qemu: Supported formats:");
2194 bdrv_iterate_format(bdrv_format_print, NULL);
2195 fprintf(stderr, "\n");
2196 return -1;
2198 drv = bdrv_find_format(buf);
2199 if (!drv) {
2200 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2201 return -1;
2205 if (arg->file == NULL)
2206 get_param_value(file, sizeof(file), "file", str);
2207 else
2208 pstrcpy(file, sizeof(file), arg->file);
2210 if (!get_param_value(serial, sizeof(serial), "serial", str))
2211 memset(serial, 0, sizeof(serial));
2213 onerror = BLOCK_ERR_STOP_ENOSPC;
2214 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2215 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2216 fprintf(stderr, "werror is no supported by this format\n");
2217 return -1;
2219 if (!strcmp(buf, "ignore"))
2220 onerror = BLOCK_ERR_IGNORE;
2221 else if (!strcmp(buf, "enospc"))
2222 onerror = BLOCK_ERR_STOP_ENOSPC;
2223 else if (!strcmp(buf, "stop"))
2224 onerror = BLOCK_ERR_STOP_ANY;
2225 else if (!strcmp(buf, "report"))
2226 onerror = BLOCK_ERR_REPORT;
2227 else {
2228 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2229 return -1;
2233 devaddr = NULL;
2234 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2235 if (type != IF_VIRTIO) {
2236 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2237 return -1;
2239 devaddr = strdup(buf);
2242 /* compute bus and unit according index */
2244 if (index != -1) {
2245 if (bus_id != 0 || unit_id != -1) {
2246 fprintf(stderr,
2247 "qemu: '%s' index cannot be used with bus and unit\n", str);
2248 return -1;
2250 if (max_devs == 0)
2252 unit_id = index;
2253 bus_id = 0;
2254 } else {
2255 unit_id = index % max_devs;
2256 bus_id = index / max_devs;
2260 /* if user doesn't specify a unit_id,
2261 * try to find the first free
2264 if (unit_id == -1) {
2265 unit_id = 0;
2266 while (drive_get_index(type, bus_id, unit_id) != -1) {
2267 unit_id++;
2268 if (max_devs && unit_id >= max_devs) {
2269 unit_id -= max_devs;
2270 bus_id++;
2275 /* check unit id */
2277 if (max_devs && unit_id >= max_devs) {
2278 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2279 str, unit_id, max_devs - 1);
2280 return -1;
2284 * ignore multiple definitions
2287 if (drive_get_index(type, bus_id, unit_id) != -1)
2288 return -2;
2290 /* init */
2292 if (type == IF_IDE || type == IF_SCSI)
2293 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2294 if (max_devs)
2295 snprintf(buf, sizeof(buf), "%s%i%s%i",
2296 devname, bus_id, mediastr, unit_id);
2297 else
2298 snprintf(buf, sizeof(buf), "%s%s%i",
2299 devname, mediastr, unit_id);
2300 bdrv = bdrv_new(buf);
2301 drives_table_idx = drive_get_free_idx();
2302 drives_table[drives_table_idx].bdrv = bdrv;
2303 drives_table[drives_table_idx].devaddr = devaddr;
2304 drives_table[drives_table_idx].type = type;
2305 drives_table[drives_table_idx].bus = bus_id;
2306 drives_table[drives_table_idx].unit = unit_id;
2307 drives_table[drives_table_idx].onerror = onerror;
2308 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2309 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2310 nb_drives++;
2312 switch(type) {
2313 case IF_IDE:
2314 case IF_SCSI:
2315 case IF_XEN:
2316 switch(media) {
2317 case MEDIA_DISK:
2318 if (cyls != 0) {
2319 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2320 bdrv_set_translation_hint(bdrv, translation);
2322 break;
2323 case MEDIA_CDROM:
2324 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2325 break;
2327 break;
2328 case IF_SD:
2329 /* FIXME: This isn't really a floppy, but it's a reasonable
2330 approximation. */
2331 case IF_FLOPPY:
2332 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2333 break;
2334 case IF_PFLASH:
2335 case IF_MTD:
2336 case IF_VIRTIO:
2337 break;
2338 case IF_COUNT:
2339 abort();
2341 if (!file[0])
2342 return -2;
2343 bdrv_flags = 0;
2344 if (snapshot) {
2345 bdrv_flags |= BDRV_O_SNAPSHOT;
2346 cache = 2; /* always use write-back with snapshot */
2348 if (cache == 0) /* no caching */
2349 bdrv_flags |= BDRV_O_NOCACHE;
2350 else if (cache == 2) /* write-back */
2351 bdrv_flags |= BDRV_O_CACHE_WB;
2352 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2353 fprintf(stderr, "qemu: could not open disk image %s\n",
2354 file);
2355 return -1;
2357 if (bdrv_key_required(bdrv))
2358 autostart = 0;
2359 return drives_table_idx;
2362 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2364 boot_set_handler = func;
2365 boot_set_opaque = opaque;
2368 int qemu_boot_set(const char *boot_devices)
2370 if (!boot_set_handler) {
2371 return -EINVAL;
2373 return boot_set_handler(boot_set_opaque, boot_devices);
2376 static int parse_bootdevices(char *devices)
2378 /* We just do some generic consistency checks */
2379 const char *p;
2380 int bitmap = 0;
2382 for (p = devices; *p != '\0'; p++) {
2383 /* Allowed boot devices are:
2384 * a-b: floppy disk drives
2385 * c-f: IDE disk drives
2386 * g-m: machine implementation dependant drives
2387 * n-p: network devices
2388 * It's up to each machine implementation to check if the given boot
2389 * devices match the actual hardware implementation and firmware
2390 * features.
2392 if (*p < 'a' || *p > 'p') {
2393 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2394 exit(1);
2396 if (bitmap & (1 << (*p - 'a'))) {
2397 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2398 exit(1);
2400 bitmap |= 1 << (*p - 'a');
2402 return bitmap;
2405 static void numa_add(const char *optarg)
2407 char option[128];
2408 char *endptr;
2409 unsigned long long value, endvalue;
2410 int nodenr;
2412 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2413 if (!strcmp(option, "node")) {
2414 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2415 nodenr = nb_numa_nodes;
2416 } else {
2417 nodenr = strtoull(option, NULL, 10);
2420 if (get_param_value(option, 128, "mem", optarg) == 0) {
2421 node_mem[nodenr] = 0;
2422 } else {
2423 value = strtoull(option, &endptr, 0);
2424 switch (*endptr) {
2425 case 0: case 'M': case 'm':
2426 value <<= 20;
2427 break;
2428 case 'G': case 'g':
2429 value <<= 30;
2430 break;
2432 node_mem[nodenr] = value;
2434 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2435 node_cpumask[nodenr] = 0;
2436 } else {
2437 value = strtoull(option, &endptr, 10);
2438 if (value >= 64) {
2439 value = 63;
2440 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2441 } else {
2442 if (*endptr == '-') {
2443 endvalue = strtoull(endptr+1, &endptr, 10);
2444 if (endvalue >= 63) {
2445 endvalue = 62;
2446 fprintf(stderr,
2447 "only 63 CPUs in NUMA mode supported.\n");
2449 value = (1 << (endvalue + 1)) - (1 << value);
2450 } else {
2451 value = 1 << value;
2454 node_cpumask[nodenr] = value;
2456 nb_numa_nodes++;
2458 return;
2461 /***********************************************************/
2462 /* USB devices */
2464 static USBPort *used_usb_ports;
2465 static USBPort *free_usb_ports;
2467 /* ??? Maybe change this to register a hub to keep track of the topology. */
2468 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2469 usb_attachfn attach)
2471 port->opaque = opaque;
2472 port->index = index;
2473 port->attach = attach;
2474 port->next = free_usb_ports;
2475 free_usb_ports = port;
2478 int usb_device_add_dev(USBDevice *dev)
2480 USBPort *port;
2482 /* Find a USB port to add the device to. */
2483 port = free_usb_ports;
2484 if (!port->next) {
2485 USBDevice *hub;
2487 /* Create a new hub and chain it on. */
2488 free_usb_ports = NULL;
2489 port->next = used_usb_ports;
2490 used_usb_ports = port;
2492 hub = usb_hub_init(VM_USB_HUB_SIZE);
2493 usb_attach(port, hub);
2494 port = free_usb_ports;
2497 free_usb_ports = port->next;
2498 port->next = used_usb_ports;
2499 used_usb_ports = port;
2500 usb_attach(port, dev);
2501 return 0;
2504 static void usb_msd_password_cb(void *opaque, int err)
2506 USBDevice *dev = opaque;
2508 if (!err)
2509 usb_device_add_dev(dev);
2510 else
2511 dev->handle_destroy(dev);
2514 static int usb_device_add(const char *devname, int is_hotplug)
2516 const char *p;
2517 USBDevice *dev;
2519 if (!free_usb_ports)
2520 return -1;
2522 if (strstart(devname, "host:", &p)) {
2523 dev = usb_host_device_open(p);
2524 } else if (!strcmp(devname, "mouse")) {
2525 dev = usb_mouse_init();
2526 } else if (!strcmp(devname, "tablet")) {
2527 dev = usb_tablet_init();
2528 } else if (!strcmp(devname, "keyboard")) {
2529 dev = usb_keyboard_init();
2530 } else if (strstart(devname, "disk:", &p)) {
2531 BlockDriverState *bs;
2533 dev = usb_msd_init(p);
2534 if (!dev)
2535 return -1;
2536 bs = usb_msd_get_bdrv(dev);
2537 if (bdrv_key_required(bs)) {
2538 autostart = 0;
2539 if (is_hotplug) {
2540 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2541 dev);
2542 return 0;
2545 } else if (!strcmp(devname, "wacom-tablet")) {
2546 dev = usb_wacom_init();
2547 } else if (strstart(devname, "serial:", &p)) {
2548 dev = usb_serial_init(p);
2549 #ifdef CONFIG_BRLAPI
2550 } else if (!strcmp(devname, "braille")) {
2551 dev = usb_baum_init();
2552 #endif
2553 } else if (strstart(devname, "net:", &p)) {
2554 int nic = nb_nics;
2556 if (net_client_init(NULL, "nic", p) < 0)
2557 return -1;
2558 nd_table[nic].model = "usb";
2559 dev = usb_net_init(&nd_table[nic]);
2560 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2561 dev = usb_bt_init(devname[2] ? hci_init(p) :
2562 bt_new_hci(qemu_find_bt_vlan(0)));
2563 } else {
2564 return -1;
2566 if (!dev)
2567 return -1;
2569 return usb_device_add_dev(dev);
2572 int usb_device_del_addr(int bus_num, int addr)
2574 USBPort *port;
2575 USBPort **lastp;
2576 USBDevice *dev;
2578 if (!used_usb_ports)
2579 return -1;
2581 if (bus_num != 0)
2582 return -1;
2584 lastp = &used_usb_ports;
2585 port = used_usb_ports;
2586 while (port && port->dev->addr != addr) {
2587 lastp = &port->next;
2588 port = port->next;
2591 if (!port)
2592 return -1;
2594 dev = port->dev;
2595 *lastp = port->next;
2596 usb_attach(port, NULL);
2597 dev->handle_destroy(dev);
2598 port->next = free_usb_ports;
2599 free_usb_ports = port;
2600 return 0;
2603 static int usb_device_del(const char *devname)
2605 int bus_num, addr;
2606 const char *p;
2608 if (strstart(devname, "host:", &p))
2609 return usb_host_device_close(p);
2611 if (!used_usb_ports)
2612 return -1;
2614 p = strchr(devname, '.');
2615 if (!p)
2616 return -1;
2617 bus_num = strtoul(devname, NULL, 0);
2618 addr = strtoul(p + 1, NULL, 0);
2620 return usb_device_del_addr(bus_num, addr);
2623 void do_usb_add(Monitor *mon, const char *devname)
2625 usb_device_add(devname, 1);
2628 void do_usb_del(Monitor *mon, const char *devname)
2630 usb_device_del(devname);
2633 void usb_info(Monitor *mon)
2635 USBDevice *dev;
2636 USBPort *port;
2637 const char *speed_str;
2639 if (!usb_enabled) {
2640 monitor_printf(mon, "USB support not enabled\n");
2641 return;
2644 for (port = used_usb_ports; port; port = port->next) {
2645 dev = port->dev;
2646 if (!dev)
2647 continue;
2648 switch(dev->speed) {
2649 case USB_SPEED_LOW:
2650 speed_str = "1.5";
2651 break;
2652 case USB_SPEED_FULL:
2653 speed_str = "12";
2654 break;
2655 case USB_SPEED_HIGH:
2656 speed_str = "480";
2657 break;
2658 default:
2659 speed_str = "?";
2660 break;
2662 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2663 0, dev->addr, speed_str, dev->devname);
2667 /***********************************************************/
2668 /* PCMCIA/Cardbus */
2670 static struct pcmcia_socket_entry_s {
