json-lexer: reset the lexer state on an invalid token
[qemu.git] / hw / lsi53c895a.c
blob83084b6b6a6f5c8df2c9696fed144379ae8e0fdf
1 /*
2 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
4 * Copyright (c) 2006 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the LGPL.
8 */
10 /* ??? Need to check if the {read,write}[wl] routines work properly on
11 big-endian targets. */
13 #include <assert.h>
15 #include "hw.h"
16 #include "pci.h"
17 #include "scsi.h"
18 #include "block_int.h"
20 //#define DEBUG_LSI
21 //#define DEBUG_LSI_REG
23 #ifdef DEBUG_LSI
24 #define DPRINTF(fmt, ...) \
25 do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26 #define BADF(fmt, ...) \
27 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28 #else
29 #define DPRINTF(fmt, ...) do {} while(0)
30 #define BADF(fmt, ...) \
31 do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32 #endif
34 #define LSI_MAX_DEVS 7
36 #define LSI_SCNTL0_TRG 0x01
37 #define LSI_SCNTL0_AAP 0x02
38 #define LSI_SCNTL0_EPC 0x08
39 #define LSI_SCNTL0_WATN 0x10
40 #define LSI_SCNTL0_START 0x20
42 #define LSI_SCNTL1_SST 0x01
43 #define LSI_SCNTL1_IARB 0x02
44 #define LSI_SCNTL1_AESP 0x04
45 #define LSI_SCNTL1_RST 0x08
46 #define LSI_SCNTL1_CON 0x10
47 #define LSI_SCNTL1_DHP 0x20
48 #define LSI_SCNTL1_ADB 0x40
49 #define LSI_SCNTL1_EXC 0x80
51 #define LSI_SCNTL2_WSR 0x01
52 #define LSI_SCNTL2_VUE0 0x02
53 #define LSI_SCNTL2_VUE1 0x04
54 #define LSI_SCNTL2_WSS 0x08
55 #define LSI_SCNTL2_SLPHBEN 0x10
56 #define LSI_SCNTL2_SLPMD 0x20
57 #define LSI_SCNTL2_CHM 0x40
58 #define LSI_SCNTL2_SDU 0x80
60 #define LSI_ISTAT0_DIP 0x01
61 #define LSI_ISTAT0_SIP 0x02
62 #define LSI_ISTAT0_INTF 0x04
63 #define LSI_ISTAT0_CON 0x08
64 #define LSI_ISTAT0_SEM 0x10
65 #define LSI_ISTAT0_SIGP 0x20
66 #define LSI_ISTAT0_SRST 0x40
67 #define LSI_ISTAT0_ABRT 0x80
69 #define LSI_ISTAT1_SI 0x01
70 #define LSI_ISTAT1_SRUN 0x02
71 #define LSI_ISTAT1_FLSH 0x04
73 #define LSI_SSTAT0_SDP0 0x01
74 #define LSI_SSTAT0_RST 0x02
75 #define LSI_SSTAT0_WOA 0x04
76 #define LSI_SSTAT0_LOA 0x08
77 #define LSI_SSTAT0_AIP 0x10
78 #define LSI_SSTAT0_OLF 0x20
79 #define LSI_SSTAT0_ORF 0x40
80 #define LSI_SSTAT0_ILF 0x80
82 #define LSI_SIST0_PAR 0x01
83 #define LSI_SIST0_RST 0x02
84 #define LSI_SIST0_UDC 0x04
85 #define LSI_SIST0_SGE 0x08
86 #define LSI_SIST0_RSL 0x10
87 #define LSI_SIST0_SEL 0x20
88 #define LSI_SIST0_CMP 0x40
89 #define LSI_SIST0_MA 0x80
91 #define LSI_SIST1_HTH 0x01
92 #define LSI_SIST1_GEN 0x02
93 #define LSI_SIST1_STO 0x04
94 #define LSI_SIST1_SBMC 0x10
96 #define LSI_SOCL_IO 0x01
97 #define LSI_SOCL_CD 0x02
98 #define LSI_SOCL_MSG 0x04
99 #define LSI_SOCL_ATN 0x08
100 #define LSI_SOCL_SEL 0x10
101 #define LSI_SOCL_BSY 0x20
102 #define LSI_SOCL_ACK 0x40
103 #define LSI_SOCL_REQ 0x80
105 #define LSI_DSTAT_IID 0x01
106 #define LSI_DSTAT_SIR 0x04
107 #define LSI_DSTAT_SSI 0x08
108 #define LSI_DSTAT_ABRT 0x10
109 #define LSI_DSTAT_BF 0x20
110 #define LSI_DSTAT_MDPE 0x40
111 #define LSI_DSTAT_DFE 0x80
113 #define LSI_DCNTL_COM 0x01
114 #define LSI_DCNTL_IRQD 0x02
115 #define LSI_DCNTL_STD 0x04
116 #define LSI_DCNTL_IRQM 0x08
117 #define LSI_DCNTL_SSM 0x10
118 #define LSI_DCNTL_PFEN 0x20
119 #define LSI_DCNTL_PFF 0x40
120 #define LSI_DCNTL_CLSE 0x80
122 #define LSI_DMODE_MAN 0x01
123 #define LSI_DMODE_BOF 0x02
124 #define LSI_DMODE_ERMP 0x04
125 #define LSI_DMODE_ERL 0x08
126 #define LSI_DMODE_DIOM 0x10
127 #define LSI_DMODE_SIOM 0x20
129 #define LSI_CTEST2_DACK 0x01
130 #define LSI_CTEST2_DREQ 0x02
131 #define LSI_CTEST2_TEOP 0x04
132 #define LSI_CTEST2_PCICIE 0x08
133 #define LSI_CTEST2_CM 0x10
134 #define LSI_CTEST2_CIO 0x20
135 #define LSI_CTEST2_SIGP 0x40
136 #define LSI_CTEST2_DDIR 0x80
138 #define LSI_CTEST5_BL2 0x04
139 #define LSI_CTEST5_DDIR 0x08
140 #define LSI_CTEST5_MASR 0x10
141 #define LSI_CTEST5_DFSN 0x20
142 #define LSI_CTEST5_BBCK 0x40
143 #define LSI_CTEST5_ADCK 0x80
145 #define LSI_CCNTL0_DILS 0x01
146 #define LSI_CCNTL0_DISFC 0x10
147 #define LSI_CCNTL0_ENNDJ 0x20
148 #define LSI_CCNTL0_PMJCTL 0x40
149 #define LSI_CCNTL0_ENPMJ 0x80
151 #define LSI_CCNTL1_EN64DBMV 0x01
152 #define LSI_CCNTL1_EN64TIBMV 0x02
153 #define LSI_CCNTL1_64TIMOD 0x04
154 #define LSI_CCNTL1_DDAC 0x08
155 #define LSI_CCNTL1_ZMOD 0x80
157 /* Enable Response to Reselection */
158 #define LSI_SCID_RRE 0x60
160 #define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
162 #define PHASE_DO 0
163 #define PHASE_DI 1
164 #define PHASE_CMD 2
165 #define PHASE_ST 3
166 #define PHASE_MO 6
167 #define PHASE_MI 7
168 #define PHASE_MASK 7
170 /* Maximum length of MSG IN data. */
171 #define LSI_MAX_MSGIN_LEN 8
173 /* Flag set if this is a tagged command. */
174 #define LSI_TAG_VALID (1 << 16)
176 typedef struct lsi_request {
177 SCSIRequest *req;
178 uint32_t tag;
179 uint32_t dma_len;
180 uint8_t *dma_buf;
181 uint32_t pending;
182 int out;
183 QTAILQ_ENTRY(lsi_request) next;
184 } lsi_request;
186 typedef struct {
187 PCIDevice dev;
188 int mmio_io_addr;
189 int ram_io_addr;
190 uint32_t script_ram_base;
192 int carry; /* ??? Should this be an a visible register somewhere? */
193 int status;
194 /* Action to take at the end of a MSG IN phase.
195 0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN. */
196 int msg_action;
197 int msg_len;
198 uint8_t msg[LSI_MAX_MSGIN_LEN];
199 /* 0 if SCRIPTS are running or stopped.
200 * 1 if a Wait Reselect instruction has been issued.
201 * 2 if processing DMA from lsi_execute_script.
