linux-user: Split mmap prototypes into user-mmap.h
[qemu.git] / linux-user / elfload.c
blobc291f3cee09f18092a121923544b2e59df6d8c49
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
5 #include <sys/resource.h>
6 #include <sys/shm.h>
8 #include "qemu.h"
9 #include "loader.h"
10 #include "user-mmap.h"
11 #include "disas/disas.h"
12 #include "qemu/bitops.h"
13 #include "qemu/path.h"
14 #include "qemu/queue.h"
15 #include "qemu/guest-random.h"
16 #include "qemu/units.h"
17 #include "qemu/selfmap.h"
18 #include "qapi/error.h"
20 #ifdef _ARCH_PPC64
21 #undef ARCH_DLINFO
22 #undef ELF_PLATFORM
23 #undef ELF_HWCAP
24 #undef ELF_HWCAP2
25 #undef ELF_CLASS
26 #undef ELF_DATA
27 #undef ELF_ARCH
28 #endif
30 #define ELF_OSABI ELFOSABI_SYSV
32 /* from personality.h */
35 * Flags for bug emulation.
37 * These occupy the top three bytes.
39 enum {
40 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
41 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
42 descriptors (signal handling) */
43 MMAP_PAGE_ZERO = 0x0100000,
44 ADDR_COMPAT_LAYOUT = 0x0200000,
45 READ_IMPLIES_EXEC = 0x0400000,
46 ADDR_LIMIT_32BIT = 0x0800000,
47 SHORT_INODE = 0x1000000,
48 WHOLE_SECONDS = 0x2000000,
49 STICKY_TIMEOUTS = 0x4000000,
50 ADDR_LIMIT_3GB = 0x8000000,
54 * Personality types.
56 * These go in the low byte. Avoid using the top bit, it will
57 * conflict with error returns.
59 enum {
60 PER_LINUX = 0x0000,
61 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
62 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
63 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
64 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
65 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
66 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
67 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
68 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
69 PER_BSD = 0x0006,
70 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
71 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
72 PER_LINUX32 = 0x0008,
73 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
74 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
75 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
76 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
77 PER_RISCOS = 0x000c,
78 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
79 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
80 PER_OSF4 = 0x000f, /* OSF/1 v4 */
81 PER_HPUX = 0x0010,
82 PER_MASK = 0x00ff,
86 * Return the base personality without flags.
88 #define personality(pers) (pers & PER_MASK)
90 int info_is_fdpic(struct image_info *info)
92 return info->personality == PER_LINUX_FDPIC;
95 /* this flag is uneffective under linux too, should be deleted */
96 #ifndef MAP_DENYWRITE
97 #define MAP_DENYWRITE 0
98 #endif
100 /* should probably go in elf.h */
101 #ifndef ELIBBAD
102 #define ELIBBAD 80
103 #endif
105 #ifdef TARGET_WORDS_BIGENDIAN
106 #define ELF_DATA ELFDATA2MSB
107 #else
108 #define ELF_DATA ELFDATA2LSB
109 #endif
111 #ifdef TARGET_ABI_MIPSN32
112 typedef abi_ullong target_elf_greg_t;
113 #define tswapreg(ptr) tswap64(ptr)
114 #else
115 typedef abi_ulong target_elf_greg_t;
116 #define tswapreg(ptr) tswapal(ptr)
117 #endif
119 #ifdef USE_UID16
120 typedef abi_ushort target_uid_t;
121 typedef abi_ushort target_gid_t;
122 #else
123 typedef abi_uint target_uid_t;
124 typedef abi_uint target_gid_t;
125 #endif
126 typedef abi_int target_pid_t;
128 #ifdef TARGET_I386
130 #define ELF_PLATFORM get_elf_platform()
132 static const char *get_elf_platform(void)
134 static char elf_platform[] = "i386";
135 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
136 if (family > 6)
137 family = 6;
138 if (family >= 3)
139 elf_platform[1] = '0' + family;
140 return elf_platform;
143 #define ELF_HWCAP get_elf_hwcap()
145 static uint32_t get_elf_hwcap(void)
147 X86CPU *cpu = X86_CPU(thread_cpu);
149 return cpu->env.features[FEAT_1_EDX];
152 #ifdef TARGET_X86_64
153 #define ELF_START_MMAP 0x2aaaaab000ULL
155 #define ELF_CLASS ELFCLASS64
156 #define ELF_ARCH EM_X86_64
158 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
160 regs->rax = 0;
161 regs->rsp = infop->start_stack;
162 regs->rip = infop->entry;
165 #define ELF_NREG 27
166 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
169 * Note that ELF_NREG should be 29 as there should be place for
170 * TRAPNO and ERR "registers" as well but linux doesn't dump
171 * those.
173 * See linux kernel: arch/x86/include/asm/elf.h
175 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
177 (*regs)[0] = tswapreg(env->regs[15]);
178 (*regs)[1] = tswapreg(env->regs[14]);
179 (*regs)[2] = tswapreg(env->regs[13]);
180 (*regs)[3] = tswapreg(env->regs[12]);
181 (*regs)[4] = tswapreg(env->regs[R_EBP]);
182 (*regs)[5] = tswapreg(env->regs[R_EBX]);
183 (*regs)[6] = tswapreg(env->regs[11]);
184 (*regs)[7] = tswapreg(env->regs[10]);
185 (*regs)[8] = tswapreg(env->regs[9]);
186 (*regs)[9] = tswapreg(env->regs[8]);
187 (*regs)[10] = tswapreg(env->regs[R_EAX]);
188 (*regs)[11] = tswapreg(env->regs[R_ECX]);
189 (*regs)[12] = tswapreg(env->regs[R_EDX]);
190 (*regs)[13] = tswapreg(env->regs[R_ESI]);
191 (*regs)[14] = tswapreg(env->regs[R_EDI]);
192 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
193 (*regs)[16] = tswapreg(env->eip);
194 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
195 (*regs)[18] = tswapreg(env->eflags);
196 (*regs)[19] = tswapreg(env->regs[R_ESP]);
197 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
198 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
199 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
200 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
201 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
202 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
203 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
206 #else
208 #define ELF_START_MMAP 0x80000000
211 * This is used to ensure we don't load something for the wrong architecture.
213 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
216 * These are used to set parameters in the core dumps.
218 #define ELF_CLASS ELFCLASS32
219 #define ELF_ARCH EM_386
221 static inline void init_thread(struct target_pt_regs *regs,
222 struct image_info *infop)
224 regs->esp = infop->start_stack;
225 regs->eip = infop->entry;
227 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
228 starts %edx contains a pointer to a function which might be
229 registered using `atexit'. This provides a mean for the
230 dynamic linker to call DT_FINI functions for shared libraries
231 that have been loaded before the code runs.
233 A value of 0 tells we have no such handler. */
234 regs->edx = 0;
237 #define ELF_NREG 17
238 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
241 * Note that ELF_NREG should be 19 as there should be place for
242 * TRAPNO and ERR "registers" as well but linux doesn't dump
243 * those.
245 * See linux kernel: arch/x86/include/asm/elf.h
247 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
249 (*regs)[0] = tswapreg(env->regs[R_EBX]);
250 (*regs)[1] = tswapreg(env->regs[R_ECX]);
251 (*regs)[2] = tswapreg(env->regs[R_EDX]);
252 (*regs)[3] = tswapreg(env->regs[R_ESI]);
253 (*regs)[4] = tswapreg(env->regs[R_EDI]);
254 (*regs)[5] = tswapreg(env->regs[R_EBP]);
255 (*regs)[6] = tswapreg(env->regs[R_EAX]);
256 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
257 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
258 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
259 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
260 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
261 (*regs)[12] = tswapreg(env->eip);
262 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
263 (*regs)[14] = tswapreg(env->eflags);
264 (*regs)[15] = tswapreg(env->regs[R_ESP]);
265 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
267 #endif
269 #define USE_ELF_CORE_DUMP
270 #define ELF_EXEC_PAGESIZE 4096
272 #endif
274 #ifdef TARGET_ARM
276 #ifndef TARGET_AARCH64
277 /* 32 bit ARM definitions */
279 #define ELF_START_MMAP 0x80000000
281 #define ELF_ARCH EM_ARM
282 #define ELF_CLASS ELFCLASS32
284 static inline void init_thread(struct target_pt_regs *regs,
285 struct image_info *infop)
287 abi_long stack = infop->start_stack;
288 memset(regs, 0, sizeof(*regs));
290 regs->uregs[16] = ARM_CPU_MODE_USR;
291 if (infop->entry & 1) {
292 regs->uregs[16] |= CPSR_T;
294 regs->uregs[15] = infop->entry & 0xfffffffe;
295 regs->uregs[13] = infop->start_stack;
296 /* FIXME - what to for failure of get_user()? */
297 get_user_ual(regs->uregs[2], stack + 8); /* envp */
298 get_user_ual(regs->uregs[1], stack + 4); /* envp */
299 /* XXX: it seems that r0 is zeroed after ! */
300 regs->uregs[0] = 0;
301 /* For uClinux PIC binaries. */
302 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
303 regs->uregs[10] = infop->start_data;
305 /* Support ARM FDPIC. */
306 if (info_is_fdpic(infop)) {
307 /* As described in the ABI document, r7 points to the loadmap info
308 * prepared by the kernel. If an interpreter is needed, r8 points
309 * to the interpreter loadmap and r9 points to the interpreter
310 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
311 * r9 points to the main program PT_DYNAMIC info.
313 regs->uregs[7] = infop->loadmap_addr;
314 if (infop->interpreter_loadmap_addr) {
315 /* Executable is dynamically loaded. */
316 regs->uregs[8] = infop->interpreter_loadmap_addr;
317 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
318 } else {
319 regs->uregs[8] = 0;
320 regs->uregs[9] = infop->pt_dynamic_addr;
325 #define ELF_NREG 18
326 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
328 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
330 (*regs)[0] = tswapreg(env->regs[0]);
331 (*regs)[1] = tswapreg(env->regs[1]);
332 (*regs)[2] = tswapreg(env->regs[2]);
333 (*regs)[3] = tswapreg(env->regs[3]);
334 (*regs)[4] = tswapreg(env->regs[4]);
335 (*regs)[5] = tswapreg(env->regs[5]);
336 (*regs)[6] = tswapreg(env->regs[6]);
337 (*regs)[7] = tswapreg(env->regs[7]);
338 (*regs)[8] = tswapreg(env->regs[8]);
339 (*regs)[9] = tswapreg(env->regs[9]);
340 (*regs)[10] = tswapreg(env->regs[10]);
341 (*regs)[11] = tswapreg(env->regs[11]);
342 (*regs)[12] = tswapreg(env->regs[12]);
343 (*regs)[13] = tswapreg(env->regs[13]);
344 (*regs)[14] = tswapreg(env->regs[14]);
345 (*regs)[15] = tswapreg(env->regs[15]);
347 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
348 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
351 #define USE_ELF_CORE_DUMP
352 #define ELF_EXEC_PAGESIZE 4096
354 enum
356 ARM_HWCAP_ARM_SWP = 1 << 0,
357 ARM_HWCAP_ARM_HALF = 1 << 1,
358 ARM_HWCAP_ARM_THUMB = 1 << 2,
359 ARM_HWCAP_ARM_26BIT = 1 << 3,
360 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
361 ARM_HWCAP_ARM_FPA = 1 << 5,
362 ARM_HWCAP_ARM_VFP = 1 << 6,
363 ARM_HWCAP_ARM_EDSP = 1 << 7,
364 ARM_HWCAP_ARM_JAVA = 1 << 8,
365 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
366 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
367 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
368 ARM_HWCAP_ARM_NEON = 1 << 12,
369 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
370 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
371 ARM_HWCAP_ARM_TLS = 1 << 15,
372 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
373 ARM_HWCAP_ARM_IDIVA = 1 << 17,
374 ARM_HWCAP_ARM_IDIVT = 1 << 18,
375 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
376 ARM_HWCAP_ARM_LPAE = 1 << 20,
377 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
380 enum {
381 ARM_HWCAP2_ARM_AES = 1 << 0,
382 ARM_HWCAP2_ARM_PMULL = 1 << 1,
383 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
384 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
385 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
388 /* The commpage only exists for 32 bit kernels */
390 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
392 static bool init_guest_commpage(void)
394 void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
395 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
396 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
398 if (addr == MAP_FAILED) {
399 perror("Allocating guest commpage");
400 exit(EXIT_FAILURE);
402 if (addr != want) {
403 return false;
406 /* Set kernel helper versions; rest of page is 0. */
407 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
409 if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
410 perror("Protecting guest commpage");
411 exit(EXIT_FAILURE);
413 return true;
416 #define ELF_HWCAP get_elf_hwcap()
417 #define ELF_HWCAP2 get_elf_hwcap2()
419 static uint32_t get_elf_hwcap(void)
421 ARMCPU *cpu = ARM_CPU(thread_cpu);
422 uint32_t hwcaps = 0;
424 hwcaps |= ARM_HWCAP_ARM_SWP;
425 hwcaps |= ARM_HWCAP_ARM_HALF;
426 hwcaps |= ARM_HWCAP_ARM_THUMB;
427 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429 /* probe for the extra features */
430 #define GET_FEATURE(feat, hwcap) \
431 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433 #define GET_FEATURE_ID(feat, hwcap) \
434 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
436 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
437 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
438 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
439 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
440 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
441 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
442 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
443 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
444 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
445 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
447 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
448 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
449 hwcaps |= ARM_HWCAP_ARM_VFPv3;
450 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
451 hwcaps |= ARM_HWCAP_ARM_VFPD32;
452 } else {
453 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
456 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
458 return hwcaps;
461 static uint32_t get_elf_hwcap2(void)
463 ARMCPU *cpu = ARM_CPU(thread_cpu);
464 uint32_t hwcaps = 0;
466 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
467 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
468 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
469 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
470 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
471 return hwcaps;
474 #undef GET_FEATURE
475 #undef GET_FEATURE_ID
477 #define ELF_PLATFORM get_elf_platform()
479 static const char *get_elf_platform(void)
481 CPUARMState *env = thread_cpu->env_ptr;
483 #ifdef TARGET_WORDS_BIGENDIAN
484 # define END "b"
485 #else
486 # define END "l"
487 #endif
489 if (arm_feature(env, ARM_FEATURE_V8)) {
490 return "v8" END;
491 } else if (arm_feature(env, ARM_FEATURE_V7)) {
492 if (arm_feature(env, ARM_FEATURE_M)) {
493 return "v7m" END;
494 } else {
495 return "v7" END;
497 } else if (arm_feature(env, ARM_FEATURE_V6)) {
498 return "v6" END;