2671 PCMCIASocket *socket;
2672 struct pcmcia_socket_entry_s *next;
2673 } *pcmcia_sockets = 0;
2675 void pcmcia_socket_register(PCMCIASocket *socket)
2677 struct pcmcia_socket_entry_s *entry;
2679 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2680 entry->socket = socket;
2681 entry->next = pcmcia_sockets;
2682 pcmcia_sockets = entry;
2685 void pcmcia_socket_unregister(PCMCIASocket *socket)
2687 struct pcmcia_socket_entry_s *entry, **ptr;
2689 ptr = &pcmcia_sockets;
2690 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2691 if (entry->socket == socket) {
2692 *ptr = entry->next;
2693 qemu_free(entry);
2697 void pcmcia_info(Monitor *mon)
2699 struct pcmcia_socket_entry_s *iter;
2701 if (!pcmcia_sockets)
2702 monitor_printf(mon, "No PCMCIA sockets\n");
2704 for (iter = pcmcia_sockets; iter; iter = iter->next)
2705 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2706 iter->socket->attached ? iter->socket->card_string :
2707 "Empty");
2710 /***********************************************************/
2711 /* register display */
2713 struct DisplayAllocator default_allocator = {
2714 defaultallocator_create_displaysurface,
2715 defaultallocator_resize_displaysurface,
2716 defaultallocator_free_displaysurface
2719 void register_displaystate(DisplayState *ds)
2721 DisplayState **s;
2722 s = &display_state;
2723 while (*s != NULL)
2724 s = &(*s)->next;
2725 ds->next = NULL;
2726 *s = ds;
2729 DisplayState *get_displaystate(void)
2731 return display_state;
2734 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2736 if(ds->allocator == &default_allocator) ds->allocator = da;
2737 return ds->allocator;
2740 /* dumb display */
2742 static void dumb_display_init(void)
2744 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2745 ds->allocator = &default_allocator;
2746 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2747 register_displaystate(ds);
2750 /***********************************************************/
2751 /* I/O handling */
2753 typedef struct IOHandlerRecord {
2754 int fd;
2755 IOCanRWHandler *fd_read_poll;
2756 IOHandler *fd_read;
2757 IOHandler *fd_write;
2758 int deleted;
2759 void *opaque;
2760 /* temporary data */
2761 struct pollfd *ufd;
2762 struct IOHandlerRecord *next;
2763 } IOHandlerRecord;
2765 static IOHandlerRecord *first_io_handler;
2767 /* XXX: fd_read_poll should be suppressed, but an API change is
2768 necessary in the character devices to suppress fd_can_read(). */
2769 int qemu_set_fd_handler2(int fd,
2770 IOCanRWHandler *fd_read_poll,
2771 IOHandler *fd_read,
2772 IOHandler *fd_write,
2773 void *opaque)
2775 IOHandlerRecord **pioh, *ioh;
2777 if (!fd_read && !fd_write) {
2778 pioh = &first_io_handler;
2779 for(;;) {
2780 ioh = *pioh;
2781 if (ioh == NULL)
2782 break;
2783 if (ioh->fd == fd) {
2784 ioh->deleted = 1;
2785 break;
2787 pioh = &ioh->next;
2789 } else {
2790 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2791 if (ioh->fd == fd)
2792 goto found;
2794 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2795 ioh->next = first_io_handler;
2796 first_io_handler = ioh;
2797 found:
2798 ioh->fd = fd;
2799 ioh->fd_read_poll = fd_read_poll;
2800 ioh->fd_read = fd_read;
2801 ioh->fd_write = fd_write;
2802 ioh->opaque = opaque;
2803 ioh->deleted = 0;
2805 return 0;
2808 int qemu_set_fd_handler(int fd,
2809 IOHandler *fd_read,
2810 IOHandler *fd_write,
2811 void *opaque)
2813 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2816 #ifdef _WIN32
2817 /***********************************************************/
2818 /* Polling handling */
2820 typedef struct PollingEntry {
2821 PollingFunc *func;
2822 void *opaque;
2823 struct PollingEntry *next;
2824 } PollingEntry;
2826 static PollingEntry *first_polling_entry;
2828 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2830 PollingEntry **ppe, *pe;
2831 pe = qemu_mallocz(sizeof(PollingEntry));
2832 pe->func = func;
2833 pe->opaque = opaque;
2834 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2835 *ppe = pe;
2836 return 0;
2839 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2841 PollingEntry **ppe, *pe;
2842 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2843 pe = *ppe;
2844 if (pe->func == func && pe->opaque == opaque) {
2845 *ppe = pe->next;
2846 qemu_free(pe);
2847 break;
2852 /***********************************************************/
2853 /* Wait objects support */
2854 typedef struct WaitObjects {
2855 int num;
2856 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2857 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2858 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2859 } WaitObjects;
2861 static WaitObjects wait_objects = {0};
2863 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2865 WaitObjects *w = &wait_objects;
2867 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2868 return -1;
2869 w->events[w->num] = handle;
2870 w->func[w->num] = func;
2871 w->opaque[w->num] = opaque;
2872 w->num++;
2873 return 0;
2876 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2878 int i, found;
2879 WaitObjects *w = &wait_objects;
2881 found = 0;
2882 for (i = 0; i < w->num; i++) {
2883 if (w->events[i] == handle)
2884 found = 1;
2885 if (found) {
2886 w->events[i] = w->events[i + 1];
2887 w->func[i] = w->func[i + 1];
2888 w->opaque[i] = w->opaque[i + 1];
2891 if (found)
2892 w->num--;
2894 #endif
2896 /***********************************************************/
2897 /* ram save/restore */
2899 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2901 int v;
2903 v = qemu_get_byte(f);
2904 switch(v) {
2905 case 0:
2906 if (qemu_get_buffer(f, buf, len) != len)
2907 return -EIO;
2908 break;
2909 case 1:
2910 v = qemu_get_byte(f);
2911 memset(buf, v, len);
2912 break;
2913 default:
2914 return -EINVAL;
2917 if (qemu_file_has_error(f))
2918 return -EIO;
2920 return 0;
2923 static int ram_load_v1(QEMUFile *f, void *opaque)
2925 int ret;
2926 ram_addr_t i;
2928 if (qemu_get_be32(f) != last_ram_offset)
2929 return -EINVAL;
2930 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2931 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2932 if (ret)
2933 return ret;
2935 return 0;
2938 #define BDRV_HASH_BLOCK_SIZE 1024
2939 #define IOBUF_SIZE 4096
2940 #define RAM_CBLOCK_MAGIC 0xfabe
2942 typedef struct RamDecompressState {
2943 z_stream zstream;
2944 QEMUFile *f;
2945 uint8_t buf[IOBUF_SIZE];
2946 } RamDecompressState;
2948 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2950 int ret;
2951 memset(s, 0, sizeof(*s));
2952 s->f = f;
2953 ret = inflateInit(&s->zstream);
2954 if (ret != Z_OK)
2955 return -1;
2956 return 0;
2959 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2961 int ret, clen;
2963 s->zstream.avail_out = len;
2964 s->zstream.next_out = buf;
2965 while (s->zstream.avail_out > 0) {
2966 if (s->zstream.avail_in == 0) {
2967 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2968 return -1;
2969 clen = qemu_get_be16(s->f);
2970 if (clen > IOBUF_SIZE)
2971 return -1;
2972 qemu_get_buffer(s->f, s->buf, clen);
2973 s->zstream.avail_in = clen;
2974 s->zstream.next_in = s->buf;
2976 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2977 if (ret != Z_OK && ret != Z_STREAM_END) {
2978 return -1;
2981 return 0;
2984 static void ram_decompress_close(RamDecompressState *s)
2986 inflateEnd(&s->zstream);
2989 #define RAM_SAVE_FLAG_FULL 0x01
2990 #define RAM_SAVE_FLAG_COMPRESS 0x02
2991 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2992 #define RAM_SAVE_FLAG_PAGE 0x08
2993 #define RAM_SAVE_FLAG_EOS 0x10
2995 static int is_dup_page(uint8_t *page, uint8_t ch)
2997 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2998 uint32_t *array = (uint32_t *)page;
2999 int i;
3001 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3002 if (array[i] != val)
3003 return 0;
3006 return 1;
3009 static int ram_save_block(QEMUFile *f)
3011 static ram_addr_t current_addr = 0;
3012 ram_addr_t saved_addr = current_addr;
3013 ram_addr_t addr = 0;
3014 int found = 0;
3016 while (addr < last_ram_offset) {
3017 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3018 uint8_t *p;
3020 cpu_physical_memory_reset_dirty(current_addr,
3021 current_addr + TARGET_PAGE_SIZE,
3022 MIGRATION_DIRTY_FLAG);
3024 p = qemu_get_ram_ptr(current_addr);
3026 if (is_dup_page(p, *p)) {
3027 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3028 qemu_put_byte(f, *p);
3029 } else {
3030 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3031 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3034 found = 1;
3035 break;
3037 addr += TARGET_PAGE_SIZE;
3038 current_addr = (saved_addr + addr) % last_ram_offset;
3041 return found;
3044 static uint64_t bytes_transferred = 0;
3046 static ram_addr_t ram_save_remaining(void)
3048 ram_addr_t addr;
3049 ram_addr_t count = 0;
3051 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3052 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3053 count++;
3056 return count;
3059 uint64_t ram_bytes_remaining(void)
3061 return ram_save_remaining() * TARGET_PAGE_SIZE;
3064 uint64_t ram_bytes_transferred(void)
3066 return bytes_transferred;
3069 uint64_t ram_bytes_total(void)
3071 return last_ram_offset;
3074 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3076 ram_addr_t addr;
3077 uint64_t bytes_transferred_last;
3078 double bwidth = 0;
3079 uint64_t expected_time = 0;
3081 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3082 qemu_file_set_error(f);
3083 return 0;
3086 if (stage == 1) {
3087 /* Make sure all dirty bits are set */
3088 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3089 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3090 cpu_physical_memory_set_dirty(addr);
3093 /* Enable dirty memory tracking */
3094 cpu_physical_memory_set_dirty_tracking(1);
3096 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3099 bytes_transferred_last = bytes_transferred;
3100 bwidth = get_clock();
3102 while (!qemu_file_rate_limit(f)) {
3103 int ret;
3105 ret = ram_save_block(f);
3106 bytes_transferred += ret * TARGET_PAGE_SIZE;
3107 if (ret == 0) /* no more blocks */
3108 break;
3111 bwidth = get_clock() - bwidth;
3112 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3114 /* if we haven't transferred anything this round, force expected_time to a
3115 * a very high value, but without crashing */
3116 if (bwidth == 0)
3117 bwidth = 0.000001;
3119 /* try transferring iterative blocks of memory */
3121 if (stage == 3) {
3123 /* flush all remaining blocks regardless of rate limiting */
3124 while (ram_save_block(f) != 0) {
3125 bytes_transferred += TARGET_PAGE_SIZE;
3127 cpu_physical_memory_set_dirty_tracking(0);
3130 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3132 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3134 return (stage == 2) && (expected_time <= migrate_max_downtime());
3137 static int ram_load_dead(QEMUFile *f, void *opaque)
3139 RamDecompressState s1, *s = &s1;
3140 uint8_t buf[10];
3141 ram_addr_t i;
3143 if (ram_decompress_open(s, f) < 0)
3144 return -EINVAL;
3145 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3146 if (ram_decompress_buf(s, buf, 1) < 0) {
3147 fprintf(stderr, "Error while reading ram block header\n");
3148 goto error;
3150 if (buf[0] == 0) {
3151 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3152 BDRV_HASH_BLOCK_SIZE) < 0) {
3153 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3154 goto error;
