s390-ccw: use zipl values when no boot menu options are present
[qemu.git] / cpus.c
blobf298b659f467dd8a0090f88c90db6ea2c882b2fc
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "qemu/config-file.h"
27 #include "cpu.h"
28 #include "monitor/monitor.h"
29 #include "qapi/error.h"
30 #include "qapi/qmp/qerror.h"
31 #include "qemu/error-report.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/block-backend.h"
34 #include "exec/gdbstub.h"
35 #include "sysemu/dma.h"
36 #include "sysemu/hw_accel.h"
37 #include "sysemu/kvm.h"
38 #include "sysemu/hax.h"
39 #include "sysemu/hvf.h"
40 #include "sysemu/whpx.h"
41 #include "qmp-commands.h"
42 #include "exec/exec-all.h"
44 #include "qemu/thread.h"
45 #include "sysemu/cpus.h"
46 #include "sysemu/qtest.h"
47 #include "qemu/main-loop.h"
48 #include "qemu/option.h"
49 #include "qemu/bitmap.h"
50 #include "qemu/seqlock.h"
51 #include "tcg.h"
52 #include "qapi-event.h"
53 #include "hw/nmi.h"
54 #include "sysemu/replay.h"
55 #include "hw/boards.h"
57 #ifdef CONFIG_LINUX
59 #include <sys/prctl.h>
61 #ifndef PR_MCE_KILL
62 #define PR_MCE_KILL 33
63 #endif
65 #ifndef PR_MCE_KILL_SET
66 #define PR_MCE_KILL_SET 1
67 #endif
69 #ifndef PR_MCE_KILL_EARLY
70 #define PR_MCE_KILL_EARLY 1
71 #endif
73 #endif /* CONFIG_LINUX */
75 int64_t max_delay;
76 int64_t max_advance;
78 /* vcpu throttling controls */
79 static QEMUTimer *throttle_timer;
80 static unsigned int throttle_percentage;
82 #define CPU_THROTTLE_PCT_MIN 1
83 #define CPU_THROTTLE_PCT_MAX 99
84 #define CPU_THROTTLE_TIMESLICE_NS 10000000
86 bool cpu_is_stopped(CPUState *cpu)
88 return cpu->stopped || !runstate_is_running();
91 static bool cpu_thread_is_idle(CPUState *cpu)
93 if (cpu->stop || cpu->queued_work_first) {
94 return false;
96 if (cpu_is_stopped(cpu)) {
97 return true;
99 if (!cpu->halted || cpu_has_work(cpu) ||
100 kvm_halt_in_kernel()) {
101 return false;
103 return true;
106 static bool all_cpu_threads_idle(void)
108 CPUState *cpu;
110 CPU_FOREACH(cpu) {
111 if (!cpu_thread_is_idle(cpu)) {
112 return false;
115 return true;
118 /***********************************************************/
119 /* guest cycle counter */
121 /* Protected by TimersState seqlock */
123 static bool icount_sleep = true;
124 /* Conversion factor from emulated instructions to virtual clock ticks. */
125 static int icount_time_shift;
126 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
127 #define MAX_ICOUNT_SHIFT 10
129 typedef struct TimersState {
130 /* Protected by BQL. */
131 int64_t cpu_ticks_prev;
132 int64_t cpu_ticks_offset;
134 /* cpu_clock_offset can be read out of BQL, so protect it with
135 * this lock.
137 QemuSeqLock vm_clock_seqlock;
138 int64_t cpu_clock_offset;
139 int32_t cpu_ticks_enabled;
140 int64_t dummy;
142 /* Compensate for varying guest execution speed. */
143 int64_t qemu_icount_bias;
144 /* Only written by TCG thread */
145 int64_t qemu_icount;
146 /* for adjusting icount */
147 int64_t vm_clock_warp_start;
148 QEMUTimer *icount_rt_timer;
149 QEMUTimer *icount_vm_timer;
150 QEMUTimer *icount_warp_timer;
151 } TimersState;
153 static TimersState timers_state;
154 bool mttcg_enabled;
157 * We default to false if we know other options have been enabled
158 * which are currently incompatible with MTTCG. Otherwise when each
159 * guest (target) has been updated to support:
160 * - atomic instructions
161 * - memory ordering primitives (barriers)
162 * they can set the appropriate CONFIG flags in ${target}-softmmu.mak
164 * Once a guest architecture has been converted to the new primitives
165 * there are two remaining limitations to check.
167 * - The guest can't be oversized (e.g. 64 bit guest on 32 bit host)
168 * - The host must have a stronger memory order than the guest
170 * It may be possible in future to support strong guests on weak hosts
171 * but that will require tagging all load/stores in a guest with their
172 * implicit memory order requirements which would likely slow things
173 * down a lot.
176 static bool check_tcg_memory_orders_compatible(void)
178 #if defined(TCG_GUEST_DEFAULT_MO) && defined(TCG_TARGET_DEFAULT_MO)
179 return (TCG_GUEST_DEFAULT_MO & ~TCG_TARGET_DEFAULT_MO) == 0;
180 #else
181 return false;
182 #endif
185 static bool default_mttcg_enabled(void)
187 if (use_icount || TCG_OVERSIZED_GUEST) {
188 return false;
189 } else {
190 #ifdef TARGET_SUPPORTS_MTTCG
191 return check_tcg_memory_orders_compatible();
192 #else
193 return false;
194 #endif
198 void qemu_tcg_configure(QemuOpts *opts, Error **errp)
200 const char *t = qemu_opt_get(opts, "thread");
201 if (t) {
202 if (strcmp(t, "multi") == 0) {
203 if (TCG_OVERSIZED_GUEST) {
204 error_setg(errp, "No MTTCG when guest word size > hosts");
205 } else if (use_icount) {
206 error_setg(errp, "No MTTCG when icount is enabled");
207 } else {
208 #ifndef TARGET_SUPPORTS_MTTCG
209 error_report("Guest not yet converted to MTTCG - "
210 "you may get unexpected results");
211 #endif
212 if (!check_tcg_memory_orders_compatible()) {
213 error_report("Guest expects a stronger memory ordering "
214 "than the host provides");
215 error_printf("This may cause strange/hard to debug errors\n");
217 mttcg_enabled = true;
219 } else if (strcmp(t, "single") == 0) {
220 mttcg_enabled = false;
221 } else {
222 error_setg(errp, "Invalid 'thread' setting %s", t);
224 } else {
225 mttcg_enabled = default_mttcg_enabled();
229 /* The current number of executed instructions is based on what we
230 * originally budgeted minus the current state of the decrementing
231 * icount counters in extra/u16.low.
233 static int64_t cpu_get_icount_executed(CPUState *cpu)
235 return cpu->icount_budget - (cpu->icount_decr.u16.low + cpu->icount_extra);
239 * Update the global shared timer_state.qemu_icount to take into
240 * account executed instructions. This is done by the TCG vCPU
241 * thread so the main-loop can see time has moved forward.
243 void cpu_update_icount(CPUState *cpu)
245 int64_t executed = cpu_get_icount_executed(cpu);
246 cpu->icount_budget -= executed;
248 #ifdef CONFIG_ATOMIC64
249 atomic_set__nocheck(&timers_state.qemu_icount,
250 atomic_read__nocheck(&timers_state.qemu_icount) +
251 executed);
252 #else /* FIXME: we need 64bit atomics to do this safely */
253 timers_state.qemu_icount += executed;
254 #endif
257 int64_t cpu_get_icount_raw(void)
259 CPUState *cpu = current_cpu;
261 if (cpu && cpu->running) {
262 if (!cpu->can_do_io) {
263 error_report("Bad icount read");
264 exit(1);
266 /* Take into account what has run */
267 cpu_update_icount(cpu);
269 #ifdef CONFIG_ATOMIC64
270 return atomic_read__nocheck(&timers_state.qemu_icount);
271 #else /* FIXME: we need 64bit atomics to do this safely */
272 return timers_state.qemu_icount;
273 #endif
276 /* Return the virtual CPU time, based on the instruction counter. */
277 static int64_t cpu_get_icount_locked(void)
279 int64_t icount = cpu_get_icount_raw();
280 return timers_state.qemu_icount_bias + cpu_icount_to_ns(icount);
283 int64_t cpu_get_icount(void)
285 int64_t icount;
286 unsigned start;
288 do {
289 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
290 icount = cpu_get_icount_locked();
291 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
293 return icount;
296 int64_t cpu_icount_to_ns(int64_t icount)
298 return icount << icount_time_shift;
301 /* return the time elapsed in VM between vm_start and vm_stop. Unless
302 * icount is active, cpu_get_ticks() uses units of the host CPU cycle
303 * counter.