499 } else if (arm_feature(env, ARM_FEATURE_V5)) {
500 return "v5" END;
501 } else {
502 return "v4" END;
505 #undef END
508 #else
509 /* 64 bit ARM definitions */
510 #define ELF_START_MMAP 0x80000000
512 #define ELF_ARCH EM_AARCH64
513 #define ELF_CLASS ELFCLASS64
514 #ifdef TARGET_WORDS_BIGENDIAN
515 # define ELF_PLATFORM "aarch64_be"
516 #else
517 # define ELF_PLATFORM "aarch64"
518 #endif
520 static inline void init_thread(struct target_pt_regs *regs,
521 struct image_info *infop)
523 abi_long stack = infop->start_stack;
524 memset(regs, 0, sizeof(*regs));
526 regs->pc = infop->entry & ~0x3ULL;
527 regs->sp = stack;
530 #define ELF_NREG 34
531 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
533 static void elf_core_copy_regs(target_elf_gregset_t *regs,
534 const CPUARMState *env)
536 int i;
538 for (i = 0; i < 32; i++) {
539 (*regs)[i] = tswapreg(env->xregs[i]);
541 (*regs)[32] = tswapreg(env->pc);
542 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
545 #define USE_ELF_CORE_DUMP
546 #define ELF_EXEC_PAGESIZE 4096
548 enum {
549 ARM_HWCAP_A64_FP = 1 << 0,
550 ARM_HWCAP_A64_ASIMD = 1 << 1,
551 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
552 ARM_HWCAP_A64_AES = 1 << 3,
553 ARM_HWCAP_A64_PMULL = 1 << 4,
554 ARM_HWCAP_A64_SHA1 = 1 << 5,
555 ARM_HWCAP_A64_SHA2 = 1 << 6,
556 ARM_HWCAP_A64_CRC32 = 1 << 7,
557 ARM_HWCAP_A64_ATOMICS = 1 << 8,
558 ARM_HWCAP_A64_FPHP = 1 << 9,
559 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
560 ARM_HWCAP_A64_CPUID = 1 << 11,
561 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
562 ARM_HWCAP_A64_JSCVT = 1 << 13,
563 ARM_HWCAP_A64_FCMA = 1 << 14,
564 ARM_HWCAP_A64_LRCPC = 1 << 15,
565 ARM_HWCAP_A64_DCPOP = 1 << 16,
566 ARM_HWCAP_A64_SHA3 = 1 << 17,
567 ARM_HWCAP_A64_SM3 = 1 << 18,
568 ARM_HWCAP_A64_SM4 = 1 << 19,
569 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
570 ARM_HWCAP_A64_SHA512 = 1 << 21,
571 ARM_HWCAP_A64_SVE = 1 << 22,
572 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
573 ARM_HWCAP_A64_DIT = 1 << 24,
574 ARM_HWCAP_A64_USCAT = 1 << 25,
575 ARM_HWCAP_A64_ILRCPC = 1 << 26,
576 ARM_HWCAP_A64_FLAGM = 1 << 27,
577 ARM_HWCAP_A64_SSBS = 1 << 28,
578 ARM_HWCAP_A64_SB = 1 << 29,
579 ARM_HWCAP_A64_PACA = 1 << 30,
580 ARM_HWCAP_A64_PACG = 1UL << 31,
582 ARM_HWCAP2_A64_DCPODP = 1 << 0,
583 ARM_HWCAP2_A64_SVE2 = 1 << 1,
584 ARM_HWCAP2_A64_SVEAES = 1 << 2,
585 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
586 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
587 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
588 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
589 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
590 ARM_HWCAP2_A64_FRINT = 1 << 8,
591 ARM_HWCAP2_A64_SVEI8MM = 1 << 9,
592 ARM_HWCAP2_A64_SVEF32MM = 1 << 10,
593 ARM_HWCAP2_A64_SVEF64MM = 1 << 11,
594 ARM_HWCAP2_A64_SVEBF16 = 1 << 12,
595 ARM_HWCAP2_A64_I8MM = 1 << 13,
596 ARM_HWCAP2_A64_BF16 = 1 << 14,
597 ARM_HWCAP2_A64_DGH = 1 << 15,
598 ARM_HWCAP2_A64_RNG = 1 << 16,
599 ARM_HWCAP2_A64_BTI = 1 << 17,
600 ARM_HWCAP2_A64_MTE = 1 << 18,
603 #define ELF_HWCAP get_elf_hwcap()
604 #define ELF_HWCAP2 get_elf_hwcap2()
606 #define GET_FEATURE_ID(feat, hwcap) \
607 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
609 static uint32_t get_elf_hwcap(void)
611 ARMCPU *cpu = ARM_CPU(thread_cpu);
612 uint32_t hwcaps = 0;
614 hwcaps |= ARM_HWCAP_A64_FP;
615 hwcaps |= ARM_HWCAP_A64_ASIMD;
616 hwcaps |= ARM_HWCAP_A64_CPUID;
618 /* probe for the extra features */
620 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
621 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
622 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
623 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
624 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
625 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
626 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
627 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
628 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
629 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
630 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
631 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
632 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
633 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
634 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
635 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
636 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
637 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
638 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
639 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
640 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
641 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
642 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
644 return hwcaps;
647 static uint32_t get_elf_hwcap2(void)
649 ARMCPU *cpu = ARM_CPU(thread_cpu);
650 uint32_t hwcaps = 0;
652 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
653 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
654 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
655 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
656 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
657 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
658 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
659 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
660 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
661 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
662 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
663 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
664 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
665 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
666 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
667 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
668 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
669 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
671 return hwcaps;
674 #undef GET_FEATURE_ID
676 #endif /* not TARGET_AARCH64 */
677 #endif /* TARGET_ARM */
679 #ifdef TARGET_SPARC
680 #ifdef TARGET_SPARC64
682 #define ELF_START_MMAP 0x80000000
683 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
684 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
685 #ifndef TARGET_ABI32
686 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
687 #else
688 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
689 #endif
691 #define ELF_CLASS ELFCLASS64
692 #define ELF_ARCH EM_SPARCV9
693 #else
694 #define ELF_START_MMAP 0x80000000
695 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
696 | HWCAP_SPARC_MULDIV)
697 #define ELF_CLASS ELFCLASS32
698 #define ELF_ARCH EM_SPARC
699 #endif /* TARGET_SPARC64 */
701 static inline void init_thread(struct target_pt_regs *regs,
702 struct image_info *infop)
704 /* Note that target_cpu_copy_regs does not read psr/tstate. */
705 regs->pc = infop->entry;
706 regs->npc = regs->pc + 4;
707 regs->y = 0;
708 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
709 - TARGET_STACK_BIAS);
711 #endif /* TARGET_SPARC */
713 #ifdef TARGET_PPC
715 #define ELF_MACHINE PPC_ELF_MACHINE
716 #define ELF_START_MMAP 0x80000000
718 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
720 #define elf_check_arch(x) ( (x) == EM_PPC64 )
722 #define ELF_CLASS ELFCLASS64
724 #else
726 #define ELF_CLASS ELFCLASS32
728 #endif
730 #define ELF_ARCH EM_PPC
732 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
733 See arch/powerpc/include/asm/cputable.h. */
734 enum {
735 QEMU_PPC_FEATURE_32 = 0x80000000,
736 QEMU_PPC_FEATURE_64 = 0x40000000,
737 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
738 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
739 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
740 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
741 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
742 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
743 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
744 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
745 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
746 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
747 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
748 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
749 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
750 QEMU_PPC_FEATURE_CELL = 0x00010000,
751 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
752 QEMU_PPC_FEATURE_SMT = 0x00004000,
753 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
754 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
755 QEMU_PPC_FEATURE_PA6T = 0x00000800,
756 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
757 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
758 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
759 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
760 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
762 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
763 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
765 /* Feature definitions in AT_HWCAP2. */
766 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
767 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
768 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
769 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
770 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
771 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
772 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
773 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
774 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
775 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
776 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
777 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
778 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
781 #define ELF_HWCAP get_elf_hwcap()
783 static uint32_t get_elf_hwcap(void)
785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786 uint32_t features = 0;
788 /* We don't have to be terribly complete here; the high points are
789 Altivec/FP/SPE support. Anything else is just a bonus. */
790 #define GET_FEATURE(flag, feature) \
791 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
792 #define GET_FEATURE2(flags, feature) \
793 do { \
794 if ((cpu->env.insns_flags2 & flags) == flags) { \
795 features |= feature; \
797 } while (0)
798 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
799 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
800 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
801 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
802 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
803 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
804 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
805 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
806 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
807 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
808 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
809 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
810 QEMU_PPC_FEATURE_ARCH_2_06);
811 #undef GET_FEATURE
812 #undef GET_FEATURE2
814 return features;
817 #define ELF_HWCAP2 get_elf_hwcap2()
819 static uint32_t get_elf_hwcap2(void)
821 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
822 uint32_t features = 0;
824 #define GET_FEATURE(flag, feature) \
825 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
826 #define GET_FEATURE2(flag, feature) \
827 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
829 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
830 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
831 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
832 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
833 QEMU_PPC_FEATURE2_VEC_CRYPTO);
834 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
835 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
837 #undef GET_FEATURE
838 #undef GET_FEATURE2
840 return features;
844 * The requirements here are:
845 * - keep the final alignment of sp (sp & 0xf)
846 * - make sure the 32-bit value at the first 16 byte aligned position of
847 * AUXV is greater than 16 for glibc compatibility.
848 * AT_IGNOREPPC is used for that.
849 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
850 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
852 #define DLINFO_ARCH_ITEMS 5
853 #define ARCH_DLINFO \
854 do { \
855 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
856 /* \
857 * Handle glibc compatibility: these magic entries must \
858 * be at the lowest addresses in the final auxv. \
859 */ \
860 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
861 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
862 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
863 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
864 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
865 } while (0)
867 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
869 _regs->gpr[1] = infop->start_stack;
870 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
871 if (get_ppc64_abi(infop) < 2) {
872 uint64_t val;
873 get_user_u64(val, infop->entry + 8);
874 _regs->gpr[2] = val + infop->load_bias;
875 get_user_u64(val, infop->entry);
876 infop->entry = val + infop->load_bias;
877 } else {
878 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
880 #endif
881 _regs->nip = infop->entry;
884 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
885 #define ELF_NREG 48
886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
888 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
890 int i;
891 target_ulong ccr = 0;
893 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
894 (*regs)[i] = tswapreg(env->gpr[i]);
897 (*regs)[32] = tswapreg(env->nip);
898 (*regs)[33] = tswapreg(env->msr);
899 (*regs)[35] = tswapreg(env->ctr);
900 (*regs)[36] = tswapreg(env->lr);
901 (*regs)[37] = tswapreg(env->xer);
903 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
904 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
906 (*regs)[38] = tswapreg(ccr);
909 #define USE_ELF_CORE_DUMP
910 #define ELF_EXEC_PAGESIZE 4096
912 #endif
914 #ifdef TARGET_MIPS
916 #define ELF_START_MMAP 0x80000000
918 #ifdef TARGET_MIPS64
919 #define ELF_CLASS ELFCLASS64
920 #else
921 #define ELF_CLASS ELFCLASS32
922 #endif
923 #define ELF_ARCH EM_MIPS
925 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
927 #ifdef TARGET_ABI_MIPSN32
928 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
929 #else
930 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
931 #endif
933 static inline void init_thread(struct target_pt_regs *regs,
934 struct image_info *infop)
936 regs->cp0_status = 2 << CP0St_KSU;
937 regs->cp0_epc = infop->entry;
938 regs->regs[29] = infop->start_stack;
941 /* See linux kernel: arch/mips/include/asm/elf.h. */
942 #define ELF_NREG 45
943 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
945 /* See linux kernel: arch/mips/include/asm/reg.h. */
