2 * Xilinx Zynq cadence TTC model
4 * Copyright (c) 2011 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written By Haibing Ma
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
19 #include "hw/sysbus.h"
20 #include "qemu/timer.h"
22 #ifdef CADENCE_TTC_ERR_DEBUG
23 #define DB_PRINT(...) do { \
24 fprintf(stderr, ": %s: ", __func__); \
25 fprintf(stderr, ## __VA_ARGS__); \
31 #define COUNTER_INTR_IV 0x00000001
32 #define COUNTER_INTR_M1 0x00000002
33 #define COUNTER_INTR_M2 0x00000004
34 #define COUNTER_INTR_M3 0x00000008
35 #define COUNTER_INTR_OV 0x00000010
36 #define COUNTER_INTR_EV 0x00000020
38 #define COUNTER_CTRL_DIS 0x00000001
39 #define COUNTER_CTRL_INT 0x00000002
40 #define COUNTER_CTRL_DEC 0x00000004
41 #define COUNTER_CTRL_MATCH 0x00000008
42 #define COUNTER_CTRL_RST 0x00000010
44 #define CLOCK_CTRL_PS_EN 0x00000001
45 #define CLOCK_CTRL_PS_V 0x0000001e
54 uint16_t reg_interval
;
55 uint16_t reg_match
[3];
58 uint32_t reg_event_ctrl
;
62 unsigned int cpu_time_valid
;
67 #define TYPE_CADENCE_TTC "cadence_ttc"
68 #define CADENCE_TTC(obj) \
69 OBJECT_CHECK(CadenceTTCState, (obj), TYPE_CADENCE_TTC)
71 typedef struct CadenceTTCState
{
72 SysBusDevice parent_obj
;
75 CadenceTimerState timer
[3];
78 static void cadence_timer_update(CadenceTimerState
*s
)
80 qemu_set_irq(s
->irq
, !!(s
->reg_intr
& s
->reg_intr_en
));
83 static CadenceTimerState
*cadence_timer_from_addr(void *opaque
,
87 CadenceTTCState
*s
= (CadenceTTCState
*)opaque
;
89 index
= (offset
>> 2) % 3;
91 return &s
->timer
[index
];
94 static uint64_t cadence_timer_get_ns(CadenceTimerState
*s
, uint64_t timer_steps
)
96 /* timer_steps has max value of 0x100000000. double check it
97 * (or overflow can happen below) */
98 assert(timer_steps
<= 1ULL << 32);
100 uint64_t r
= timer_steps
* 1000000000ULL;
101 if (s
->reg_clock
& CLOCK_CTRL_PS_EN
) {
102 r
>>= 16 - (((s
->reg_clock
& CLOCK_CTRL_PS_V
) >> 1) + 1);
106 r
/= (uint64_t)s
->freq
;
110 static uint64_t cadence_timer_get_steps(CadenceTimerState
*s
, uint64_t ns
)
112 uint64_t to_divide
= 1000000000ULL;
115 /* for very large intervals (> 8s) do some division first to stop
116 * overflow (costs some prescision) */
117 while (r
>= 8ULL << 30 && to_divide
> 1) {
122 /* keep early-dividing as needed */
123 while (r
>= 8ULL << 30 && to_divide
> 1) {
127 r
*= (uint64_t)s
->freq
;
128 if (s
->reg_clock
& CLOCK_CTRL_PS_EN
) {
129 r
/= 1 << (((s
->reg_clock
& CLOCK_CTRL_PS_V
) >> 1) + 1);
136 /* determine if x is in between a and b, exclusive of a, inclusive of b */
138 static inline int64_t is_between(int64_t x
, int64_t a
, int64_t b
)
141 return x
> a
&& x
<= b
;
143 return x
< a
&& x
>= b
;
146 static void cadence_timer_run(CadenceTimerState
*s
)
149 int64_t event_interval
, next_value
;
151 assert(s
->cpu_time_valid
); /* cadence_timer_sync must be called first */
153 if (s
->reg_count
& COUNTER_CTRL_DIS
) {
154 s
->cpu_time_valid
= 0;
158 { /* figure out what's going to happen next (rollover or match) */
159 int64_t interval
= (uint64_t)((s
->reg_count
& COUNTER_CTRL_INT
) ?