202 * 3 if a DMA operation is in progress. */
203 int waiting;
204 SCSIBus bus;
205 int current_lun;
206 /* The tag is a combination of the device ID and the SCSI tag. */
207 uint32_t select_tag;
208 int command_complete;
209 QTAILQ_HEAD(, lsi_request) queue;
210 lsi_request *current;
212 uint32_t dsa;
213 uint32_t temp;
214 uint32_t dnad;
215 uint32_t dbc;
216 uint8_t istat0;
217 uint8_t istat1;
218 uint8_t dcmd;
219 uint8_t dstat;
220 uint8_t dien;
221 uint8_t sist0;
222 uint8_t sist1;
223 uint8_t sien0;
224 uint8_t sien1;
225 uint8_t mbox0;
226 uint8_t mbox1;
227 uint8_t dfifo;
228 uint8_t ctest2;
229 uint8_t ctest3;
230 uint8_t ctest4;
231 uint8_t ctest5;
232 uint8_t ccntl0;
233 uint8_t ccntl1;
234 uint32_t dsp;
235 uint32_t dsps;
236 uint8_t dmode;
237 uint8_t dcntl;
238 uint8_t scntl0;
239 uint8_t scntl1;
240 uint8_t scntl2;
241 uint8_t scntl3;
242 uint8_t sstat0;
243 uint8_t sstat1;
244 uint8_t scid;
245 uint8_t sxfer;
246 uint8_t socl;
247 uint8_t sdid;
248 uint8_t ssid;
249 uint8_t sfbr;
250 uint8_t stest1;
251 uint8_t stest2;
252 uint8_t stest3;
253 uint8_t sidl;
254 uint8_t stime0;
255 uint8_t respid0;
256 uint8_t respid1;
257 uint32_t mmrs;
258 uint32_t mmws;
259 uint32_t sfs;
260 uint32_t drs;
261 uint32_t sbms;
262 uint32_t dbms;
263 uint32_t dnad64;
264 uint32_t pmjad1;
265 uint32_t pmjad2;
266 uint32_t rbc;
267 uint32_t ua;
268 uint32_t ia;
269 uint32_t sbc;
270 uint32_t csbc;
271 uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
272 uint8_t sbr;
274 /* Script ram is stored as 32-bit words in host byteorder. */
275 uint32_t script_ram[2048];
276 } LSIState;
278 static inline int lsi_irq_on_rsl(LSIState *s)
280 return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
283 static void lsi_soft_reset(LSIState *s)
285 lsi_request *p;
287 DPRINTF("Reset\n");
288 s->carry = 0;
290 s->msg_action = 0;
291 s->msg_len = 0;
292 s->waiting = 0;
293 s->dsa = 0;
294 s->dnad = 0;
295 s->dbc = 0;
296 s->temp = 0;
297 memset(s->scratch, 0, sizeof(s->scratch));
298 s->istat0 = 0;
299 s->istat1 = 0;
300 s->dcmd = 0x40;
301 s->dstat = LSI_DSTAT_DFE;
302 s->dien = 0;
303 s->sist0 = 0;
304 s->sist1 = 0;
305 s->sien0 = 0;
306 s->sien1 = 0;
307 s->mbox0 = 0;
308 s->mbox1 = 0;
309 s->dfifo = 0;
310 s->ctest2 = LSI_CTEST2_DACK;
311 s->ctest3 = 0;
312 s->ctest4 = 0;
313 s->ctest5 = 0;
314 s->ccntl0 = 0;
315 s->ccntl1 = 0;
316 s->dsp = 0;
317 s->dsps = 0;
318 s->dmode = 0;
319 s->dcntl = 0;
320 s->scntl0 = 0xc0;
321 s->scntl1 = 0;
322 s->scntl2 = 0;
323 s->scntl3 = 0;
324 s->sstat0 = 0;
325 s->sstat1 = 0;
326 s->scid = 7;
327 s->sxfer = 0;
328 s->socl = 0;
329 s->sdid = 0;
330 s->ssid = 0;
331 s->stest1 = 0;
332 s->stest2 = 0;
333 s->stest3 = 0;
334 s->sidl = 0;
335 s->stime0 = 0;
336 s->respid0 = 0x80;
337 s->respid1 = 0;
338 s->mmrs = 0;
339 s->mmws = 0;
340 s->sfs = 0;
341 s->drs = 0;
342 s->sbms = 0;
343 s->dbms = 0;
344 s->dnad64 = 0;
345 s->pmjad1 = 0;
346 s->pmjad2 = 0;
347 s->rbc = 0;
348 s->ua = 0;
349 s->ia = 0;
350 s->sbc = 0;
351 s->csbc = 0;
352 s->sbr = 0;
353 while (!QTAILQ_EMPTY(&s->queue)) {
354 p = QTAILQ_FIRST(&s->queue);
355 QTAILQ_REMOVE(&s->queue, p, next);
356 qemu_free(p);
358 if (s->current) {
359 qemu_free(s->current);
360 s->current = NULL;
364 static int lsi_dma_40bit(LSIState *s)
366 if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
367 return 1;
368 return 0;
371 static int lsi_dma_ti64bit(LSIState *s)
373 if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
374 return 1;
375 return 0;
378 static int lsi_dma_64bit(LSIState *s)
380 if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
381 return 1;
382 return 0;
385 static uint8_t lsi_reg_readb(LSIState *s, int offset);
386 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
387 static void lsi_execute_script(LSIState *s);
388 static void lsi_reselect(LSIState *s, lsi_request *p);
390 static inline uint32_t read_dword(LSIState *s, uint32_t addr)
392 uint32_t buf;
394 /* Optimize reading from SCRIPTS RAM. */
395 if ((addr & 0xffffe000) == s->script_ram_base) {
396 return s->script_ram[(addr & 0x1fff) >> 2];
398 cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
399 return cpu_to_le32(buf);
402 static void lsi_stop_script(LSIState *s)
404 s->istat1 &= ~LSI_ISTAT1_SRUN;
407 static void lsi_update_irq(LSIState *s)
409 int level;
410 static int last_level;
411 lsi_request *p;
413 /* It's unclear whether the DIP/SIP bits should be cleared when the
414 Interrupt Status Registers are cleared or when istat0 is read.
415 We currently do the formwer, which seems to work. */
416 level = 0;
417 if (s->dstat) {
418 if (s->dstat & s->dien)
419 level = 1;
420 s->istat0 |= LSI_ISTAT0_DIP;
421 } else {
422 s->istat0 &= ~LSI_ISTAT0_DIP;
425 if (s->sist0 || s->sist1) {
426 if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
427 level = 1;
428 s->istat0 |= LSI_ISTAT0_SIP;
429 } else {
430 s->istat0 &= ~LSI_ISTAT0_SIP;
432 if (s->istat0 & LSI_ISTAT0_INTF)
433 level = 1;
435 if (level != last_level) {
436 DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
437 level, s->dstat, s->sist1, s->sist0);
438 last_level = level;
440 qemu_set_irq(s->dev.irq[0], level);
442 if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
443 DPRINTF("Handled IRQs & disconnected, looking for pending "
444 "processes\n");
445 QTAILQ_FOREACH(p, &s->queue, next) {
446 if (p->pending) {
447 lsi_reselect(s, p);
448 break;
454 /* Stop SCRIPTS execution and raise a SCSI interrupt. */
455 static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
457 uint32_t mask0;
458 uint32_t mask1;
460 DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
461 stat1, stat0, s->sist1, s->sist0);
462 s->sist0 |= stat0;
463 s->sist1 |= stat1;
464 /* Stop processor on fatal or unmasked interrupt. As a special hack
465 we don't stop processing when raising STO. Instead continue
466 execution and stop at the next insn that accesses the SCSI bus. */
467 mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
468 mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
469 mask1 &= ~LSI_SIST1_STO;
470 if (s->sist0 & mask0 || s->sist1 & mask1) {
471 lsi_stop_script(s);
473 lsi_update_irq(s);
476 /* Stop SCRIPTS execution and raise a DMA interrupt. */
477 static void lsi_script_dma_interrupt(LSIState *s, int stat)
479 DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
480 s->dstat |= stat;
481 lsi_update_irq(s);
482 lsi_stop_script(s);
485 static inline void lsi_set_phase(LSIState *s, int phase)
487 s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
490 static void lsi_bad_phase(LSIState *s, int out, int new_phase)
492 /* Trigger a phase mismatch. */
493 if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
494 if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
495 s->dsp = out ? s->pmjad1 : s->pmjad2;
496 } else {
497 s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
499 DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
500 } else {
501 DPRINTF("Phase mismatch interrupt\n");
502 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
503 lsi_stop_script(s);
505 lsi_set_phase(s, new_phase);
509 /* Resume SCRIPTS execution after a DMA operation. */
510 static void lsi_resume_script(LSIState *s)
512 if (s->waiting != 2) {
513 s->waiting = 0;
514 lsi_execute_script(s);
515 } else {
516 s->waiting = 0;
520 static void lsi_disconnect(LSIState *s)
522 s->scntl1 &= ~LSI_SCNTL1_CON;
523 s->sstat1 &= ~PHASE_MASK;
526 static void lsi_bad_selection(LSIState *s, uint32_t id)
528 DPRINTF("Selected absent target %d\n", id);
529 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
530 lsi_disconnect(s);
533 /* Initiate a SCSI layer data transfer. */
534 static void lsi_do_dma(LSIState *s, int out)
536 uint32_t count, id;
537 target_phys_addr_t addr;
538 SCSIDevice *dev;
540 assert(s->current);
541 if (!s->current->dma_len) {
542 /* Wait until data is available. */
543 DPRINTF("DMA no data available\n");
544 return;
547 id = (s->current->tag >> 8) & 0xf;
548 dev = s->bus.devs[id];
549 if (!dev) {
550 lsi_bad_selection(s, id);
551 return;
554 count = s->dbc;
555 if (count > s->current->dma_len)
556 count = s->current->dma_len;
558 addr = s->dnad;
559 /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
560 if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
561 addr |= ((uint64_t)s->dnad64 << 32);
562 else if (s->dbms)
563 addr |= ((uint64_t)s->dbms << 32);
564 else if (s->sbms)
565 addr |= ((uint64_t)s->sbms << 32);