946 enum {
947 #ifdef TARGET_MIPS64
948 TARGET_EF_R0 = 0,
949 #else
950 TARGET_EF_R0 = 6,
951 #endif
952 TARGET_EF_R26 = TARGET_EF_R0 + 26,
953 TARGET_EF_R27 = TARGET_EF_R0 + 27,
954 TARGET_EF_LO = TARGET_EF_R0 + 32,
955 TARGET_EF_HI = TARGET_EF_R0 + 33,
956 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
957 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
958 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
959 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
962 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
963 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
965 int i;
967 for (i = 0; i < TARGET_EF_R0; i++) {
968 (*regs)[i] = 0;
970 (*regs)[TARGET_EF_R0] = 0;
972 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
973 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
976 (*regs)[TARGET_EF_R26] = 0;
977 (*regs)[TARGET_EF_R27] = 0;
978 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
979 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
980 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
981 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
982 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
983 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
986 #define USE_ELF_CORE_DUMP
987 #define ELF_EXEC_PAGESIZE 4096
989 /* See arch/mips/include/uapi/asm/hwcap.h. */
990 enum {
991 HWCAP_MIPS_R6 = (1 << 0),
992 HWCAP_MIPS_MSA = (1 << 1),
993 HWCAP_MIPS_CRC32 = (1 << 2),
994 HWCAP_MIPS_MIPS16 = (1 << 3),
995 HWCAP_MIPS_MDMX = (1 << 4),
996 HWCAP_MIPS_MIPS3D = (1 << 5),
997 HWCAP_MIPS_SMARTMIPS = (1 << 6),
998 HWCAP_MIPS_DSP = (1 << 7),
999 HWCAP_MIPS_DSP2 = (1 << 8),
1000 HWCAP_MIPS_DSP3 = (1 << 9),
1001 HWCAP_MIPS_MIPS16E2 = (1 << 10),
1002 HWCAP_LOONGSON_MMI = (1 << 11),
1003 HWCAP_LOONGSON_EXT = (1 << 12),
1004 HWCAP_LOONGSON_EXT2 = (1 << 13),
1005 HWCAP_LOONGSON_CPUCFG = (1 << 14),
1008 #define ELF_HWCAP get_elf_hwcap()
1010 #define GET_FEATURE_INSN(_flag, _hwcap) \
1011 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1013 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1014 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1016 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1017 do { \
1018 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1019 hwcaps |= _hwcap; \
1021 } while (0)
1023 static uint32_t get_elf_hwcap(void)
1025 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1026 uint32_t hwcaps = 0;
1028 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1029 2, HWCAP_MIPS_R6);
1030 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1031 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1032 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1034 return hwcaps;
1037 #undef GET_FEATURE_REG_EQU
1038 #undef GET_FEATURE_REG_SET
1039 #undef GET_FEATURE_INSN
1041 #endif /* TARGET_MIPS */
1043 #ifdef TARGET_MICROBLAZE
1045 #define ELF_START_MMAP 0x80000000
1047 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1049 #define ELF_CLASS ELFCLASS32
1050 #define ELF_ARCH EM_MICROBLAZE
1052 static inline void init_thread(struct target_pt_regs *regs,
1053 struct image_info *infop)
1055 regs->pc = infop->entry;
1056 regs->r1 = infop->start_stack;
1060 #define ELF_EXEC_PAGESIZE 4096
1062 #define USE_ELF_CORE_DUMP
1063 #define ELF_NREG 38
1064 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1066 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1067 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1069 int i, pos = 0;
1071 for (i = 0; i < 32; i++) {
1072 (*regs)[pos++] = tswapreg(env->regs[i]);
1075 (*regs)[pos++] = tswapreg(env->pc);
1076 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1077 (*regs)[pos++] = 0;
1078 (*regs)[pos++] = tswapreg(env->ear);
1079 (*regs)[pos++] = 0;
1080 (*regs)[pos++] = tswapreg(env->esr);
1083 #endif /* TARGET_MICROBLAZE */
1085 #ifdef TARGET_NIOS2
1087 #define ELF_START_MMAP 0x80000000
1089 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1091 #define ELF_CLASS ELFCLASS32
1092 #define ELF_ARCH EM_ALTERA_NIOS2
1094 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1096 regs->ea = infop->entry;
1097 regs->sp = infop->start_stack;
1098 regs->estatus = 0x3;
1101 #define ELF_EXEC_PAGESIZE 4096
1103 #define USE_ELF_CORE_DUMP
1104 #define ELF_NREG 49
1105 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1107 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1108 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1109 const CPUNios2State *env)
1111 int i;
1113 (*regs)[0] = -1;
1114 for (i = 1; i < 8; i++) /* r0-r7 */
1115 (*regs)[i] = tswapreg(env->regs[i + 7]);
1117 for (i = 8; i < 16; i++) /* r8-r15 */
1118 (*regs)[i] = tswapreg(env->regs[i - 8]);
1120 for (i = 16; i < 24; i++) /* r16-r23 */
1121 (*regs)[i] = tswapreg(env->regs[i + 7]);
1122 (*regs)[24] = -1; /* R_ET */
1123 (*regs)[25] = -1; /* R_BT */
1124 (*regs)[26] = tswapreg(env->regs[R_GP]);
1125 (*regs)[27] = tswapreg(env->regs[R_SP]);
1126 (*regs)[28] = tswapreg(env->regs[R_FP]);
1127 (*regs)[29] = tswapreg(env->regs[R_EA]);
1128 (*regs)[30] = -1; /* R_SSTATUS */
1129 (*regs)[31] = tswapreg(env->regs[R_RA]);
1131 (*regs)[32] = tswapreg(env->regs[R_PC]);
1133 (*regs)[33] = -1; /* R_STATUS */
1134 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1136 for (i = 35; i < 49; i++) /* ... */
1137 (*regs)[i] = -1;
1140 #endif /* TARGET_NIOS2 */
1142 #ifdef TARGET_OPENRISC
1144 #define ELF_START_MMAP 0x08000000
1146 #define ELF_ARCH EM_OPENRISC
1147 #define ELF_CLASS ELFCLASS32
1148 #define ELF_DATA ELFDATA2MSB
1150 static inline void init_thread(struct target_pt_regs *regs,
1151 struct image_info *infop)
1153 regs->pc = infop->entry;
1154 regs->gpr[1] = infop->start_stack;
1157 #define USE_ELF_CORE_DUMP
1158 #define ELF_EXEC_PAGESIZE 8192
1160 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1161 #define ELF_NREG 34 /* gprs and pc, sr */
1162 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1164 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1165 const CPUOpenRISCState *env)
1167 int i;
1169 for (i = 0; i < 32; i++) {
1170 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1172 (*regs)[32] = tswapreg(env->pc);
1173 (*regs)[33] = tswapreg(cpu_get_sr(env));
1175 #define ELF_HWCAP 0
1176 #define ELF_PLATFORM NULL
1178 #endif /* TARGET_OPENRISC */
1180 #ifdef TARGET_SH4
1182 #define ELF_START_MMAP 0x80000000
1184 #define ELF_CLASS ELFCLASS32
1185 #define ELF_ARCH EM_SH
1187 static inline void init_thread(struct target_pt_regs *regs,
1188 struct image_info *infop)
1190 /* Check other registers XXXXX */
1191 regs->pc = infop->entry;
1192 regs->regs[15] = infop->start_stack;
1195 /* See linux kernel: arch/sh/include/asm/elf.h. */
1196 #define ELF_NREG 23
1197 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1199 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1200 enum {
1201 TARGET_REG_PC = 16,
1202 TARGET_REG_PR = 17,
1203 TARGET_REG_SR = 18,
1204 TARGET_REG_GBR = 19,
1205 TARGET_REG_MACH = 20,
1206 TARGET_REG_MACL = 21,
1207 TARGET_REG_SYSCALL = 22
1210 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1211 const CPUSH4State *env)
1213 int i;
1215 for (i = 0; i < 16; i++) {
1216 (*regs)[i] = tswapreg(env->gregs[i]);
1219 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1220 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1221 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1222 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1223 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1224 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1225 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1228 #define USE_ELF_CORE_DUMP
1229 #define ELF_EXEC_PAGESIZE 4096
1231 enum {
1232 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1233 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1234 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1235 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1236 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1237 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1238 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1239 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1240 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1241 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1244 #define ELF_HWCAP get_elf_hwcap()
1246 static uint32_t get_elf_hwcap(void)
1248 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1249 uint32_t hwcap = 0;
1251 hwcap |= SH_CPU_HAS_FPU;
1253 if (cpu->env.features & SH_FEATURE_SH4A) {
1254 hwcap |= SH_CPU_HAS_LLSC;
1257 return hwcap;
1260 #endif
1262 #ifdef TARGET_CRIS
1264 #define ELF_START_MMAP 0x80000000
1266 #define ELF_CLASS ELFCLASS32
1267 #define ELF_ARCH EM_CRIS
1269 static inline void init_thread(struct target_pt_regs *regs,
1270 struct image_info *infop)
1272 regs->erp = infop->entry;
1275 #define ELF_EXEC_PAGESIZE 8192
1277 #endif
1279 #ifdef TARGET_M68K
1281 #define ELF_START_MMAP 0x80000000
1283 #define ELF_CLASS ELFCLASS32
1284 #define ELF_ARCH EM_68K
1286 /* ??? Does this need to do anything?
1287 #define ELF_PLAT_INIT(_r) */
1289 static inline void init_thread(struct target_pt_regs *regs,
1290 struct image_info *infop)
1292 regs->usp = infop->start_stack;
1293 regs->sr = 0;
1294 regs->pc = infop->entry;
1297 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1298 #define ELF_NREG 20
1299 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1301 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1303 (*regs)[0] = tswapreg(env->dregs[1]);
1304 (*regs)[1] = tswapreg(env->dregs[2]);
1305 (*regs)[2] = tswapreg(env->dregs[3]);
1306 (*regs)[3] = tswapreg(env->dregs[4]);
1307 (*regs)[4] = tswapreg(env->dregs[5]);
1308 (*regs)[5] = tswapreg(env->dregs[6]);
1309 (*regs)[6] = tswapreg(env->dregs[7]);
1310 (*regs)[7] = tswapreg(env->aregs[0]);
1311 (*regs)[8] = tswapreg(env->aregs[1]);
1312 (*regs)[9] = tswapreg(env->aregs[2]);
1313 (*regs)[10] = tswapreg(env->aregs[3]);
1314 (*regs)[11] = tswapreg(env->aregs[4]);
1315 (*regs)[12] = tswapreg(env->aregs[5]);
1316 (*regs)[13] = tswapreg(env->aregs[6]);
1317 (*regs)[14] = tswapreg(env->dregs[0]);
1318 (*regs)[15] = tswapreg(env->aregs[7]);
1319 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1320 (*regs)[17] = tswapreg(env->sr);
1321 (*regs)[18] = tswapreg(env->pc);
1322 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1325 #define USE_ELF_CORE_DUMP
1326 #define ELF_EXEC_PAGESIZE 8192
1328 #endif
1330 #ifdef TARGET_ALPHA
1332 #define ELF_START_MMAP (0x30000000000ULL)
1334 #define ELF_CLASS ELFCLASS64
1335 #define ELF_ARCH EM_ALPHA
1337 static inline void init_thread(struct target_pt_regs *regs,
1338 struct image_info *infop)
1340 regs->pc = infop->entry;
1341 regs->ps = 8;
1342 regs->usp = infop->start_stack;
1345 #define ELF_EXEC_PAGESIZE 8192
1347 #endif /* TARGET_ALPHA */
1349 #ifdef TARGET_S390X
1351 #define ELF_START_MMAP (0x20000000000ULL)
1353 #define ELF_CLASS ELFCLASS64
1354 #define ELF_DATA ELFDATA2MSB
1355 #define ELF_ARCH EM_S390
1357 #include "elf.h"
1359 #define ELF_HWCAP get_elf_hwcap()
1361 #define GET_FEATURE(_feat, _hwcap) \
1362 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1364 static uint32_t get_elf_hwcap(void)
1367 * Let's assume we always have esan3 and zarch.
1368 * 31-bit processes can use 64-bit registers (high gprs).
1370 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1372 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1373 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1374 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1375 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1376 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1377 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1378 hwcap |= HWCAP_S390_ETF3EH;
1380 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1381 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1383 return hwcap;
1386 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1388 regs->psw.addr = infop->entry;
1389 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1390 regs->gprs[15] = infop->start_stack;
1393 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */
1394 #define ELF_NREG 27
1395 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1397 enum {
1398 TARGET_REG_PSWM = 0,
1399 TARGET_REG_PSWA = 1,
1400 TARGET_REG_GPRS = 2,
1401 TARGET_REG_ARS = 18,
1402 TARGET_REG_ORIG_R2 = 26,
1405 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1406 const CPUS390XState *env)
1408 int i;
1409 uint32_t *aregs;
1411 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1412 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1413 for (i = 0; i < 16; i++) {
1414 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1416 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1417 for (i = 0; i < 16; i++) {
1418 aregs[i] = tswap32(env->aregs[i]);
1420 (*regs)[TARGET_REG_ORIG_R2] = 0;
1423 #define USE_ELF_CORE_DUMP
1424 #define ELF_EXEC_PAGESIZE 4096
1426 #endif /* TARGET_S390X */
1428 #ifdef TARGET_RISCV
1430 #define ELF_START_MMAP 0x80000000
1431 #define ELF_ARCH EM_RISCV
1433 #ifdef TARGET_RISCV32
1434 #define ELF_CLASS ELFCLASS32
1435 #else
1436 #define ELF_CLASS ELFCLASS64
1437 #endif
1439 #define ELF_HWCAP get_elf_hwcap()
1441 static uint32_t get_elf_hwcap(void)
1443 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1444 RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1445 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1446 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C');
1448 return cpu->env.misa & mask;
1449 #undef MISA_BIT
1452 static inline void init_thread(struct target_pt_regs *regs,
1453 struct image_info *infop)
1455 regs->sepc = infop->entry;
1456 regs->sp = infop->start_stack;
1459 #define ELF_EXEC_PAGESIZE 4096
1461 #endif /* TARGET_RISCV */
1463 #ifdef TARGET_HPPA
1465 #define ELF_START_MMAP 0x80000000
1466 #define ELF_CLASS ELFCLASS32
1467 #define ELF_ARCH EM_PARISC
1468 #define ELF_PLATFORM "PARISC"
1469 #define STACK_GROWS_DOWN 0
1470 #define STACK_ALIGNMENT 64
1472 static inline void init_thread(struct target_pt_regs *regs,
1473 struct image_info *infop)
1475 regs->iaoq[0] = infop->entry;
1476 regs->iaoq[1] = infop->entry + 4;
1477 regs->gr[23] = 0;
1478 regs->gr[24] = infop->arg_start;
1479 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1480 /* The top-of-stack contains a linkage buffer. */
1481 regs->gr[30] = infop->start_stack + 64;
1482 regs->gr[31] = infop->entry;
1485 #endif /* TARGET_HPPA */
1487 #ifdef TARGET_XTENSA
1489 #define ELF_START_MMAP 0x20000000
1491 #define ELF_CLASS ELFCLASS32
1492 #define ELF_ARCH EM_XTENSA
1494 static inline void init_thread(struct target_pt_regs *regs,
1495 struct image_info *infop)
1497 regs->windowbase = 0;
1498 regs->windowstart = 1;
1499 regs->areg[1] = infop->start_stack;
1500 regs->pc = infop->entry;
1503 /* See linux kernel: arch/xtensa/include/asm/elf.h. */
1504 #define ELF_NREG 128
1505 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1507 enum {
1508 TARGET_REG_PC,
1509 TARGET_REG_PS,
1510 TARGET_REG_LBEG,
1511 TARGET_REG_LEND,