3156 } else {
3157 error:
3158 printf("Error block header\n");
3159 return -EINVAL;
3162 ram_decompress_close(s);
3164 return 0;
3167 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3169 ram_addr_t addr;
3170 int flags;
3172 if (version_id == 1)
3173 return ram_load_v1(f, opaque);
3175 if (version_id == 2) {
3176 if (qemu_get_be32(f) != last_ram_offset)
3177 return -EINVAL;
3178 return ram_load_dead(f, opaque);
3181 if (version_id != 3)
3182 return -EINVAL;
3184 do {
3185 addr = qemu_get_be64(f);
3187 flags = addr & ~TARGET_PAGE_MASK;
3188 addr &= TARGET_PAGE_MASK;
3190 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3191 if (addr != last_ram_offset)
3192 return -EINVAL;
3195 if (flags & RAM_SAVE_FLAG_FULL) {
3196 if (ram_load_dead(f, opaque) < 0)
3197 return -EINVAL;
3200 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3201 uint8_t ch = qemu_get_byte(f);
3202 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3203 #ifndef _WIN32
3204 if (ch == 0 &&
3205 (!kvm_enabled() || kvm_has_sync_mmu())) {
3206 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3208 #endif
3209 } else if (flags & RAM_SAVE_FLAG_PAGE)
3210 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3211 } while (!(flags & RAM_SAVE_FLAG_EOS));
3213 return 0;
3216 void qemu_service_io(void)
3218 qemu_notify_event();
3221 /***********************************************************/
3222 /* bottom halves (can be seen as timers which expire ASAP) */
3224 struct QEMUBH {
3225 QEMUBHFunc *cb;
3226 void *opaque;
3227 int scheduled;
3228 int idle;
3229 int deleted;
3230 QEMUBH *next;
3233 static QEMUBH *first_bh = NULL;
3235 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3237 QEMUBH *bh;
3238 bh = qemu_mallocz(sizeof(QEMUBH));
3239 bh->cb = cb;
3240 bh->opaque = opaque;
3241 bh->next = first_bh;
3242 first_bh = bh;
3243 return bh;
3246 int qemu_bh_poll(void)
3248 QEMUBH *bh, **bhp;
3249 int ret;
3251 ret = 0;
3252 for (bh = first_bh; bh; bh = bh->next) {
3253 if (!bh->deleted && bh->scheduled) {
3254 bh->scheduled = 0;
3255 if (!bh->idle)
3256 ret = 1;
3257 bh->idle = 0;
3258 bh->cb(bh->opaque);
3262 /* remove deleted bhs */
3263 bhp = &first_bh;
3264 while (*bhp) {
3265 bh = *bhp;
3266 if (bh->deleted) {
3267 *bhp = bh->next;
3268 qemu_free(bh);
3269 } else
3270 bhp = &bh->next;
3273 return ret;
3276 void qemu_bh_schedule_idle(QEMUBH *bh)
3278 if (bh->scheduled)
3279 return;
3280 bh->scheduled = 1;
3281 bh->idle = 1;
3284 void qemu_bh_schedule(QEMUBH *bh)
3286 if (bh->scheduled)
3287 return;
3288 bh->scheduled = 1;
3289 bh->idle = 0;
3290 /* stop the currently executing CPU to execute the BH ASAP */
3291 qemu_notify_event();
3294 void qemu_bh_cancel(QEMUBH *bh)
3296 bh->scheduled = 0;
3299 void qemu_bh_delete(QEMUBH *bh)
3301 bh->scheduled = 0;
3302 bh->deleted = 1;
3305 static void qemu_bh_update_timeout(int *timeout)
3307 QEMUBH *bh;
3309 for (bh = first_bh; bh; bh = bh->next) {
3310 if (!bh->deleted && bh->scheduled) {
3311 if (bh->idle) {
3312 /* idle bottom halves will be polled at least
3313 * every 10ms */
3314 *timeout = MIN(10, *timeout);
3315 } else {
3316 /* non-idle bottom halves will be executed
3317 * immediately */
3318 *timeout = 0;
3319 break;
3325 /***********************************************************/
3326 /* machine registration */
3328 static QEMUMachine *first_machine = NULL;
3329 QEMUMachine *current_machine = NULL;
3331 int qemu_register_machine(QEMUMachine *m)
3333 QEMUMachine **pm;
3334 pm = &first_machine;
3335 while (*pm != NULL)
3336 pm = &(*pm)->next;
3337 m->next = NULL;
3338 *pm = m;
3339 return 0;
3342 static QEMUMachine *find_machine(const char *name)
3344 QEMUMachine *m;
3346 for(m = first_machine; m != NULL; m = m->next) {
3347 if (!strcmp(m->name, name))
3348 return m;
3350 return NULL;
3353 static QEMUMachine *find_default_machine(void)
3355 QEMUMachine *m;
3357 for(m = first_machine; m != NULL; m = m->next) {
3358 if (m->is_default) {
3359 return m;
3362 return NULL;
3365 /***********************************************************/
3366 /* main execution loop */
3368 static void gui_update(void *opaque)
3370 uint64_t interval = GUI_REFRESH_INTERVAL;
3371 DisplayState *ds = opaque;
3372 DisplayChangeListener *dcl = ds->listeners;
3374 dpy_refresh(ds);
3376 while (dcl != NULL) {
3377 if (dcl->gui_timer_interval &&
3378 dcl->gui_timer_interval < interval)
3379 interval = dcl->gui_timer_interval;
3380 dcl = dcl->next;
3382 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3385 static void nographic_update(void *opaque)
3387 uint64_t interval = GUI_REFRESH_INTERVAL;
3389 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3392 struct vm_change_state_entry {
3393 VMChangeStateHandler *cb;
3394 void *opaque;
3395 LIST_ENTRY (vm_change_state_entry) entries;
3398 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3400 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3401 void *opaque)
3403 VMChangeStateEntry *e;
3405 e = qemu_mallocz(sizeof (*e));
3407 e->cb = cb;
3408 e->opaque = opaque;
3409 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3410 return e;
3413 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3415 LIST_REMOVE (e, entries);
3416 qemu_free (e);
3419 static void vm_state_notify(int running, int reason)
3421 VMChangeStateEntry *e;
3423 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3424 e->cb(e->opaque, running, reason);
3428 static void resume_all_vcpus(void);
3429 static void pause_all_vcpus(void);
3431 void vm_start(void)
3433 if (!vm_running) {
3434 cpu_enable_ticks();
3435 vm_running = 1;
3436 vm_state_notify(1, 0);
3437 qemu_rearm_alarm_timer(alarm_timer);
3438 resume_all_vcpus();
3442 /* reset/shutdown handler */
3444 typedef struct QEMUResetEntry {
3445 TAILQ_ENTRY(QEMUResetEntry) entry;
3446 QEMUResetHandler *func;
3447 void *opaque;
3448 } QEMUResetEntry;
3450 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3451 TAILQ_HEAD_INITIALIZER(reset_handlers);
3452 static int reset_requested;
3453 static int shutdown_requested;
3454 static int powerdown_requested;
3455 static int debug_requested;
3456 static int vmstop_requested;
3458 int qemu_shutdown_requested(void)
3460 int r = shutdown_requested;
3461 shutdown_requested = 0;
3462 return r;
3465 int qemu_reset_requested(void)
3467 int r = reset_requested;
3468 reset_requested = 0;
3469 return r;
3472 int qemu_powerdown_requested(void)
3474 int r = powerdown_requested;
3475 powerdown_requested = 0;
3476 return r;
3479 static int qemu_debug_requested(void)
3481 int r = debug_requested;
3482 debug_requested = 0;
3483 return r;
3486 static int qemu_vmstop_requested(void)
3488 int r = vmstop_requested;
3489 vmstop_requested = 0;
3490 return r;
3493 static void do_vm_stop(int reason)
3495 if (vm_running) {
3496 cpu_disable_ticks();
3497 vm_running = 0;
3498 pause_all_vcpus();
3499 vm_state_notify(0, reason);
3503 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3505 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3507 re->func = func;
3508 re->opaque = opaque;
3509 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3512 void qemu_system_reset(void)
3514 QEMUResetEntry *re;
3516 /* reset all devices */
3517 TAILQ_FOREACH(re, &reset_handlers, entry) {
3518 re->func(re->opaque);
3522 void qemu_system_reset_request(void)
3524 if (no_reboot) {
3525 shutdown_requested = 1;
3526 } else {
3527 reset_requested = 1;
3529 qemu_notify_event();
3532 void qemu_system_shutdown_request(void)
3534 shutdown_requested = 1;
3535 qemu_notify_event();
3538 void qemu_system_powerdown_request(void)
3540 powerdown_requested = 1;
3541 qemu_notify_event();
3544 #ifdef CONFIG_IOTHREAD
3545 static void qemu_system_vmstop_request(int reason)
3547 vmstop_requested = reason;
3548 qemu_notify_event();
3550 #endif
3552 #ifndef _WIN32
3553 static int io_thread_fd = -1;
3555 static void qemu_event_increment(void)
3557 static const char byte = 0;
3559 if (io_thread_fd == -1)
3560 return;
3562 write(io_thread_fd, &byte, sizeof(byte));
3565 static void qemu_event_read(void *opaque)
3567 int fd = (unsigned long)opaque;
3568 ssize_t len;
3570 /* Drain the notify pipe */
3571 do {
3572 char buffer[512];
3573 len = read(fd, buffer, sizeof(buffer));
3574 } while ((len == -1 && errno == EINTR) || len > 0);
3577 static int qemu_event_init(void)
3579 int err;
3580 int fds[2];
3582 err = pipe(fds);
3583 if (err == -1)
3584 return -errno;
3586 err = fcntl_setfl(fds[0], O_NONBLOCK);
3587 if (err < 0)
3588 goto fail;
3590 err = fcntl_setfl(fds[1], O_NONBLOCK);
3591 if (err < 0)
3592 goto fail;
3594 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3595 (void *)(unsigned long)fds[0]);
3597 io_thread_fd = fds[1];
3598 return 0;
3600 fail:
3601 close(fds[0]);
3602 close(fds[1]);
3603 return err;
3605 #else
3606 HANDLE qemu_event_handle;
3608 static void dummy_event_handler(void *opaque)
3612 static int qemu_event_init(void)
3614 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3615 if (!qemu_event_handle) {
3616 perror("Failed CreateEvent");
3617 return -1;
3619 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3620 return 0;
3623 static void qemu_event_increment(void)
3625 SetEvent(qemu_event_handle);
3627 #endif
3629 static int cpu_can_run(CPUState *env)
3631 if (env->stop)
3632 return 0;
3633 if (env->stopped)
3634 return 0;
3635 return 1;
3638 #ifndef CONFIG_IOTHREAD
3639 static int qemu_init_main_loop(void)
3641 return qemu_event_init();
3644 void qemu_init_vcpu(void *_env)
3646 CPUState *env = _env;
3648 if (kvm_enabled())
3649 kvm_init_vcpu(env);
3650 return;
3653 int qemu_cpu_self(void *env)
3655 return 1;
3658 static void resume_all_vcpus(void)
3662 static void pause_all_vcpus(void)
3666 void qemu_cpu_kick(void *env)
3668 return;
3671 void qemu_notify_event(void)
3673 CPUState *env = cpu_single_env;
3675 if (env) {
3676 cpu_exit(env);
3677 #ifdef USE_KQEMU
3678 if (env->kqemu_enabled)
3679 kqemu_cpu_interrupt(env);
3680 #endif
3684 #define qemu_mutex_lock_iothread() do { } while (0)
3685 #define qemu_mutex_unlock_iothread() do { } while (0)
3687 void vm_stop(int reason)
3689 do_vm_stop(reason);
3692 #else /* CONFIG_IOTHREAD */
3694 #include "qemu-thread.h"
3696 QemuMutex qemu_global_mutex;
3697 static QemuMutex qemu_fair_mutex;
3699 static QemuThread io_thread;
3701 static QemuThread *tcg_cpu_thread;
3702 static QemuCond *tcg_halt_cond;
3704 static int qemu_system_ready;
3705 /* cpu creation */
3706 static QemuCond qemu_cpu_cond;
3707 /* system init */
3708 static QemuCond qemu_system_cond;
3709 static QemuCond qemu_pause_cond;
3711 static void block_io_signals(void);
3712 static void unblock_io_signals(void);
3713 static int tcg_has_work(void);
3715 static int qemu_init_main_loop(void)
3717 int ret;
3719 ret = qemu_event_init();
3720 if (ret)
3721 return ret;
3723 qemu_cond_init(&qemu_pause_cond);
3724 qemu_mutex_init(&qemu_fair_mutex);
3725 qemu_mutex_init(&qemu_global_mutex);
3726 qemu_mutex_lock(&qemu_global_mutex);
3728 unblock_io_signals();
3729 qemu_thread_self(&io_thread);
3731 return 0;
3734 static void qemu_wait_io_event(CPUState *env)
3736 while (!tcg_has_work())
3737 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3739 qemu_mutex_unlock(&qemu_global_mutex);
3742 * Users of qemu_global_mutex can be starved, having no chance
3743 * to acquire it since this path will get to it first.
3744 * So use another lock to provide fairness.