567 DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
568 s->csbc += count;
569 s->dnad += count;
570 s->dbc -= count;
571 if (s->current->dma_buf == NULL) {
572 s->current->dma_buf = scsi_req_get_buf(s->current->req);
574 /* ??? Set SFBR to first data byte. */
575 if (out) {
576 cpu_physical_memory_read(addr, s->current->dma_buf, count);
577 } else {
578 cpu_physical_memory_write(addr, s->current->dma_buf, count);
580 s->current->dma_len -= count;
581 if (s->current->dma_len == 0) {
582 s->current->dma_buf = NULL;
583 scsi_req_continue(s->current->req);
584 } else {
585 s->current->dma_buf += count;
586 lsi_resume_script(s);
591 /* Add a command to the queue. */
592 static void lsi_queue_command(LSIState *s)
594 lsi_request *p = s->current;
596 DPRINTF("Queueing tag=0x%x\n", p->tag);
597 assert(s->current != NULL);
598 assert(s->current->dma_len == 0);
599 QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
600 s->current = NULL;
602 p->pending = 0;
603 p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
606 /* Queue a byte for a MSG IN phase. */
607 static void lsi_add_msg_byte(LSIState *s, uint8_t data)
609 if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
610 BADF("MSG IN data too long\n");
611 } else {
612 DPRINTF("MSG IN 0x%02x\n", data);
613 s->msg[s->msg_len++] = data;
617 /* Perform reselection to continue a command. */
618 static void lsi_reselect(LSIState *s, lsi_request *p)
620 int id;
622 assert(s->current == NULL);
623 QTAILQ_REMOVE(&s->queue, p, next);
624 s->current = p;
626 id = (p->tag >> 8) & 0xf;
627 s->ssid = id | 0x80;
628 /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
629 if (!(s->dcntl & LSI_DCNTL_COM)) {
630 s->sfbr = 1 << (id & 0x7);
632 DPRINTF("Reselected target %d\n", id);
633 s->scntl1 |= LSI_SCNTL1_CON;
634 lsi_set_phase(s, PHASE_MI);
635 s->msg_action = p->out ? 2 : 3;
636 s->current->dma_len = p->pending;
637 lsi_add_msg_byte(s, 0x80);
638 if (s->current->tag & LSI_TAG_VALID) {
639 lsi_add_msg_byte(s, 0x20);
640 lsi_add_msg_byte(s, p->tag & 0xff);
643 if (lsi_irq_on_rsl(s)) {
644 lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
648 static lsi_request *lsi_find_by_tag(LSIState *s, uint32_t tag)
650 lsi_request *p;
652 QTAILQ_FOREACH(p, &s->queue, next) {
653 if (p->tag == tag) {
654 return p;
658 return NULL;
661 static void lsi_request_cancelled(SCSIRequest *req)
663 LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
664 lsi_request *p;
666 if (s->current && req == s->current->req) {
667 scsi_req_unref(req);
668 qemu_free(s->current);
669 s->current = NULL;
670 return;
673 p = lsi_find_by_tag(s, req->tag);
674 if (p) {
675 QTAILQ_REMOVE(&s->queue, p, next);
676 scsi_req_unref(req);
677 qemu_free(p);
681 /* Record that data is available for a queued command. Returns zero if
682 the device was reselected, nonzero if the IO is deferred. */
683 static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t len)
685 lsi_request *p;
687 p = lsi_find_by_tag(s, tag);
688 if (!p) {
689 BADF("IO with unknown tag %d\n", tag);
690 return 1;
693 if (p->pending) {
694 BADF("Multiple IO pending for tag %d\n", tag);
696 p->pending = len;
697 /* Reselect if waiting for it, or if reselection triggers an IRQ
698 and the bus is free.
699 Since no interrupt stacking is implemented in the emulation, it
700 is also required that there are no pending interrupts waiting
701 for service from the device driver. */
702 if (s->waiting == 1 ||
703 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
704 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
705 /* Reselect device. */
706 lsi_reselect(s, p);
707 return 0;
708 } else {
709 DPRINTF("Queueing IO tag=0x%x\n", tag);
710 p->pending = len;
711 return 1;
715 /* Callback to indicate that the SCSI layer has completed a command. */
716 static void lsi_command_complete(SCSIRequest *req, uint32_t status)
718 LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
719 int out;
721 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
722 DPRINTF("Command complete status=%d\n", (int)status);
723 s->status = status;
724 s->command_complete = 2;
725 if (s->waiting && s->dbc != 0) {
726 /* Raise phase mismatch for short transfers. */
727 lsi_bad_phase(s, out, PHASE_ST);
728 } else {
729 lsi_set_phase(s, PHASE_ST);
732 if (s->current && req == s->current->req) {
733 scsi_req_unref(s->current->req);
734 qemu_free(s->current);
735 s->current = NULL;
737 lsi_resume_script(s);
740 /* Callback to indicate that the SCSI layer has completed a transfer. */
741 static void lsi_transfer_data(SCSIRequest *req, uint32_t len)
743 LSIState *s = DO_UPCAST(LSIState, dev.qdev, req->bus->qbus.parent);
744 int out;
746 if (s->waiting == 1 || !s->current || req->tag != s->current->tag ||
747 (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
748 if (lsi_queue_tag(s, req->tag, len)) {
749 return;
753 out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
755 /* host adapter (re)connected */
756 DPRINTF("Data ready tag=0x%x len=%d\n", req->tag, len);
757 s->current->dma_len = len;
758 s->command_complete = 1;
759 if (s->waiting) {
760 if (s->waiting == 1 || s->dbc == 0) {
761 lsi_resume_script(s);
762 } else {
763 lsi_do_dma(s, out);
768 static void lsi_do_command(LSIState *s)
770 SCSIDevice *dev;
771 uint8_t buf[16];
772 uint32_t id;
773 int n;
775 DPRINTF("Send command len=%d\n", s->dbc);
776 if (s->dbc > 16)
777 s->dbc = 16;
778 cpu_physical_memory_read(s->dnad, buf, s->dbc);
779 s->sfbr = buf[0];
780 s->command_complete = 0;
782 id = (s->select_tag >> 8) & 0xf;
783 dev = s->bus.devs[id];
784 if (!dev) {
785 lsi_bad_selection(s, id);
786 return;
789 assert(s->current == NULL);
790 s->current = qemu_mallocz(sizeof(lsi_request));
791 s->current->tag = s->select_tag;
792 s->current->req = scsi_req_new(dev, s->current->tag, s->current_lun);
794 n = scsi_req_enqueue(s->current->req, buf);
795 if (n) {
796 if (n > 0) {
797 lsi_set_phase(s, PHASE_DI);
798 } else if (n < 0) {
799 lsi_set_phase(s, PHASE_DO);
801 scsi_req_continue(s->current->req);
803 if (!s->command_complete) {
804 if (n) {
805 /* Command did not complete immediately so disconnect. */
806 lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
807 lsi_add_msg_byte(s, 4); /* DISCONNECT */
808 /* wait data */
809 lsi_set_phase(s, PHASE_MI);
810 s->msg_action = 1;
811 lsi_queue_command(s);
812 } else {
813 /* wait command complete */
814 lsi_set_phase(s, PHASE_DI);
819 static void lsi_do_status(LSIState *s)
821 uint8_t status;
822 DPRINTF("Get status len=%d status=%d\n", s->dbc, s->status);
823 if (s->dbc != 1)
824 BADF("Bad Status move\n");
825 s->dbc = 1;
826 status = s->status;
827 s->sfbr = status;
828 cpu_physical_memory_write(s->dnad, &status, 1);
829 lsi_set_phase(s, PHASE_MI);
830 s->msg_action = 1;
831 lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
834 static void lsi_do_msgin(LSIState *s)
836 int len;
837 DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
838 s->sfbr = s->msg[0];
839 len = s->msg_len;
840 if (len > s->dbc)
841 len = s->dbc;
842 cpu_physical_memory_write(s->dnad, s->msg, len);
843 /* Linux drivers rely on the last byte being in the SIDL. */
844 s->sidl = s->msg[len - 1];
845 s->msg_len -= len;
846 if (s->msg_len) {
847 memmove(s->msg, s->msg + len, s->msg_len);
848 } else {
849 /* ??? Check if ATN (not yet implemented) is asserted and maybe
850 switch to PHASE_MO. */
851 switch (s->msg_action) {
852 case 0:
853 lsi_set_phase(s, PHASE_CMD);
854 break;
855 case 1:
856 lsi_disconnect(s);
857 break;
858 case 2:
859 lsi_set_phase(s, PHASE_DO);
860 break;
861 case 3:
862 lsi_set_phase(s, PHASE_DI);
863 break;
864 default:
865 abort();
870 /* Read the next byte during a MSGOUT phase. */
871 static uint8_t lsi_get_msgbyte(LSIState *s)
873 uint8_t data;
874 cpu_physical_memory_read(s->dnad, &data, 1);
875 s->dnad++;
876 s->dbc--;
877 return data;
880 /* Skip the next n bytes during a MSGOUT phase. */
881 static void lsi_skip_msgbytes(LSIState *s, unsigned int n)
883 s->dnad += n;
884 s->dbc -= n;
887 static void lsi_do_msgout(LSIState *s)
889 uint8_t msg;
890 int len;
891 uint32_t current_tag;
892 SCSIDevice *current_dev;
893 lsi_request *current_req, *p, *p_next;
894 int id;
896 if (s->current) {
897 current_tag = s->current->tag;
898 current_req = s->current;
899 } else {
900 current_tag = s->select_tag;
901 current_req = lsi_find_by_tag(s, current_tag);
903 id = (current_tag >> 8) & 0xf;
904 current_dev = s->bus.devs[id];
906 DPRINTF("MSG out len=%d\n", s->dbc);