1512 TARGET_REG_LCOUNT,
1513 TARGET_REG_SAR,
1514 TARGET_REG_WINDOWSTART,
1515 TARGET_REG_WINDOWBASE,
1516 TARGET_REG_THREADPTR,
1517 TARGET_REG_AR0 = 64,
1520 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1521 const CPUXtensaState *env)
1523 unsigned i;
1525 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1526 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1527 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1528 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1529 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1530 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1531 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1532 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1533 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1534 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1535 for (i = 0; i < env->config->nareg; ++i) {
1536 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1540 #define USE_ELF_CORE_DUMP
1541 #define ELF_EXEC_PAGESIZE 4096
1543 #endif /* TARGET_XTENSA */
1545 #ifdef TARGET_HEXAGON
1547 #define ELF_START_MMAP 0x20000000
1549 #define ELF_CLASS ELFCLASS32
1550 #define ELF_ARCH EM_HEXAGON
1552 static inline void init_thread(struct target_pt_regs *regs,
1553 struct image_info *infop)
1555 regs->sepc = infop->entry;
1556 regs->sp = infop->start_stack;
1559 #endif /* TARGET_HEXAGON */
1561 #ifndef ELF_PLATFORM
1562 #define ELF_PLATFORM (NULL)
1563 #endif
1565 #ifndef ELF_MACHINE
1566 #define ELF_MACHINE ELF_ARCH
1567 #endif
1569 #ifndef elf_check_arch
1570 #define elf_check_arch(x) ((x) == ELF_ARCH)
1571 #endif
1573 #ifndef elf_check_abi
1574 #define elf_check_abi(x) (1)
1575 #endif
1577 #ifndef ELF_HWCAP
1578 #define ELF_HWCAP 0
1579 #endif
1581 #ifndef STACK_GROWS_DOWN
1582 #define STACK_GROWS_DOWN 1
1583 #endif
1585 #ifndef STACK_ALIGNMENT
1586 #define STACK_ALIGNMENT 16
1587 #endif
1589 #ifdef TARGET_ABI32
1590 #undef ELF_CLASS
1591 #define ELF_CLASS ELFCLASS32
1592 #undef bswaptls
1593 #define bswaptls(ptr) bswap32s(ptr)
1594 #endif
1596 #include "elf.h"
1598 /* We must delay the following stanzas until after "elf.h". */
1599 #if defined(TARGET_AARCH64)
1601 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1602 const uint32_t *data,
1603 struct image_info *info,
1604 Error **errp)
1606 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1607 if (pr_datasz != sizeof(uint32_t)) {
1608 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1609 return false;
1611 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1612 info->note_flags = *data;
1614 return true;
1616 #define ARCH_USE_GNU_PROPERTY 1
1618 #else
1620 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1621 const uint32_t *data,
1622 struct image_info *info,
1623 Error **errp)
1625 g_assert_not_reached();
1627 #define ARCH_USE_GNU_PROPERTY 0
1629 #endif
1631 struct exec
1633 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1634 unsigned int a_text; /* length of text, in bytes */
1635 unsigned int a_data; /* length of data, in bytes */
1636 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1637 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1638 unsigned int a_entry; /* start address */
1639 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1640 unsigned int a_drsize; /* length of relocation info for data, in bytes */
1644 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1645 #define OMAGIC 0407
1646 #define NMAGIC 0410
1647 #define ZMAGIC 0413
1648 #define QMAGIC 0314
1650 /* Necessary parameters */
1651 #define TARGET_ELF_EXEC_PAGESIZE \
1652 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1653 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1654 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1655 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1656 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1657 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1659 #define DLINFO_ITEMS 16
1661 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1663 memcpy(to, from, n);
1666 #ifdef BSWAP_NEEDED
1667 static void bswap_ehdr(struct elfhdr *ehdr)
1669 bswap16s(&ehdr->e_type); /* Object file type */
1670 bswap16s(&ehdr->e_machine); /* Architecture */
1671 bswap32s(&ehdr->e_version); /* Object file version */
1672 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1673 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1674 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1675 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1676 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1677 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1678 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1679 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1680 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1681 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
1684 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1686 int i;
1687 for (i = 0; i < phnum; ++i, ++phdr) {
1688 bswap32s(&phdr->p_type); /* Segment type */
1689 bswap32s(&phdr->p_flags); /* Segment flags */
1690 bswaptls(&phdr->p_offset); /* Segment file offset */
1691 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1692 bswaptls(&phdr->p_paddr); /* Segment physical address */
1693 bswaptls(&phdr->p_filesz); /* Segment size in file */
1694 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1695 bswaptls(&phdr->p_align); /* Segment alignment */
1699 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1701 int i;
1702 for (i = 0; i < shnum; ++i, ++shdr) {
1703 bswap32s(&shdr->sh_name);
1704 bswap32s(&shdr->sh_type);
1705 bswaptls(&shdr->sh_flags);
1706 bswaptls(&shdr->sh_addr);
1707 bswaptls(&shdr->sh_offset);
1708 bswaptls(&shdr->sh_size);
1709 bswap32s(&shdr->sh_link);
1710 bswap32s(&shdr->sh_info);
1711 bswaptls(&shdr->sh_addralign);
1712 bswaptls(&shdr->sh_entsize);
1716 static void bswap_sym(struct elf_sym *sym)
1718 bswap32s(&sym->st_name);
1719 bswaptls(&sym->st_value);
1720 bswaptls(&sym->st_size);
1721 bswap16s(&sym->st_shndx);
1724 #ifdef TARGET_MIPS
1725 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1727 bswap16s(&abiflags->version);
1728 bswap32s(&abiflags->ases);
1729 bswap32s(&abiflags->isa_ext);
1730 bswap32s(&abiflags->flags1);
1731 bswap32s(&abiflags->flags2);
1733 #endif
1734 #else
1735 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1736 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1737 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1738 static inline void bswap_sym(struct elf_sym *sym) { }
1739 #ifdef TARGET_MIPS
1740 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1741 #endif
1742 #endif
1744 #ifdef USE_ELF_CORE_DUMP
1745 static int elf_core_dump(int, const CPUArchState *);
1746 #endif /* USE_ELF_CORE_DUMP */
1747 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1749 /* Verify the portions of EHDR within E_IDENT for the target.
1750 This can be performed before bswapping the entire header. */
1751 static bool elf_check_ident(struct elfhdr *ehdr)
1753 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1754 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1755 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1756 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1757 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1758 && ehdr->e_ident[EI_DATA] == ELF_DATA
1759 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1762 /* Verify the portions of EHDR outside of E_IDENT for the target.
1763 This has to wait until after bswapping the header. */
1764 static bool elf_check_ehdr(struct elfhdr *ehdr)
1766 return (elf_check_arch(ehdr->e_machine)
1767 && elf_check_abi(ehdr->e_flags)
1768 && ehdr->e_ehsize == sizeof(struct elfhdr)
1769 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1770 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1774 * 'copy_elf_strings()' copies argument/envelope strings from user
1775 * memory to free pages in kernel mem. These are in a format ready
1776 * to be put directly into the top of new user memory.
1779 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1780 abi_ulong p, abi_ulong stack_limit)
1782 char *tmp;
1783 int len, i;
1784 abi_ulong top = p;
1786 if (!p) {
1787 return 0; /* bullet-proofing */
1790 if (STACK_GROWS_DOWN) {
1791 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1792 for (i = argc - 1; i >= 0; --i) {
1793 tmp = argv[i];
1794 if (!tmp) {
1795 fprintf(stderr, "VFS: argc is wrong");
1796 exit(-1);
1798 len = strlen(tmp) + 1;
1799 tmp += len;
1801 if (len > (p - stack_limit)) {
1802 return 0;
1804 while (len) {
1805 int bytes_to_copy = (len > offset) ? offset : len;
1806 tmp -= bytes_to_copy;
1807 p -= bytes_to_copy;
1808 offset -= bytes_to_copy;
1809 len -= bytes_to_copy;
1811 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1813 if (offset == 0) {
1814 memcpy_to_target(p, scratch, top - p);
1815 top = p;
1816 offset = TARGET_PAGE_SIZE;
1820 if (p != top) {
1821 memcpy_to_target(p, scratch + offset, top - p);
1823 } else {
1824 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1825 for (i = 0; i < argc; ++i) {
1826 tmp = argv[i];
1827 if (!tmp) {
1828 fprintf(stderr, "VFS: argc is wrong");
1829 exit(-1);
1831 len = strlen(tmp) + 1;
1832 if (len > (stack_limit - p)) {
1833 return 0;
1835 while (len) {
1836 int bytes_to_copy = (len > remaining) ? remaining : len;
1838 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1840 tmp += bytes_to_copy;
1841 remaining -= bytes_to_copy;
1842 p += bytes_to_copy;
1843 len -= bytes_to_copy;
1845 if (remaining == 0) {
1846 memcpy_to_target(top, scratch, p - top);
1847 top = p;
1848 remaining = TARGET_PAGE_SIZE;
1852 if (p != top) {
1853 memcpy_to_target(top, scratch, p - top);
1857 return p;
1860 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1861 * argument/environment space. Newer kernels (>2.6.33) allow more,
1862 * dependent on stack size, but guarantee at least 32 pages for
1863 * backwards compatibility.
1865 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1867 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1868 struct image_info *info)
1870 abi_ulong size, error, guard;
1872 size = guest_stack_size;
1873 if (size < STACK_LOWER_LIMIT) {
1874 size = STACK_LOWER_LIMIT;
1876 guard = TARGET_PAGE_SIZE;
1877 if (guard < qemu_real_host_page_size) {
1878 guard = qemu_real_host_page_size;
1881 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1882 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1883 if (error == -1) {
1884 perror("mmap stack");
1885 exit(-1);
1888 /* We reserve one extra page at the top of the stack as guard. */
1889 if (STACK_GROWS_DOWN) {
1890 target_mprotect(error, guard, PROT_NONE);
1891 info->stack_limit = error + guard;
1892 return info->stack_limit + size - sizeof(void *);
1893 } else {
1894 target_mprotect(error + size, guard, PROT_NONE);
1895 info->stack_limit = error + size;
1896 return error;
1900 /* Map and zero the bss. We need to explicitly zero any fractional pages
1901 after the data section (i.e. bss). */
1902 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1904 uintptr_t host_start, host_map_start, host_end;
1906 last_bss = TARGET_PAGE_ALIGN(last_bss);
1908 /* ??? There is confusion between qemu_real_host_page_size and
1909 qemu_host_page_size here and elsewhere in target_mmap, which
1910 may lead to the end of the data section mapping from the file
1911 not being mapped. At least there was an explicit test and
1912 comment for that here, suggesting that "the file size must
1913 be known". The comment probably pre-dates the introduction
1914 of the fstat system call in target_mmap which does in fact
1915 find out the size. What isn't clear is if the workaround
1916 here is still actually needed. For now, continue with it,
1917 but merge it with the "normal" mmap that would allocate the bss. */
1919 host_start = (uintptr_t) g2h_untagged(elf_bss);
1920 host_end = (uintptr_t) g2h_untagged(last_bss);
1921 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1923 if (host_map_start < host_end) {
1924 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1925 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1926 if (p == MAP_FAILED) {
1927 perror("cannot mmap brk");
1928 exit(-1);
1932 /* Ensure that the bss page(s) are valid */
1933 if ((page_get_flags(last_bss-1) & prot) != prot) {
1934 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1937 if (host_start < host_map_start) {
1938 memset((void *)host_start, 0, host_map_start - host_start);
1942 #ifdef TARGET_ARM
1943 static int elf_is_fdpic(struct elfhdr *exec)
1945 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1947 #else
1948 /* Default implementation, always false. */
1949 static int elf_is_fdpic(struct elfhdr *exec)
1951 return 0;
1953 #endif
1955 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1957 uint16_t n;
1958 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1960 /* elf32_fdpic_loadseg */
1961 n = info->nsegs;
1962 while (n--) {
1963 sp -= 12;
1964 put_user_u32(loadsegs[n].addr, sp+0);
1965 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1966 put_user_u32(loadsegs[n].p_memsz, sp+8);
1969 /* elf32_fdpic_loadmap */
1970 sp -= 4;
1971 put_user_u16(0, sp+0); /* version */
1972 put_user_u16(info->nsegs, sp+2); /* nsegs */
1974 info->personality = PER_LINUX_FDPIC;
1975 info->loadmap_addr = sp;
1977 return sp;
1980 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1981 struct elfhdr *exec,
1982 struct image_info *info,
1983 struct image_info *interp_info)
1985 abi_ulong sp;
1986 abi_ulong u_argc, u_argv, u_envp, u_auxv;
1987 int size;
1988 int i;
1989 abi_ulong u_rand_bytes;
1990 uint8_t k_rand_bytes[16];
1991 abi_ulong u_platform;
1992 const char *k_platform;
1993 const int n = sizeof(elf_addr_t);
1995 sp = p;
1997 /* Needs to be before we load the env/argc/... */
1998 if (elf_is_fdpic(exec)) {
1999 /* Need 4 byte alignment for these structs */
2000 sp &= ~3;
2001 sp = loader_build_fdpic_loadmap(info, sp);
2002 info->other_info = interp_info;
2003 if (interp_info) {
2004 interp_info->other_info = info;
2005 sp = loader_build_fdpic_loadmap(interp_info, sp);
2006 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2007 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2008 } else {
2009 info->interpreter_loadmap_addr = 0;
2010 info->interpreter_pt_dynamic_addr = 0;
2014 u_platform = 0;
2015 k_platform = ELF_PLATFORM;
2016 if (k_platform) {
2017 size_t len = strlen(k_platform) + 1;
2018 if (STACK_GROWS_DOWN) {
2019 sp -= (len + n - 1) & ~(n - 1);
2020 u_platform = sp;
2021 /* FIXME - check return value of memcpy_to_target() for failure */
2022 memcpy_to_target(sp, k_platform, len);
2023 } else {
2024 memcpy_to_target(sp, k_platform, len);
2025 u_platform = sp;
2026 sp += len + 1;
2030 /* Provide 16 byte alignment for the PRNG, and basic alignment for
2031 * the argv and envp pointers.
2033 if (STACK_GROWS_DOWN) {
2034 sp = QEMU_ALIGN_DOWN(sp, 16);
2035 } else {
2036 sp = QEMU_ALIGN_UP(sp, 16);
2040 * Generate 16 random bytes for userspace PRNG seeding.