305 * Caller must hold the BQL
307 int64_t cpu_get_ticks(void)
309 int64_t ticks;
311 if (use_icount) {
312 return cpu_get_icount();
315 ticks = timers_state.cpu_ticks_offset;
316 if (timers_state.cpu_ticks_enabled) {
317 ticks += cpu_get_host_ticks();
320 if (timers_state.cpu_ticks_prev > ticks) {
321 /* Note: non increasing ticks may happen if the host uses
322 software suspend */
323 timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
324 ticks = timers_state.cpu_ticks_prev;
327 timers_state.cpu_ticks_prev = ticks;
328 return ticks;
331 static int64_t cpu_get_clock_locked(void)
333 int64_t time;
335 time = timers_state.cpu_clock_offset;
336 if (timers_state.cpu_ticks_enabled) {
337 time += get_clock();
340 return time;
343 /* Return the monotonic time elapsed in VM, i.e.,
344 * the time between vm_start and vm_stop
346 int64_t cpu_get_clock(void)
348 int64_t ti;
349 unsigned start;
351 do {
352 start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
353 ti = cpu_get_clock_locked();
354 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
356 return ti;
359 /* enable cpu_get_ticks()
360 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
362 void cpu_enable_ticks(void)
364 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
365 seqlock_write_begin(&timers_state.vm_clock_seqlock);
366 if (!timers_state.cpu_ticks_enabled) {
367 timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
368 timers_state.cpu_clock_offset -= get_clock();
369 timers_state.cpu_ticks_enabled = 1;
371 seqlock_write_end(&timers_state.vm_clock_seqlock);
374 /* disable cpu_get_ticks() : the clock is stopped. You must not call
375 * cpu_get_ticks() after that.
376 * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
378 void cpu_disable_ticks(void)
380 /* Here, the really thing protected by seqlock is cpu_clock_offset. */
381 seqlock_write_begin(&timers_state.vm_clock_seqlock);
382 if (timers_state.cpu_ticks_enabled) {
383 timers_state.cpu_ticks_offset += cpu_get_host_ticks();
384 timers_state.cpu_clock_offset = cpu_get_clock_locked();
385 timers_state.cpu_ticks_enabled = 0;
387 seqlock_write_end(&timers_state.vm_clock_seqlock);
390 /* Correlation between real and virtual time is always going to be
391 fairly approximate, so ignore small variation.
392 When the guest is idle real and virtual time will be aligned in
393 the IO wait loop. */
394 #define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
396 static void icount_adjust(void)
398 int64_t cur_time;
399 int64_t cur_icount;
400 int64_t delta;
402 /* Protected by TimersState mutex. */
403 static int64_t last_delta;
405 /* If the VM is not running, then do nothing. */
406 if (!runstate_is_running()) {
407 return;
410 seqlock_write_begin(&timers_state.vm_clock_seqlock);
411 cur_time = cpu_get_clock_locked();
412 cur_icount = cpu_get_icount_locked();
414 delta = cur_icount - cur_time;
415 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
416 if (delta > 0
417 && last_delta + ICOUNT_WOBBLE < delta * 2
418 && icount_time_shift > 0) {
419 /* The guest is getting too far ahead. Slow time down. */
420 icount_time_shift--;
422 if (delta < 0
423 && last_delta - ICOUNT_WOBBLE > delta * 2
424 && icount_time_shift < MAX_ICOUNT_SHIFT) {
425 /* The guest is getting too far behind. Speed time up. */
426 icount_time_shift++;
428 last_delta = delta;
429 timers_state.qemu_icount_bias = cur_icount
430 - (timers_state.qemu_icount << icount_time_shift);
431 seqlock_write_end(&timers_state.vm_clock_seqlock);
434 static void icount_adjust_rt(void *opaque)
436 timer_mod(timers_state.icount_rt_timer,
437 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
438 icount_adjust();
441 static void icount_adjust_vm(void *opaque)
443 timer_mod(timers_state.icount_vm_timer,
444 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
445 NANOSECONDS_PER_SECOND / 10);
446 icount_adjust();
449 static int64_t qemu_icount_round(int64_t count)
451 return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
454 static void icount_warp_rt(void)
456 unsigned seq;
457 int64_t warp_start;
459 /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
460 * changes from -1 to another value, so the race here is okay.
462 do {
463 seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
464 warp_start = timers_state.vm_clock_warp_start;
465 } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
467 if (warp_start == -1) {
468 return;
471 seqlock_write_begin(&timers_state.vm_clock_seqlock);
472 if (runstate_is_running()) {
473 int64_t clock = REPLAY_CLOCK(REPLAY_CLOCK_VIRTUAL_RT,
474 cpu_get_clock_locked());
475 int64_t warp_delta;
477 warp_delta = clock - timers_state.vm_clock_warp_start;
478 if (use_icount == 2) {
480 * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
481 * far ahead of real time.
483 int64_t cur_icount = cpu_get_icount_locked();
484 int64_t delta = clock - cur_icount;
485 warp_delta = MIN(warp_delta, delta);
487 timers_state.qemu_icount_bias += warp_delta;
489 timers_state.vm_clock_warp_start = -1;
490 seqlock_write_end(&timers_state.vm_clock_seqlock);
492 if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
493 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
497 static void icount_timer_cb(void *opaque)
499 /* No need for a checkpoint because the timer already synchronizes
500 * with CHECKPOINT_CLOCK_VIRTUAL_RT.
502 icount_warp_rt();
505 void qtest_clock_warp(int64_t dest)
507 int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
508 AioContext *aio_context;
509 assert(qtest_enabled());
510 aio_context = qemu_get_aio_context();
511 while (clock < dest) {
512 int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
513 int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
515 seqlock_write_begin(&timers_state.vm_clock_seqlock);
516 timers_state.qemu_icount_bias += warp;
517 seqlock_write_end(&timers_state.vm_clock_seqlock);
519 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
520 timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
521 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
523 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
526 void qemu_start_warp_timer(void)
528 int64_t clock;
529 int64_t deadline;
531 if (!use_icount) {
532 return;
535 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
536 * do not fire, so computing the deadline does not make sense.
538 if (!runstate_is_running()) {
539 return;
542 /* warp clock deterministically in record/replay mode */
543 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
544 return;
547 if (!all_cpu_threads_idle()) {
548 return;
551 if (qtest_enabled()) {
552 /* When testing, qtest commands advance icount. */
553 return;
556 /* We want to use the earliest deadline from ALL vm_clocks */
557 clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
558 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
559 if (deadline < 0) {
560 static bool notified;
561 if (!icount_sleep && !notified) {
562 warn_report("icount sleep disabled and no active timers");
563 notified = true;
565 return;
568 if (deadline > 0) {
570 * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
571 * sleep. Otherwise, the CPU might be waiting for a future timer
572 * interrupt to wake it up, but the interrupt never comes because
573 * the vCPU isn't running any insns and thus doesn't advance the
574 * QEMU_CLOCK_VIRTUAL.