907 while (s->dbc) {
908 msg = lsi_get_msgbyte(s);
909 s->sfbr = msg;
911 switch (msg) {
912 case 0x04:
913 DPRINTF("MSG: Disconnect\n");
914 lsi_disconnect(s);
915 break;
916 case 0x08:
917 DPRINTF("MSG: No Operation\n");
918 lsi_set_phase(s, PHASE_CMD);
919 break;
920 case 0x01:
921 len = lsi_get_msgbyte(s);
922 msg = lsi_get_msgbyte(s);
923 (void)len; /* avoid a warning about unused variable*/
924 DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
925 switch (msg) {
926 case 1:
927 DPRINTF("SDTR (ignored)\n");
928 lsi_skip_msgbytes(s, 2);
929 break;
930 case 3:
931 DPRINTF("WDTR (ignored)\n");
932 lsi_skip_msgbytes(s, 1);
933 break;
934 default:
935 goto bad;
937 break;
938 case 0x20: /* SIMPLE queue */
939 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
940 DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
941 break;
942 case 0x21: /* HEAD of queue */
943 BADF("HEAD queue not implemented\n");
944 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
945 break;
946 case 0x22: /* ORDERED queue */
947 BADF("ORDERED queue not implemented\n");
948 s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
949 break;
950 case 0x0d:
951 /* The ABORT TAG message clears the current I/O process only. */
952 DPRINTF("MSG: ABORT TAG tag=0x%x\n", current_tag);
953 if (current_req) {
954 scsi_req_cancel(current_req->req);
956 lsi_disconnect(s);
957 break;
958 case 0x06:
959 case 0x0e:
960 case 0x0c:
961 /* The ABORT message clears all I/O processes for the selecting
962 initiator on the specified logical unit of the target. */
963 if (msg == 0x06) {
964 DPRINTF("MSG: ABORT tag=0x%x\n", current_tag);
966 /* The CLEAR QUEUE message clears all I/O processes for all
967 initiators on the specified logical unit of the target. */
968 if (msg == 0x0e) {
969 DPRINTF("MSG: CLEAR QUEUE tag=0x%x\n", current_tag);
971 /* The BUS DEVICE RESET message clears all I/O processes for all
972 initiators on all logical units of the target. */
973 if (msg == 0x0c) {
974 DPRINTF("MSG: BUS DEVICE RESET tag=0x%x\n", current_tag);
977 /* clear the current I/O process */
978 if (s->current) {
979 scsi_req_cancel(s->current->req);
982 /* As the current implemented devices scsi_disk and scsi_generic
983 only support one LUN, we don't need to keep track of LUNs.
984 Clearing I/O processes for other initiators could be possible
985 for scsi_generic by sending a SG_SCSI_RESET to the /dev/sgX
986 device, but this is currently not implemented (and seems not
987 to be really necessary). So let's simply clear all queued
988 commands for the current device: */
989 id = current_tag & 0x0000ff00;
990 QTAILQ_FOREACH_SAFE(p, &s->queue, next, p_next) {
991 if ((p->tag & 0x0000ff00) == id) {
992 scsi_req_cancel(p->req);
996 lsi_disconnect(s);
997 break;
998 default:
999 if ((msg & 0x80) == 0) {
1000 goto bad;
1002 s->current_lun = msg & 7;
1003 DPRINTF("Select LUN %d\n", s->current_lun);
1004 lsi_set_phase(s, PHASE_CMD);
1005 break;
1008 return;
1009 bad:
1010 BADF("Unimplemented message 0x%02x\n", msg);
1011 lsi_set_phase(s, PHASE_MI);
1012 lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
1013 s->msg_action = 0;
1016 /* Sign extend a 24-bit value. */
1017 static inline int32_t sxt24(int32_t n)
1019 return (n << 8) >> 8;
1022 #define LSI_BUF_SIZE 4096
1023 static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
1025 int n;
1026 uint8_t buf[LSI_BUF_SIZE];
1028 DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
1029 while (count) {
1030 n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
1031 cpu_physical_memory_read(src, buf, n);
1032 cpu_physical_memory_write(dest, buf, n);
1033 src += n;
1034 dest += n;
1035 count -= n;
1039 static void lsi_wait_reselect(LSIState *s)
1041 lsi_request *p;
1043 DPRINTF("Wait Reselect\n");
1045 QTAILQ_FOREACH(p, &s->queue, next) {
1046 if (p->pending) {
1047 lsi_reselect(s, p);
1048 break;
1051 if (s->current == NULL) {
1052 s->waiting = 1;
1056 static void lsi_execute_script(LSIState *s)
1058 uint32_t insn;
1059 uint32_t addr, addr_high;
1060 int opcode;
1061 int insn_processed = 0;
1063 s->istat1 |= LSI_ISTAT1_SRUN;
1064 again:
1065 insn_processed++;
1066 insn = read_dword(s, s->dsp);
1067 if (!insn) {
1068 /* If we receive an empty opcode increment the DSP by 4 bytes
1069 instead of 8 and execute the next opcode at that location */
1070 s->dsp += 4;
1071 goto again;
1073 addr = read_dword(s, s->dsp + 4);
1074 addr_high = 0;
1075 DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
1076 s->dsps = addr;
1077 s->dcmd = insn >> 24;
1078 s->dsp += 8;
1079 switch (insn >> 30) {
1080 case 0: /* Block move. */
1081 if (s->sist1 & LSI_SIST1_STO) {
1082 DPRINTF("Delayed select timeout\n");
1083 lsi_stop_script(s);
1084 break;
1086 s->dbc = insn & 0xffffff;
1087 s->rbc = s->dbc;
1088 /* ??? Set ESA. */
1089 s->ia = s->dsp - 8;
1090 if (insn & (1 << 29)) {
1091 /* Indirect addressing. */
1092 addr = read_dword(s, addr);
1093 } else if (insn & (1 << 28)) {
1094 uint32_t buf[2];
1095 int32_t offset;
1096 /* Table indirect addressing. */
1098 /* 32-bit Table indirect */
1099 offset = sxt24(addr);
1100 cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
1101 /* byte count is stored in bits 0:23 only */
1102 s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
1103 s->rbc = s->dbc;
1104 addr = cpu_to_le32(buf[1]);
1106 /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1107 * table, bits [31:24] */
1108 if (lsi_dma_40bit(s))
1109 addr_high = cpu_to_le32(buf[0]) >> 24;
1110 else if (lsi_dma_ti64bit(s)) {
1111 int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1112 switch (selector) {
1113 case 0 ... 0x0f:
1114 /* offset index into scratch registers since
1115 * TI64 mode can use registers C to R */
1116 addr_high = s->scratch[2 + selector];
1117 break;
1118 case 0x10:
1119 addr_high = s->mmrs;
1120 break;
1121 case 0x11:
1122 addr_high = s->mmws;
1123 break;
1124 case 0x12:
1125 addr_high = s->sfs;
1126 break;
1127 case 0x13:
1128 addr_high = s->drs;
1129 break;
1130 case 0x14:
1131 addr_high = s->sbms;
1132 break;
1133 case 0x15:
1134 addr_high = s->dbms;
1135 break;
1136 default:
1137 BADF("Illegal selector specified (0x%x > 0x15)"
1138 " for 64-bit DMA block move", selector);
1139 break;
1142 } else if (lsi_dma_64bit(s)) {
1143 /* fetch a 3rd dword if 64-bit direct move is enabled and
1144 only if we're not doing table indirect or indirect addressing */
1145 s->dbms = read_dword(s, s->dsp);
1146 s->dsp += 4;
1147 s->ia = s->dsp - 12;
1149 if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1150 DPRINTF("Wrong phase got %d expected %d\n",
1151 s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1152 lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1153 break;
1155 s->dnad = addr;
1156 s->dnad64 = addr_high;
1157 switch (s->sstat1 & 0x7) {
1158 case PHASE_DO:
1159 s->waiting = 2;
1160 lsi_do_dma(s, 1);
1161 if (s->waiting)
1162 s->waiting = 3;
1163 break;
1164 case PHASE_DI:
1165 s->waiting = 2;
1166 lsi_do_dma(s, 0);
1167 if (s->waiting)
1168 s->waiting = 3;
1169 break;
1170 case PHASE_CMD:
1171 lsi_do_command(s);
1172 break;
1173 case PHASE_ST:
1174 lsi_do_status(s);
1175 break;
1176 case PHASE_MO:
1177 lsi_do_msgout(s);
1178 break;
1179 case PHASE_MI:
1180 lsi_do_msgin(s);
1181 break;
1182 default:
1183 BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1184 exit(1);
1186 s->dfifo = s->dbc & 0xff;
1187 s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1188 s->sbc = s->dbc;
1189 s->rbc -= s->dbc;
1190 s->ua = addr + s->dbc;
1191 break;
1193 case 1: /* IO or Read/Write instruction. */
1194 opcode = (insn >> 27) & 7;
1195 if (opcode < 5) {
1196 uint32_t id;
1198 if (insn & (1 << 25)) {
1199 id = read_dword(s, s->dsa + sxt24(insn));
1200 } else {
1201 id = insn;
1203 id = (id >> 16) & 0xf;
1204 if (insn & (1 << 26)) {
1205 addr = s->dsp + sxt24(addr);
1207 s->dnad = addr;
1208 switch (opcode) {
1209 case 0: /* Select */
1210 s->sdid = id;
1211 if (s->scntl1 & LSI_SCNTL1_CON) {
1212 DPRINTF("Already reselected, jumping to alternative address\n");
1213 s->dsp = s->dnad;
1214 break;
1216 s->sstat0 |= LSI_SSTAT0_WOA;
1217 s->scntl1 &= ~LSI_SCNTL1_IARB;
1218 if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1219 lsi_bad_selection(s, id);
1220 break;
1222 DPRINTF("Selected target %d%s\n",
1223 id, insn & (1 << 3) ? " ATN" : "");
1224 /* ??? Linux drivers compain when this is set. Maybe
1225 it only applies in low-level mode (unimplemented).