2042 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2043 if (STACK_GROWS_DOWN) {
2044 sp -= 16;
2045 u_rand_bytes = sp;
2046 /* FIXME - check return value of memcpy_to_target() for failure */
2047 memcpy_to_target(sp, k_rand_bytes, 16);
2048 } else {
2049 memcpy_to_target(sp, k_rand_bytes, 16);
2050 u_rand_bytes = sp;
2051 sp += 16;
2054 size = (DLINFO_ITEMS + 1) * 2;
2055 if (k_platform)
2056 size += 2;
2057 #ifdef DLINFO_ARCH_ITEMS
2058 size += DLINFO_ARCH_ITEMS * 2;
2059 #endif
2060 #ifdef ELF_HWCAP2
2061 size += 2;
2062 #endif
2063 info->auxv_len = size * n;
2065 size += envc + argc + 2;
2066 size += 1; /* argc itself */
2067 size *= n;
2069 /* Allocate space and finalize stack alignment for entry now. */
2070 if (STACK_GROWS_DOWN) {
2071 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2072 sp = u_argc;
2073 } else {
2074 u_argc = sp;
2075 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2078 u_argv = u_argc + n;
2079 u_envp = u_argv + (argc + 1) * n;
2080 u_auxv = u_envp + (envc + 1) * n;
2081 info->saved_auxv = u_auxv;
2082 info->arg_start = u_argv;
2083 info->arg_end = u_argv + argc * n;
2085 /* This is correct because Linux defines
2086 * elf_addr_t as Elf32_Off / Elf64_Off
2088 #define NEW_AUX_ENT(id, val) do { \
2089 put_user_ual(id, u_auxv); u_auxv += n; \
2090 put_user_ual(val, u_auxv); u_auxv += n; \
2091 } while(0)
2093 #ifdef ARCH_DLINFO
2095 * ARCH_DLINFO must come first so platform specific code can enforce
2096 * special alignment requirements on the AUXV if necessary (eg. PPC).
2098 ARCH_DLINFO;
2099 #endif
2100 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2101 * on info->auxv_len will trigger.
2103 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2104 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2105 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2106 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2107 /* Target doesn't support host page size alignment */
2108 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2109 } else {
2110 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2111 qemu_host_page_size)));
2113 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2114 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2115 NEW_AUX_ENT(AT_ENTRY, info->entry);
2116 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2117 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2118 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2119 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2120 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2121 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2122 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2123 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2124 NEW_AUX_ENT(AT_EXECFN, info->file_string);
2126 #ifdef ELF_HWCAP2
2127 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2128 #endif
2130 if (u_platform) {
2131 NEW_AUX_ENT(AT_PLATFORM, u_platform);
2133 NEW_AUX_ENT (AT_NULL, 0);
2134 #undef NEW_AUX_ENT
2136 /* Check that our initial calculation of the auxv length matches how much
2137 * we actually put into it.
2139 assert(info->auxv_len == u_auxv - info->saved_auxv);
2141 put_user_ual(argc, u_argc);
2143 p = info->arg_strings;
2144 for (i = 0; i < argc; ++i) {
2145 put_user_ual(p, u_argv);
2146 u_argv += n;
2147 p += target_strlen(p) + 1;
2149 put_user_ual(0, u_argv);
2151 p = info->env_strings;
2152 for (i = 0; i < envc; ++i) {
2153 put_user_ual(p, u_envp);
2154 u_envp += n;
2155 p += target_strlen(p) + 1;
2157 put_user_ual(0, u_envp);
2159 return sp;
2162 #ifndef ARM_COMMPAGE
2163 #define ARM_COMMPAGE 0
2164 #define init_guest_commpage() true
2165 #endif
2167 static void pgb_fail_in_use(const char *image_name)
2169 error_report("%s: requires virtual address space that is in use "
2170 "(omit the -B option or choose a different value)",
2171 image_name);
2172 exit(EXIT_FAILURE);
2175 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2176 abi_ulong guest_hiaddr, long align)
2178 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2179 void *addr, *test;
2181 if (!QEMU_IS_ALIGNED(guest_base, align)) {
2182 fprintf(stderr, "Requested guest base %p does not satisfy "
2183 "host minimum alignment (0x%lx)\n",
2184 (void *)guest_base, align);
2185 exit(EXIT_FAILURE);
2188 /* Sanity check the guest binary. */
2189 if (reserved_va) {
2190 if (guest_hiaddr > reserved_va) {
2191 error_report("%s: requires more than reserved virtual "
2192 "address space (0x%" PRIx64 " > 0x%lx)",
2193 image_name, (uint64_t)guest_hiaddr, reserved_va);
2194 exit(EXIT_FAILURE);
2196 } else {
2197 #if HOST_LONG_BITS < TARGET_ABI_BITS
2198 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2199 error_report("%s: requires more virtual address space "
2200 "than the host can provide (0x%" PRIx64 ")",
2201 image_name, (uint64_t)guest_hiaddr - guest_base);
2202 exit(EXIT_FAILURE);
2204 #endif
2208 * Expand the allocation to the entire reserved_va.
2209 * Exclude the mmap_min_addr hole.
2211 if (reserved_va) {
2212 guest_loaddr = (guest_base >= mmap_min_addr ? 0
2213 : mmap_min_addr - guest_base);
2214 guest_hiaddr = reserved_va;
2217 /* Reserve the address space for the binary, or reserved_va. */
2218 test = g2h_untagged(guest_loaddr);
2219 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2220 if (test != addr) {
2221 pgb_fail_in_use(image_name);
2226 * pgd_find_hole_fallback: potential mmap address
2227 * @guest_size: size of available space
2228 * @brk: location of break
2229 * @align: memory alignment
2231 * This is a fallback method for finding a hole in the host address
2232 * space if we don't have the benefit of being able to access
2233 * /proc/self/map. It can potentially take a very long time as we can
2234 * only dumbly iterate up the host address space seeing if the
2235 * allocation would work.
2237 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2238 long align, uintptr_t offset)
2240 uintptr_t base;
2242 /* Start (aligned) at the bottom and work our way up */
2243 base = ROUND_UP(mmap_min_addr, align);
2245 while (true) {
2246 uintptr_t align_start, end;
2247 align_start = ROUND_UP(base, align);
2248 end = align_start + guest_size + offset;
2250 /* if brk is anywhere in the range give ourselves some room to grow. */
2251 if (align_start <= brk && brk < end) {
2252 base = brk + (16 * MiB);
2253 continue;
2254 } else if (align_start + guest_size < align_start) {
2255 /* we have run out of space */
2256 return -1;
2257 } else {
2258 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2259 MAP_FIXED_NOREPLACE;
2260 void * mmap_start = mmap((void *) align_start, guest_size,
2261 PROT_NONE, flags, -1, 0);
2262 if (mmap_start != MAP_FAILED) {
2263 munmap(mmap_start, guest_size);
2264 if (mmap_start == (void *) align_start) {
2265 return (uintptr_t) mmap_start + offset;
2268 base += qemu_host_page_size;
2273 /* Return value for guest_base, or -1 if no hole found. */
2274 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2275 long align, uintptr_t offset)
2277 GSList *maps, *iter;
2278 uintptr_t this_start, this_end, next_start, brk;
2279 intptr_t ret = -1;
2281 assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2283 maps = read_self_maps();
2285 /* Read brk after we've read the maps, which will malloc. */
2286 brk = (uintptr_t)sbrk(0);
2288 if (!maps) {
2289 ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2290 return ret == -1 ? -1 : ret - guest_loaddr;
2293 /* The first hole is before the first map entry. */
2294 this_start = mmap_min_addr;
2296 for (iter = maps; iter;
2297 this_start = next_start, iter = g_slist_next(iter)) {
2298 uintptr_t align_start, hole_size;
2300 this_end = ((MapInfo *)iter->data)->start;
2301 next_start = ((MapInfo *)iter->data)->end;
2302 align_start = ROUND_UP(this_start + offset, align);
2304 /* Skip holes that are too small. */
2305 if (align_start >= this_end) {
2306 continue;
2308 hole_size = this_end - align_start;
2309 if (hole_size < guest_size) {
2310 continue;
2313 /* If this hole contains brk, give ourselves some room to grow. */
2314 if (this_start <= brk && brk < this_end) {
2315 hole_size -= guest_size;
2316 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2317 align_start += 1 * GiB;
2318 } else if (hole_size >= 16 * MiB) {
2319 align_start += 16 * MiB;
2320 } else {
2321 align_start = (this_end - guest_size) & -align;
2322 if (align_start < this_start) {
2323 continue;
2328 /* Record the lowest successful match. */
2329 if (ret < 0) {
2330 ret = align_start - guest_loaddr;
2332 /* If this hole contains the identity map, select it. */
2333 if (align_start <= guest_loaddr &&
2334 guest_loaddr + guest_size <= this_end) {
2335 ret = 0;
2337 /* If this hole ends above the identity map, stop looking. */
2338 if (this_end >= guest_loaddr) {
2339 break;
2342 free_self_maps(maps);
2344 return ret;
2347 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2348 abi_ulong orig_hiaddr, long align)
2350 uintptr_t loaddr = orig_loaddr;
2351 uintptr_t hiaddr = orig_hiaddr;
2352 uintptr_t offset = 0;
2353 uintptr_t addr;
2355 if (hiaddr != orig_hiaddr) {
2356 error_report("%s: requires virtual address space that the "
2357 "host cannot provide (0x%" PRIx64 ")",
2358 image_name, (uint64_t)orig_hiaddr);
2359 exit(EXIT_FAILURE);
2362 loaddr &= -align;
2363 if (ARM_COMMPAGE) {
2365 * Extend the allocation to include the commpage.
2366 * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2367 * need to ensure there is space bellow the guest_base so we
2368 * can map the commpage in the place needed when the address
2369 * arithmetic wraps around.
2371 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2372 hiaddr = (uintptr_t) 4 << 30;
2373 } else {
2374 offset = -(ARM_COMMPAGE & -align);
2378 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2379 if (addr == -1) {
2381 * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2382 * that can satisfy both. But as the normal arm32 link base address
2383 * is ~32k, and we extend down to include the commpage, making the
2384 * overhead only ~96k, this is unlikely.
2386 error_report("%s: Unable to allocate %#zx bytes of "
2387 "virtual address space", image_name,
2388 (size_t)(hiaddr - loaddr));
2389 exit(EXIT_FAILURE);
2392 guest_base = addr;
2395 static void pgb_dynamic(const char *image_name, long align)
2398 * The executable is dynamic and does not require a fixed address.
2399 * All we need is a commpage that satisfies align.
2400 * If we do not need a commpage, leave guest_base == 0.
2402 if (ARM_COMMPAGE) {
2403 uintptr_t addr, commpage;
2405 /* 64-bit hosts should have used reserved_va. */
2406 assert(sizeof(uintptr_t) == 4);
2409 * By putting the commpage at the first hole, that puts guest_base
2410 * just above that, and maximises the positive guest addresses.
2412 commpage = ARM_COMMPAGE & -align;
2413 addr = pgb_find_hole(commpage, -commpage, align, 0);
2414 assert(addr != -1);
2415 guest_base = addr;
2419 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2420 abi_ulong guest_hiaddr, long align)
2422 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2423 void *addr, *test;
2425 if (guest_hiaddr > reserved_va) {
2426 error_report("%s: requires more than reserved virtual "
2427 "address space (0x%" PRIx64 " > 0x%lx)",
2428 image_name, (uint64_t)guest_hiaddr, reserved_va);
2429 exit(EXIT_FAILURE);
2432 /* Widen the "image" to the entire reserved address space. */
2433 pgb_static(image_name, 0, reserved_va, align);
2435 /* osdep.h defines this as 0 if it's missing */
2436 flags |= MAP_FIXED_NOREPLACE;
2438 /* Reserve the memory on the host. */
2439 assert(guest_base != 0);
2440 test = g2h_untagged(0);
2441 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2442 if (addr == MAP_FAILED || addr != test) {
2443 error_report("Unable to reserve 0x%lx bytes of virtual address "
2444 "space at %p (%s) for use as guest address space (check your"
2445 "virtual memory ulimit setting, min_mmap_addr or reserve less "
2446 "using -R option)", reserved_va, test, strerror(errno));
2447 exit(EXIT_FAILURE);
2451 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2452 abi_ulong guest_hiaddr)
2454 /* In order to use host shmat, we must be able to honor SHMLBA. */
2455 uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2457 if (have_guest_base) {
2458 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2459 } else if (reserved_va) {
2460 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2461 } else if (guest_loaddr) {
2462 pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2463 } else {
2464 pgb_dynamic(image_name, align);
2467 /* Reserve and initialize the commpage. */
2468 if (!init_guest_commpage()) {
2470 * With have_guest_base, the user has selected the address and
2471 * we are trying to work with that. Otherwise, we have selected
2472 * free space and init_guest_commpage must succeeded.
2474 assert(have_guest_base);
2475 pgb_fail_in_use(image_name);
2478 assert(QEMU_IS_ALIGNED(guest_base, align));
2479 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2480 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2483 enum {
2484 /* The string "GNU\0" as a magic number. */
2485 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2486 NOTE_DATA_SZ = 1 * KiB,
2487 NOTE_NAME_SZ = 4,
2488 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2492 * Process a single gnu_property entry.
2493 * Return false for error.
2495 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2496 struct image_info *info, bool have_prev_type,
2497 uint32_t *prev_type, Error **errp)
2499 uint32_t pr_type, pr_datasz, step;
2501 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2502 goto error_data;
2504 datasz -= *off;
2505 data += *off / sizeof(uint32_t);
2507 if (datasz < 2 * sizeof(uint32_t)) {
2508 goto error_data;
2510 pr_type = data[0];
2511 pr_datasz = data[1];
2512 data += 2;
2513 datasz -= 2 * sizeof(uint32_t);
2514 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2515 if (step > datasz) {
2516 goto error_data;
2519 /* Properties are supposed to be unique and sorted on pr_type. */
2520 if (have_prev_type && pr_type <= *prev_type) {
2521 if (pr_type == *prev_type) {
2522 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2523 } else {
2524 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2526 return false;
2528 *prev_type = pr_type;
2530 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2531 return false;
2534 *off += 2 * sizeof(uint32_t) + step;
2535 return true;
2537 error_data:
2538 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2539 return false;
2542 /* Process NT_GNU_PROPERTY_TYPE_0. */
2543 static bool parse_elf_properties(int image_fd,
2544 struct image_info *info,
2545 const struct elf_phdr *phdr,
2546 char bprm_buf[BPRM_BUF_SIZE],
2547 Error **errp)
2549 union {
2550 struct elf_note nhdr;
2551 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2552 } note;
2554 int n, off, datasz;
2555 bool have_prev_type;
2556 uint32_t prev_type;
2558 /* Unless the arch requires properties, ignore them. */
2559 if (!ARCH_USE_GNU_PROPERTY) {
2560 return true;
2563 /* If the properties are crazy large, that's too bad. */
2564 n = phdr->p_filesz;
2565 if (n > sizeof(note)) {
2566 error_setg(errp, "PT_GNU_PROPERTY too large");
2567 return false;
2569 if (n < sizeof(note.nhdr)) {
2570 error_setg(errp, "PT_GNU_PROPERTY too small");
2571 return false;
2574 if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2575 memcpy(&note, bprm_buf + phdr->p_offset, n);
2576 } else {
2577 ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2578 if (len != n) {
2579 error_setg_errno(errp, errno, "Error reading file header");
2580 return false;
2585 * The contents of a valid PT_GNU_PROPERTY is a sequence
2586 * of uint32_t -- swap them all now.