576 if (!icount_sleep) {
578 * We never let VCPUs sleep in no sleep icount mode.
579 * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
580 * to the next QEMU_CLOCK_VIRTUAL event and notify it.
581 * It is useful when we want a deterministic execution time,
582 * isolated from host latencies.
584 seqlock_write_begin(&timers_state.vm_clock_seqlock);
585 timers_state.qemu_icount_bias += deadline;
586 seqlock_write_end(&timers_state.vm_clock_seqlock);
587 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
588 } else {
590 * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
591 * "real" time, (related to the time left until the next event) has
592 * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
593 * This avoids that the warps are visible externally; for example,
594 * you will not be sending network packets continuously instead of
595 * every 100ms.
597 seqlock_write_begin(&timers_state.vm_clock_seqlock);
598 if (timers_state.vm_clock_warp_start == -1
599 || timers_state.vm_clock_warp_start > clock) {
600 timers_state.vm_clock_warp_start = clock;
602 seqlock_write_end(&timers_state.vm_clock_seqlock);
603 timer_mod_anticipate(timers_state.icount_warp_timer,
604 clock + deadline);
606 } else if (deadline == 0) {
607 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
611 static void qemu_account_warp_timer(void)
613 if (!use_icount || !icount_sleep) {
614 return;
617 /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
618 * do not fire, so computing the deadline does not make sense.
620 if (!runstate_is_running()) {
621 return;
624 /* warp clock deterministically in record/replay mode */
625 if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
626 return;
629 timer_del(timers_state.icount_warp_timer);
630 icount_warp_rt();
633 static bool icount_state_needed(void *opaque)
635 return use_icount;
638 static bool warp_timer_state_needed(void *opaque)
640 TimersState *s = opaque;
641 return s->icount_warp_timer != NULL;
644 static bool adjust_timers_state_needed(void *opaque)
646 TimersState *s = opaque;
647 return s->icount_rt_timer != NULL;
651 * Subsection for warp timer migration is optional, because may not be created
653 static const VMStateDescription icount_vmstate_warp_timer = {
654 .name = "timer/icount/warp_timer",
655 .version_id = 1,
656 .minimum_version_id = 1,
657 .needed = warp_timer_state_needed,
658 .fields = (VMStateField[]) {
659 VMSTATE_INT64(vm_clock_warp_start, TimersState),
660 VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
661 VMSTATE_END_OF_LIST()
665 static const VMStateDescription icount_vmstate_adjust_timers = {
666 .name = "timer/icount/timers",
667 .version_id = 1,
668 .minimum_version_id = 1,
669 .needed = adjust_timers_state_needed,
670 .fields = (VMStateField[]) {
671 VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
672 VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
673 VMSTATE_END_OF_LIST()
678 * This is a subsection for icount migration.
680 static const VMStateDescription icount_vmstate_timers = {
681 .name = "timer/icount",
682 .version_id = 1,
683 .minimum_version_id = 1,
684 .needed = icount_state_needed,
685 .fields = (VMStateField[]) {
686 VMSTATE_INT64(qemu_icount_bias, TimersState),
687 VMSTATE_INT64(qemu_icount, TimersState),
688 VMSTATE_END_OF_LIST()
690 .subsections = (const VMStateDescription*[]) {
691 &icount_vmstate_warp_timer,
692 &icount_vmstate_adjust_timers,
693 NULL
697 static const VMStateDescription vmstate_timers = {
698 .name = "timer",
699 .version_id = 2,
700 .minimum_version_id = 1,
701 .fields = (VMStateField[]) {
702 VMSTATE_INT64(cpu_ticks_offset, TimersState),
703 VMSTATE_INT64(dummy, TimersState),
704 VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
705 VMSTATE_END_OF_LIST()
707 .subsections = (const VMStateDescription*[]) {
708 &icount_vmstate_timers,
709 NULL
713 static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
715 double pct;
716 double throttle_ratio;
717 long sleeptime_ns;
719 if (!cpu_throttle_get_percentage()) {
720 return;
723 pct = (double)cpu_throttle_get_percentage()/100;
724 throttle_ratio = pct / (1 - pct);
725 sleeptime_ns = (long)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS);
727 qemu_mutex_unlock_iothread();
728 g_usleep(sleeptime_ns / 1000); /* Convert ns to us for usleep call */
729 qemu_mutex_lock_iothread();
730 atomic_set(&cpu->throttle_thread_scheduled, 0);
733 static void cpu_throttle_timer_tick(void *opaque)
735 CPUState *cpu;
736 double pct;
738 /* Stop the timer if needed */
739 if (!cpu_throttle_get_percentage()) {
740 return;
742 CPU_FOREACH(cpu) {
743 if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
744 async_run_on_cpu(cpu, cpu_throttle_thread,
745 RUN_ON_CPU_NULL);
749 pct = (double)cpu_throttle_get_percentage()/100;
750 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
751 CPU_THROTTLE_TIMESLICE_NS / (1-pct));
754 void cpu_throttle_set(int new_throttle_pct)
756 /* Ensure throttle percentage is within valid range */
757 new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
758 new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
760 atomic_set(&throttle_percentage, new_throttle_pct);
762 timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
763 CPU_THROTTLE_TIMESLICE_NS);
766 void cpu_throttle_stop(void)
768 atomic_set(&throttle_percentage, 0);
771 bool cpu_throttle_active(void)
773 return (cpu_throttle_get_percentage() != 0);
776 int cpu_throttle_get_percentage(void)
778 return atomic_read(&throttle_percentage);
781 void cpu_ticks_init(void)
783 seqlock_init(&timers_state.vm_clock_seqlock);
784 vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
785 throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
786 cpu_throttle_timer_tick, NULL);
789 void configure_icount(QemuOpts *opts, Error **errp)
791 const char *option;
792 char *rem_str = NULL;
794 option = qemu_opt_get(opts, "shift");
795 if (!option) {
796 if (qemu_opt_get(opts, "align") != NULL) {
797 error_setg(errp, "Please specify shift option when using align");
799 return;
802 icount_sleep = qemu_opt_get_bool(opts, "sleep", true);
803 if (icount_sleep) {
804 timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
805 icount_timer_cb, NULL);
808 icount_align_option = qemu_opt_get_bool(opts, "align", false);
810 if (icount_align_option && !icount_sleep) {
811 error_setg(errp, "align=on and sleep=off are incompatible");
813 if (strcmp(option, "auto") != 0) {
814 errno = 0;
815 icount_time_shift = strtol(option, &rem_str, 0);
816 if (errno != 0 || *rem_str != '\0' || !strlen(option)) {
817 error_setg(errp, "icount: Invalid shift value");
819 use_icount = 1;
820 return;
821 } else if (icount_align_option) {
822 error_setg(errp, "shift=auto and align=on are incompatible");
823 } else if (!icount_sleep) {
824 error_setg(errp, "shift=auto and sleep=off are incompatible");
827 use_icount = 2;
829 /* 125MIPS seems a reasonable initial guess at the guest speed.
830 It will be corrected fairly quickly anyway. */
831 icount_time_shift = 3;
833 /* Have both realtime and virtual time triggers for speed adjustment.
834 The realtime trigger catches emulated time passing too slowly,
835 the virtual time trigger catches emulated time passing too fast.
836 Realtime triggers occur even when idle, so use them less frequently
837 than VM triggers. */
838 timers_state.vm_clock_warp_start = -1;
839 timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
840 icount_adjust_rt, NULL);
841 timer_mod(timers_state.icount_rt_timer,
842 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
843 timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
844 icount_adjust_vm, NULL);
845 timer_mod(timers_state.icount_vm_timer,
846 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
847 NANOSECONDS_PER_SECOND / 10);
850 /***********************************************************/
851 /* TCG vCPU kick timer
853 * The kick timer is responsible for moving single threaded vCPU
854 * emulation on to the next vCPU. If more than one vCPU is running a
855 * timer event with force a cpu->exit so the next vCPU can get
856 * scheduled.