160 (int64_t)s
->reg_interval
+ 1 : 0x10000ULL
) << 16;
161 next_value
= (s
->reg_count
& COUNTER_CTRL_DEC
) ? -1ULL : interval
;
162 for (i
= 0; i
< 3; ++i
) {
163 int64_t cand
= (uint64_t)s
->reg_match
[i
] << 16;
164 if (is_between(cand
, (uint64_t)s
->reg_value
, next_value
)) {
169 DB_PRINT("next timer event value: %09llx\n",
170 (unsigned long long)next_value
);
172 event_interval
= next_value
- (int64_t)s
->reg_value
;
173 event_interval
= (event_interval
< 0) ? -event_interval
: event_interval
;
175 timer_mod(s
->timer
, s
->cpu_time
+
176 cadence_timer_get_ns(s
, event_interval
));
179 static void cadence_timer_sync(CadenceTimerState
*s
)
183 int64_t interval
= ((s
->reg_count
& COUNTER_CTRL_INT
) ?
184 (int64_t)s
->reg_interval
+ 1 : 0x10000ULL
) << 16;
185 uint64_t old_time
= s
->cpu_time
;
187 s
->cpu_time
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
188 DB_PRINT("cpu time: %lld ns\n", (long long)old_time
);
190 if (!s
->cpu_time_valid
|| old_time
== s
->cpu_time
) {
191 s
->cpu_time_valid
= 1;
195 r
= (int64_t)cadence_timer_get_steps(s
, s
->cpu_time
- old_time
);
196 x
= (int64_t)s
->reg_value
+ ((s
->reg_count
& COUNTER_CTRL_DEC
) ? -r
: r
);
198 for (i
= 0; i
< 3; ++i
) {
199 int64_t m
= (int64_t)s
->reg_match
[i
] << 16;
203 /* check to see if match event has occurred. check m +/- interval
204 * to account for match events in wrap around cases */
205 if (is_between(m
, s
->reg_value
, x
) ||
206 is_between(m
+ interval
, s
->reg_value
, x
) ||
207 is_between(m
- interval
, s
->reg_value
, x
)) {
208 s
->reg_intr
|= (2 << i
);
211 if ((x
< 0) || (x
>= interval
)) {
212 s
->reg_intr
|= (s
->reg_count
& COUNTER_CTRL_INT
) ?
213 COUNTER_INTR_IV
: COUNTER_INTR_OV
;
218 s
->reg_value
= (uint32_t)(x
% interval
);
219 cadence_timer_update(s
);
222 static void cadence_timer_tick(void *opaque
)
224 CadenceTimerState
*s
= opaque
;
227 cadence_timer_sync(s
);
228 cadence_timer_run(s
);
231 static uint32_t cadence_ttc_read_imp(void *opaque
, hwaddr offset
)
233 CadenceTimerState
*s
= cadence_timer_from_addr(opaque
, offset
);
236 cadence_timer_sync(s
);
237 cadence_timer_run(s
);
240 case 0x00: /* clock control */
245 case 0x0c: /* counter control */
250 case 0x18: /* counter value */
253 return (uint16_t)(s
->reg_value
>> 16);
255 case 0x24: /* reg_interval counter */
258 return s
->reg_interval
;
260 case 0x30: /* match 1 counter */
263 return s
->reg_match
[0];
265 case 0x3c: /* match 2 counter */
268 return s
->reg_match
[1];
270 case 0x48: /* match 3 counter */
273 return s
->reg_match
[2];
275 case 0x54: /* interrupt register */
278 /* cleared after read */
281 cadence_timer_update(s
);
284 case 0x60: /* interrupt enable */
287 return s
->reg_intr_en
;
292 return s
->reg_event_ctrl
;
304 static uint64_t cadence_ttc_read(void *opaque
, hwaddr offset
,
307 uint32_t ret
= cadence_ttc_read_imp(opaque
, offset
);
309 DB_PRINT("addr: %08x data: %08x\n", (unsigned)offset
, (unsigned)ret
);
313 static void cadence_ttc_write(void *opaque
, hwaddr offset
,
314 uint64_t value
, unsigned size
)
316 CadenceTimerState
*s
= cadence_timer_from_addr(opaque
, offset
);
318 DB_PRINT("addr: %08x data %08x\n", (unsigned)offset
, (unsigned)value
);
320 cadence_timer_sync(s
);
323 case 0x00: /* clock control */
326 s
->reg_clock
= value
& 0x3F;
329 case 0x0c: /* counter control */