2588 #ifdef BSWAP_NEEDED
2589 for (int i = 0; i < n / 4; i++) {
2590 bswap32s(note.data + i);
2592 #endif
2595 * Note that nhdr is 3 words, and that the "name" described by namesz
2596 * immediately follows nhdr and is thus at the 4th word. Further, all
2597 * of the inputs to the kernel's round_up are multiples of 4.
2599 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2600 note.nhdr.n_namesz != NOTE_NAME_SZ ||
2601 note.data[3] != GNU0_MAGIC) {
2602 error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2603 return false;
2605 off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2607 datasz = note.nhdr.n_descsz + off;
2608 if (datasz > n) {
2609 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2610 return false;
2613 have_prev_type = false;
2614 prev_type = 0;
2615 while (1) {
2616 if (off == datasz) {
2617 return true; /* end, exit ok */
2619 if (!parse_elf_property(note.data, &off, datasz, info,
2620 have_prev_type, &prev_type, errp)) {
2621 return false;
2623 have_prev_type = true;
2627 /* Load an ELF image into the address space.
2629 IMAGE_NAME is the filename of the image, to use in error messages.
2630 IMAGE_FD is the open file descriptor for the image.
2632 BPRM_BUF is a copy of the beginning of the file; this of course
2633 contains the elf file header at offset 0. It is assumed that this
2634 buffer is sufficiently aligned to present no problems to the host
2635 in accessing data at aligned offsets within the buffer.
2637 On return: INFO values will be filled in, as necessary or available. */
2639 static void load_elf_image(const char *image_name, int image_fd,
2640 struct image_info *info, char **pinterp_name,
2641 char bprm_buf[BPRM_BUF_SIZE])
2643 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2644 struct elf_phdr *phdr;
2645 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2646 int i, retval, prot_exec;
2647 Error *err = NULL;
2649 /* First of all, some simple consistency checks */
2650 if (!elf_check_ident(ehdr)) {
2651 error_setg(&err, "Invalid ELF image for this architecture");
2652 goto exit_errmsg;
2654 bswap_ehdr(ehdr);
2655 if (!elf_check_ehdr(ehdr)) {
2656 error_setg(&err, "Invalid ELF image for this architecture");
2657 goto exit_errmsg;
2660 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2661 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2662 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2663 } else {
2664 phdr = (struct elf_phdr *) alloca(i);
2665 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2666 if (retval != i) {
2667 goto exit_read;
2670 bswap_phdr(phdr, ehdr->e_phnum);
2672 info->nsegs = 0;
2673 info->pt_dynamic_addr = 0;
2675 mmap_lock();
2678 * Find the maximum size of the image and allocate an appropriate
2679 * amount of memory to handle that. Locate the interpreter, if any.
2681 loaddr = -1, hiaddr = 0;
2682 info->alignment = 0;
2683 for (i = 0; i < ehdr->e_phnum; ++i) {
2684 struct elf_phdr *eppnt = phdr + i;
2685 if (eppnt->p_type == PT_LOAD) {
2686 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2687 if (a < loaddr) {
2688 loaddr = a;
2690 a = eppnt->p_vaddr + eppnt->p_memsz;
2691 if (a > hiaddr) {
2692 hiaddr = a;
2694 ++info->nsegs;
2695 info->alignment |= eppnt->p_align;
2696 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2697 g_autofree char *interp_name = NULL;
2699 if (*pinterp_name) {
2700 error_setg(&err, "Multiple PT_INTERP entries");
2701 goto exit_errmsg;
2704 interp_name = g_malloc(eppnt->p_filesz);
2706 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2707 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2708 eppnt->p_filesz);
2709 } else {
2710 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2711 eppnt->p_offset);
2712 if (retval != eppnt->p_filesz) {
2713 goto exit_read;
2716 if (interp_name[eppnt->p_filesz - 1] != 0) {
2717 error_setg(&err, "Invalid PT_INTERP entry");
2718 goto exit_errmsg;
2720 *pinterp_name = g_steal_pointer(&interp_name);
2721 } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2722 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2723 goto exit_errmsg;
2728 if (pinterp_name != NULL) {
2730 * This is the main executable.
2732 * Reserve extra space for brk.
2733 * We hold on to this space while placing the interpreter
2734 * and the stack, lest they be placed immediately after
2735 * the data segment and block allocation from the brk.
2737 * 16MB is chosen as "large enough" without being so large
2738 * as to allow the result to not fit with a 32-bit guest on
2739 * a 32-bit host.
2741 info->reserve_brk = 16 * MiB;
2742 hiaddr += info->reserve_brk;
2744 if (ehdr->e_type == ET_EXEC) {
2746 * Make sure that the low address does not conflict with
2747 * MMAP_MIN_ADDR or the QEMU application itself.
2749 probe_guest_base(image_name, loaddr, hiaddr);
2750 } else {
2752 * The binary is dynamic, but we still need to
2753 * select guest_base. In this case we pass a size.
2755 probe_guest_base(image_name, 0, hiaddr - loaddr);
2760 * Reserve address space for all of this.
2762 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2763 * exactly the address range that is required.
2765 * Otherwise this is ET_DYN, and we are searching for a location
2766 * that can hold the memory space required. If the image is
2767 * pre-linked, LOADDR will be non-zero, and the kernel should
2768 * honor that address if it happens to be free.
2770 * In both cases, we will overwrite pages in this range with mappings
2771 * from the executable.
2773 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2774 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2775 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2776 -1, 0);
2777 if (load_addr == -1) {
2778 goto exit_mmap;
2780 load_bias = load_addr - loaddr;
2782 if (elf_is_fdpic(ehdr)) {
2783 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2784 g_malloc(sizeof(*loadsegs) * info->nsegs);
2786 for (i = 0; i < ehdr->e_phnum; ++i) {
2787 switch (phdr[i].p_type) {
2788 case PT_DYNAMIC:
2789 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2790 break;
2791 case PT_LOAD:
2792 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2793 loadsegs->p_vaddr = phdr[i].p_vaddr;
2794 loadsegs->p_memsz = phdr[i].p_memsz;
2795 ++loadsegs;
2796 break;
2801 info->load_bias = load_bias;
2802 info->code_offset = load_bias;
2803 info->data_offset = load_bias;
2804 info->load_addr = load_addr;
2805 info->entry = ehdr->e_entry + load_bias;
2806 info->start_code = -1;
2807 info->end_code = 0;
2808 info->start_data = -1;
2809 info->end_data = 0;
2810 info->brk = 0;
2811 info->elf_flags = ehdr->e_flags;
2813 prot_exec = PROT_EXEC;
2814 #ifdef TARGET_AARCH64
2816 * If the BTI feature is present, this indicates that the executable
2817 * pages of the startup binary should be mapped with PROT_BTI, so that
2818 * branch targets are enforced.
2820 * The startup binary is either the interpreter or the static executable.
2821 * The interpreter is responsible for all pages of a dynamic executable.
2823 * Elf notes are backward compatible to older cpus.
2824 * Do not enable BTI unless it is supported.
2826 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2827 && (pinterp_name == NULL || *pinterp_name == 0)
2828 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2829 prot_exec |= TARGET_PROT_BTI;
2831 #endif
2833 for (i = 0; i < ehdr->e_phnum; i++) {
2834 struct elf_phdr *eppnt = phdr + i;
2835 if (eppnt->p_type == PT_LOAD) {
2836 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2837 int elf_prot = 0;
2839 if (eppnt->p_flags & PF_R) {
2840 elf_prot |= PROT_READ;
2842 if (eppnt->p_flags & PF_W) {
2843 elf_prot |= PROT_WRITE;
2845 if (eppnt->p_flags & PF_X) {
2846 elf_prot |= prot_exec;
2849 vaddr = load_bias + eppnt->p_vaddr;
2850 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2851 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2853 vaddr_ef = vaddr + eppnt->p_filesz;
2854 vaddr_em = vaddr + eppnt->p_memsz;
2857 * Some segments may be completely empty, with a non-zero p_memsz
2858 * but no backing file segment.
2860 if (eppnt->p_filesz != 0) {
2861 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2862 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2863 MAP_PRIVATE | MAP_FIXED,
2864 image_fd, eppnt->p_offset - vaddr_po);
2866 if (error == -1) {
2867 goto exit_mmap;
2871 * If the load segment requests extra zeros (e.g. bss), map it.
2873 if (eppnt->p_filesz < eppnt->p_memsz) {
2874 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2876 } else if (eppnt->p_memsz != 0) {
2877 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2878 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2879 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2880 -1, 0);
2882 if (error == -1) {
2883 goto exit_mmap;
2887 /* Find the full program boundaries. */
2888 if (elf_prot & PROT_EXEC) {
2889 if (vaddr < info->start_code) {
2890 info->start_code = vaddr;
2892 if (vaddr_ef > info->end_code) {
2893 info->end_code = vaddr_ef;
2896 if (elf_prot & PROT_WRITE) {
2897 if (vaddr < info->start_data) {
2898 info->start_data = vaddr;
2900 if (vaddr_ef > info->end_data) {
2901 info->end_data = vaddr_ef;
2904 if (vaddr_em > info->brk) {
2905 info->brk = vaddr_em;
2907 #ifdef TARGET_MIPS
2908 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2909 Mips_elf_abiflags_v0 abiflags;
2910 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2911 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2912 goto exit_errmsg;
2914 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2915 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2916 sizeof(Mips_elf_abiflags_v0));
2917 } else {
2918 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2919 eppnt->p_offset);
2920 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2921 goto exit_read;
2924 bswap_mips_abiflags(&abiflags);
2925 info->fp_abi = abiflags.fp_abi;
2926 #endif
2930 if (info->end_data == 0) {
2931 info->start_data = info->end_code;
2932 info->end_data = info->end_code;
2935 if (qemu_log_enabled()) {
2936 load_symbols(ehdr, image_fd, load_bias);
2939 mmap_unlock();
2941 close(image_fd);
2942 return;
2944 exit_read:
2945 if (retval >= 0) {
2946 error_setg(&err, "Incomplete read of file header");
2947 } else {
2948 error_setg_errno(&err, errno, "Error reading file header");
2950 goto exit_errmsg;
2951 exit_mmap:
2952 error_setg_errno(&err, errno, "Error mapping file");
2953 goto exit_errmsg;
2954 exit_errmsg:
2955 error_reportf_err(err, "%s: ", image_name);
2956 exit(-1);
2959 static void load_elf_interp(const char *filename, struct image_info *info,
2960 char bprm_buf[BPRM_BUF_SIZE])
2962 int fd, retval;
2963 Error *err = NULL;
2965 fd = open(path(filename), O_RDONLY);
2966 if (fd < 0) {
2967 error_setg_file_open(&err, errno, filename);
2968 error_report_err(err);
2969 exit(-1);
2972 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2973 if (retval < 0) {
2974 error_setg_errno(&err, errno, "Error reading file header");
2975 error_reportf_err(err, "%s: ", filename);
2976 exit(-1);
2979 if (retval < BPRM_BUF_SIZE) {
2980 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2983 load_elf_image(filename, fd, info, NULL, bprm_buf);
2986 static int symfind(const void *s0, const void *s1)
2988 target_ulong addr = *(target_ulong *)s0;
2989 struct elf_sym *sym = (struct elf_sym *)s1;
2990 int result = 0;
2991 if (addr < sym->st_value) {
2992 result = -1;
2993 } else if (addr >= sym->st_value + sym->st_size) {
2994 result = 1;
2996 return result;
2999 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
3001 #if ELF_CLASS == ELFCLASS32
3002 struct elf_sym *syms = s->disas_symtab.elf32;
3003 #else
3004 struct elf_sym *syms = s->disas_symtab.elf64;
3005 #endif
3007 // binary search
3008 struct elf_sym *sym;
3010 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3011 if (sym != NULL) {
3012 return s->disas_strtab + sym->st_name;
3015 return "";
3018 /* FIXME: This should use elf_ops.h */
3019 static int symcmp(const void *s0, const void *s1)
3021 struct elf_sym *sym0 = (struct elf_sym *)s0;
3022 struct elf_sym *sym1 = (struct elf_sym *)s1;
3023 return (sym0->st_value < sym1->st_value)
3024 ? -1
3025 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3028 /* Best attempt to load symbols from this ELF object. */
3029 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3031 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3032 uint64_t segsz;
3033 struct elf_shdr *shdr;
3034 char *strings = NULL;
3035 struct syminfo *s = NULL;
3036 struct elf_sym *new_syms, *syms = NULL;
3038 shnum = hdr->e_shnum;
3039 i = shnum * sizeof(struct elf_shdr);
3040 shdr = (struct elf_shdr *)alloca(i);
3041 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3042 return;
3045 bswap_shdr(shdr, shnum);
3046 for (i = 0; i < shnum; ++i) {
3047 if (shdr[i].sh_type == SHT_SYMTAB) {
3048 sym_idx = i;
3049 str_idx = shdr[i].sh_link;
3050 goto found;
3054 /* There will be no symbol table if the file was stripped. */
3055 return;
3057 found:
3058 /* Now know where the strtab and symtab are. Snarf them. */
3059 s = g_try_new(struct syminfo, 1);
3060 if (!s) {
3061 goto give_up;
3064 segsz = shdr[str_idx].sh_size;
3065 s->disas_strtab = strings = g_try_malloc(segsz);
3066 if (!strings ||
3067 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3068 goto give_up;
3071 segsz = shdr[sym_idx].sh_size;
3072 syms = g_try_malloc(segsz);
3073 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3074 goto give_up;
3077 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3078 /* Implausibly large symbol table: give up rather than ploughing
3079 * on with the number of symbols calculation overflowing
3081 goto give_up;
3083 nsyms = segsz / sizeof(struct elf_sym);
3084 for (i = 0; i < nsyms; ) {
3085 bswap_sym(syms + i);
3086 /* Throw away entries which we do not need. */
3087 if (syms[i].st_shndx == SHN_UNDEF
3088 || syms[i].st_shndx >= SHN_LORESERVE
3089 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3090 if (i < --nsyms) {
3091 syms[i] = syms[nsyms];
3093 } else {
3094 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3095 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
3096 syms[i].st_value &= ~(target_ulong)1;
3097 #endif
3098 syms[i].st_value += load_bias;
3099 i++;
3103 /* No "useful" symbol. */
3104 if (nsyms == 0) {
3105 goto give_up;
3108 /* Attempt to free the storage associated with the local symbols
3109 that we threw away. Whether or not this has any effect on the
3110 memory allocation depends on the malloc implementation and how
3111 many symbols we managed to discard. */
3112 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3113 if (new_syms == NULL) {
3114 goto give_up;
3116 syms = new_syms;
3118 qsort(syms, nsyms, sizeof(*syms), symcmp);
3120 s->disas_num_syms = nsyms;
3121 #if ELF_CLASS == ELFCLASS32
3122 s->disas_symtab.elf32 = syms;
3123 #else
3124 s->disas_symtab.elf64 = syms;
3125 #endif
3126 s->lookup_symbol = lookup_symbolxx;
3127 s->next = syminfos;
3128 syminfos = s;
3130 return;
3132 give_up:
3133 g_free(s);
3134 g_free(strings);
3135 g_free(syms);
3138 uint32_t get_elf_eflags(int fd)
3140 struct elfhdr ehdr;
3141 off_t offset;
3142 int ret;
3144 /* Read ELF header */
3145 offset = lseek(fd, 0, SEEK_SET);
3146 if (offset == (off_t) -1) {
3147 return 0;
3149 ret = read(fd, &ehdr, sizeof(ehdr));
3150 if (ret < sizeof(ehdr)) {
3151 return 0;
3153 offset = lseek(fd, offset, SEEK_SET);
3154 if (offset == (off_t) -1) {
3155 return 0;
3158 /* Check ELF signature */
3159 if (!elf_check_ident(&ehdr)) {
3160 return 0;
3163 /* check header */
3164 bswap_ehdr(&ehdr);
3165 if (!elf_check_ehdr(&ehdr)) {
3166 return 0;
3169 /* return architecture id */
3170 return ehdr.e_flags;
3173 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3175 struct image_info interp_info;
3176 struct elfhdr elf_ex;
3177 char *elf_interpreter = NULL;
3178 char *scratch;
3180 memset(&interp_info, 0, sizeof(interp_info));
3181 #ifdef TARGET_MIPS
3182 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3183 #endif
3185 info->start_mmap = (abi_ulong)ELF_START_MMAP;
3187 load_elf_image(bprm->filename, bprm->fd, info,
3188 &elf_interpreter, bprm->buf);
3190 /* ??? We need a copy of the elf header for passing to create_elf_tables.