3746 qemu_mutex_lock(&qemu_fair_mutex);
3747 qemu_mutex_unlock(&qemu_fair_mutex);
3749 qemu_mutex_lock(&qemu_global_mutex);
3750 if (env->stop) {
3751 env->stop = 0;
3752 env->stopped = 1;
3753 qemu_cond_signal(&qemu_pause_cond);
3757 static int qemu_cpu_exec(CPUState *env);
3759 static void *kvm_cpu_thread_fn(void *arg)
3761 CPUState *env = arg;
3763 block_io_signals();
3764 qemu_thread_self(env->thread);
3766 /* signal CPU creation */
3767 qemu_mutex_lock(&qemu_global_mutex);
3768 env->created = 1;
3769 qemu_cond_signal(&qemu_cpu_cond);
3771 /* and wait for machine initialization */
3772 while (!qemu_system_ready)
3773 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3775 while (1) {
3776 if (cpu_can_run(env))
3777 qemu_cpu_exec(env);
3778 qemu_wait_io_event(env);
3781 return NULL;
3784 static void tcg_cpu_exec(void);
3786 static void *tcg_cpu_thread_fn(void *arg)
3788 CPUState *env = arg;
3790 block_io_signals();
3791 qemu_thread_self(env->thread);
3793 /* signal CPU creation */
3794 qemu_mutex_lock(&qemu_global_mutex);
3795 for (env = first_cpu; env != NULL; env = env->next_cpu)
3796 env->created = 1;
3797 qemu_cond_signal(&qemu_cpu_cond);
3799 /* and wait for machine initialization */
3800 while (!qemu_system_ready)
3801 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3803 while (1) {
3804 tcg_cpu_exec();
3805 qemu_wait_io_event(cur_cpu);
3808 return NULL;
3811 void qemu_cpu_kick(void *_env)
3813 CPUState *env = _env;
3814 qemu_cond_broadcast(env->halt_cond);
3815 if (kvm_enabled())
3816 qemu_thread_signal(env->thread, SIGUSR1);
3819 int qemu_cpu_self(void *env)
3821 return (cpu_single_env != NULL);
3824 static void cpu_signal(int sig)
3826 if (cpu_single_env)
3827 cpu_exit(cpu_single_env);
3830 static void block_io_signals(void)
3832 sigset_t set;
3833 struct sigaction sigact;
3835 sigemptyset(&set);
3836 sigaddset(&set, SIGUSR2);
3837 sigaddset(&set, SIGIO);
3838 sigaddset(&set, SIGALRM);
3839 pthread_sigmask(SIG_BLOCK, &set, NULL);
3841 sigemptyset(&set);
3842 sigaddset(&set, SIGUSR1);
3843 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3845 memset(&sigact, 0, sizeof(sigact));
3846 sigact.sa_handler = cpu_signal;
3847 sigaction(SIGUSR1, &sigact, NULL);
3850 static void unblock_io_signals(void)
3852 sigset_t set;
3854 sigemptyset(&set);
3855 sigaddset(&set, SIGUSR2);
3856 sigaddset(&set, SIGIO);
3857 sigaddset(&set, SIGALRM);
3858 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3860 sigemptyset(&set);
3861 sigaddset(&set, SIGUSR1);
3862 pthread_sigmask(SIG_BLOCK, &set, NULL);
3865 static void qemu_signal_lock(unsigned int msecs)
3867 qemu_mutex_lock(&qemu_fair_mutex);
3869 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3870 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3871 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3872 break;
3874 qemu_mutex_unlock(&qemu_fair_mutex);
3877 static void qemu_mutex_lock_iothread(void)
3879 if (kvm_enabled()) {
3880 qemu_mutex_lock(&qemu_fair_mutex);
3881 qemu_mutex_lock(&qemu_global_mutex);
3882 qemu_mutex_unlock(&qemu_fair_mutex);
3883 } else
3884 qemu_signal_lock(100);
3887 static void qemu_mutex_unlock_iothread(void)
3889 qemu_mutex_unlock(&qemu_global_mutex);
3892 static int all_vcpus_paused(void)
3894 CPUState *penv = first_cpu;
3896 while (penv) {
3897 if (!penv->stopped)
3898 return 0;
3899 penv = (CPUState *)penv->next_cpu;
3902 return 1;
3905 static void pause_all_vcpus(void)
3907 CPUState *penv = first_cpu;
3909 while (penv) {
3910 penv->stop = 1;
3911 qemu_thread_signal(penv->thread, SIGUSR1);
3912 qemu_cpu_kick(penv);
3913 penv = (CPUState *)penv->next_cpu;
3916 while (!all_vcpus_paused()) {
3917 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3918 penv = first_cpu;
3919 while (penv) {
3920 qemu_thread_signal(penv->thread, SIGUSR1);
3921 penv = (CPUState *)penv->next_cpu;
3926 static void resume_all_vcpus(void)
3928 CPUState *penv = first_cpu;
3930 while (penv) {
3931 penv->stop = 0;
3932 penv->stopped = 0;
3933 qemu_thread_signal(penv->thread, SIGUSR1);
3934 qemu_cpu_kick(penv);
3935 penv = (CPUState *)penv->next_cpu;
3939 static void tcg_init_vcpu(void *_env)
3941 CPUState *env = _env;
3942 /* share a single thread for all cpus with TCG */
3943 if (!tcg_cpu_thread) {
3944 env->thread = qemu_mallocz(sizeof(QemuThread));
3945 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3946 qemu_cond_init(env->halt_cond);
3947 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3948 while (env->created == 0)
3949 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3950 tcg_cpu_thread = env->thread;
3951 tcg_halt_cond = env->halt_cond;
3952 } else {
3953 env->thread = tcg_cpu_thread;
3954 env->halt_cond = tcg_halt_cond;
3958 static void kvm_start_vcpu(CPUState *env)
3960 kvm_init_vcpu(env);
3961 env->thread = qemu_mallocz(sizeof(QemuThread));
3962 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3963 qemu_cond_init(env->halt_cond);
3964 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3965 while (env->created == 0)
3966 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3969 void qemu_init_vcpu(void *_env)
3971 CPUState *env = _env;
3973 if (kvm_enabled())
3974 kvm_start_vcpu(env);
3975 else
3976 tcg_init_vcpu(env);
3979 void qemu_notify_event(void)
3981 qemu_event_increment();
3984 void vm_stop(int reason)
3986 QemuThread me;
3987 qemu_thread_self(&me);
3989 if (!qemu_thread_equal(&me, &io_thread)) {
3990 qemu_system_vmstop_request(reason);
3992 * FIXME: should not return to device code in case
3993 * vm_stop() has been requested.
3995 if (cpu_single_env) {
3996 cpu_exit(cpu_single_env);
3997 cpu_single_env->stop = 1;
3999 return;
4001 do_vm_stop(reason);
4004 #endif
4007 #ifdef _WIN32
4008 static void host_main_loop_wait(int *timeout)
4010 int ret, ret2, i;
4011 PollingEntry *pe;
4014 /* XXX: need to suppress polling by better using win32 events */
4015 ret = 0;
4016 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4017 ret |= pe->func(pe->opaque);
4019 if (ret == 0) {
4020 int err;
4021 WaitObjects *w = &wait_objects;
4023 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4024 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4025 if (w->func[ret - WAIT_OBJECT_0])
4026 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4028 /* Check for additional signaled events */
4029 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4031 /* Check if event is signaled */
4032 ret2 = WaitForSingleObject(w->events[i], 0);
4033 if(ret2 == WAIT_OBJECT_0) {
4034 if (w->func[i])
4035 w->func[i](w->opaque[i]);
4036 } else if (ret2 == WAIT_TIMEOUT) {
4037 } else {
4038 err = GetLastError();
4039 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4042 } else if (ret == WAIT_TIMEOUT) {
4043 } else {
4044 err = GetLastError();
4045 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4049 *timeout = 0;
4051 #else
4052 static void host_main_loop_wait(int *timeout)
4055 #endif
4057 void main_loop_wait(int timeout)
4059 IOHandlerRecord *ioh;
4060 fd_set rfds, wfds, xfds;
4061 int ret, nfds;
4062 struct timeval tv;
4064 qemu_bh_update_timeout(&timeout);
4066 host_main_loop_wait(&timeout);
4068 /* poll any events */
4069 /* XXX: separate device handlers from system ones */
4070 nfds = -1;
4071 FD_ZERO(&rfds);
4072 FD_ZERO(&wfds);
4073 FD_ZERO(&xfds);
4074 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4075 if (ioh->deleted)
4076 continue;
4077 if (ioh->fd_read &&
4078 (!ioh->fd_read_poll ||
4079 ioh->fd_read_poll(ioh->opaque) != 0)) {
4080 FD_SET(ioh->fd, &rfds);
4081 if (ioh->fd > nfds)
4082 nfds = ioh->fd;
4084 if (ioh->fd_write) {
4085 FD_SET(ioh->fd, &wfds);
4086 if (ioh->fd > nfds)
4087 nfds = ioh->fd;
4091 tv.tv_sec = timeout / 1000;
4092 tv.tv_usec = (timeout % 1000) * 1000;
4094 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4096 qemu_mutex_unlock_iothread();
4097 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4098 qemu_mutex_lock_iothread();
4099 if (ret > 0) {
4100 IOHandlerRecord **pioh;
4102 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4103 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4104 ioh->fd_read(ioh->opaque);
4106 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4107 ioh->fd_write(ioh->opaque);
4111 /* remove deleted IO handlers */
4112 pioh = &first_io_handler;
4113 while (*pioh) {
4114 ioh = *pioh;
4115 if (ioh->deleted) {
4116 *pioh = ioh->next;
4117 qemu_free(ioh);
4118 } else
4119 pioh = &ioh->next;
4123 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4125 /* rearm timer, if not periodic */
4126 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4127 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4128 qemu_rearm_alarm_timer(alarm_timer);
4131 /* vm time timers */
4132 if (vm_running) {
4133 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4134 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4135 qemu_get_clock(vm_clock));
4138 /* real time timers */
4139 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4140 qemu_get_clock(rt_clock));
4142 /* Check bottom-halves last in case any of the earlier events triggered
4143 them. */
4144 qemu_bh_poll();
4148 static int qemu_cpu_exec(CPUState *env)
4150 int ret;
4151 #ifdef CONFIG_PROFILER
4152 int64_t ti;
4153 #endif
4155 #ifdef CONFIG_PROFILER
4156 ti = profile_getclock();
4157 #endif
4158 if (use_icount) {
4159 int64_t count;
4160 int decr;
4161 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4162 env->icount_decr.u16.low = 0;
4163 env->icount_extra = 0;
4164 count = qemu_next_deadline();
4165 count = (count + (1 << icount_time_shift) - 1)
4166 >> icount_time_shift;
4167 qemu_icount += count;
4168 decr = (count > 0xffff) ? 0xffff : count;
4169 count -= decr;
4170 env->icount_decr.u16.low = decr;
4171 env->icount_extra = count;
4173 ret = cpu_exec(env);
4174 #ifdef CONFIG_PROFILER
4175 qemu_time += profile_getclock() - ti;
4176 #endif
4177 if (use_icount) {
4178 /* Fold pending instructions back into the
4179 instruction counter, and clear the interrupt flag. */
4180 qemu_icount -= (env->icount_decr.u16.low
4181 + env->icount_extra);
4182 env->icount_decr.u32 = 0;
4183 env->icount_extra = 0;
4185 return ret;
4188 static void tcg_cpu_exec(void)
4190 int ret = 0;
4192 if (next_cpu == NULL)
4193 next_cpu = first_cpu;
4194 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4195 CPUState *env = cur_cpu = next_cpu;
4197 if (!vm_running)
4198 break;
4199 if (timer_alarm_pending) {
4200 timer_alarm_pending = 0;
4201 break;
4203 if (cpu_can_run(env))
4204 ret = qemu_cpu_exec(env);
4205 if (ret == EXCP_DEBUG) {
4206 gdb_set_stop_cpu(env);
4207 debug_requested = 1;
4208 break;
4213 static int cpu_has_work(CPUState *env)
4215 if (env->stop)
4216 return 1;
4217 if (env->stopped)
4218 return 0;
4219 if (!env->halted)
4220 return 1;
4221 if (qemu_cpu_has_work(env))
4222 return 1;
4223 return 0;
4226 static int tcg_has_work(void)
4228 CPUState *env;
4230 for (env = first_cpu; env != NULL; env = env->next_cpu)
4231 if (cpu_has_work(env))
4232 return 1;
4233 return 0;
4236 static int qemu_calculate_timeout(void)
4238 #ifndef CONFIG_IOTHREAD
4239 int timeout;
4241 if (!vm_running)
4242 timeout = 5000;
4243 else if (tcg_has_work())
4244 timeout = 0;
4245 else if (!use_icount)
4246 timeout = 5000;
4247 else {
4248 /* XXX: use timeout computed from timers */
4249 int64_t add;
4250 int64_t delta;
4251 /* Advance virtual time to the next event. */
4252 if (use_icount == 1) {
4253 /* When not using an adaptive execution frequency
4254 we tend to get badly out of sync with real time,
4255 so just delay for a reasonable amount of time. */
4256 delta = 0;
4257 } else {
4258 delta = cpu_get_icount() - cpu_get_clock();
4260 if (delta > 0) {
4261 /* If virtual time is ahead of real time then just
4262 wait for IO. */
4263 timeout = (delta / 1000000) + 1;
4264 } else {
4265 /* Wait for either IO to occur or the next
4266 timer event. */
4267 add = qemu_next_deadline();
4268 /* We advance the timer before checking for IO.
