1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/cpus.h"
19 #include "sysemu/kvm.h"
20 #include "fpu/softfloat.h"
21 #include "qemu/range.h"
23 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
25 #ifndef CONFIG_USER_ONLY
26 /* Cacheability and shareability attributes for a memory access */
27 typedef struct ARMCacheAttrs
{
28 unsigned int attrs
:8; /* as in the MAIR register encoding */
29 unsigned int shareability
:2; /* as in the SH field of the VMSAv8-64 PTEs */
32 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
33 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
34 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
35 target_ulong
*page_size
,
36 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
);
38 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
39 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
40 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
41 target_ulong
*page_size_ptr
,
42 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
);
44 /* Security attributes for an address, as returned by v8m_security_lookup. */
45 typedef struct V8M_SAttributes
{
46 bool subpage
; /* true if these attrs don't cover the whole TARGET_PAGE */
55 static void v8m_security_lookup(CPUARMState
*env
, uint32_t address
,
56 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
57 V8M_SAttributes
*sattrs
);
60 static void switch_mode(CPUARMState
*env
, int mode
);
62 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
66 /* VFP data registers are always little-endian. */
67 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
69 stq_le_p(buf
, *aa32_vfp_dreg(env
, reg
));
72 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
73 /* Aliases for Q regs. */
76 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
78 stq_le_p(buf
+ 8, q
[1]);
82 switch (reg
- nregs
) {
83 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
84 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
85 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
90 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
94 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
96 *aa32_vfp_dreg(env
, reg
) = ldq_le_p(buf
);
99 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
102 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
103 q
[0] = ldq_le_p(buf
);
104 q
[1] = ldq_le_p(buf
+ 8);
108 switch (reg
- nregs
) {
109 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
110 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
111 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
116 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
120 /* 128 bit FP register */
122 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
124 stq_le_p(buf
+ 8, q
[1]);
129 stl_p(buf
, vfp_get_fpsr(env
));
133 stl_p(buf
, vfp_get_fpcr(env
));
140 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
144 /* 128 bit FP register */
146 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
147 q
[0] = ldq_le_p(buf
);
148 q
[1] = ldq_le_p(buf
+ 8);
153 vfp_set_fpsr(env
, ldl_p(buf
));
157 vfp_set_fpcr(env
, ldl_p(buf
));
164 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
166 assert(ri
->fieldoffset
);
167 if (cpreg_field_is_64bit(ri
)) {
168 return CPREG_FIELD64(env
, ri
);
170 return CPREG_FIELD32(env
, ri
);
174 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
177 assert(ri
->fieldoffset
);
178 if (cpreg_field_is_64bit(ri
)) {
179 CPREG_FIELD64(env
, ri
) = value
;
181 CPREG_FIELD32(env
, ri
) = value
;
185 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
187 return (char *)env
+ ri
->fieldoffset
;
190 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
192 /* Raw read of a coprocessor register (as needed for migration, etc). */
193 if (ri
->type
& ARM_CP_CONST
) {
194 return ri
->resetvalue
;
195 } else if (ri
->raw_readfn
) {
196 return ri
->raw_readfn(env
, ri
);
197 } else if (ri
->readfn
) {
198 return ri
->readfn(env
, ri
);
200 return raw_read(env
, ri
);
204 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
207 /* Raw write of a coprocessor register (as needed for migration, etc).
208 * Note that constant registers are treated as write-ignored; the
209 * caller should check for success by whether a readback gives the
212 if (ri
->type
& ARM_CP_CONST
) {
214 } else if (ri
->raw_writefn
) {
215 ri
->raw_writefn(env
, ri
, v
);
216 } else if (ri
->writefn
) {
217 ri
->writefn(env
, ri
, v
);
219 raw_write(env
, ri
, v
);
223 static int arm_gdb_get_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
225 ARMCPU
*cpu
= arm_env_get_cpu(env
);
226 const ARMCPRegInfo
*ri
;
229 key
= cpu
->dyn_xml
.cpregs_keys
[reg
];
230 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, key
);
232 if (cpreg_field_is_64bit(ri
)) {
233 return gdb_get_reg64(buf
, (uint64_t)read_raw_cp_reg(env
, ri
));
235 return gdb_get_reg32(buf
, (uint32_t)read_raw_cp_reg(env
, ri
));
241 static int arm_gdb_set_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
246 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
248 /* Return true if the regdef would cause an assertion if you called
249 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
250 * program bug for it not to have the NO_RAW flag).
251 * NB that returning false here doesn't necessarily mean that calling
252 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
253 * read/write access functions which are safe for raw use" from "has
254 * read/write access functions which have side effects but has forgotten
255 * to provide raw access functions".
256 * The tests here line up with the conditions in read/write_raw_cp_reg()
257 * and assertions in raw_read()/raw_write().