3191 If we do nothing, we'll have overwritten this when we re-use bprm->buf
3192 when we load the interpreter. */
3193 elf_ex = *(struct elfhdr *)bprm->buf;
3195 /* Do this so that we can load the interpreter, if need be. We will
3196 change some of these later */
3197 bprm->p = setup_arg_pages(bprm, info);
3199 scratch = g_new0(char, TARGET_PAGE_SIZE);
3200 if (STACK_GROWS_DOWN) {
3201 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3202 bprm->p, info->stack_limit);
3203 info->file_string = bprm->p;
3204 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3205 bprm->p, info->stack_limit);
3206 info->env_strings = bprm->p;
3207 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3208 bprm->p, info->stack_limit);
3209 info->arg_strings = bprm->p;
3210 } else {
3211 info->arg_strings = bprm->p;
3212 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3213 bprm->p, info->stack_limit);
3214 info->env_strings = bprm->p;
3215 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3216 bprm->p, info->stack_limit);
3217 info->file_string = bprm->p;
3218 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3219 bprm->p, info->stack_limit);
3222 g_free(scratch);
3224 if (!bprm->p) {
3225 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3226 exit(-1);
3229 if (elf_interpreter) {
3230 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3232 /* If the program interpreter is one of these two, then assume
3233 an iBCS2 image. Otherwise assume a native linux image. */
3235 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3236 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3237 info->personality = PER_SVR4;
3239 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
3240 and some applications "depend" upon this behavior. Since
3241 we do not have the power to recompile these, we emulate
3242 the SVr4 behavior. Sigh. */
3243 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3244 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3246 #ifdef TARGET_MIPS
3247 info->interp_fp_abi = interp_info.fp_abi;
3248 #endif
3251 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3252 info, (elf_interpreter ? &interp_info : NULL));
3253 info->start_stack = bprm->p;
3255 /* If we have an interpreter, set that as the program's entry point.
3256 Copy the load_bias as well, to help PPC64 interpret the entry
3257 point as a function descriptor. Do this after creating elf tables
3258 so that we copy the original program entry point into the AUXV. */
3259 if (elf_interpreter) {
3260 info->load_bias = interp_info.load_bias;
3261 info->entry = interp_info.entry;
3262 g_free(elf_interpreter);
3265 #ifdef USE_ELF_CORE_DUMP
3266 bprm->core_dump = &elf_core_dump;
3267 #endif
3270 * If we reserved extra space for brk, release it now.
3271 * The implementation of do_brk in syscalls.c expects to be able
3272 * to mmap pages in this space.
3274 if (info->reserve_brk) {
3275 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3276 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3277 target_munmap(start_brk, end_brk - start_brk);
3280 return 0;
3283 #ifdef USE_ELF_CORE_DUMP
3285 * Definitions to generate Intel SVR4-like core files.
3286 * These mostly have the same names as the SVR4 types with "target_elf_"
3287 * tacked on the front to prevent clashes with linux definitions,
3288 * and the typedef forms have been avoided. This is mostly like
3289 * the SVR4 structure, but more Linuxy, with things that Linux does
3290 * not support and which gdb doesn't really use excluded.
3292 * Fields we don't dump (their contents is zero) in linux-user qemu
3293 * are marked with XXX.
3295 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3297 * Porting ELF coredump for target is (quite) simple process. First you
3298 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3299 * the target resides):
3301 * #define USE_ELF_CORE_DUMP
3303 * Next you define type of register set used for dumping. ELF specification
3304 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3306 * typedef <target_regtype> target_elf_greg_t;
3307 * #define ELF_NREG <number of registers>
3308 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3310 * Last step is to implement target specific function that copies registers
3311 * from given cpu into just specified register set. Prototype is:
3313 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3314 * const CPUArchState *env);
3316 * Parameters:
3317 * regs - copy register values into here (allocated and zeroed by caller)
3318 * env - copy registers from here
3320 * Example for ARM target is provided in this file.
3323 /* An ELF note in memory */
3324 struct memelfnote {
3325 const char *name;
3326 size_t namesz;
3327 size_t namesz_rounded;
3328 int type;
3329 size_t datasz;
3330 size_t datasz_rounded;
3331 void *data;
3332 size_t notesz;
3335 struct target_elf_siginfo {
3336 abi_int si_signo; /* signal number */
3337 abi_int si_code; /* extra code */
3338 abi_int si_errno; /* errno */
3341 struct target_elf_prstatus {
3342 struct target_elf_siginfo pr_info; /* Info associated with signal */
3343 abi_short pr_cursig; /* Current signal */
3344 abi_ulong pr_sigpend; /* XXX */
3345 abi_ulong pr_sighold; /* XXX */
3346 target_pid_t pr_pid;
3347 target_pid_t pr_ppid;
3348 target_pid_t pr_pgrp;
3349 target_pid_t pr_sid;
3350 struct target_timeval pr_utime; /* XXX User time */
3351 struct target_timeval pr_stime; /* XXX System time */
3352 struct target_timeval pr_cutime; /* XXX Cumulative user time */
3353 struct target_timeval pr_cstime; /* XXX Cumulative system time */
3354 target_elf_gregset_t pr_reg; /* GP registers */
3355 abi_int pr_fpvalid; /* XXX */
3358 #define ELF_PRARGSZ (80) /* Number of chars for args */
3360 struct target_elf_prpsinfo {
3361 char pr_state; /* numeric process state */
3362 char pr_sname; /* char for pr_state */
3363 char pr_zomb; /* zombie */
3364 char pr_nice; /* nice val */
3365 abi_ulong pr_flag; /* flags */
3366 target_uid_t pr_uid;
3367 target_gid_t pr_gid;
3368 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3369 /* Lots missing */
3370 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3371 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3374 /* Here is the structure in which status of each thread is captured. */
3375 struct elf_thread_status {
3376 QTAILQ_ENTRY(elf_thread_status) ets_link;
3377 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
3378 #if 0
3379 elf_fpregset_t fpu; /* NT_PRFPREG */
3380 struct task_struct *thread;
3381 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3382 #endif
3383 struct memelfnote notes[1];
3384 int num_notes;
3387 struct elf_note_info {
3388 struct memelfnote *notes;
3389 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3390 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
3392 QTAILQ_HEAD(, elf_thread_status) thread_list;
3393 #if 0
3395 * Current version of ELF coredump doesn't support
3396 * dumping fp regs etc.
3398 elf_fpregset_t *fpu;
3399 elf_fpxregset_t *xfpu;
3400 int thread_status_size;
3401 #endif
3402 int notes_size;
3403 int numnote;
3406 struct vm_area_struct {
3407 target_ulong vma_start; /* start vaddr of memory region */
3408 target_ulong vma_end; /* end vaddr of memory region */
3409 abi_ulong vma_flags; /* protection etc. flags for the region */
3410 QTAILQ_ENTRY(vm_area_struct) vma_link;
3413 struct mm_struct {
3414 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3415 int mm_count; /* number of mappings */
3418 static struct mm_struct *vma_init(void);
3419 static void vma_delete(struct mm_struct *);
3420 static int vma_add_mapping(struct mm_struct *, target_ulong,
3421 target_ulong, abi_ulong);
3422 static int vma_get_mapping_count(const struct mm_struct *);
3423 static struct vm_area_struct *vma_first(const struct mm_struct *);
3424 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3425 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3426 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3427 unsigned long flags);
3429 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3430 static void fill_note(struct memelfnote *, const char *, int,
3431 unsigned int, void *);
3432 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3433 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3434 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3435 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3436 static size_t note_size(const struct memelfnote *);
3437 static void free_note_info(struct elf_note_info *);
3438 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3439 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3441 static int dump_write(int, const void *, size_t);
3442 static int write_note(struct memelfnote *, int);
3443 static int write_note_info(struct elf_note_info *, int);
3445 #ifdef BSWAP_NEEDED
3446 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3448 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3449 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3450 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3451 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3452 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3453 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3454 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3455 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3456 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3457 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3458 /* cpu times are not filled, so we skip them */
3459 /* regs should be in correct format already */
3460 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3463 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3465 psinfo->pr_flag = tswapal(psinfo->pr_flag);
3466 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3467 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3468 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3469 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3470 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3471 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3474 static void bswap_note(struct elf_note *en)
3476 bswap32s(&en->n_namesz);
3477 bswap32s(&en->n_descsz);
3478 bswap32s(&en->n_type);
3480 #else
3481 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3482 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3483 static inline void bswap_note(struct elf_note *en) { }
3484 #endif /* BSWAP_NEEDED */
3487 * Minimal support for linux memory regions. These are needed
3488 * when we are finding out what memory exactly belongs to
3489 * emulated process. No locks needed here, as long as
3490 * thread that received the signal is stopped.
3493 static struct mm_struct *vma_init(void)
3495 struct mm_struct *mm;
3497 if ((mm = g_malloc(sizeof (*mm))) == NULL)
3498 return (NULL);
3500 mm->mm_count = 0;
3501 QTAILQ_INIT(&mm->mm_mmap);
3503 return (mm);
3506 static void vma_delete(struct mm_struct *mm)
3508 struct vm_area_struct *vma;
3510 while ((vma = vma_first(mm)) != NULL) {
3511 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3512 g_free(vma);
3514 g_free(mm);
3517 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3518 target_ulong end, abi_ulong flags)
3520 struct vm_area_struct *vma;
3522 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3523 return (-1);
3525 vma->vma_start = start;
3526 vma->vma_end = end;
3527 vma->vma_flags = flags;
3529 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3530 mm->mm_count++;
3532 return (0);
3535 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3537 return (QTAILQ_FIRST(&mm->mm_mmap));
3540 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3542 return (QTAILQ_NEXT(vma, vma_link));
3545 static int vma_get_mapping_count(const struct mm_struct *mm)
3547 return (mm->mm_count);
3551 * Calculate file (dump) size of given memory region.
3553 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3555 /* if we cannot even read the first page, skip it */
3556 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3557 return (0);
3560 * Usually we don't dump executable pages as they contain
3561 * non-writable code that debugger can read directly from
3562 * target library etc. However, thread stacks are marked
3563 * also executable so we read in first page of given region
3564 * and check whether it contains elf header. If there is
3565 * no elf header, we dump it.
3567 if (vma->vma_flags & PROT_EXEC) {
3568 char page[TARGET_PAGE_SIZE];
3570 if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3571 return 0;
3573 if ((page[EI_MAG0] == ELFMAG0) &&
3574 (page[EI_MAG1] == ELFMAG1) &&
3575 (page[EI_MAG2] == ELFMAG2) &&
3576 (page[EI_MAG3] == ELFMAG3)) {
3578 * Mappings are possibly from ELF binary. Don't dump
3579 * them.
3581 return (0);
3585 return (vma->vma_end - vma->vma_start);
3588 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3589 unsigned long flags)
3591 struct mm_struct *mm = (struct mm_struct *)priv;
3593 vma_add_mapping(mm, start, end, flags);
3594 return (0);
3597 static void fill_note(struct memelfnote *note, const char *name, int type,
3598 unsigned int sz, void *data)
3600 unsigned int namesz;
3602 namesz = strlen(name) + 1;
3603 note->name = name;
3604 note->namesz = namesz;
3605 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3606 note->type = type;
3607 note->datasz = sz;
3608 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3610 note->data = data;
3613 * We calculate rounded up note size here as specified by
3614 * ELF document.