858 * The timer is removed if all vCPUs are idle and restarted again once
859 * idleness is complete.
862 static QEMUTimer *tcg_kick_vcpu_timer;
863 static CPUState *tcg_current_rr_cpu;
865 #define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
867 static inline int64_t qemu_tcg_next_kick(void)
869 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
872 /* Kick the currently round-robin scheduled vCPU */
873 static void qemu_cpu_kick_rr_cpu(void)
875 CPUState *cpu;
876 do {
877 cpu = atomic_mb_read(&tcg_current_rr_cpu);
878 if (cpu) {
879 cpu_exit(cpu);
881 } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
884 static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
888 void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
890 if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
891 qemu_notify_event();
892 return;
895 if (!qemu_in_vcpu_thread() && first_cpu) {
896 /* qemu_cpu_kick is not enough to kick a halted CPU out of
897 * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
898 * causes cpu_thread_is_idle to return false. This way,
899 * handle_icount_deadline can run.
901 async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
905 static void kick_tcg_thread(void *opaque)
907 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
908 qemu_cpu_kick_rr_cpu();
911 static void start_tcg_kick_timer(void)
913 assert(!mttcg_enabled);
914 if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
915 tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
916 kick_tcg_thread, NULL);
917 timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
921 static void stop_tcg_kick_timer(void)
923 assert(!mttcg_enabled);
924 if (tcg_kick_vcpu_timer) {
925 timer_del(tcg_kick_vcpu_timer);
926 tcg_kick_vcpu_timer = NULL;
930 /***********************************************************/
931 void hw_error(const char *fmt, ...)
933 va_list ap;
934 CPUState *cpu;
936 va_start(ap, fmt);
937 fprintf(stderr, "qemu: hardware error: ");
938 vfprintf(stderr, fmt, ap);
939 fprintf(stderr, "\n");
940 CPU_FOREACH(cpu) {
941 fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
942 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
944 va_end(ap);
945 abort();
948 void cpu_synchronize_all_states(void)
950 CPUState *cpu;
952 CPU_FOREACH(cpu) {
953 cpu_synchronize_state(cpu);
954 /* TODO: move to cpu_synchronize_state() */
955 if (hvf_enabled()) {
956 hvf_cpu_synchronize_state(cpu);
961 void cpu_synchronize_all_post_reset(void)
963 CPUState *cpu;
965 CPU_FOREACH(cpu) {
966 cpu_synchronize_post_reset(cpu);
967 /* TODO: move to cpu_synchronize_post_reset() */
968 if (hvf_enabled()) {
969 hvf_cpu_synchronize_post_reset(cpu);
974 void cpu_synchronize_all_post_init(void)
976 CPUState *cpu;
978 CPU_FOREACH(cpu) {
979 cpu_synchronize_post_init(cpu);
980 /* TODO: move to cpu_synchronize_post_init() */
981 if (hvf_enabled()) {
982 hvf_cpu_synchronize_post_init(cpu);
987 void cpu_synchronize_all_pre_loadvm(void)
989 CPUState *cpu;
991 CPU_FOREACH(cpu) {
992 cpu_synchronize_pre_loadvm(cpu);
996 static int do_vm_stop(RunState state)
998 int ret = 0;
1000 if (runstate_is_running()) {
1001 cpu_disable_ticks();
1002 pause_all_vcpus();
1003 runstate_set(state);
1004 vm_state_notify(0, state);
1005 qapi_event_send_stop(&error_abort);
1008 bdrv_drain_all();
1009 replay_disable_events();
1010 ret = bdrv_flush_all();
1012 return ret;
1015 static bool cpu_can_run(CPUState *cpu)
1017 if (cpu->stop) {
1018 return false;
1020 if (cpu_is_stopped(cpu)) {
1021 return false;
1023 return true;
1026 static void cpu_handle_guest_debug(CPUState *cpu)
1028 gdb_set_stop_cpu(cpu);
1029 qemu_system_debug_request();
1030 cpu->stopped = true;
1033 #ifdef CONFIG_LINUX
1034 static void sigbus_reraise(void)
1036 sigset_t set;
1037 struct sigaction action;
1039 memset(&action, 0, sizeof(action));
1040 action.sa_handler = SIG_DFL;
1041 if (!sigaction(SIGBUS, &action, NULL)) {
1042 raise(SIGBUS);
1043 sigemptyset(&set);
1044 sigaddset(&set, SIGBUS);
1045 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
1047 perror("Failed to re-raise SIGBUS!\n");
1048 abort();
1051 static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
1053 if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
1054 sigbus_reraise();
1057 if (current_cpu) {
1058 /* Called asynchronously in VCPU thread. */
1059 if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
1060 sigbus_reraise();
1062 } else {
1063 /* Called synchronously (via signalfd) in main thread. */
1064 if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
1065 sigbus_reraise();
1070 static void qemu_init_sigbus(void)
1072 struct sigaction action;
1074 memset(&action, 0, sizeof(action));
1075 action.sa_flags = SA_SIGINFO;
1076 action.sa_sigaction = sigbus_handler;
1077 sigaction(SIGBUS, &action, NULL);
1079 prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
1081 #else /* !CONFIG_LINUX */
1082 static void qemu_init_sigbus(void)
1085 #endif /* !CONFIG_LINUX */
1087 static QemuMutex qemu_global_mutex;
1089 static QemuThread io_thread;
1091 /* cpu creation */
1092 static QemuCond qemu_cpu_cond;
1093 /* system init */
1094 static QemuCond qemu_pause_cond;
1096 void qemu_init_cpu_loop(void)
1098 qemu_init_sigbus();
1099 qemu_cond_init(&qemu_cpu_cond);
1100 qemu_cond_init(&qemu_pause_cond);
1101 qemu_mutex_init(&qemu_global_mutex);
1103 qemu_thread_get_self(&io_thread);
1106 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
1108 do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
1111 static void qemu_kvm_destroy_vcpu(CPUState *cpu)
1113 if (kvm_destroy_vcpu(cpu) < 0) {
1114 error_report("kvm_destroy_vcpu failed");
1115 exit(EXIT_FAILURE);
1119 static void qemu_tcg_destroy_vcpu(CPUState *cpu)
1123 static void qemu_cpu_stop(CPUState *cpu, bool exit)
1125 g_assert(qemu_cpu_is_self(cpu));
1126 cpu->stop = false;
1127 cpu->stopped = true;
1128 if (exit) {
1129 cpu_exit(cpu);
1131 qemu_cond_broadcast(&qemu_pause_cond);
1134 static void qemu_wait_io_event_common(CPUState *cpu)
1136 atomic_mb_set(&cpu->thread_kicked, false);
1137 if (cpu->stop) {
1138 qemu_cpu_stop(cpu, false);
1140 process_queued_cpu_work(cpu);
1143 static void qemu_tcg_rr_wait_io_event(CPUState *cpu)
1145 while (all_cpu_threads_idle()) {
1146 stop_tcg_kick_timer();