4269 Limit the amount we advance so that early IO
4270 activity won't get the guest too far ahead. */
4271 if (add > 10000000)
4272 add = 10000000;
4273 delta += add;
4274 add = (add + (1 << icount_time_shift) - 1)
4275 >> icount_time_shift;
4276 qemu_icount += add;
4277 timeout = delta / 1000000;
4278 if (timeout < 0)
4279 timeout = 0;
4283 return timeout;
4284 #else /* CONFIG_IOTHREAD */
4285 return 1000;
4286 #endif
4289 static int vm_can_run(void)
4291 if (powerdown_requested)
4292 return 0;
4293 if (reset_requested)
4294 return 0;
4295 if (shutdown_requested)
4296 return 0;
4297 if (debug_requested)
4298 return 0;
4299 return 1;
4302 static void main_loop(void)
4304 int r;
4306 #ifdef CONFIG_IOTHREAD
4307 qemu_system_ready = 1;
4308 qemu_cond_broadcast(&qemu_system_cond);
4309 #endif
4311 for (;;) {
4312 do {
4313 #ifdef CONFIG_PROFILER
4314 int64_t ti;
4315 #endif
4316 #ifndef CONFIG_IOTHREAD
4317 tcg_cpu_exec();
4318 #endif
4319 #ifdef CONFIG_PROFILER
4320 ti = profile_getclock();
4321 #endif
4322 main_loop_wait(qemu_calculate_timeout());
4323 #ifdef CONFIG_PROFILER
4324 dev_time += profile_getclock() - ti;
4325 #endif
4326 } while (vm_can_run());
4328 if (qemu_debug_requested())
4329 vm_stop(EXCP_DEBUG);
4330 if (qemu_shutdown_requested()) {
4331 if (no_shutdown) {
4332 vm_stop(0);
4333 no_shutdown = 0;
4334 } else
4335 break;
4337 if (qemu_reset_requested()) {
4338 pause_all_vcpus();
4339 qemu_system_reset();
4340 resume_all_vcpus();
4342 if (qemu_powerdown_requested())
4343 qemu_system_powerdown();
4344 if ((r = qemu_vmstop_requested()))
4345 vm_stop(r);
4347 pause_all_vcpus();
4350 static void version(void)
4352 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4355 static void help(int exitcode)
4357 version();
4358 printf("usage: %s [options] [disk_image]\n"
4359 "\n"
4360 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4361 "\n"
4362 #define DEF(option, opt_arg, opt_enum, opt_help) \
4363 opt_help
4364 #define DEFHEADING(text) stringify(text) "\n"
4365 #include "qemu-options.h"
4366 #undef DEF
4367 #undef DEFHEADING
4368 #undef GEN_DOCS
4369 "\n"
4370 "During emulation, the following keys are useful:\n"
4371 "ctrl-alt-f toggle full screen\n"
4372 "ctrl-alt-n switch to virtual console 'n'\n"
4373 "ctrl-alt toggle mouse and keyboard grab\n"
4374 "\n"
4375 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4377 "qemu",
4378 DEFAULT_RAM_SIZE,
4379 #ifndef _WIN32
4380 DEFAULT_NETWORK_SCRIPT,
4381 DEFAULT_NETWORK_DOWN_SCRIPT,
4382 #endif
4383 DEFAULT_GDBSTUB_PORT,
4384 "/tmp/qemu.log");
4385 exit(exitcode);
4388 #define HAS_ARG 0x0001
4390 enum {
4391 #define DEF(option, opt_arg, opt_enum, opt_help) \
4392 opt_enum,
4393 #define DEFHEADING(text)
4394 #include "qemu-options.h"
4395 #undef DEF
4396 #undef DEFHEADING
4397 #undef GEN_DOCS
4400 typedef struct QEMUOption {
4401 const char *name;
4402 int flags;
4403 int index;
4404 } QEMUOption;
4406 static const QEMUOption qemu_options[] = {
4407 { "h", 0, QEMU_OPTION_h },
4408 #define DEF(option, opt_arg, opt_enum, opt_help) \
4409 { option, opt_arg, opt_enum },
4410 #define DEFHEADING(text)
4411 #include "qemu-options.h"
4412 #undef DEF
4413 #undef DEFHEADING
4414 #undef GEN_DOCS
4415 { NULL },
4418 #ifdef HAS_AUDIO
4419 struct soundhw soundhw[] = {
4420 #ifdef HAS_AUDIO_CHOICE
4421 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4423 "pcspk",
4424 "PC speaker",
4427 { .init_isa = pcspk_audio_init }
4429 #endif
4431 #ifdef CONFIG_SB16
4433 "sb16",
4434 "Creative Sound Blaster 16",
4437 { .init_isa = SB16_init }
4439 #endif
4441 #ifdef CONFIG_CS4231A
4443 "cs4231a",
4444 "CS4231A",
4447 { .init_isa = cs4231a_init }
4449 #endif
4451 #ifdef CONFIG_ADLIB
4453 "adlib",
4454 #ifdef HAS_YMF262
4455 "Yamaha YMF262 (OPL3)",
4456 #else
4457 "Yamaha YM3812 (OPL2)",
4458 #endif
4461 { .init_isa = Adlib_init }
4463 #endif
4465 #ifdef CONFIG_GUS
4467 "gus",
4468 "Gravis Ultrasound GF1",
4471 { .init_isa = GUS_init }
4473 #endif
4475 #ifdef CONFIG_AC97
4477 "ac97",
4478 "Intel 82801AA AC97 Audio",
4481 { .init_pci = ac97_init }
4483 #endif
4485 #ifdef CONFIG_ES1370
4487 "es1370",
4488 "ENSONIQ AudioPCI ES1370",
4491 { .init_pci = es1370_init }
4493 #endif
4495 #endif /* HAS_AUDIO_CHOICE */
4497 { NULL, NULL, 0, 0, { NULL } }
4500 static void select_soundhw (const char *optarg)
4502 struct soundhw *c;
4504 if (*optarg == '?') {
4505 show_valid_cards:
4507 printf ("Valid sound card names (comma separated):\n");
4508 for (c = soundhw; c->name; ++c) {
4509 printf ("%-11s %s\n", c->name, c->descr);
4511 printf ("\n-soundhw all will enable all of the above\n");
4512 exit (*optarg != '?');
4514 else {
4515 size_t l;
4516 const char *p;
4517 char *e;
4518 int bad_card = 0;
4520 if (!strcmp (optarg, "all")) {
4521 for (c = soundhw; c->name; ++c) {
4522 c->enabled = 1;
4524 return;
4527 p = optarg;
4528 while (*p) {
4529 e = strchr (p, ',');
4530 l = !e ? strlen (p) : (size_t) (e - p);
4532 for (c = soundhw; c->name; ++c) {
4533 if (!strncmp (c->name, p, l)) {
4534 c->enabled = 1;
4535 break;
4539 if (!c->name) {
4540 if (l > 80) {
4541 fprintf (stderr,
4542 "Unknown sound card name (too big to show)\n");
4544 else {
4545 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4546 (int) l, p);
4548 bad_card = 1;
4550 p += l + (e != NULL);
4553 if (bad_card)
4554 goto show_valid_cards;
4557 #endif
4559 static void select_vgahw (const char *p)
4561 const char *opts;
4563 cirrus_vga_enabled = 0;
4564 std_vga_enabled = 0;
4565 vmsvga_enabled = 0;
4566 xenfb_enabled = 0;
4567 if (strstart(p, "std", &opts)) {
4568 std_vga_enabled = 1;
4569 } else if (strstart(p, "cirrus", &opts)) {
4570 cirrus_vga_enabled = 1;
4571 } else if (strstart(p, "vmware", &opts)) {
4572 vmsvga_enabled = 1;
4573 } else if (strstart(p, "xenfb", &opts)) {
4574 xenfb_enabled = 1;
4575 } else if (!strstart(p, "none", &opts)) {
4576 invalid_vga:
4577 fprintf(stderr, "Unknown vga type: %s\n", p);
4578 exit(1);
4580 while (*opts) {
4581 const char *nextopt;
4583 if (strstart(opts, ",retrace=", &nextopt)) {
4584 opts = nextopt;
4585 if (strstart(opts, "dumb", &nextopt))
4586 vga_retrace_method = VGA_RETRACE_DUMB;
4587 else if (strstart(opts, "precise", &nextopt))
4588 vga_retrace_method = VGA_RETRACE_PRECISE;
4589 else goto invalid_vga;
4590 } else goto invalid_vga;
4591 opts = nextopt;
4595 #ifdef TARGET_I386
4596 static int balloon_parse(const char *arg)
4598 char buf[128];
4599 const char *p;
4601 if (!strcmp(arg, "none")) {
4602 virtio_balloon = 0;
4603 } else if (!strncmp(arg, "virtio", 6)) {
4604 virtio_balloon = 1;
4605 if (arg[6] == ',') {
4606 p = arg + 7;
4607 if (get_param_value(buf, sizeof(buf), "addr", p)) {
4608 virtio_balloon_devaddr = strdup(buf);
4611 } else {
4612 return -1;
4614 return 0;
4616 #endif
4618 #ifdef _WIN32
4619 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4621 exit(STATUS_CONTROL_C_EXIT);
4622 return TRUE;
4624 #endif
4626 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4628 int ret;
4630 if(strlen(str) != 36)
4631 return -1;
4633 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4634 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4635 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4637 if(ret != 16)
4638 return -1;
4640 #ifdef TARGET_I386
4641 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4642 #endif
4644 return 0;
4647 #define MAX_NET_CLIENTS 32
4649 #ifndef _WIN32
4651 static void termsig_handler(int signal)
4653 qemu_system_shutdown_request();
4656 static void sigchld_handler(int signal)
4658 waitpid(-1, NULL, WNOHANG);
4661 static void sighandler_setup(void)
4663 struct sigaction act;
4665 memset(&act, 0, sizeof(act));
4666 act.sa_handler = termsig_handler;
4667 sigaction(SIGINT, &act, NULL);
4668 sigaction(SIGHUP, &act, NULL);
4669 sigaction(SIGTERM, &act, NULL);
4671 act.sa_handler = sigchld_handler;
4672 act.sa_flags = SA_NOCLDSTOP;
4673 sigaction(SIGCHLD, &act, NULL);
4676 #endif
4678 #ifdef _WIN32
4679 /* Look for support files in the same directory as the executable. */
4680 static char *find_datadir(const char *argv0)
4682 char *p;
4683 char buf[MAX_PATH];
4684 DWORD len;
4686 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4687 if (len == 0) {
4688 return NULL;
4691 buf[len] = 0;
4692 p = buf + len - 1;
4693 while (p != buf && *p != '\\')
4694 p--;
4695 *p = 0;
4696 if (access(buf, R_OK) == 0) {
4697 return qemu_strdup(buf);
4699 return NULL;
4701 #else /* !_WIN32 */
4703 /* Find a likely location for support files using the location of the binary.