1226 lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1227 s->select_tag = id << 8;
1228 s->scntl1 |= LSI_SCNTL1_CON;
1229 if (insn & (1 << 3)) {
1230 s->socl |= LSI_SOCL_ATN;
1232 lsi_set_phase(s, PHASE_MO);
1233 break;
1234 case 1: /* Disconnect */
1235 DPRINTF("Wait Disconnect\n");
1236 s->scntl1 &= ~LSI_SCNTL1_CON;
1237 break;
1238 case 2: /* Wait Reselect */
1239 if (!lsi_irq_on_rsl(s)) {
1240 lsi_wait_reselect(s);
1242 break;
1243 case 3: /* Set */
1244 DPRINTF("Set%s%s%s%s\n",
1245 insn & (1 << 3) ? " ATN" : "",
1246 insn & (1 << 6) ? " ACK" : "",
1247 insn & (1 << 9) ? " TM" : "",
1248 insn & (1 << 10) ? " CC" : "");
1249 if (insn & (1 << 3)) {
1250 s->socl |= LSI_SOCL_ATN;
1251 lsi_set_phase(s, PHASE_MO);
1253 if (insn & (1 << 9)) {
1254 BADF("Target mode not implemented\n");
1255 exit(1);
1257 if (insn & (1 << 10))
1258 s->carry = 1;
1259 break;
1260 case 4: /* Clear */
1261 DPRINTF("Clear%s%s%s%s\n",
1262 insn & (1 << 3) ? " ATN" : "",
1263 insn & (1 << 6) ? " ACK" : "",
1264 insn & (1 << 9) ? " TM" : "",
1265 insn & (1 << 10) ? " CC" : "");
1266 if (insn & (1 << 3)) {
1267 s->socl &= ~LSI_SOCL_ATN;
1269 if (insn & (1 << 10))
1270 s->carry = 0;
1271 break;
1273 } else {
1274 uint8_t op0;
1275 uint8_t op1;
1276 uint8_t data8;
1277 int reg;
1278 int operator;
1279 #ifdef DEBUG_LSI
1280 static const char *opcode_names[3] =
1281 {"Write", "Read", "Read-Modify-Write"};
1282 static const char *operator_names[8] =
1283 {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1284 #endif
1286 reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1287 data8 = (insn >> 8) & 0xff;
1288 opcode = (insn >> 27) & 7;
1289 operator = (insn >> 24) & 7;
1290 DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1291 opcode_names[opcode - 5], reg,
1292 operator_names[operator], data8, s->sfbr,
1293 (insn & (1 << 23)) ? " SFBR" : "");
1294 op0 = op1 = 0;
1295 switch (opcode) {
1296 case 5: /* From SFBR */
1297 op0 = s->sfbr;
1298 op1 = data8;
1299 break;
1300 case 6: /* To SFBR */
1301 if (operator)
1302 op0 = lsi_reg_readb(s, reg);
1303 op1 = data8;
1304 break;
1305 case 7: /* Read-modify-write */
1306 if (operator)
1307 op0 = lsi_reg_readb(s, reg);
1308 if (insn & (1 << 23)) {
1309 op1 = s->sfbr;
1310 } else {
1311 op1 = data8;
1313 break;
1316 switch (operator) {
1317 case 0: /* move */
1318 op0 = op1;
1319 break;
1320 case 1: /* Shift left */
1321 op1 = op0 >> 7;
1322 op0 = (op0 << 1) | s->carry;
1323 s->carry = op1;
1324 break;
1325 case 2: /* OR */
1326 op0 |= op1;
1327 break;
1328 case 3: /* XOR */
1329 op0 ^= op1;
1330 break;
1331 case 4: /* AND */
1332 op0 &= op1;
1333 break;
1334 case 5: /* SHR */
1335 op1 = op0 & 1;
1336 op0 = (op0 >> 1) | (s->carry << 7);
1337 s->carry = op1;
1338 break;
1339 case 6: /* ADD */
1340 op0 += op1;
1341 s->carry = op0 < op1;
1342 break;
1343 case 7: /* ADC */
1344 op0 += op1 + s->carry;
1345 if (s->carry)
1346 s->carry = op0 <= op1;
1347 else
1348 s->carry = op0 < op1;
1349 break;
1352 switch (opcode) {
1353 case 5: /* From SFBR */
1354 case 7: /* Read-modify-write */
1355 lsi_reg_writeb(s, reg, op0);
1356 break;
1357 case 6: /* To SFBR */
1358 s->sfbr = op0;
1359 break;
1362 break;
1364 case 2: /* Transfer Control. */
1366 int cond;
1367 int jmp;
1369 if ((insn & 0x002e0000) == 0) {
1370 DPRINTF("NOP\n");
1371 break;
1373 if (s->sist1 & LSI_SIST1_STO) {
1374 DPRINTF("Delayed select timeout\n");
1375 lsi_stop_script(s);
1376 break;
1378 cond = jmp = (insn & (1 << 19)) != 0;
1379 if (cond == jmp && (insn & (1 << 21))) {
1380 DPRINTF("Compare carry %d\n", s->carry == jmp);
1381 cond = s->carry != 0;
1383 if (cond == jmp && (insn & (1 << 17))) {
1384 DPRINTF("Compare phase %d %c= %d\n",
1385 (s->sstat1 & PHASE_MASK),
1386 jmp ? '=' : '!',
1387 ((insn >> 24) & 7));
1388 cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1390 if (cond == jmp && (insn & (1 << 18))) {
1391 uint8_t mask;
1393 mask = (~insn >> 8) & 0xff;
1394 DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1395 s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1396 cond = (s->sfbr & mask) == (insn & mask);
1398 if (cond == jmp) {
1399 if (insn & (1 << 23)) {
1400 /* Relative address. */
1401 addr = s->dsp + sxt24(addr);
1403 switch ((insn >> 27) & 7) {
1404 case 0: /* Jump */
1405 DPRINTF("Jump to 0x%08x\n", addr);
1406 s->dsp = addr;
1407 break;
1408 case 1: /* Call */
1409 DPRINTF("Call 0x%08x\n", addr);
1410 s->temp = s->dsp;
1411 s->dsp = addr;
1412 break;
1413 case 2: /* Return */
1414 DPRINTF("Return to 0x%08x\n", s->temp);
1415 s->dsp = s->temp;
1416 break;
1417 case 3: /* Interrupt */
1418 DPRINTF("Interrupt 0x%08x\n", s->dsps);
1419 if ((insn & (1 << 20)) != 0) {
1420 s->istat0 |= LSI_ISTAT0_INTF;
1421 lsi_update_irq(s);
1422 } else {
1423 lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1425 break;
1426 default:
1427 DPRINTF("Illegal transfer control\n");
1428 lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1429 break;
1431 } else {
1432 DPRINTF("Control condition failed\n");
1435 break;
1437 case 3:
1438 if ((insn & (1 << 29)) == 0) {
1439 /* Memory move. */
1440 uint32_t dest;
1441 /* ??? The docs imply the destination address is loaded into
1442 the TEMP register. However the Linux drivers rely on
1443 the value being presrved. */
1444 dest = read_dword(s, s->dsp);
1445 s->dsp += 4;
1446 lsi_memcpy(s, dest, addr, insn & 0xffffff);
1447 } else {
1448 uint8_t data[7];
1449 int reg;
1450 int n;
1451 int i;
1453 if (insn & (1 << 28)) {
1454 addr = s->dsa + sxt24(addr);
1456 n = (insn & 7);
1457 reg = (insn >> 16) & 0xff;
1458 if (insn & (1 << 24)) {
1459 cpu_physical_memory_read(addr, data, n);
1460 DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1461 addr, *(int *)data);
1462 for (i = 0; i < n; i++) {
1463 lsi_reg_writeb(s, reg + i, data[i]);
1465 } else {
1466 DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1467 for (i = 0; i < n; i++) {
1468 data[i] = lsi_reg_readb(s, reg + i);
1470 cpu_physical_memory_write(addr, data, n);
1474 if (insn_processed > 10000 && !s->waiting) {
1475 /* Some windows drivers make the device spin waiting for a memory
1476 location to change. If we have been executed a lot of code then
1477 assume this is the case and force an unexpected device disconnect.