1147 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1150 start_tcg_kick_timer();
1152 qemu_wait_io_event_common(cpu);
1155 static void qemu_wait_io_event(CPUState *cpu)
1157 while (cpu_thread_is_idle(cpu)) {
1158 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1161 #ifdef _WIN32
1162 /* Eat dummy APC queued by qemu_cpu_kick_thread. */
1163 if (!tcg_enabled()) {
1164 SleepEx(0, TRUE);
1166 #endif
1167 qemu_wait_io_event_common(cpu);
1170 static void *qemu_kvm_cpu_thread_fn(void *arg)
1172 CPUState *cpu = arg;
1173 int r;
1175 rcu_register_thread();
1177 qemu_mutex_lock_iothread();
1178 qemu_thread_get_self(cpu->thread);
1179 cpu->thread_id = qemu_get_thread_id();
1180 cpu->can_do_io = 1;
1181 current_cpu = cpu;
1183 r = kvm_init_vcpu(cpu);
1184 if (r < 0) {
1185 error_report("kvm_init_vcpu failed: %s", strerror(-r));
1186 exit(1);
1189 kvm_init_cpu_signals(cpu);
1191 /* signal CPU creation */
1192 cpu->created = true;
1193 qemu_cond_signal(&qemu_cpu_cond);
1195 do {
1196 if (cpu_can_run(cpu)) {
1197 r = kvm_cpu_exec(cpu);
1198 if (r == EXCP_DEBUG) {
1199 cpu_handle_guest_debug(cpu);
1202 qemu_wait_io_event(cpu);
1203 } while (!cpu->unplug || cpu_can_run(cpu));
1205 qemu_kvm_destroy_vcpu(cpu);
1206 cpu->created = false;
1207 qemu_cond_signal(&qemu_cpu_cond);
1208 qemu_mutex_unlock_iothread();
1209 rcu_unregister_thread();
1210 return NULL;
1213 static void *qemu_dummy_cpu_thread_fn(void *arg)
1215 #ifdef _WIN32
1216 error_report("qtest is not supported under Windows");
1217 exit(1);
1218 #else
1219 CPUState *cpu = arg;
1220 sigset_t waitset;
1221 int r;
1223 rcu_register_thread();
1225 qemu_mutex_lock_iothread();
1226 qemu_thread_get_self(cpu->thread);
1227 cpu->thread_id = qemu_get_thread_id();
1228 cpu->can_do_io = 1;
1229 current_cpu = cpu;
1231 sigemptyset(&waitset);
1232 sigaddset(&waitset, SIG_IPI);
1234 /* signal CPU creation */
1235 cpu->created = true;
1236 qemu_cond_signal(&qemu_cpu_cond);
1238 do {
1239 qemu_mutex_unlock_iothread();
1240 do {
1241 int sig;
1242 r = sigwait(&waitset, &sig);
1243 } while (r == -1 && (errno == EAGAIN || errno == EINTR));
1244 if (r == -1) {
1245 perror("sigwait");
1246 exit(1);
1248 qemu_mutex_lock_iothread();
1249 qemu_wait_io_event(cpu);
1250 } while (!cpu->unplug);
1252 rcu_unregister_thread();
1253 return NULL;
1254 #endif
1257 static int64_t tcg_get_icount_limit(void)
1259 int64_t deadline;
1261 if (replay_mode != REPLAY_MODE_PLAY) {
1262 deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1264 /* Maintain prior (possibly buggy) behaviour where if no deadline
1265 * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
1266 * INT32_MAX nanoseconds ahead, we still use INT32_MAX
1267 * nanoseconds.
1269 if ((deadline < 0) || (deadline > INT32_MAX)) {
1270 deadline = INT32_MAX;
1273 return qemu_icount_round(deadline);
1274 } else {
1275 return replay_get_instructions();
1279 static void handle_icount_deadline(void)
1281 assert(qemu_in_vcpu_thread());
1282 if (use_icount) {
1283 int64_t deadline =
1284 qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
1286 if (deadline == 0) {
1287 /* Wake up other AioContexts. */
1288 qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
1289 qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
1294 static void prepare_icount_for_run(CPUState *cpu)
1296 if (use_icount) {
1297 int insns_left;
1299 /* These should always be cleared by process_icount_data after
1300 * each vCPU execution. However u16.high can be raised
1301 * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
1303 g_assert(cpu->icount_decr.u16.low == 0);
1304 g_assert(cpu->icount_extra == 0);
1306 cpu->icount_budget = tcg_get_icount_limit();
1307 insns_left = MIN(0xffff, cpu->icount_budget);
1308 cpu->icount_decr.u16.low = insns_left;
1309 cpu->icount_extra = cpu->icount_budget - insns_left;
1313 static void process_icount_data(CPUState *cpu)
1315 if (use_icount) {
1316 /* Account for executed instructions */
1317 cpu_update_icount(cpu);
1319 /* Reset the counters */
1320 cpu->icount_decr.u16.low = 0;
1321 cpu->icount_extra = 0;
1322 cpu->icount_budget = 0;
1324 replay_account_executed_instructions();
1329 static int tcg_cpu_exec(CPUState *cpu)
1331 int ret;
1332 #ifdef CONFIG_PROFILER
1333 int64_t ti;
1334 #endif
1336 #ifdef CONFIG_PROFILER
1337 ti = profile_getclock();
1338 #endif
1339 qemu_mutex_unlock_iothread();
1340 cpu_exec_start(cpu);
1341 ret = cpu_exec(cpu);
1342 cpu_exec_end(cpu);
1343 qemu_mutex_lock_iothread();
1344 #ifdef CONFIG_PROFILER
1345 tcg_time += profile_getclock() - ti;
1346 #endif
1347 return ret;
1350 /* Destroy any remaining vCPUs which have been unplugged and have
1351 * finished running
1353 static void deal_with_unplugged_cpus(void)
1355 CPUState *cpu;
1357 CPU_FOREACH(cpu) {
1358 if (cpu->unplug && !cpu_can_run(cpu)) {
1359 qemu_tcg_destroy_vcpu(cpu);
1360 cpu->created = false;
1361 qemu_cond_signal(&qemu_cpu_cond);
1362 break;
1367 /* Single-threaded TCG
1369 * In the single-threaded case each vCPU is simulated in turn. If
1370 * there is more than a single vCPU we create a simple timer to kick
1371 * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
1372 * This is done explicitly rather than relying on side-effects
1373 * elsewhere.
1376 static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
1378 CPUState *cpu = arg;
1380 rcu_register_thread();
1381 tcg_register_thread();
1383 qemu_mutex_lock_iothread();
1384 qemu_thread_get_self(cpu->thread);
1386 CPU_FOREACH(cpu) {
1387 cpu->thread_id = qemu_get_thread_id();
1388 cpu->created = true;
1389 cpu->can_do_io = 1;
1391 qemu_cond_signal(&qemu_cpu_cond);
1393 /* wait for initial kick-off after machine start */
1394 while (first_cpu->stopped) {
1395 qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
1397 /* process any pending work */
1398 CPU_FOREACH(cpu) {
1399 current_cpu = cpu;
1400 qemu_wait_io_event_common(cpu);
1404 start_tcg_kick_timer();
1406 cpu = first_cpu;
1408 /* process any pending work */
1409 cpu->exit_request = 1;
1411 while (1) {
1412 /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
1413 qemu_account_warp_timer();
1415 /* Run the timers here. This is much more efficient than
1416 * waking up the I/O thread and waiting for completion.