4704 For installed binaries this will be "$bindir/../share/qemu". When
4705 running from the build tree this will be "$bindir/../pc-bios". */
4706 #define SHARE_SUFFIX "/share/qemu"
4707 #define BUILD_SUFFIX "/pc-bios"
4708 static char *find_datadir(const char *argv0)
4710 char *dir;
4711 char *p = NULL;
4712 char *res;
4713 #ifdef PATH_MAX
4714 char buf[PATH_MAX];
4715 #endif
4716 size_t max_len;
4718 #if defined(__linux__)
4720 int len;
4721 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4722 if (len > 0) {
4723 buf[len] = 0;
4724 p = buf;
4727 #elif defined(__FreeBSD__)
4729 int len;
4730 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4731 if (len > 0) {
4732 buf[len] = 0;
4733 p = buf;
4736 #endif
4737 /* If we don't have any way of figuring out the actual executable
4738 location then try argv[0]. */
4739 if (!p) {
4740 #ifdef PATH_MAX
4741 p = buf;
4742 #endif
4743 p = realpath(argv0, p);
4744 if (!p) {
4745 return NULL;
4748 dir = dirname(p);
4749 dir = dirname(dir);
4751 max_len = strlen(dir) +
4752 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4753 res = qemu_mallocz(max_len);
4754 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4755 if (access(res, R_OK)) {
4756 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4757 if (access(res, R_OK)) {
4758 qemu_free(res);
4759 res = NULL;
4762 #ifndef PATH_MAX
4763 free(p);
4764 #endif
4765 return res;
4767 #undef SHARE_SUFFIX
4768 #undef BUILD_SUFFIX
4769 #endif
4771 char *qemu_find_file(int type, const char *name)
4773 int len;
4774 const char *subdir;
4775 char *buf;
4777 /* If name contains path separators then try it as a straight path. */
4778 if ((strchr(name, '/') || strchr(name, '\\'))
4779 && access(name, R_OK) == 0) {
4780 return strdup(name);
4782 switch (type) {
4783 case QEMU_FILE_TYPE_BIOS:
4784 subdir = "";
4785 break;
4786 case QEMU_FILE_TYPE_KEYMAP:
4787 subdir = "keymaps/";
4788 break;
4789 default:
4790 abort();
4792 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4793 buf = qemu_mallocz(len);
4794 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4795 if (access(buf, R_OK)) {
4796 qemu_free(buf);
4797 return NULL;
4799 return buf;
4802 int main(int argc, char **argv, char **envp)
4804 const char *gdbstub_dev = NULL;
4805 uint32_t boot_devices_bitmap = 0;
4806 int i;
4807 int snapshot, linux_boot, net_boot;
4808 const char *initrd_filename;
4809 const char *kernel_filename, *kernel_cmdline;
4810 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4811 DisplayState *ds;
4812 DisplayChangeListener *dcl;
4813 int cyls, heads, secs, translation;
4814 const char *net_clients[MAX_NET_CLIENTS];
4815 int nb_net_clients;
4816 const char *bt_opts[MAX_BT_CMDLINE];
4817 int nb_bt_opts;
4818 int hda_index;
4819 int optind;
4820 const char *r, *optarg;
4821 CharDriverState *monitor_hd = NULL;
4822 const char *monitor_device;
4823 const char *serial_devices[MAX_SERIAL_PORTS];
4824 int serial_device_index;
4825 const char *parallel_devices[MAX_PARALLEL_PORTS];
4826 int parallel_device_index;
4827 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4828 int virtio_console_index;
4829 const char *loadvm = NULL;
4830 QEMUMachine *machine;
4831 const char *cpu_model;
4832 const char *usb_devices[MAX_USB_CMDLINE];
4833 int usb_devices_index;
4834 #ifndef _WIN32
4835 int fds[2];
4836 #endif
4837 int tb_size;
4838 const char *pid_file = NULL;
4839 const char *incoming = NULL;
4840 #ifndef _WIN32
4841 int fd = 0;
4842 struct passwd *pwd = NULL;
4843 const char *chroot_dir = NULL;
4844 const char *run_as = NULL;
4845 #endif
4846 CPUState *env;
4847 int show_vnc_port = 0;
4849 qemu_cache_utils_init(envp);
4851 LIST_INIT (&vm_change_state_head);
4852 #ifndef _WIN32
4854 struct sigaction act;
4855 sigfillset(&act.sa_mask);
4856 act.sa_flags = 0;
4857 act.sa_handler = SIG_IGN;
4858 sigaction(SIGPIPE, &act, NULL);
4860 #else
4861 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4862 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4863 QEMU to run on a single CPU */
4865 HANDLE h;
4866 DWORD mask, smask;
4867 int i;
4868 h = GetCurrentProcess();
4869 if (GetProcessAffinityMask(h, &mask, &smask)) {
4870 for(i = 0; i < 32; i++) {
4871 if (mask & (1 << i))
4872 break;
4874 if (i != 32) {
4875 mask = 1 << i;
4876 SetProcessAffinityMask(h, mask);
4880 #endif
4882 module_call_init(MODULE_INIT_MACHINE);
4883 machine = find_default_machine();
4884 cpu_model = NULL;
4885 initrd_filename = NULL;
4886 ram_size = 0;
4887 snapshot = 0;
4888 kernel_filename = NULL;
4889 kernel_cmdline = "";
4890 cyls = heads = secs = 0;
4891 translation = BIOS_ATA_TRANSLATION_AUTO;
4892 monitor_device = "vc:80Cx24C";
4894 serial_devices[0] = "vc:80Cx24C";
4895 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4896 serial_devices[i] = NULL;
4897 serial_device_index = 0;
4899 parallel_devices[0] = "vc:80Cx24C";
4900 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4901 parallel_devices[i] = NULL;
4902 parallel_device_index = 0;
4904 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4905 virtio_consoles[i] = NULL;
4906 virtio_console_index = 0;
4908 for (i = 0; i < MAX_NODES; i++) {
4909 node_mem[i] = 0;
4910 node_cpumask[i] = 0;
4913 usb_devices_index = 0;
4915 nb_net_clients = 0;
4916 nb_bt_opts = 0;
4917 nb_drives = 0;
4918 nb_drives_opt = 0;
4919 nb_numa_nodes = 0;
4920 hda_index = -1;
4922 nb_nics = 0;
4924 tb_size = 0;
4925 autostart= 1;
4927 register_watchdogs();
4929 optind = 1;
4930 for(;;) {
4931 if (optind >= argc)
4932 break;
4933 r = argv[optind];
4934 if (r[0] != '-') {
4935 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4936 } else {
4937 const QEMUOption *popt;
4939 optind++;
4940 /* Treat --foo the same as -foo. */
4941 if (r[1] == '-')
4942 r++;
4943 popt = qemu_options;
4944 for(;;) {
4945 if (!popt->name) {
4946 fprintf(stderr, "%s: invalid option -- '%s'\n",
4947 argv[0], r);
4948 exit(1);
4950 if (!strcmp(popt->name, r + 1))
4951 break;
4952 popt++;
4954 if (popt->flags & HAS_ARG) {
4955 if (optind >= argc) {
4956 fprintf(stderr, "%s: option '%s' requires an argument\n",
4957 argv[0], r);
4958 exit(1);
4960 optarg = argv[optind++];
4961 } else {
4962 optarg = NULL;
4965 switch(popt->index) {
4966 case QEMU_OPTION_M:
4967 machine = find_machine(optarg);
4968 if (!machine) {
4969 QEMUMachine *m;
4970 printf("Supported machines are:\n");
4971 for(m = first_machine; m != NULL; m = m->next) {
4972 printf("%-10s %s%s\n",
4973 m->name, m->desc,
4974 m->is_default ? " (default)" : "");
4976 exit(*optarg != '?');
4978 break;
4979 case QEMU_OPTION_cpu:
4980 /* hw initialization will check this */
4981 if (*optarg == '?') {
4982 /* XXX: implement xxx_cpu_list for targets that still miss it */
4983 #if defined(cpu_list)
4984 cpu_list(stdout, &fprintf);
4985 #endif
4986 exit(0);
4987 } else {
4988 cpu_model = optarg;
4990 break;
4991 case QEMU_OPTION_initrd:
4992 initrd_filename = optarg;
4993 break;
4994 case QEMU_OPTION_hda:
4995 if (cyls == 0)
4996 hda_index = drive_add(optarg, HD_ALIAS, 0);
4997 else
4998 hda_index = drive_add(optarg, HD_ALIAS
4999 ",cyls=%d,heads=%d,secs=%d%s",
5000 0, cyls, heads, secs,
5001 translation == BIOS_ATA_TRANSLATION_LBA ?
5002 ",trans=lba" :
5003 translation == BIOS_ATA_TRANSLATION_NONE ?
5004 ",trans=none" : "");
5005 break;
5006 case QEMU_OPTION_hdb:
5007 case QEMU_OPTION_hdc:
5008 case QEMU_OPTION_hdd:
5009 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5010 break;
5011 case QEMU_OPTION_drive:
5012 drive_add(NULL, "%s", optarg);
5013 break;
5014 case QEMU_OPTION_mtdblock:
5015 drive_add(optarg, MTD_ALIAS);
5016 break;
5017 case QEMU_OPTION_sd:
5018 drive_add(optarg, SD_ALIAS);
5019 break;
5020 case QEMU_OPTION_pflash:
5021 drive_add(optarg, PFLASH_ALIAS);
5022 break;
5023 case QEMU_OPTION_snapshot:
5024 snapshot = 1;
5025 break;
5026 case QEMU_OPTION_hdachs:
5028 const char *p;
5029 p = optarg;
5030 cyls = strtol(p, (char **)&p, 0);
5031 if (cyls < 1 || cyls > 16383)
5032 goto chs_fail;
5033 if (*p != ',')
5034 goto chs_fail;
5035 p++;
5036 heads = strtol(p, (char **)&p, 0);
5037 if (heads < 1 || heads > 16)
5038 goto chs_fail;
5039 if (*p != ',')
5040 goto chs_fail;
5041 p++;
5042 secs = strtol(p, (char **)&p, 0);
5043 if (secs < 1 || secs > 63)
5044 goto chs_fail;
5045 if (*p == ',') {
5046 p++;
5047 if (!strcmp(p, "none"))
5048 translation = BIOS_ATA_TRANSLATION_NONE;
5049 else if (!strcmp(p, "lba"))
5050 translation = BIOS_ATA_TRANSLATION_LBA;
5051 else if (!strcmp(p, "auto"))
5052 translation = BIOS_ATA_TRANSLATION_AUTO;
5053 else
5054 goto chs_fail;
5055 } else if (*p != '\0') {
5056 chs_fail:
5057 fprintf(stderr, "qemu: invalid physical CHS format\n");
5058 exit(1);
5060 if (hda_index != -1)
5061 snprintf(drives_opt[hda_index].opt,
5062 sizeof(drives_opt[hda_index].opt),
5063 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5064 0, cyls, heads, secs,
5065 translation == BIOS_ATA_TRANSLATION_LBA ?
5066 ",trans=lba" :
5067 translation == BIOS_ATA_TRANSLATION_NONE ?