1478 This is apparently sufficient to beat the drivers into submission.
1480 if (!(s->sien0 & LSI_SIST0_UDC))
1481 fprintf(stderr, "inf. loop with UDC masked\n");
1482 lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1483 lsi_disconnect(s);
1484 } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1485 if (s->dcntl & LSI_DCNTL_SSM) {
1486 lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1487 } else {
1488 goto again;
1491 DPRINTF("SCRIPTS execution stopped\n");
1494 static uint8_t lsi_reg_readb(LSIState *s, int offset)
1496 uint8_t tmp;
1497 #define CASE_GET_REG24(name, addr) \
1498 case addr: return s->name & 0xff; \
1499 case addr + 1: return (s->name >> 8) & 0xff; \
1500 case addr + 2: return (s->name >> 16) & 0xff;
1502 #define CASE_GET_REG32(name, addr) \
1503 case addr: return s->name & 0xff; \
1504 case addr + 1: return (s->name >> 8) & 0xff; \
1505 case addr + 2: return (s->name >> 16) & 0xff; \
1506 case addr + 3: return (s->name >> 24) & 0xff;
1508 #ifdef DEBUG_LSI_REG
1509 DPRINTF("Read reg %x\n", offset);
1510 #endif
1511 switch (offset) {
1512 case 0x00: /* SCNTL0 */
1513 return s->scntl0;
1514 case 0x01: /* SCNTL1 */
1515 return s->scntl1;
1516 case 0x02: /* SCNTL2 */
1517 return s->scntl2;
1518 case 0x03: /* SCNTL3 */
1519 return s->scntl3;
1520 case 0x04: /* SCID */
1521 return s->scid;
1522 case 0x05: /* SXFER */
1523 return s->sxfer;
1524 case 0x06: /* SDID */
1525 return s->sdid;
1526 case 0x07: /* GPREG0 */
1527 return 0x7f;
1528 case 0x08: /* Revision ID */
1529 return 0x00;
1530 case 0xa: /* SSID */
1531 return s->ssid;
1532 case 0xb: /* SBCL */
1533 /* ??? This is not correct. However it's (hopefully) only
1534 used for diagnostics, so should be ok. */
1535 return 0;
1536 case 0xc: /* DSTAT */
1537 tmp = s->dstat | 0x80;
1538 if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1539 s->dstat = 0;
1540 lsi_update_irq(s);
1541 return tmp;
1542 case 0x0d: /* SSTAT0 */
1543 return s->sstat0;
1544 case 0x0e: /* SSTAT1 */
1545 return s->sstat1;
1546 case 0x0f: /* SSTAT2 */
1547 return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1548 CASE_GET_REG32(dsa, 0x10)
1549 case 0x14: /* ISTAT0 */
1550 return s->istat0;
1551 case 0x15: /* ISTAT1 */
1552 return s->istat1;
1553 case 0x16: /* MBOX0 */
1554 return s->mbox0;
1555 case 0x17: /* MBOX1 */
1556 return s->mbox1;
1557 case 0x18: /* CTEST0 */
1558 return 0xff;
1559 case 0x19: /* CTEST1 */
1560 return 0;
1561 case 0x1a: /* CTEST2 */
1562 tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1563 if (s->istat0 & LSI_ISTAT0_SIGP) {
1564 s->istat0 &= ~LSI_ISTAT0_SIGP;
1565 tmp |= LSI_CTEST2_SIGP;
1567 return tmp;
1568 case 0x1b: /* CTEST3 */
1569 return s->ctest3;
1570 CASE_GET_REG32(temp, 0x1c)
1571 case 0x20: /* DFIFO */
1572 return 0;
1573 case 0x21: /* CTEST4 */
1574 return s->ctest4;
1575 case 0x22: /* CTEST5 */
1576 return s->ctest5;
1577 case 0x23: /* CTEST6 */
1578 return 0;
1579 CASE_GET_REG24(dbc, 0x24)
1580 case 0x27: /* DCMD */
1581 return s->dcmd;
1582 CASE_GET_REG32(dnad, 0x28)
1583 CASE_GET_REG32(dsp, 0x2c)
1584 CASE_GET_REG32(dsps, 0x30)
1585 CASE_GET_REG32(scratch[0], 0x34)
1586 case 0x38: /* DMODE */
1587 return s->dmode;
1588 case 0x39: /* DIEN */
1589 return s->dien;
1590 case 0x3a: /* SBR */
1591 return s->sbr;
1592 case 0x3b: /* DCNTL */
1593 return s->dcntl;
1594 case 0x40: /* SIEN0 */
1595 return s->sien0;
1596 case 0x41: /* SIEN1 */
1597 return s->sien1;
1598 case 0x42: /* SIST0 */
1599 tmp = s->sist0;
1600 s->sist0 = 0;
1601 lsi_update_irq(s);
1602 return tmp;
1603 case 0x43: /* SIST1 */
1604 tmp = s->sist1;
1605 s->sist1 = 0;
1606 lsi_update_irq(s);
1607 return tmp;
1608 case 0x46: /* MACNTL */
1609 return 0x0f;
1610 case 0x47: /* GPCNTL0 */
1611 return 0x0f;
1612 case 0x48: /* STIME0 */
1613 return s->stime0;
1614 case 0x4a: /* RESPID0 */
1615 return s->respid0;
1616 case 0x4b: /* RESPID1 */
1617 return s->respid1;
1618 case 0x4d: /* STEST1 */
1619 return s->stest1;
1620 case 0x4e: /* STEST2 */
1621 return s->stest2;
1622 case 0x4f: /* STEST3 */
1623 return s->stest3;
1624 case 0x50: /* SIDL */
1625 /* This is needed by the linux drivers. We currently only update it
1626 during the MSG IN phase. */
1627 return s->sidl;
1628 case 0x52: /* STEST4 */
1629 return 0xe0;
1630 case 0x56: /* CCNTL0 */
1631 return s->ccntl0;
1632 case 0x57: /* CCNTL1 */
1633 return s->ccntl1;
1634 case 0x58: /* SBDL */
1635 /* Some drivers peek at the data bus during the MSG IN phase. */
1636 if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1637 return s->msg[0];
1638 return 0;
1639 case 0x59: /* SBDL high */
1640 return 0;
1641 CASE_GET_REG32(mmrs, 0xa0)
1642 CASE_GET_REG32(mmws, 0xa4)
1643 CASE_GET_REG32(sfs, 0xa8)
1644 CASE_GET_REG32(drs, 0xac)
1645 CASE_GET_REG32(sbms, 0xb0)
1646 CASE_GET_REG32(dbms, 0xb4)
1647 CASE_GET_REG32(dnad64, 0xb8)
1648 CASE_GET_REG32(pmjad1, 0xc0)
1649 CASE_GET_REG32(pmjad2, 0xc4)
1650 CASE_GET_REG32(rbc, 0xc8)
1651 CASE_GET_REG32(ua, 0xcc)
1652 CASE_GET_REG32(ia, 0xd4)
1653 CASE_GET_REG32(sbc, 0xd8)
1654 CASE_GET_REG32(csbc, 0xdc)
1656 if (offset >= 0x5c && offset < 0xa0) {
1657 int n;
1658 int shift;
1659 n = (offset - 0x58) >> 2;
1660 shift = (offset & 3) * 8;
1661 return (s->scratch[n] >> shift) & 0xff;
1663 BADF("readb 0x%x\n", offset);
1664 exit(1);
1665 #undef CASE_GET_REG24
1666 #undef CASE_GET_REG32
1669 static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1671 #define CASE_SET_REG24(name, addr) \
1672 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1673 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1674 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1676 #define CASE_SET_REG32(name, addr) \
1677 case addr : s->name &= 0xffffff00; s->name |= val; break; \
1678 case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8; break; \
1679 case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1680 case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1682 #ifdef DEBUG_LSI_REG
1683 DPRINTF("Write reg %x = %02x\n", offset, val);
1684 #endif
1685 switch (offset) {
1686 case 0x00: /* SCNTL0 */
1687 s->scntl0 = val;
1688 if (val & LSI_SCNTL0_START) {
1689 BADF("Start sequence not implemented\n");
1691 break;
1692 case 0x01: /* SCNTL1 */
1693 s->scntl1 = val & ~LSI_SCNTL1_SST;
1694 if (val & LSI_SCNTL1_IARB) {
1695 BADF("Immediate Arbritration not implemented\n");
1697 if (val & LSI_SCNTL1_RST) {
1698 if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1699 DeviceState *dev;
1700 int id;
1702 for (id = 0; id < s->bus.ndev; id++) {
1703 if (s->bus.devs[id]) {
1704 dev = &s->bus.devs[id]->qdev;
1705 dev->info->reset(dev);
1708 s->sstat0 |= LSI_SSTAT0_RST;
1709 lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1711 } else {
1712 s->sstat0 &= ~LSI_SSTAT0_RST;
1714 break;
1715 case 0x02: /* SCNTL2 */
1716 val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1717 s->scntl2 = val;
1718 break;
1719 case 0x03: /* SCNTL3 */
1720 s->scntl3 = val;
1721 break;
1722 case 0x04: /* SCID */
1723 s->scid = val;
1724 break;
1725 case 0x05: /* SXFER */
1726 s->sxfer = val;
1727 break;
1728 case 0x06: /* SDID */
1729 if ((val & 0xf) != (s->ssid & 0xf))
1730 BADF("Destination ID does not match SSID\n");
1731 s->sdid = val & 0xf;
1732 break;
1733 case 0x07: /* GPREG0 */
1734 break;
1735 case 0x08: /* SFBR */
1736 /* The CPU is not allowed to write to this register. However the
1737 SCRIPTS register move instructions are. */
1738 s->sfbr = val;
1739 break;
1740 case 0x0a: case 0x0b:
1741 /* Openserver writes to these readonly registers on startup */
1742 return;
1743 case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1744 /* Linux writes to these readonly registers on startup. */