332 if (value
& COUNTER_CTRL_RST
) {
335 s
->reg_count
= value
& 0x3f & ~COUNTER_CTRL_RST
;
338 case 0x24: /* interval register */
341 s
->reg_interval
= value
& 0xffff;
344 case 0x30: /* match register */
347 s
->reg_match
[0] = value
& 0xffff;
350 case 0x3c: /* match register */
353 s
->reg_match
[1] = value
& 0xffff;
356 case 0x48: /* match register */
359 s
->reg_match
[2] = value
& 0xffff;
362 case 0x54: /* interrupt register */
367 case 0x60: /* interrupt enable */
370 s
->reg_intr_en
= value
& 0x3f;
373 case 0x6c: /* event control */
376 s
->reg_event_ctrl
= value
& 0x07;
383 cadence_timer_run(s
);
384 cadence_timer_update(s
);
387 static const MemoryRegionOps cadence_ttc_ops
= {
388 .read
= cadence_ttc_read
,
389 .write
= cadence_ttc_write
,
390 .endianness
= DEVICE_NATIVE_ENDIAN
,
393 static void cadence_timer_reset(CadenceTimerState
*s
)
398 static void cadence_timer_init(uint32_t freq
, CadenceTimerState
*s
)
400 memset(s
, 0, sizeof(CadenceTimerState
));
403 cadence_timer_reset(s
);
405 s
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, cadence_timer_tick
, s
);
408 static void cadence_ttc_init(Object
*obj
)
410 CadenceTTCState
*s
= CADENCE_TTC(obj
);
413 for (i
= 0; i
< 3; ++i
) {
414 cadence_timer_init(133000000, &s
->timer
[i
]);
415 sysbus_init_irq(SYS_BUS_DEVICE(obj
), &s
->timer
[i
].irq
);
418 memory_region_init_io(&s
->iomem
, obj
, &cadence_ttc_ops
, s
,
420 sysbus_init_mmio(SYS_BUS_DEVICE(obj
), &s
->iomem
);
423 static void cadence_timer_pre_save(void *opaque
)
425 cadence_timer_sync((CadenceTimerState
*)opaque
);
428 static int cadence_timer_post_load(void *opaque
, int version_id
)
430 CadenceTimerState
*s
= opaque
;
432 s
->cpu_time_valid
= 0;
433 cadence_timer_sync(s
);
434 cadence_timer_run(s
);
435 cadence_timer_update(s
);
439 static const VMStateDescription vmstate_cadence_timer
= {
440 .name
= "cadence_timer",
442 .minimum_version_id
= 1,
443 .pre_save
= cadence_timer_pre_save
,
444 .post_load
= cadence_timer_post_load
,
445 .fields
= (VMStateField
[]) {
446 VMSTATE_UINT32(reg_clock
, CadenceTimerState
),
447 VMSTATE_UINT32(reg_count
, CadenceTimerState
),
448 VMSTATE_UINT32(reg_value
, CadenceTimerState
),
449 VMSTATE_UINT16(reg_interval
, CadenceTimerState
),
450 VMSTATE_UINT16_ARRAY(reg_match
, CadenceTimerState
, 3),
451 VMSTATE_UINT32(reg_intr
, CadenceTimerState
),
452 VMSTATE_UINT32(reg_intr_en
, CadenceTimerState
),
453 VMSTATE_UINT32(reg_event_ctrl
, CadenceTimerState
),
454 VMSTATE_UINT32(reg_event
, CadenceTimerState
),
455 VMSTATE_END_OF_LIST()
459 static const VMStateDescription vmstate_cadence_ttc
= {
460 .name
= "cadence_TTC",
462 .minimum_version_id
= 1,
463 .fields
= (VMStateField
[]) {
464 VMSTATE_STRUCT_ARRAY(timer
, CadenceTTCState
, 3, 0,
465 vmstate_cadence_timer
,
467 VMSTATE_END_OF_LIST()
471 static void cadence_ttc_class_init(ObjectClass
*klass
, void *data
)
473 DeviceClass
*dc
= DEVICE_CLASS(klass
);
475 dc
->vmsd
= &vmstate_cadence_ttc
;
478 static const TypeInfo cadence_ttc_info
= {
479 .name
= TYPE_CADENCE_TTC
,
480 .parent
= TYPE_SYS_BUS_DEVICE
,
481 .instance_size
= sizeof(CadenceTTCState
),
482 .instance_init
= cadence_ttc_init
,
483 .class_init
= cadence_ttc_class_init
,
486 static void cadence_ttc_register_types(void)
488 type_register_static(&cadence_ttc_info
);
491 type_init(cadence_ttc_register_types
)