1418 handle_icount_deadline();
1420 if (!cpu) {
1421 cpu = first_cpu;
1424 while (cpu && !cpu->queued_work_first && !cpu->exit_request) {
1426 atomic_mb_set(&tcg_current_rr_cpu, cpu);
1427 current_cpu = cpu;
1429 qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
1430 (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
1432 if (cpu_can_run(cpu)) {
1433 int r;
1435 prepare_icount_for_run(cpu);
1437 r = tcg_cpu_exec(cpu);
1439 process_icount_data(cpu);
1441 if (r == EXCP_DEBUG) {
1442 cpu_handle_guest_debug(cpu);
1443 break;
1444 } else if (r == EXCP_ATOMIC) {
1445 qemu_mutex_unlock_iothread();
1446 cpu_exec_step_atomic(cpu);
1447 qemu_mutex_lock_iothread();
1448 break;
1450 } else if (cpu->stop) {
1451 if (cpu->unplug) {
1452 cpu = CPU_NEXT(cpu);
1454 break;
1457 cpu = CPU_NEXT(cpu);
1458 } /* while (cpu && !cpu->exit_request).. */
1460 /* Does not need atomic_mb_set because a spurious wakeup is okay. */
1461 atomic_set(&tcg_current_rr_cpu, NULL);
1463 if (cpu && cpu->exit_request) {
1464 atomic_mb_set(&cpu->exit_request, 0);
1467 qemu_tcg_rr_wait_io_event(cpu ? cpu : QTAILQ_FIRST(&cpus));
1468 deal_with_unplugged_cpus();
1471 rcu_unregister_thread();
1472 return NULL;
1475 static void *qemu_hax_cpu_thread_fn(void *arg)
1477 CPUState *cpu = arg;
1478 int r;
1480 rcu_register_thread();
1481 qemu_mutex_lock_iothread();
1482 qemu_thread_get_self(cpu->thread);
1484 cpu->thread_id = qemu_get_thread_id();
1485 cpu->created = true;
1486 cpu->halted = 0;
1487 current_cpu = cpu;
1489 hax_init_vcpu(cpu);
1490 qemu_cond_signal(&qemu_cpu_cond);
1492 do {
1493 if (cpu_can_run(cpu)) {
1494 r = hax_smp_cpu_exec(cpu);
1495 if (r == EXCP_DEBUG) {
1496 cpu_handle_guest_debug(cpu);
1500 qemu_wait_io_event(cpu);
1501 } while (!cpu->unplug || cpu_can_run(cpu));
1502 rcu_unregister_thread();
1503 return NULL;
1506 /* The HVF-specific vCPU thread function. This one should only run when the host
1507 * CPU supports the VMX "unrestricted guest" feature. */
1508 static void *qemu_hvf_cpu_thread_fn(void *arg)
1510 CPUState *cpu = arg;
1512 int r;
1514 assert(hvf_enabled());
1516 rcu_register_thread();
1518 qemu_mutex_lock_iothread();
1519 qemu_thread_get_self(cpu->thread);
1521 cpu->thread_id = qemu_get_thread_id();
1522 cpu->can_do_io = 1;
1523 current_cpu = cpu;
1525 hvf_init_vcpu(cpu);
1527 /* signal CPU creation */
1528 cpu->created = true;
1529 qemu_cond_signal(&qemu_cpu_cond);
1531 do {
1532 if (cpu_can_run(cpu)) {
1533 r = hvf_vcpu_exec(cpu);
1534 if (r == EXCP_DEBUG) {
1535 cpu_handle_guest_debug(cpu);
1538 qemu_wait_io_event(cpu);
1539 } while (!cpu->unplug || cpu_can_run(cpu));
1541 hvf_vcpu_destroy(cpu);
1542 cpu->created = false;
1543 qemu_cond_signal(&qemu_cpu_cond);
1544 qemu_mutex_unlock_iothread();
1545 rcu_unregister_thread();
1546 return NULL;
1549 static void *qemu_whpx_cpu_thread_fn(void *arg)
1551 CPUState *cpu = arg;
1552 int r;
1554 rcu_register_thread();
1556 qemu_mutex_lock_iothread();
1557 qemu_thread_get_self(cpu->thread);
1558 cpu->thread_id = qemu_get_thread_id();
1559 current_cpu = cpu;
1561 r = whpx_init_vcpu(cpu);
1562 if (r < 0) {
1563 fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
1564 exit(1);
1567 /* signal CPU creation */
1568 cpu->created = true;
1569 qemu_cond_signal(&qemu_cpu_cond);
1571 do {
1572 if (cpu_can_run(cpu)) {
1573 r = whpx_vcpu_exec(cpu);
1574 if (r == EXCP_DEBUG) {
1575 cpu_handle_guest_debug(cpu);
1578 while (cpu_thread_is_idle(cpu)) {
1579 qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
1581 qemu_wait_io_event_common(cpu);
1582 } while (!cpu->unplug || cpu_can_run(cpu));
1584 whpx_destroy_vcpu(cpu);
1585 cpu->created = false;
1586 qemu_cond_signal(&qemu_cpu_cond);
1587 qemu_mutex_unlock_iothread();
1588 rcu_unregister_thread();
1589 return NULL;
1592 #ifdef _WIN32
1593 static void CALLBACK dummy_apc_func(ULONG_PTR unused)
1596 #endif
1598 /* Multi-threaded TCG
1600 * In the multi-threaded case each vCPU has its own thread. The TLS
1601 * variable current_cpu can be used deep in the code to find the
1602 * current CPUState for a given thread.
1605 static void *qemu_tcg_cpu_thread_fn(void *arg)
1607 CPUState *cpu = arg;
1609 g_assert(!use_icount);
1611 rcu_register_thread();
1612 tcg_register_thread();
1614 qemu_mutex_lock_iothread();
1615 qemu_thread_get_self(cpu->thread);
1617 cpu->thread_id = qemu_get_thread_id();
1618 cpu->created = true;
1619 cpu->can_do_io = 1;
1620 current_cpu = cpu;
1621 qemu_cond_signal(&qemu_cpu_cond);
1623 /* process any pending work */
1624 cpu->exit_request = 1;
1626 while (1) {
1627 if (cpu_can_run(cpu)) {
1628 int r;
1629 r = tcg_cpu_exec(cpu);
1630 switch (r) {
1631 case EXCP_DEBUG:
1632 cpu_handle_guest_debug(cpu);
1633 break;
1634 case EXCP_HALTED:
1635 /* during start-up the vCPU is reset and the thread is
1636 * kicked several times. If we don't ensure we go back
1637 * to sleep in the halted state we won't cleanly
1638 * start-up when the vCPU is enabled.