1745 return;
1746 CASE_SET_REG32(dsa, 0x10)
1747 case 0x14: /* ISTAT0 */
1748 s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1749 if (val & LSI_ISTAT0_ABRT) {
1750 lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1752 if (val & LSI_ISTAT0_INTF) {
1753 s->istat0 &= ~LSI_ISTAT0_INTF;
1754 lsi_update_irq(s);
1756 if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1757 DPRINTF("Woken by SIGP\n");
1758 s->waiting = 0;
1759 s->dsp = s->dnad;
1760 lsi_execute_script(s);
1762 if (val & LSI_ISTAT0_SRST) {
1763 lsi_soft_reset(s);
1765 break;
1766 case 0x16: /* MBOX0 */
1767 s->mbox0 = val;
1768 break;
1769 case 0x17: /* MBOX1 */
1770 s->mbox1 = val;
1771 break;
1772 case 0x1a: /* CTEST2 */
1773 s->ctest2 = val & LSI_CTEST2_PCICIE;
1774 break;
1775 case 0x1b: /* CTEST3 */
1776 s->ctest3 = val & 0x0f;
1777 break;
1778 CASE_SET_REG32(temp, 0x1c)
1779 case 0x21: /* CTEST4 */
1780 if (val & 7) {
1781 BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1783 s->ctest4 = val;
1784 break;
1785 case 0x22: /* CTEST5 */
1786 if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1787 BADF("CTEST5 DMA increment not implemented\n");
1789 s->ctest5 = val;
1790 break;
1791 CASE_SET_REG24(dbc, 0x24)
1792 CASE_SET_REG32(dnad, 0x28)
1793 case 0x2c: /* DSP[0:7] */
1794 s->dsp &= 0xffffff00;
1795 s->dsp |= val;
1796 break;
1797 case 0x2d: /* DSP[8:15] */
1798 s->dsp &= 0xffff00ff;
1799 s->dsp |= val << 8;
1800 break;
1801 case 0x2e: /* DSP[16:23] */
1802 s->dsp &= 0xff00ffff;
1803 s->dsp |= val << 16;
1804 break;
1805 case 0x2f: /* DSP[24:31] */
1806 s->dsp &= 0x00ffffff;
1807 s->dsp |= val << 24;
1808 if ((s->dmode & LSI_DMODE_MAN) == 0
1809 && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1810 lsi_execute_script(s);
1811 break;
1812 CASE_SET_REG32(dsps, 0x30)
1813 CASE_SET_REG32(scratch[0], 0x34)
1814 case 0x38: /* DMODE */
1815 if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1816 BADF("IO mappings not implemented\n");
1818 s->dmode = val;
1819 break;
1820 case 0x39: /* DIEN */
1821 s->dien = val;
1822 lsi_update_irq(s);
1823 break;
1824 case 0x3a: /* SBR */
1825 s->sbr = val;
1826 break;
1827 case 0x3b: /* DCNTL */
1828 s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1829 if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1830 lsi_execute_script(s);
1831 break;
1832 case 0x40: /* SIEN0 */
1833 s->sien0 = val;
1834 lsi_update_irq(s);
1835 break;
1836 case 0x41: /* SIEN1 */
1837 s->sien1 = val;
1838 lsi_update_irq(s);
1839 break;
1840 case 0x47: /* GPCNTL0 */
1841 break;
1842 case 0x48: /* STIME0 */
1843 s->stime0 = val;
1844 break;
1845 case 0x49: /* STIME1 */
1846 if (val & 0xf) {
1847 DPRINTF("General purpose timer not implemented\n");
1848 /* ??? Raising the interrupt immediately seems to be sufficient
1849 to keep the FreeBSD driver happy. */
1850 lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1852 break;
1853 case 0x4a: /* RESPID0 */
1854 s->respid0 = val;
1855 break;
1856 case 0x4b: /* RESPID1 */
1857 s->respid1 = val;
1858 break;
1859 case 0x4d: /* STEST1 */
1860 s->stest1 = val;
1861 break;
1862 case 0x4e: /* STEST2 */
1863 if (val & 1) {
1864 BADF("Low level mode not implemented\n");
1866 s->stest2 = val;
1867 break;
1868 case 0x4f: /* STEST3 */
1869 if (val & 0x41) {
1870 BADF("SCSI FIFO test mode not implemented\n");
1872 s->stest3 = val;
1873 break;
1874 case 0x56: /* CCNTL0 */
1875 s->ccntl0 = val;
1876 break;
1877 case 0x57: /* CCNTL1 */
1878 s->ccntl1 = val;
1879 break;
1880 CASE_SET_REG32(mmrs, 0xa0)
1881 CASE_SET_REG32(mmws, 0xa4)
1882 CASE_SET_REG32(sfs, 0xa8)
1883 CASE_SET_REG32(drs, 0xac)
1884 CASE_SET_REG32(sbms, 0xb0)
1885 CASE_SET_REG32(dbms, 0xb4)
1886 CASE_SET_REG32(dnad64, 0xb8)
1887 CASE_SET_REG32(pmjad1, 0xc0)
1888 CASE_SET_REG32(pmjad2, 0xc4)
1889 CASE_SET_REG32(rbc, 0xc8)
1890 CASE_SET_REG32(ua, 0xcc)
1891 CASE_SET_REG32(ia, 0xd4)
1892 CASE_SET_REG32(sbc, 0xd8)
1893 CASE_SET_REG32(csbc, 0xdc)
1894 default:
1895 if (offset >= 0x5c && offset < 0xa0) {
1896 int n;
1897 int shift;
1898 n = (offset - 0x58) >> 2;
1899 shift = (offset & 3) * 8;
1900 s->scratch[n] &= ~(0xff << shift);
1901 s->scratch[n] |= (val & 0xff) << shift;
1902 } else {
1903 BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1906 #undef CASE_SET_REG24
1907 #undef CASE_SET_REG32
1910 static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1912 LSIState *s = opaque;
1914 lsi_reg_writeb(s, addr & 0xff, val);
1917 static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1919 LSIState *s = opaque;
1921 addr &= 0xff;
1922 lsi_reg_writeb(s, addr, val & 0xff);
1923 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1926 static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1928 LSIState *s = opaque;
1930 addr &= 0xff;
1931 lsi_reg_writeb(s, addr, val & 0xff);
1932 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1933 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1934 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1937 static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1939 LSIState *s = opaque;
1941 return lsi_reg_readb(s, addr & 0xff);
1944 static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1946 LSIState *s = opaque;
1947 uint32_t val;
1949 addr &= 0xff;
1950 val = lsi_reg_readb(s, addr);
1951 val |= lsi_reg_readb(s, addr + 1) << 8;
1952 return val;
1955 static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1957 LSIState *s = opaque;
1958 uint32_t val;
1959 addr &= 0xff;
1960 val = lsi_reg_readb(s, addr);
1961 val |= lsi_reg_readb(s, addr + 1) << 8;
1962 val |= lsi_reg_readb(s, addr + 2) << 16;
1963 val |= lsi_reg_readb(s, addr + 3) << 24;
1964 return val;
1967 static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1968 lsi_mmio_readb,
1969 lsi_mmio_readw,
1970 lsi_mmio_readl,
1973 static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1974 lsi_mmio_writeb,
1975 lsi_mmio_writew,
1976 lsi_mmio_writel,
1979 static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1981 LSIState *s = opaque;
1982 uint32_t newval;
1983 int shift;
1985 addr &= 0x1fff;
1986 newval = s->script_ram[addr >> 2];
1987 shift = (addr & 3) * 8;
1988 newval &= ~(0xff << shift);
1989 newval |= val << shift;
1990 s->script_ram[addr >> 2] = newval;
1993 static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1995 LSIState *s = opaque;
1996 uint32_t newval;
1998 addr &= 0x1fff;
1999 newval = s->script_ram[addr >> 2];
2000 if (addr & 2) {
2001 newval = (newval & 0xffff) | (val << 16);
2002 } else {
2003 newval = (newval & 0xffff0000) | val;
2005 s->script_ram[addr >> 2] = newval;
2009 static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2011 LSIState *s = opaque;
2013 addr &= 0x1fff;
2014 s->script_ram[addr >> 2] = val;
2017 static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
2019 LSIState *s = opaque;
2020 uint32_t val;
2022 addr &= 0x1fff;
2023 val = s->script_ram[addr >> 2];
2024 val >>= (addr & 3) * 8;
2025 return val & 0xff;
2028 static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
2030 LSIState *s = opaque;
2031 uint32_t val;
2033 addr &= 0x1fff;
2034 val = s->script_ram[addr >> 2];
2035 if (addr & 2)
2036 val >>= 16;
2037 return val;
2040 static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
2042 LSIState *s = opaque;
2044 addr &= 0x1fff;
2045 return s->script_ram[addr >> 2];
2048 static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
2049 lsi_ram_readb,
2050 lsi_ram_readw,
2051 lsi_ram_readl,
2054 static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
2055 lsi_ram_writeb,
2056 lsi_ram_writew,
2057 lsi_ram_writel,
2060 static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
2062 LSIState *s = opaque;