5068 ",trans=none" : "");
5070 break;
5071 case QEMU_OPTION_numa:
5072 if (nb_numa_nodes >= MAX_NODES) {
5073 fprintf(stderr, "qemu: too many NUMA nodes\n");
5074 exit(1);
5076 numa_add(optarg);
5077 break;
5078 case QEMU_OPTION_nographic:
5079 display_type = DT_NOGRAPHIC;
5080 break;
5081 #ifdef CONFIG_CURSES
5082 case QEMU_OPTION_curses:
5083 display_type = DT_CURSES;
5084 break;
5085 #endif
5086 case QEMU_OPTION_portrait:
5087 graphic_rotate = 1;
5088 break;
5089 case QEMU_OPTION_kernel:
5090 kernel_filename = optarg;
5091 break;
5092 case QEMU_OPTION_append:
5093 kernel_cmdline = optarg;
5094 break;
5095 case QEMU_OPTION_cdrom:
5096 drive_add(optarg, CDROM_ALIAS);
5097 break;
5098 case QEMU_OPTION_boot:
5100 static const char * const params[] = {
5101 "order", NULL
5103 char buf[sizeof(boot_devices)];
5104 int legacy = 0;
5106 if (!strchr(optarg, '=')) {
5107 legacy = 1;
5108 pstrcpy(buf, sizeof(buf), optarg);
5109 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5110 fprintf(stderr,
5111 "qemu: unknown boot parameter '%s' in '%s'\n",
5112 buf, optarg);
5113 exit(1);
5116 if (legacy ||
5117 get_param_value(buf, sizeof(buf), "order", optarg)) {
5118 boot_devices_bitmap = parse_bootdevices(buf);
5119 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5122 break;
5123 case QEMU_OPTION_fda:
5124 case QEMU_OPTION_fdb:
5125 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5126 break;
5127 #ifdef TARGET_I386
5128 case QEMU_OPTION_no_fd_bootchk:
5129 fd_bootchk = 0;
5130 break;
5131 #endif
5132 case QEMU_OPTION_net:
5133 if (nb_net_clients >= MAX_NET_CLIENTS) {
5134 fprintf(stderr, "qemu: too many network clients\n");
5135 exit(1);
5137 net_clients[nb_net_clients] = optarg;
5138 nb_net_clients++;
5139 break;
5140 #ifdef CONFIG_SLIRP
5141 case QEMU_OPTION_tftp:
5142 legacy_tftp_prefix = optarg;
5143 break;
5144 case QEMU_OPTION_bootp:
5145 legacy_bootp_filename = optarg;
5146 break;
5147 #ifndef _WIN32
5148 case QEMU_OPTION_smb:
5149 net_slirp_smb(optarg);
5150 break;
5151 #endif
5152 case QEMU_OPTION_redir:
5153 net_slirp_redir(optarg);
5154 break;
5155 #endif
5156 case QEMU_OPTION_bt:
5157 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5158 fprintf(stderr, "qemu: too many bluetooth options\n");
5159 exit(1);
5161 bt_opts[nb_bt_opts++] = optarg;
5162 break;
5163 #ifdef HAS_AUDIO
5164 case QEMU_OPTION_audio_help:
5165 AUD_help ();
5166 exit (0);
5167 break;
5168 case QEMU_OPTION_soundhw:
5169 select_soundhw (optarg);
5170 break;
5171 #endif
5172 case QEMU_OPTION_h:
5173 help(0);
5174 break;
5175 case QEMU_OPTION_version:
5176 version();
5177 exit(0);
5178 break;
5179 case QEMU_OPTION_m: {
5180 uint64_t value;
5181 char *ptr;
5183 value = strtoul(optarg, &ptr, 10);
5184 switch (*ptr) {
5185 case 0: case 'M': case 'm':
5186 value <<= 20;
5187 break;
5188 case 'G': case 'g':
5189 value <<= 30;
5190 break;
5191 default:
5192 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5193 exit(1);
5196 /* On 32-bit hosts, QEMU is limited by virtual address space */
5197 if (value > (2047 << 20)
5198 #ifndef CONFIG_KQEMU
5199 && HOST_LONG_BITS == 32
5200 #endif
5202 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5203 exit(1);
5205 if (value != (uint64_t)(ram_addr_t)value) {
5206 fprintf(stderr, "qemu: ram size too large\n");
5207 exit(1);
5209 ram_size = value;
5210 break;
5212 case QEMU_OPTION_d:
5214 int mask;
5215 const CPULogItem *item;
5217 mask = cpu_str_to_log_mask(optarg);
5218 if (!mask) {
5219 printf("Log items (comma separated):\n");
5220 for(item = cpu_log_items; item->mask != 0; item++) {
5221 printf("%-10s %s\n", item->name, item->help);
5223 exit(1);
5225 cpu_set_log(mask);
5227 break;
5228 case QEMU_OPTION_s:
5229 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5230 break;
5231 case QEMU_OPTION_gdb:
5232 gdbstub_dev = optarg;
5233 break;
5234 case QEMU_OPTION_L:
5235 data_dir = optarg;
5236 break;
5237 case QEMU_OPTION_bios:
5238 bios_name = optarg;
5239 break;
5240 case QEMU_OPTION_singlestep:
5241 singlestep = 1;
5242 break;
5243 case QEMU_OPTION_S:
5244 autostart = 0;
5245 break;
5246 #ifndef _WIN32
5247 case QEMU_OPTION_k:
5248 keyboard_layout = optarg;
5249 break;
5250 #endif
5251 case QEMU_OPTION_localtime:
5252 rtc_utc = 0;
5253 break;
5254 case QEMU_OPTION_vga:
5255 select_vgahw (optarg);
5256 break;
5257 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5258 case QEMU_OPTION_g:
5260 const char *p;
5261 int w, h, depth;
5262 p = optarg;
5263 w = strtol(p, (char **)&p, 10);
5264 if (w <= 0) {
5265 graphic_error:
5266 fprintf(stderr, "qemu: invalid resolution or depth\n");
5267 exit(1);
5269 if (*p != 'x')
5270 goto graphic_error;
5271 p++;
5272 h = strtol(p, (char **)&p, 10);
5273 if (h <= 0)
5274 goto graphic_error;
5275 if (*p == 'x') {
5276 p++;
5277 depth = strtol(p, (char **)&p, 10);
5278 if (depth != 8 && depth != 15 && depth != 16 &&
5279 depth != 24 && depth != 32)
5280 goto graphic_error;
5281 } else if (*p == '\0') {
5282 depth = graphic_depth;
5283 } else {
5284 goto graphic_error;
5287 graphic_width = w;
5288 graphic_height = h;
5289 graphic_depth = depth;
5291 break;
5292 #endif
5293 case QEMU_OPTION_echr:
5295 char *r;
5296 term_escape_char = strtol(optarg, &r, 0);
5297 if (r == optarg)
5298 printf("Bad argument to echr\n");
5299 break;
5301 case QEMU_OPTION_monitor:
5302 monitor_device = optarg;
5303 break;
5304 case QEMU_OPTION_serial:
5305 if (serial_device_index >= MAX_SERIAL_PORTS) {
5306 fprintf(stderr, "qemu: too many serial ports\n");
5307 exit(1);
5309 serial_devices[serial_device_index] = optarg;
5310 serial_device_index++;
5311 break;
5312 case QEMU_OPTION_watchdog:
5313 i = select_watchdog(optarg);
5314 if (i > 0)
5315 exit (i == 1 ? 1 : 0);
5316 break;
5317 case QEMU_OPTION_watchdog_action:
5318 if (select_watchdog_action(optarg) == -1) {
5319 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5320 exit(1);
5322 break;
5323 case QEMU_OPTION_virtiocon:
5324 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5325 fprintf(stderr, "qemu: too many virtio consoles\n");
5326 exit(1);
5328 virtio_consoles[virtio_console_index] = optarg;
5329 virtio_console_index++;
5330 break;
5331 case QEMU_OPTION_parallel:
5332 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5333 fprintf(stderr, "qemu: too many parallel ports\n");
5334 exit(1);
5336 parallel_devices[parallel_device_index] = optarg;
5337 parallel_device_index++;
5338 break;
5339 case QEMU_OPTION_loadvm:
5340 loadvm = optarg;
5341 break;
5342 case QEMU_OPTION_full_screen:
5343 full_screen = 1;
5344 break;
5345 #ifdef CONFIG_SDL
5346 case QEMU_OPTION_no_frame:
5347 no_frame = 1;
5348 break;
5349 case QEMU_OPTION_alt_grab:
5350 alt_grab = 1;
5351 break;
5352 case QEMU_OPTION_no_quit:
5353 no_quit = 1;
5354 break;
5355 case QEMU_OPTION_sdl:
5356 display_type = DT_SDL;
5357 break;
5358 #endif
5359 case QEMU_OPTION_pidfile:
5360 pid_file = optarg;
5361 break;
5362 #ifdef TARGET_I386
5363 case QEMU_OPTION_win2k_hack:
5364 win2k_install_hack = 1;
5365 break;
5366 case QEMU_OPTION_rtc_td_hack:
5367 rtc_td_hack = 1;
5368 break;
5369 case QEMU_OPTION_acpitable:
5370 if(acpi_table_add(optarg) < 0) {
5371 fprintf(stderr, "Wrong acpi table provided\n");
5372 exit(1);
5374 break;
5375 case QEMU_OPTION_smbios:
5376 if(smbios_entry_add(optarg) < 0) {
5377 fprintf(stderr, "Wrong smbios provided\n");
5378 exit(1);
5380 break;
5381 #endif
5382 #ifdef CONFIG_KQEMU
5383 case QEMU_OPTION_enable_kqemu:
5384 kqemu_allowed = 1;
5385 break;
5386 case QEMU_OPTION_kernel_kqemu:
5387 kqemu_allowed = 2;
5388 break;
5389 #endif
5390 #ifdef CONFIG_KVM
5391 case QEMU_OPTION_enable_kvm:
5392 kvm_allowed = 1;
5393 #ifdef CONFIG_KQEMU
5394 kqemu_allowed = 0;
5395 #endif
5396 break;
5397 #endif
5398 case QEMU_OPTION_usb:
5399 usb_enabled = 1;
5400 break;
5401 case QEMU_OPTION_usbdevice:
5402 usb_enabled = 1;
5403 if (usb_devices_index >= MAX_USB_CMDLINE) {
5404 fprintf(stderr, "Too many USB devices\n");
5405 exit(1);
5407 usb_devices[usb_devices_index] = optarg;
5408 usb_devices_index++;
5409 break;
5410 case QEMU_OPTION_smp:
5411 smp_cpus = atoi(optarg);
5412 if (smp_cpus < 1) {
5413 fprintf(stderr, "Invalid number of CPUs\n");
5414 exit(1);
5416 break;
5417 case QEMU_OPTION_vnc:
5418 display_type = DT_VNC;
5419 vnc_display = optarg;
5420 break;
5421 #ifdef TARGET_I386
5422 case QEMU_OPTION_no_acpi:
5423 acpi_enabled = 0;
5424 break;
5425 case QEMU_OPTION_no_hpet:
5426 no_hpet = 1;
5427 break;
5428 case QEMU_OPTION_balloon:
5429 if (balloon_parse(optarg) < 0) {
5430 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5431 exit(1);
5433 break;
5434 #endif
5435 case QEMU_OPTION_no_reboot:
5436 no_reboot = 1;
5437 break;
5438 case QEMU_OPTION_no_shutdown:
5439 no_shutdown = 1;
5440 break;
5441 case QEMU_OPTION_show_cursor:
5442 cursor_hide = 0;
5443 break;
5444 case QEMU_OPTION_uuid:
5445 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5446 fprintf(stderr, "Fail to parse UUID string."
5447 " Wrong format.\n");
5448 exit(1);
5450 break;
5451 #ifndef _WIN32
5452 case QEMU_OPTION_daemonize:
5453 daemonize = 1;
5454 break;
5455 #endif
5456 case QEMU_OPTION_option_rom:
5457 if (nb_option_roms >= MAX_OPTION_ROMS) {
5458 fprintf(stderr, "Too many option ROMs\n");
5459 exit(1);
5461 option_rom[nb_option_roms] = optarg;
5462 nb_option_roms++;
5463 break;
5464 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5465 case QEMU_OPTION_semihosting:
5466 semihosting_enabled = 1;
5467 break;
5468 #endif
5469 case QEMU_OPTION_name:
5470 qemu_name = qemu_strdup(optarg);
5472 char *p = strchr(qemu_name, ',');
5473 if (p != NULL) {
5474 *p++ = 0;
5475 if (strncmp(p, "process=", 8)) {
5476 fprintf(stderr, "Unknown subargument %s to -name", p);
5477 exit(1);
5479 p += 8;
5480 set_proc_name(p);
5483 break;
5484 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5485 case QEMU_OPTION_prom_env:
5486 if (nb_prom_envs >= MAX_PROM_ENVS) {
5487 fprintf(stderr, "Too many prom variables\n");
5488 exit(1);
5490 prom_envs[nb_prom_envs] = optarg;
5491 nb_prom_envs++;
5492 break;
5493 #endif
5494 #ifdef TARGET_ARM
5495 case QEMU_OPTION_old_param:
5496 old_param = 1;
5497 break;
5498 #endif
5499 case QEMU_OPTION_clock:
5500 configure_alarms(optarg);
5501 break;
5502 case QEMU_OPTION_startdate:
5504 struct tm tm;
5505 time_t rtc_start_date;
5506 if (!strcmp(optarg, "now")) {
5507 rtc_date_offset = -1;
5508 } else {
5509 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5510 &tm.tm_year,
5511 &tm.tm_mon,
5512 &tm.tm_mday,
5513 &tm.tm_hour,
5514 &tm.tm_min,
5515 &tm.tm_sec) == 6) {
5516 /* OK */
5517 } else if (sscanf(optarg, "%d-%d-%d",
5518 &tm.tm_year,
5519 &tm.tm_mon,
5520 &tm.tm_mday) == 3) {
5521 tm.tm_hour = 0;
5522 tm.tm_min = 0;
5523 tm.tm_sec = 0;
5524 } else {
5525 goto date_fail;
5527 tm.tm_year -= 1900;
5528 tm.tm_mon--;
5529 rtc_start_date = mktimegm(&tm);
5530 if (rtc_start_date == -1) {
5531 date_fail:
5532 fprintf(stderr, "Invalid date format. Valid format are:\n"
5533 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5534 exit(1);
5536 rtc_date_offset = time(NULL) - rtc_start_date;
5539 break;
5540 case QEMU_OPTION_tb_size:
5541 tb_size = strtol(optarg, NULL, 0);
5542 if (tb_size < 0)
5543 tb_size = 0;
5544 break;
5545 case QEMU_OPTION_icount:
5546 use_icount = 1;
5547 if (strcmp(optarg, "auto") == 0) {
5548 icount_time_shift = -1;
5549 } else {
5550 icount_time_shift = strtol(optarg, NULL, 0);
5552 break;
5553 case QEMU_OPTION_incoming:
5554 incoming = optarg;
5555 break;
5556 #ifndef _WIN32
5557 case QEMU_OPTION_chroot:
5558 chroot_dir = optarg;
5559 break;
5560 case QEMU_OPTION_runas:
5561 run_as = optarg;
5562 break;
5563 #endif
5564 #ifdef CONFIG_XEN
5565 case QEMU_OPTION_xen_domid:
5566 xen_domid = atoi(optarg);
5567 break;
5568 case QEMU_OPTION_xen_create:
5569 xen_mode = XEN_CREATE;
5570 break;
5571 case QEMU_OPTION_xen_attach:
5572 xen_mode = XEN_ATTACH;
5573 break;
5574 #endif
5579 /* If no data_dir is specified then try to find it relative to the
5580 executable path. */
5581 if (!data_dir) {
5582 data_dir = find_datadir(argv[0]);
5584 /* If all else fails use the install patch specified when building. */
5585 if (!data_dir) {
5586 data_dir = CONFIG_QEMU_SHAREDIR;
5589 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5590 if (kvm_allowed && kqemu_allowed) {
5591 fprintf(stderr,
5592 "You can not enable both KVM and kqemu at the same time\n");
5593 exit(1);
5595 #endif
5597 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5598 if (smp_cpus > machine->max_cpus) {
5599 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5600 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5601 machine->max_cpus);
5602 exit(1);
5605 if (display_type == DT_NOGRAPHIC) {
5606 if (serial_device_index == 0)
5607 serial_devices[0] = "stdio";
5608 if (parallel_device_index == 0)
5609 parallel_devices[0] = "null";
5610 if (strncmp(monitor_device, "vc", 2) == 0)
5611 monitor_device = "stdio";
5614 #ifndef _WIN32
5615 if (daemonize) {
5616 pid_t pid;
5618 if (pipe(fds) == -1)
5619 exit(1);
5621 pid = fork();
5622 if (pid > 0) {
5623 uint8_t status;
5624 ssize_t len;
5626 close(fds[1]);
5628 again:
5629 len = read(fds[0], &status, 1);
5630 if (len == -1 && (errno == EINTR))
5631 goto again;
5633 if (len != 1)
5634 exit(1);
5635 else if (status == 1) {
5636 fprintf(stderr, "Could not acquire pidfile\n");
5637 exit(1);
5638 } else
5639 exit(0);
5640 } else if (pid < 0)
5641 exit(1);
5643 setsid();
5645 pid = fork();
5646 if (pid > 0)
5647 exit(0);
5648 else if (pid < 0)
5649 exit(1);
5651 umask(027);
5653 signal(SIGTSTP, SIG_IGN);
5654 signal(SIGTTOU, SIG_IGN);
5655 signal(SIGTTIN, SIG_IGN);
5658 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5659 if (daemonize) {
5660 uint8_t status = 1;
5661 write(fds[1], &status, 1);
5662 } else
5663 fprintf(stderr, "Could not acquire pid file\n");
5664 exit(1);
5666 #endif
5668 #ifdef CONFIG_KQEMU
5669 if (smp_cpus > 1)
5670 kqemu_allowed = 0;
5671 #endif
5672 if (qemu_init_main_loop()) {
5673 fprintf(stderr, "qemu_init_main_loop failed\n");
5674 exit(1);
5676 linux_boot = (kernel_filename != NULL);
5678 if (!linux_boot && *kernel_cmdline != '\0') {
5679 fprintf(stderr, "-append only allowed with -kernel option\n");
5680 exit(1);
5683 if (!linux_boot && initrd_filename != NULL) {
5684 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5685 exit(1);
5688 setvbuf(stdout, NULL, _IOLBF, 0);
5690 init_timers();
5691 if (init_timer_alarm() < 0) {
5692 fprintf(stderr, "could not initialize alarm timer\n");
5693 exit(1);
5695 if (use_icount && icount_time_shift < 0) {
5696 use_icount = 2;
5697 /* 125MIPS seems a reasonable initial guess at the guest speed.