1640 * cpu->halted should ensure we sleep in wait_io_event
1642 g_assert(cpu->halted);
1643 break;
1644 case EXCP_ATOMIC:
1645 qemu_mutex_unlock_iothread();
1646 cpu_exec_step_atomic(cpu);
1647 qemu_mutex_lock_iothread();
1648 default:
1649 /* Ignore everything else? */
1650 break;
1654 atomic_mb_set(&cpu->exit_request, 0);
1655 qemu_wait_io_event(cpu);
1656 } while (!cpu->unplug || cpu_can_run(cpu));
1658 qemu_tcg_destroy_vcpu(cpu);
1659 cpu->created = false;
1660 qemu_cond_signal(&qemu_cpu_cond);
1661 qemu_mutex_unlock_iothread();
1662 rcu_unregister_thread();
1663 return NULL;
1666 static void qemu_cpu_kick_thread(CPUState *cpu)
1668 #ifndef _WIN32
1669 int err;
1671 if (cpu->thread_kicked) {
1672 return;
1674 cpu->thread_kicked = true;
1675 err = pthread_kill(cpu->thread->thread, SIG_IPI);
1676 if (err) {
1677 fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
1678 exit(1);
1680 #else /* _WIN32 */
1681 if (!qemu_cpu_is_self(cpu)) {
1682 if (whpx_enabled()) {
1683 whpx_vcpu_kick(cpu);
1684 } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
1685 fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
1686 __func__, GetLastError());
1687 exit(1);
1690 #endif
1693 void qemu_cpu_kick(CPUState *cpu)
1695 qemu_cond_broadcast(cpu->halt_cond);
1696 if (tcg_enabled()) {
1697 cpu_exit(cpu);
1698 /* NOP unless doing single-thread RR */
1699 qemu_cpu_kick_rr_cpu();
1700 } else {
1701 if (hax_enabled()) {
1703 * FIXME: race condition with the exit_request check in
1704 * hax_vcpu_hax_exec
1706 cpu->exit_request = 1;
1708 qemu_cpu_kick_thread(cpu);
1712 void qemu_cpu_kick_self(void)
1714 assert(current_cpu);
1715 qemu_cpu_kick_thread(current_cpu);
1718 bool qemu_cpu_is_self(CPUState *cpu)
1720 return qemu_thread_is_self(cpu->thread);
1723 bool qemu_in_vcpu_thread(void)
1725 return current_cpu && qemu_cpu_is_self(current_cpu);
1728 static __thread bool iothread_locked = false;
1730 bool qemu_mutex_iothread_locked(void)
1732 return iothread_locked;
1735 void qemu_mutex_lock_iothread(void)
1737 g_assert(!qemu_mutex_iothread_locked());
1738 qemu_mutex_lock(&qemu_global_mutex);
1739 iothread_locked = true;
1742 void qemu_mutex_unlock_iothread(void)
1744 g_assert(qemu_mutex_iothread_locked());
1745 iothread_locked = false;
1746 qemu_mutex_unlock(&qemu_global_mutex);
1749 static bool all_vcpus_paused(void)
1751 CPUState *cpu;
1753 CPU_FOREACH(cpu) {
1754 if (!cpu->stopped) {
1755 return false;
1759 return true;
1762 void pause_all_vcpus(void)
1764 CPUState *cpu;
1766 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
1767 CPU_FOREACH(cpu) {
1768 if (qemu_cpu_is_self(cpu)) {
1769 qemu_cpu_stop(cpu, true);
1770 } else {
1771 cpu->stop = true;
1772 qemu_cpu_kick(cpu);
1776 while (!all_vcpus_paused()) {
1777 qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
1778 CPU_FOREACH(cpu) {
1779 qemu_cpu_kick(cpu);
1784 void cpu_resume(CPUState *cpu)
1786 cpu->stop = false;
1787 cpu->stopped = false;
1788 qemu_cpu_kick(cpu);
1791 void resume_all_vcpus(void)
1793 CPUState *cpu;
1795 qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
1796 CPU_FOREACH(cpu) {
1797 cpu_resume(cpu);
1801 void cpu_remove_sync(CPUState *cpu)
1803 cpu->stop = true;
1804 cpu->unplug = true;
1805 qemu_cpu_kick(cpu);
1806 qemu_mutex_unlock_iothread();
1807 qemu_thread_join(cpu->thread);
1808 qemu_mutex_lock_iothread();
1811 /* For temporary buffers for forming a name */
1812 #define VCPU_THREAD_NAME_SIZE 16
1814 static void qemu_tcg_init_vcpu(CPUState *cpu)
1816 char thread_name[VCPU_THREAD_NAME_SIZE];
1817 static QemuCond *single_tcg_halt_cond;
1818 static QemuThread *single_tcg_cpu_thread;
1819 static int tcg_region_inited;
1822 * Initialize TCG regions--once. Now is a good time, because:
1823 * (1) TCG's init context, prologue and target globals have been set up.
1824 * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
1825 * -accel flag is processed, so the check doesn't work then).
1827 if (!tcg_region_inited) {
1828 tcg_region_inited = 1;
1829 tcg_region_init();
1832 if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
1833 cpu->thread = g_malloc0(sizeof(QemuThread));
1834 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1835 qemu_cond_init(cpu->halt_cond);
1837 if (qemu_tcg_mttcg_enabled()) {
1838 /* create a thread per vCPU with TCG (MTTCG) */
1839 parallel_cpus = true;
1840 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
1841 cpu->cpu_index);
1843 qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
1844 cpu, QEMU_THREAD_JOINABLE);
1846 } else {
1847 /* share a single thread for all cpus with TCG */
1848 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
1849 qemu_thread_create(cpu->thread, thread_name,
1850 qemu_tcg_rr_cpu_thread_fn,
1851 cpu, QEMU_THREAD_JOINABLE);
1853 single_tcg_halt_cond = cpu->halt_cond;
1854 single_tcg_cpu_thread = cpu->thread;
1856 #ifdef _WIN32
1857 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1858 #endif
1859 while (!cpu->created) {
1860 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1862 } else {
1863 /* For non-MTTCG cases we share the thread */
1864 cpu->thread = single_tcg_cpu_thread;
1865 cpu->halt_cond = single_tcg_halt_cond;
1869 static void qemu_hax_start_vcpu(CPUState *cpu)
1871 char thread_name[VCPU_THREAD_NAME_SIZE];
1873 cpu->thread = g_malloc0(sizeof(QemuThread));
1874 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1875 qemu_cond_init(cpu->halt_cond);
1877 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
1878 cpu->cpu_index);
1879 qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
1880 cpu, QEMU_THREAD_JOINABLE);
1881 #ifdef _WIN32
1882 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1883 #endif
1884 while (!cpu->created) {
1885 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1889 static void qemu_kvm_start_vcpu(CPUState *cpu)
1891 char thread_name[VCPU_THREAD_NAME_SIZE];
1893 cpu->thread = g_malloc0(sizeof(QemuThread));
1894 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1895 qemu_cond_init(cpu->halt_cond);
1896 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
1897 cpu->cpu_index);
1898 qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
1899 cpu, QEMU_THREAD_JOINABLE);
1900 while (!cpu->created) {
1901 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1905 static void qemu_hvf_start_vcpu(CPUState *cpu)
1907 char thread_name[VCPU_THREAD_NAME_SIZE];
1909 /* HVF currently does not support TCG, and only runs in
1910 * unrestricted-guest mode. */
1911 assert(hvf_enabled());
1913 cpu->thread = g_malloc0(sizeof(QemuThread));
1914 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1915 qemu_cond_init(cpu->halt_cond);
1917 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
1918 cpu->cpu_index);
1919 qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
1920 cpu, QEMU_THREAD_JOINABLE);
1921 while (!cpu->created) {
1922 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1926 static void qemu_whpx_start_vcpu(CPUState *cpu)
1928 char thread_name[VCPU_THREAD_NAME_SIZE];
1930 cpu->thread = g_malloc0(sizeof(QemuThread));
1931 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1932 qemu_cond_init(cpu->halt_cond);
1933 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
1934 cpu->cpu_index);
1935 qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
1936 cpu, QEMU_THREAD_JOINABLE);
1937 #ifdef _WIN32
1938 cpu->hThread = qemu_thread_get_handle(cpu->thread);
1939 #endif
1940 while (!cpu->created) {
1941 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1945 static void qemu_dummy_start_vcpu(CPUState *cpu)
1947 char thread_name[VCPU_THREAD_NAME_SIZE];
1949 cpu->thread = g_malloc0(sizeof(QemuThread));
1950 cpu->halt_cond = g_malloc0(sizeof(QemuCond));
1951 qemu_cond_init(cpu->halt_cond);
1952 snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
1953 cpu->cpu_index);
1954 qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
1955 QEMU_THREAD_JOINABLE);
1956 while (!cpu->created) {
1957 qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
1961 void qemu_init_vcpu(CPUState *cpu)
1963 cpu->nr_cores = smp_cores;
1964 cpu->nr_threads = smp_threads;
1965 cpu->stopped = true;
1967 if (!cpu->as) {
1968 /* If the target cpu hasn't set up any address spaces itself,
1969 * give it the default one.
1971 cpu->num_ases = 1;
1972 cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
1975 if (kvm_enabled()) {
1976 qemu_kvm_start_vcpu(cpu);
1977 } else if (hax_enabled()) {
1978 qemu_hax_start_vcpu(cpu);
1979 } else if (hvf_enabled()) {
1980 qemu_hvf_start_vcpu(cpu);
1981 } else if (tcg_enabled()) {
1982 qemu_tcg_init_vcpu(cpu);
1983 } else if (whpx_enabled()) {
1984 qemu_whpx_start_vcpu(cpu);
1985 } else {
1986 qemu_dummy_start_vcpu(cpu);
1990 void cpu_stop_current(void)
1992 if (current_cpu) {
1993 qemu_cpu_stop(current_cpu, true);
1997 int vm_stop(RunState state)
1999 if (qemu_in_vcpu_thread()) {
2000 qemu_system_vmstop_request_prepare();
2001 qemu_system_vmstop_request(state);
2003 * FIXME: should not return to device code in case
2004 * vm_stop() has been requested.