2063 return lsi_reg_readb(s, addr & 0xff);
2066 static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
2068 LSIState *s = opaque;
2069 uint32_t val;
2070 addr &= 0xff;
2071 val = lsi_reg_readb(s, addr);
2072 val |= lsi_reg_readb(s, addr + 1) << 8;
2073 return val;
2076 static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
2078 LSIState *s = opaque;
2079 uint32_t val;
2080 addr &= 0xff;
2081 val = lsi_reg_readb(s, addr);
2082 val |= lsi_reg_readb(s, addr + 1) << 8;
2083 val |= lsi_reg_readb(s, addr + 2) << 16;
2084 val |= lsi_reg_readb(s, addr + 3) << 24;
2085 return val;
2088 static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
2090 LSIState *s = opaque;
2091 lsi_reg_writeb(s, addr & 0xff, val);
2094 static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
2096 LSIState *s = opaque;
2097 addr &= 0xff;
2098 lsi_reg_writeb(s, addr, val & 0xff);
2099 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2102 static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
2104 LSIState *s = opaque;
2105 addr &= 0xff;
2106 lsi_reg_writeb(s, addr, val & 0xff);
2107 lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2108 lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
2109 lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
2112 static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
2113 pcibus_t addr, pcibus_t size, int type)
2115 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2117 DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2119 register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2120 register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2121 register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2122 register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2123 register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2124 register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2127 static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2128 pcibus_t addr, pcibus_t size, int type)
2130 LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2132 DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2133 s->script_ram_base = addr;
2134 cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2137 static void lsi_scsi_reset(DeviceState *dev)
2139 LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2141 lsi_soft_reset(s);
2144 static void lsi_pre_save(void *opaque)
2146 LSIState *s = opaque;
2148 if (s->current) {
2149 assert(s->current->dma_buf == NULL);
2150 assert(s->current->dma_len == 0);
2152 assert(QTAILQ_EMPTY(&s->queue));
2155 static const VMStateDescription vmstate_lsi_scsi = {
2156 .name = "lsiscsi",
2157 .version_id = 0,
2158 .minimum_version_id = 0,
2159 .minimum_version_id_old = 0,
2160 .pre_save = lsi_pre_save,
2161 .fields = (VMStateField []) {
2162 VMSTATE_PCI_DEVICE(dev, LSIState),
2164 VMSTATE_INT32(carry, LSIState),
2165 VMSTATE_INT32(status, LSIState),
2166 VMSTATE_INT32(msg_action, LSIState),
2167 VMSTATE_INT32(msg_len, LSIState),
2168 VMSTATE_BUFFER(msg, LSIState),
2169 VMSTATE_INT32(waiting, LSIState),
2171 VMSTATE_UINT32(dsa, LSIState),
2172 VMSTATE_UINT32(temp, LSIState),
2173 VMSTATE_UINT32(dnad, LSIState),
2174 VMSTATE_UINT32(dbc, LSIState),
2175 VMSTATE_UINT8(istat0, LSIState),
2176 VMSTATE_UINT8(istat1, LSIState),
2177 VMSTATE_UINT8(dcmd, LSIState),
2178 VMSTATE_UINT8(dstat, LSIState),
2179 VMSTATE_UINT8(dien, LSIState),
2180 VMSTATE_UINT8(sist0, LSIState),
2181 VMSTATE_UINT8(sist1, LSIState),
2182 VMSTATE_UINT8(sien0, LSIState),
2183 VMSTATE_UINT8(sien1, LSIState),
2184 VMSTATE_UINT8(mbox0, LSIState),
2185 VMSTATE_UINT8(mbox1, LSIState),
2186 VMSTATE_UINT8(dfifo, LSIState),
2187 VMSTATE_UINT8(ctest2, LSIState),
2188 VMSTATE_UINT8(ctest3, LSIState),
2189 VMSTATE_UINT8(ctest4, LSIState),
2190 VMSTATE_UINT8(ctest5, LSIState),
2191 VMSTATE_UINT8(ccntl0, LSIState),
2192 VMSTATE_UINT8(ccntl1, LSIState),
2193 VMSTATE_UINT32(dsp, LSIState),
2194 VMSTATE_UINT32(dsps, LSIState),
2195 VMSTATE_UINT8(dmode, LSIState),
2196 VMSTATE_UINT8(dcntl, LSIState),
2197 VMSTATE_UINT8(scntl0, LSIState),
2198 VMSTATE_UINT8(scntl1, LSIState),
2199 VMSTATE_UINT8(scntl2, LSIState),
2200 VMSTATE_UINT8(scntl3, LSIState),
2201 VMSTATE_UINT8(sstat0, LSIState),
2202 VMSTATE_UINT8(sstat1, LSIState),
2203 VMSTATE_UINT8(scid, LSIState),
2204 VMSTATE_UINT8(sxfer, LSIState),
2205 VMSTATE_UINT8(socl, LSIState),
2206 VMSTATE_UINT8(sdid, LSIState),
2207 VMSTATE_UINT8(ssid, LSIState),
2208 VMSTATE_UINT8(sfbr, LSIState),
2209 VMSTATE_UINT8(stest1, LSIState),
2210 VMSTATE_UINT8(stest2, LSIState),
2211 VMSTATE_UINT8(stest3, LSIState),
2212 VMSTATE_UINT8(sidl, LSIState),
2213 VMSTATE_UINT8(stime0, LSIState),
2214 VMSTATE_UINT8(respid0, LSIState),
2215 VMSTATE_UINT8(respid1, LSIState),
2216 VMSTATE_UINT32(mmrs, LSIState),
2217 VMSTATE_UINT32(mmws, LSIState),
2218 VMSTATE_UINT32(sfs, LSIState),
2219 VMSTATE_UINT32(drs, LSIState),
2220 VMSTATE_UINT32(sbms, LSIState),
2221 VMSTATE_UINT32(dbms, LSIState),
2222 VMSTATE_UINT32(dnad64, LSIState),
2223 VMSTATE_UINT32(pmjad1, LSIState),
2224 VMSTATE_UINT32(pmjad2, LSIState),
2225 VMSTATE_UINT32(rbc, LSIState),
2226 VMSTATE_UINT32(ua, LSIState),
2227 VMSTATE_UINT32(ia, LSIState),
2228 VMSTATE_UINT32(sbc, LSIState),
2229 VMSTATE_UINT32(csbc, LSIState),
2230 VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2231 VMSTATE_UINT8(sbr, LSIState),
2233 VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2234 VMSTATE_END_OF_LIST()
2238 static int lsi_scsi_uninit(PCIDevice *d)
2240 LSIState *s = DO_UPCAST(LSIState, dev, d);
2242 cpu_unregister_io_memory(s->mmio_io_addr);
2243 cpu_unregister_io_memory(s->ram_io_addr);
2245 return 0;
2248 static const struct SCSIBusOps lsi_scsi_ops = {
2249 .transfer_data = lsi_transfer_data,
2250 .complete = lsi_command_complete,
2251 .cancel = lsi_request_cancelled
2254 static int lsi_scsi_init(PCIDevice *dev)
2256 LSIState *s = DO_UPCAST(LSIState, dev, dev);
2257 uint8_t *pci_conf;
2259 pci_conf = s->dev.config;
2261 /* PCI Vendor ID (word) */
2262 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2263 /* PCI device ID (word) */
2264 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2265 /* PCI base class code */
2266 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2267 /* PCI subsystem ID */
2268 pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2269 pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2270 /* PCI latency timer = 255 */
2271 pci_conf[PCI_LATENCY_TIMER] = 0xff;
2272 /* TODO: RST# value should be 0 */
2273 /* Interrupt pin 1 */
2274 pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2276 s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2277 lsi_mmio_writefn, s,
2278 DEVICE_NATIVE_ENDIAN);
2279 s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2280 lsi_ram_writefn, s,
2281 DEVICE_NATIVE_ENDIAN);
2283 pci_register_bar(&s->dev, 0, 256,
2284 PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2285 pci_register_bar_simple(&s->dev, 1, 0x400, 0, s->mmio_io_addr);
2286 pci_register_bar(&s->dev, 2, 0x2000,
2287 PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2288 QTAILQ_INIT(&s->queue);
2290 scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, &lsi_scsi_ops);
2291 if (!dev->qdev.hotplugged) {
2292 return scsi_bus_legacy_handle_cmdline(&s->bus);
2294 return 0;
2297 static PCIDeviceInfo lsi_info = {
2298 .qdev.name = "lsi53c895a",
2299 .qdev.alias = "lsi",
2300 .qdev.size = sizeof(LSIState),
2301 .qdev.reset = lsi_scsi_reset,
2302 .qdev.vmsd = &vmstate_lsi_scsi,
2303 .init = lsi_scsi_init,
2304 .exit = lsi_scsi_uninit,
2307 static void lsi53c895a_register_devices(void)
2309 pci_qdev_register(&lsi_info);
2312 device_init(lsi53c895a_register_devices);