5698 It will be corrected fairly quickly anyway. */
5699 icount_time_shift = 3;
5700 init_icount_adjust();
5703 #ifdef _WIN32
5704 socket_init();
5705 #endif
5707 /* init network clients */
5708 if (nb_net_clients == 0) {
5709 /* if no clients, we use a default config */
5710 net_clients[nb_net_clients++] = "nic";
5711 #ifdef CONFIG_SLIRP
5712 net_clients[nb_net_clients++] = "user";
5713 #endif
5716 for(i = 0;i < nb_net_clients; i++) {
5717 if (net_client_parse(net_clients[i]) < 0)
5718 exit(1);
5721 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5722 net_set_boot_mask(net_boot);
5724 net_client_check();
5726 /* init the bluetooth world */
5727 for (i = 0; i < nb_bt_opts; i++)
5728 if (bt_parse(bt_opts[i]))
5729 exit(1);
5731 /* init the memory */
5732 if (ram_size == 0)
5733 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5735 #ifdef CONFIG_KQEMU
5736 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5737 guest ram allocation. It needs to go away. */
5738 if (kqemu_allowed) {
5739 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5740 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5741 if (!kqemu_phys_ram_base) {
5742 fprintf(stderr, "Could not allocate physical memory\n");
5743 exit(1);
5746 #endif
5748 /* init the dynamic translator */
5749 cpu_exec_init_all(tb_size * 1024 * 1024);
5751 bdrv_init();
5753 /* we always create the cdrom drive, even if no disk is there */
5755 if (nb_drives_opt < MAX_DRIVES)
5756 drive_add(NULL, CDROM_ALIAS);
5758 /* we always create at least one floppy */
5760 if (nb_drives_opt < MAX_DRIVES)
5761 drive_add(NULL, FD_ALIAS, 0);
5763 /* we always create one sd slot, even if no card is in it */
5765 if (nb_drives_opt < MAX_DRIVES)
5766 drive_add(NULL, SD_ALIAS);
5768 /* open the virtual block devices */
5770 for(i = 0; i < nb_drives_opt; i++)
5771 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5772 exit(1);
5774 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5775 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5777 #ifndef _WIN32
5778 /* must be after terminal init, SDL library changes signal handlers */
5779 sighandler_setup();
5780 #endif
5782 /* Maintain compatibility with multiple stdio monitors */
5783 if (!strcmp(monitor_device,"stdio")) {
5784 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5785 const char *devname = serial_devices[i];
5786 if (devname && !strcmp(devname,"mon:stdio")) {
5787 monitor_device = NULL;
5788 break;
5789 } else if (devname && !strcmp(devname,"stdio")) {
5790 monitor_device = NULL;
5791 serial_devices[i] = "mon:stdio";
5792 break;
5797 if (nb_numa_nodes > 0) {
5798 int i;
5800 if (nb_numa_nodes > smp_cpus) {
5801 nb_numa_nodes = smp_cpus;
5804 /* If no memory size if given for any node, assume the default case
5805 * and distribute the available memory equally across all nodes
5807 for (i = 0; i < nb_numa_nodes; i++) {
5808 if (node_mem[i] != 0)
5809 break;
5811 if (i == nb_numa_nodes) {
5812 uint64_t usedmem = 0;
5814 /* On Linux, the each node's border has to be 8MB aligned,
5815 * the final node gets the rest.
5817 for (i = 0; i < nb_numa_nodes - 1; i++) {
5818 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5819 usedmem += node_mem[i];
5821 node_mem[i] = ram_size - usedmem;
5824 for (i = 0; i < nb_numa_nodes; i++) {
5825 if (node_cpumask[i] != 0)
5826 break;
5828 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5829 * must cope with this anyway, because there are BIOSes out there in
5830 * real machines which also use this scheme.
5832 if (i == nb_numa_nodes) {
5833 for (i = 0; i < smp_cpus; i++) {
5834 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5839 if (kvm_enabled()) {
5840 int ret;
5842 ret = kvm_init(smp_cpus);
5843 if (ret < 0) {
5844 fprintf(stderr, "failed to initialize KVM\n");
5845 exit(1);
5849 if (monitor_device) {
5850 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5851 if (!monitor_hd) {
5852 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5853 exit(1);
5857 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5858 const char *devname = serial_devices[i];
5859 if (devname && strcmp(devname, "none")) {
5860 char label[32];
5861 snprintf(label, sizeof(label), "serial%d", i);
5862 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5863 if (!serial_hds[i]) {
5864 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5865 devname);
5866 exit(1);
5871 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5872 const char *devname = parallel_devices[i];
5873 if (devname && strcmp(devname, "none")) {
5874 char label[32];
5875 snprintf(label, sizeof(label), "parallel%d", i);
5876 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5877 if (!parallel_hds[i]) {
5878 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5879 devname);
5880 exit(1);
5885 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5886 const char *devname = virtio_consoles[i];
5887 if (devname && strcmp(devname, "none")) {
5888 char label[32];
5889 snprintf(label, sizeof(label), "virtcon%d", i);
5890 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5891 if (!virtcon_hds[i]) {
5892 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5893 devname);
5894 exit(1);
5899 module_call_init(MODULE_INIT_DEVICE);
5901 machine->init(ram_size, boot_devices,
5902 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5905 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5906 for (i = 0; i < nb_numa_nodes; i++) {
5907 if (node_cpumask[i] & (1 << env->cpu_index)) {
5908 env->numa_node = i;
5913 current_machine = machine;
5915 /* init USB devices */
5916 if (usb_enabled) {
5917 for(i = 0; i < usb_devices_index; i++) {
5918 if (usb_device_add(usb_devices[i], 0) < 0) {
5919 fprintf(stderr, "Warning: could not add USB device %s\n",
5920 usb_devices[i]);
5925 if (!display_state)
5926 dumb_display_init();
5927 /* just use the first displaystate for the moment */
5928 ds = display_state;
5930 if (display_type == DT_DEFAULT) {
5931 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5932 display_type = DT_SDL;
5933 #else
5934 display_type = DT_VNC;
5935 vnc_display = "localhost:0,to=99";
5936 show_vnc_port = 1;
5937 #endif
5941 switch (display_type) {
5942 case DT_NOGRAPHIC:
5943 break;
5944 #if defined(CONFIG_CURSES)
5945 case DT_CURSES:
5946 curses_display_init(ds, full_screen);
5947 break;
5948 #endif
5949 #if defined(CONFIG_SDL)
5950 case DT_SDL:
5951 sdl_display_init(ds, full_screen, no_frame);
5952 break;
5953 #elif defined(CONFIG_COCOA)
5954 case DT_SDL:
5955 cocoa_display_init(ds, full_screen);
5956 break;
5957 #endif
5958 case DT_VNC:
5959 vnc_display_init(ds);
5960 if (vnc_display_open(ds, vnc_display) < 0)
5961 exit(1);
5963 if (show_vnc_port) {
5964 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5966 break;
5967 default:
5968 break;
5970 dpy_resize(ds);
5972 dcl = ds->listeners;
5973 while (dcl != NULL) {
5974 if (dcl->dpy_refresh != NULL) {
5975 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5976 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5978 dcl = dcl->next;
5981 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5982 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5983 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5986 text_consoles_set_display(display_state);
5987 qemu_chr_initial_reset();
5989 if (monitor_device && monitor_hd)
5990 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
5992 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5993 const char *devname = serial_devices[i];
5994 if (devname && strcmp(devname, "none")) {
5995 if (strstart(devname, "vc", 0))
5996 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6000 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6001 const char *devname = parallel_devices[i];
6002 if (devname && strcmp(devname, "none")) {
6003 if (strstart(devname, "vc", 0))
6004 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6008 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6009 const char *devname = virtio_consoles[i];
6010 if (virtcon_hds[i] && devname) {
6011 if (strstart(devname, "vc", 0))
6012 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6016 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6017 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6018 gdbstub_dev);
6019 exit(1);
6022 if (loadvm)
6023 do_loadvm(cur_mon, loadvm);
6025 if (incoming) {
6026 autostart = 0; /* fixme how to deal with -daemonize */
6027 qemu_start_incoming_migration(incoming);
6030 if (autostart)
6031 vm_start();
6033 #ifndef _WIN32
6034 if (daemonize) {
6035 uint8_t status = 0;
6036 ssize_t len;
6038 again1:
6039 len = write(fds[1], &status, 1);
6040 if (len == -1 && (errno == EINTR))
6041 goto again1;
6043 if (len != 1)
6044 exit(1);
6046 chdir("/");
6047 TFR(fd = open("/dev/null", O_RDWR));
6048 if (fd == -1)
6049 exit(1);
6052 if (run_as) {
6053 pwd = getpwnam(run_as);
6054 if (!pwd) {
6055 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6056 exit(1);
6060 if (chroot_dir) {
6061 if (chroot(chroot_dir) < 0) {
6062 fprintf(stderr, "chroot failed\n");
6063 exit(1);
6065 chdir("/");
6068 if (run_as) {
6069 if (setgid(pwd->pw_gid) < 0) {
6070 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6071 exit(1);
6073 if (setuid(pwd->pw_uid) < 0) {
6074 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6075 exit(1);
6077 if (setuid(0) != -1) {
6078 fprintf(stderr, "Dropping privileges failed\n");
6079 exit(1);
6083 if (daemonize) {
6084 dup2(fd, 0);
6085 dup2(fd, 1);
6086 dup2(fd, 2);
6088 close(fd);
6090 #endif
6092 main_loop();
6093 quit_timers();
6094 net_cleanup();
6096 return 0;