2006 cpu_stop_current();
2007 return 0;
2010 return do_vm_stop(state);
2014 * Prepare for (re)starting the VM.
2015 * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
2016 * running or in case of an error condition), 0 otherwise.
2018 int vm_prepare_start(void)
2020 RunState requested;
2021 int res = 0;
2023 qemu_vmstop_requested(&requested);
2024 if (runstate_is_running() && requested == RUN_STATE__MAX) {
2025 return -1;
2028 /* Ensure that a STOP/RESUME pair of events is emitted if a
2029 * vmstop request was pending. The BLOCK_IO_ERROR event, for
2030 * example, according to documentation is always followed by
2031 * the STOP event.
2033 if (runstate_is_running()) {
2034 qapi_event_send_stop(&error_abort);
2035 res = -1;
2036 } else {
2037 replay_enable_events();
2038 cpu_enable_ticks();
2039 runstate_set(RUN_STATE_RUNNING);
2040 vm_state_notify(1, RUN_STATE_RUNNING);
2043 /* We are sending this now, but the CPUs will be resumed shortly later */
2044 qapi_event_send_resume(&error_abort);
2045 return res;
2048 void vm_start(void)
2050 if (!vm_prepare_start()) {
2051 resume_all_vcpus();
2055 /* does a state transition even if the VM is already stopped,
2056 current state is forgotten forever */
2057 int vm_stop_force_state(RunState state)
2059 if (runstate_is_running()) {
2060 return vm_stop(state);
2061 } else {
2062 runstate_set(state);
2064 bdrv_drain_all();
2065 /* Make sure to return an error if the flush in a previous vm_stop()
2066 * failed. */
2067 return bdrv_flush_all();
2071 void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
2073 /* XXX: implement xxx_cpu_list for targets that still miss it */
2074 #if defined(cpu_list)
2075 cpu_list(f, cpu_fprintf);
2076 #endif
2079 CpuInfoList *qmp_query_cpus(Error **errp)
2081 MachineState *ms = MACHINE(qdev_get_machine());
2082 MachineClass *mc = MACHINE_GET_CLASS(ms);
2083 CpuInfoList *head = NULL, *cur_item = NULL;
2084 CPUState *cpu;
2086 CPU_FOREACH(cpu) {
2087 CpuInfoList *info;
2088 #if defined(TARGET_I386)
2089 X86CPU *x86_cpu = X86_CPU(cpu);
2090 CPUX86State *env = &x86_cpu->env;
2091 #elif defined(TARGET_PPC)
2092 PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
2093 CPUPPCState *env = &ppc_cpu->env;
2094 #elif defined(TARGET_SPARC)
2095 SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
2096 CPUSPARCState *env = &sparc_cpu->env;
2097 #elif defined(TARGET_MIPS)
2098 MIPSCPU *mips_cpu = MIPS_CPU(cpu);
2099 CPUMIPSState *env = &mips_cpu->env;
2100 #elif defined(TARGET_TRICORE)
2101 TriCoreCPU *tricore_cpu = TRICORE_CPU(cpu);
2102 CPUTriCoreState *env = &tricore_cpu->env;
2103 #endif
2105 cpu_synchronize_state(cpu);
2107 info = g_malloc0(sizeof(*info));
2108 info->value = g_malloc0(sizeof(*info->value));
2109 info->value->CPU = cpu->cpu_index;
2110 info->value->current = (cpu == first_cpu);
2111 info->value->halted = cpu->halted;
2112 info->value->qom_path = object_get_canonical_path(OBJECT(cpu));
2113 info->value->thread_id = cpu->thread_id;
2114 #if defined(TARGET_I386)
2115 info->value->arch = CPU_INFO_ARCH_X86;
2116 info->value->u.x86.pc = env->eip + env->segs[R_CS].base;
2117 #elif defined(TARGET_PPC)
2118 info->value->arch = CPU_INFO_ARCH_PPC;
2119 info->value->u.ppc.nip = env->nip;
2120 #elif defined(TARGET_SPARC)
2121 info->value->arch = CPU_INFO_ARCH_SPARC;
2122 info->value->u.q_sparc.pc = env->pc;
2123 info->value->u.q_sparc.npc = env->npc;
2124 #elif defined(TARGET_MIPS)
2125 info->value->arch = CPU_INFO_ARCH_MIPS;
2126 info->value->u.q_mips.PC = env->active_tc.PC;
2127 #elif defined(TARGET_TRICORE)
2128 info->value->arch = CPU_INFO_ARCH_TRICORE;
2129 info->value->u.tricore.PC = env->PC;
2130 #else
2131 info->value->arch = CPU_INFO_ARCH_OTHER;
2132 #endif
2133 info->value->has_props = !!mc->cpu_index_to_instance_props;
2134 if (info->value->has_props) {
2135 CpuInstanceProperties *props;
2136 props = g_malloc0(sizeof(*props));
2137 *props = mc->cpu_index_to_instance_props(ms, cpu->cpu_index);
2138 info->value->props = props;
2141 /* XXX: waiting for the qapi to support GSList */
2142 if (!cur_item) {
2143 head = cur_item = info;
2144 } else {
2145 cur_item->next = info;
2146 cur_item = info;
2150 return head;
2153 void qmp_memsave(int64_t addr, int64_t size, const char *filename,
2154 bool has_cpu, int64_t cpu_index, Error **errp)
2156 FILE *f;
2157 uint32_t l;
2158 CPUState *cpu;
2159 uint8_t buf[1024];
2160 int64_t orig_addr = addr, orig_size = size;
2162 if (!has_cpu) {
2163 cpu_index = 0;
2166 cpu = qemu_get_cpu(cpu_index);
2167 if (cpu == NULL) {
2168 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
2169 "a CPU number");
2170 return;
2173 f = fopen(filename, "wb");
2174 if (!f) {
2175 error_setg_file_open(errp, errno, filename);
2176 return;
2179 while (size != 0) {
2180 l = sizeof(buf);
2181 if (l > size)
2182 l = size;
2183 if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
2184 error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
2185 " specified", orig_addr, orig_size);
2186 goto exit;
2188 if (fwrite(buf, 1, l, f) != l) {
2189 error_setg(errp, QERR_IO_ERROR);
2190 goto exit;
2192 addr += l;
2193 size -= l;
2196 exit:
2197 fclose(f);
2200 void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
2201 Error **errp)
2203 FILE *f;
2204 uint32_t l;
2205 uint8_t buf[1024];
2207 f = fopen(filename, "wb");
2208 if (!f) {
2209 error_setg_file_open(errp, errno, filename);
2210 return;
2213 while (size != 0) {
2214 l = sizeof(buf);
2215 if (l > size)
2216 l = size;
2217 cpu_physical_memory_read(addr, buf, l);
2218 if (fwrite(buf, 1, l, f) != l) {
2219 error_setg(errp, QERR_IO_ERROR);
2220 goto exit;
2222 addr += l;
2223 size -= l;
2226 exit:
2227 fclose(f);
2230 void qmp_inject_nmi(Error **errp)
2232 nmi_monitor_handle(monitor_get_cpu_index(), errp);
2235 void dump_drift_info(FILE *f, fprintf_function cpu_fprintf)
2237 if (!use_icount) {
2238 return;
2241 cpu_fprintf(f, "Host - Guest clock %"PRIi64" ms\n",
2242 (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
2243 if (icount_align_option) {
2244 cpu_fprintf(f, "Max guest delay %"PRIi64" ms\n", -max_delay/SCALE_MS);
2245 cpu_fprintf(f, "Max guest advance %"PRIi64" ms\n", max_advance/SCALE_MS);
2246 } else {
2247 cpu_fprintf(f, "Max guest delay NA\n");
2248 cpu_fprintf(f, "Max guest advance NA\n");