3616 note->notesz = sizeof (struct elf_note) +
3617 note->namesz_rounded + note->datasz_rounded;
3620 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3621 uint32_t flags)
3623 (void) memset(elf, 0, sizeof(*elf));
3625 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3626 elf->e_ident[EI_CLASS] = ELF_CLASS;
3627 elf->e_ident[EI_DATA] = ELF_DATA;
3628 elf->e_ident[EI_VERSION] = EV_CURRENT;
3629 elf->e_ident[EI_OSABI] = ELF_OSABI;
3631 elf->e_type = ET_CORE;
3632 elf->e_machine = machine;
3633 elf->e_version = EV_CURRENT;
3634 elf->e_phoff = sizeof(struct elfhdr);
3635 elf->e_flags = flags;
3636 elf->e_ehsize = sizeof(struct elfhdr);
3637 elf->e_phentsize = sizeof(struct elf_phdr);
3638 elf->e_phnum = segs;
3640 bswap_ehdr(elf);
3643 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3645 phdr->p_type = PT_NOTE;
3646 phdr->p_offset = offset;
3647 phdr->p_vaddr = 0;
3648 phdr->p_paddr = 0;
3649 phdr->p_filesz = sz;
3650 phdr->p_memsz = 0;
3651 phdr->p_flags = 0;
3652 phdr->p_align = 0;
3654 bswap_phdr(phdr, 1);
3657 static size_t note_size(const struct memelfnote *note)
3659 return (note->notesz);
3662 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3663 const TaskState *ts, int signr)
3665 (void) memset(prstatus, 0, sizeof (*prstatus));
3666 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3667 prstatus->pr_pid = ts->ts_tid;
3668 prstatus->pr_ppid = getppid();
3669 prstatus->pr_pgrp = getpgrp();
3670 prstatus->pr_sid = getsid(0);
3672 bswap_prstatus(prstatus);
3675 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3677 char *base_filename;
3678 unsigned int i, len;
3680 (void) memset(psinfo, 0, sizeof (*psinfo));
3682 len = ts->info->env_strings - ts->info->arg_strings;
3683 if (len >= ELF_PRARGSZ)
3684 len = ELF_PRARGSZ - 1;
3685 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
3686 return -EFAULT;
3688 for (i = 0; i < len; i++)
3689 if (psinfo->pr_psargs[i] == 0)
3690 psinfo->pr_psargs[i] = ' ';
3691 psinfo->pr_psargs[len] = 0;
3693 psinfo->pr_pid = getpid();
3694 psinfo->pr_ppid = getppid();
3695 psinfo->pr_pgrp = getpgrp();
3696 psinfo->pr_sid = getsid(0);
3697 psinfo->pr_uid = getuid();
3698 psinfo->pr_gid = getgid();
3700 base_filename = g_path_get_basename(ts->bprm->filename);
3702 * Using strncpy here is fine: at max-length,
3703 * this field is not NUL-terminated.
3705 (void) strncpy(psinfo->pr_fname, base_filename,
3706 sizeof(psinfo->pr_fname));
3708 g_free(base_filename);
3709 bswap_psinfo(psinfo);
3710 return (0);
3713 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3715 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3716 elf_addr_t orig_auxv = auxv;
3717 void *ptr;
3718 int len = ts->info->auxv_len;
3721 * Auxiliary vector is stored in target process stack. It contains
3722 * {type, value} pairs that we need to dump into note. This is not
3723 * strictly necessary but we do it here for sake of completeness.
3726 /* read in whole auxv vector and copy it to memelfnote */
3727 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3728 if (ptr != NULL) {
3729 fill_note(note, "CORE", NT_AUXV, len, ptr);
3730 unlock_user(ptr, auxv, len);
3735 * Constructs name of coredump file. We have following convention
3736 * for the name:
3737 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3739 * Returns the filename
3741 static char *core_dump_filename(const TaskState *ts)
3743 g_autoptr(GDateTime) now = g_date_time_new_now_local();
3744 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
3745 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
3747 return g_strdup_printf("qemu_%s_%s_%d.core",
3748 base_filename, nowstr, (int)getpid());
3751 static int dump_write(int fd, const void *ptr, size_t size)
3753 const char *bufp = (const char *)ptr;
3754 ssize_t bytes_written, bytes_left;
3755 struct rlimit dumpsize;
3756 off_t pos;
3758 bytes_written = 0;
3759 getrlimit(RLIMIT_CORE, &dumpsize);
3760 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3761 if (errno == ESPIPE) { /* not a seekable stream */
3762 bytes_left = size;
3763 } else {
3764 return pos;
3766 } else {
3767 if (dumpsize.rlim_cur <= pos) {
3768 return -1;
3769 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3770 bytes_left = size;
3771 } else {
3772 size_t limit_left=dumpsize.rlim_cur - pos;
3773 bytes_left = limit_left >= size ? size : limit_left ;
3778 * In normal conditions, single write(2) should do but
3779 * in case of socket etc. this mechanism is more portable.
3781 do {
3782 bytes_written = write(fd, bufp, bytes_left);
3783 if (bytes_written < 0) {
3784 if (errno == EINTR)
3785 continue;
3786 return (-1);
3787 } else if (bytes_written == 0) { /* eof */
3788 return (-1);
3790 bufp += bytes_written;
3791 bytes_left -= bytes_written;
3792 } while (bytes_left > 0);
3794 return (0);
3797 static int write_note(struct memelfnote *men, int fd)
3799 struct elf_note en;
3801 en.n_namesz = men->namesz;
3802 en.n_type = men->type;
3803 en.n_descsz = men->datasz;
3805 bswap_note(&en);
3807 if (dump_write(fd, &en, sizeof(en)) != 0)
3808 return (-1);
3809 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3810 return (-1);
3811 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3812 return (-1);
3814 return (0);
3817 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3819 CPUState *cpu = env_cpu((CPUArchState *)env);
3820 TaskState *ts = (TaskState *)cpu->opaque;
3821 struct elf_thread_status *ets;
3823 ets = g_malloc0(sizeof (*ets));
3824 ets->num_notes = 1; /* only prstatus is dumped */
3825 fill_prstatus(&ets->prstatus, ts, 0);
3826 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3827 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3828 &ets->prstatus);
3830 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3832 info->notes_size += note_size(&ets->notes[0]);
3835 static void init_note_info(struct elf_note_info *info)
3837 /* Initialize the elf_note_info structure so that it is at
3838 * least safe to call free_note_info() on it. Must be
3839 * called before calling fill_note_info().
3841 memset(info, 0, sizeof (*info));
3842 QTAILQ_INIT(&info->thread_list);
3845 static int fill_note_info(struct elf_note_info *info,
3846 long signr, const CPUArchState *env)
3848 #define NUMNOTES 3
3849 CPUState *cpu = env_cpu((CPUArchState *)env);
3850 TaskState *ts = (TaskState *)cpu->opaque;
3851 int i;
3853 info->notes = g_new0(struct memelfnote, NUMNOTES);
3854 if (info->notes == NULL)
3855 return (-ENOMEM);
3856 info->prstatus = g_malloc0(sizeof (*info->prstatus));
3857 if (info->prstatus == NULL)
3858 return (-ENOMEM);
3859 info->psinfo = g_malloc0(sizeof (*info->psinfo));
3860 if (info->prstatus == NULL)
3861 return (-ENOMEM);
3864 * First fill in status (and registers) of current thread
3865 * including process info & aux vector.
3867 fill_prstatus(info->prstatus, ts, signr);
3868 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3869 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3870 sizeof (*info->prstatus), info->prstatus);
3871 fill_psinfo(info->psinfo, ts);
3872 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3873 sizeof (*info->psinfo), info->psinfo);
3874 fill_auxv_note(&info->notes[2], ts);
3875 info->numnote = 3;
3877 info->notes_size = 0;
3878 for (i = 0; i < info->numnote; i++)
3879 info->notes_size += note_size(&info->notes[i]);
3881 /* read and fill status of all threads */
3882 cpu_list_lock();
3883 CPU_FOREACH(cpu) {
3884 if (cpu == thread_cpu) {
3885 continue;
3887 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3889 cpu_list_unlock();
3891 return (0);
3894 static void free_note_info(struct elf_note_info *info)
3896 struct elf_thread_status *ets;
3898 while (!QTAILQ_EMPTY(&info->thread_list)) {
3899 ets = QTAILQ_FIRST(&info->thread_list);
3900 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3901 g_free(ets);
3904 g_free(info->prstatus);
3905 g_free(info->psinfo);
3906 g_free(info->notes);
3909 static int write_note_info(struct elf_note_info *info, int fd)
3911 struct elf_thread_status *ets;
3912 int i, error = 0;
3914 /* write prstatus, psinfo and auxv for current thread */
3915 for (i = 0; i < info->numnote; i++)
3916 if ((error = write_note(&info->notes[i], fd)) != 0)
3917 return (error);
3919 /* write prstatus for each thread */
3920 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3921 if ((error = write_note(&ets->notes[0], fd)) != 0)
3922 return (error);
3925 return (0);
3929 * Write out ELF coredump.
3931 * See documentation of ELF object file format in:
3932 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3934 * Coredump format in linux is following:
3936 * 0 +----------------------+ \
3937 * | ELF header | ET_CORE |
3938 * +----------------------+ |
3939 * | ELF program headers | |--- headers
3940 * | - NOTE section | |
3941 * | - PT_LOAD sections | |
3942 * +----------------------+ /
3943 * | NOTEs: |
3944 * | - NT_PRSTATUS |
3945 * | - NT_PRSINFO |
3946 * | - NT_AUXV |
3947 * +----------------------+ <-- aligned to target page
3948 * | Process memory dump |
3949 * : :
3950 * . .
3951 * : :
3952 * | |
3953 * +----------------------+
3955 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3956 * NT_PRSINFO -> struct elf_prpsinfo
3957 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3959 * Format follows System V format as close as possible. Current
3960 * version limitations are as follows:
3961 * - no floating point registers are dumped
3963 * Function returns 0 in case of success, negative errno otherwise.
3965 * TODO: make this work also during runtime: it should be
3966 * possible to force coredump from running process and then
3967 * continue processing. For example qemu could set up SIGUSR2
3968 * handler (provided that target process haven't registered
3969 * handler for that) that does the dump when signal is received.
3971 static int elf_core_dump(int signr, const CPUArchState *env)
3973 const CPUState *cpu = env_cpu((CPUArchState *)env);
3974 const TaskState *ts = (const TaskState *)cpu->opaque;
3975 struct vm_area_struct *vma = NULL;
3976 g_autofree char *corefile = NULL;
3977 struct elf_note_info info;
3978 struct elfhdr elf;
3979 struct elf_phdr phdr;
3980 struct rlimit dumpsize;
3981 struct mm_struct *mm = NULL;
3982 off_t offset = 0, data_offset = 0;
3983 int segs = 0;
3984 int fd = -1;
3986 init_note_info(&info);
3988 errno = 0;
3989 getrlimit(RLIMIT_CORE, &dumpsize);
3990 if (dumpsize.rlim_cur == 0)
3991 return 0;
3993 corefile = core_dump_filename(ts);
3995 if ((fd = open(corefile, O_WRONLY | O_CREAT,
3996 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3997 return (-errno);
4000 * Walk through target process memory mappings and
4001 * set up structure containing this information. After
4002 * this point vma_xxx functions can be used.
4004 if ((mm = vma_init()) == NULL)
4005 goto out;
4007 walk_memory_regions(mm, vma_walker);
4008 segs = vma_get_mapping_count(mm);
4011 * Construct valid coredump ELF header. We also
4012 * add one more segment for notes.
4014 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4015 if (dump_write(fd, &elf, sizeof (elf)) != 0)
4016 goto out;
4018 /* fill in the in-memory version of notes */
4019 if (fill_note_info(&info, signr, env) < 0)
4020 goto out;
4022 offset += sizeof (elf); /* elf header */
4023 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
4025 /* write out notes program header */
4026 fill_elf_note_phdr(&phdr, info.notes_size, offset);
4028 offset += info.notes_size;
4029 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4030 goto out;
4033 * ELF specification wants data to start at page boundary so
4034 * we align it here.
4036 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4039 * Write program headers for memory regions mapped in
4040 * the target process.
4042 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4043 (void) memset(&phdr, 0, sizeof (phdr));
4045 phdr.p_type = PT_LOAD;
4046 phdr.p_offset = offset;
4047 phdr.p_vaddr = vma->vma_start;
4048 phdr.p_paddr = 0;
4049 phdr.p_filesz = vma_dump_size(vma);
4050 offset += phdr.p_filesz;
4051 phdr.p_memsz = vma->vma_end - vma->vma_start;
4052 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4053 if (vma->vma_flags & PROT_WRITE)
4054 phdr.p_flags |= PF_W;
4055 if (vma->vma_flags & PROT_EXEC)
4056 phdr.p_flags |= PF_X;
4057 phdr.p_align = ELF_EXEC_PAGESIZE;
4059 bswap_phdr(&phdr, 1);
4060 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4061 goto out;
4066 * Next we write notes just after program headers. No
4067 * alignment needed here.
4069 if (write_note_info(&info, fd) < 0)
4070 goto out;
4072 /* align data to page boundary */
4073 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4074 goto out;
4077 * Finally we can dump process memory into corefile as well.
4079 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4080 abi_ulong addr;
4081 abi_ulong end;
4083 end = vma->vma_start + vma_dump_size(vma);
4085 for (addr = vma->vma_start; addr < end;
4086 addr += TARGET_PAGE_SIZE) {
4087 char page[TARGET_PAGE_SIZE];
4088 int error;
4091 * Read in page from target process memory and
4092 * write it to coredump file.
4094 error = copy_from_user(page, addr, sizeof (page));
4095 if (error != 0) {
4096 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4097 addr);
4098 errno = -error;
4099 goto out;
4101 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4102 goto out;
4106 out:
4107 free_note_info(&info);
4108 if (mm != NULL)
4109 vma_delete(mm);
4110 (void) close(fd);
4112 if (errno != 0)
4113 return (-errno);
4114 return (0);
4116 #endif /* USE_ELF_CORE_DUMP */
4118 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4120 init_thread(regs, infop);