259 if ((ri
->type
& ARM_CP_CONST
) ||
261 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
267 bool write_cpustate_to_list(ARMCPU
*cpu
)
269 /* Write the coprocessor state from cpu->env to the (index,value) list. */
273 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
274 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
275 const ARMCPRegInfo
*ri
;
277 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
282 if (ri
->type
& ARM_CP_NO_RAW
) {
285 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
290 bool write_list_to_cpustate(ARMCPU
*cpu
)
295 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
296 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
297 uint64_t v
= cpu
->cpreg_values
[i
];
298 const ARMCPRegInfo
*ri
;
300 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
305 if (ri
->type
& ARM_CP_NO_RAW
) {
308 /* Write value and confirm it reads back as written
309 * (to catch read-only registers and partially read-only
310 * registers where the incoming migration value doesn't match)
312 write_raw_cp_reg(&cpu
->env
, ri
, v
);
313 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
320 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
322 ARMCPU
*cpu
= opaque
;
324 const ARMCPRegInfo
*ri
;
326 regidx
= *(uint32_t *)key
;
327 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
329 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
330 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
331 /* The value array need not be initialized at this point */
332 cpu
->cpreg_array_len
++;
336 static void count_cpreg(gpointer key
, gpointer opaque
)
338 ARMCPU
*cpu
= opaque
;
340 const ARMCPRegInfo
*ri
;
342 regidx
= *(uint32_t *)key
;
343 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
345 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
346 cpu
->cpreg_array_len
++;
350 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
352 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
353 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
364 void init_cpreg_list(ARMCPU
*cpu
)
366 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
367 * Note that we require cpreg_tuples[] to be sorted by key ID.
372 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
373 keys
= g_list_sort(keys
, cpreg_key_compare
);
375 cpu
->cpreg_array_len
= 0;
377 g_list_foreach(keys
, count_cpreg
, cpu
);
379 arraylen
= cpu
->cpreg_array_len
;
380 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
381 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
382 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
383 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
384 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
385 cpu
->cpreg_array_len
= 0;
387 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
389 assert(cpu
->cpreg_array_len
== arraylen
);
395 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
396 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
398 * access_el3_aa32ns: Used to check AArch32 register views.
399 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
401 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
402 const ARMCPRegInfo
*ri
,
405 bool secure
= arm_is_secure_below_el3(env
);
407 assert(!arm_el_is_aa64(env
, 3));
409 return CP_ACCESS_TRAP_UNCATEGORIZED
;
414 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
415 const ARMCPRegInfo
*ri
,
418 if (!arm_el_is_aa64(env
, 3)) {
419 return access_el3_aa32ns(env
, ri
, isread
);
424 /* Some secure-only AArch32 registers trap to EL3 if used from
425 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
426 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
427 * We assume that the .access field is set to PL1_RW.
429 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
430 const ARMCPRegInfo
*ri
,
433 if (arm_current_el(env
) == 3) {
436 if (arm_is_secure_below_el3(env
)) {
437 return CP_ACCESS_TRAP_EL3
;
439 /* This will be EL1 NS and EL2 NS, which just UNDEF */
440 return CP_ACCESS_TRAP_UNCATEGORIZED
;
443 /* Check for traps to "powerdown debug" registers, which are controlled
446 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
449 int el
= arm_current_el(env
);
450 bool mdcr_el2_tdosa
= (env
->cp15
.mdcr_el2
& MDCR_TDOSA
) ||
451 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
452 (arm_hcr_el2_eff(env
) & HCR_TGE
);
454 if (el
< 2 && mdcr_el2_tdosa
&& !arm_is_secure_below_el3(env
)) {
455 return CP_ACCESS_TRAP_EL2
;
457 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
458 return CP_ACCESS_TRAP_EL3
;
463 /* Check for traps to "debug ROM" registers, which are controlled
464 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
466 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
469 int el
= arm_current_el(env
);
470 bool mdcr_el2_tdra
= (env
->cp15
.mdcr_el2
& MDCR_TDRA
) ||
471 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
472 (arm_hcr_el2_eff(env
) & HCR_TGE
);
474 if (el
< 2 && mdcr_el2_tdra
&& !arm_is_secure_below_el3(env
)) {
475 return CP_ACCESS_TRAP_EL2
;
477 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
478 return CP_ACCESS_TRAP_EL3
;
483 /* Check for traps to general debug registers, which are controlled
484 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
486 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
489 int el
= arm_current_el(env
);
490 bool mdcr_el2_tda
= (env
->cp15
.mdcr_el2
& MDCR_TDA
) ||
491 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
492 (arm_hcr_el2_eff(env
) & HCR_TGE
);
494 if (el
< 2 && mdcr_el2_tda
&& !arm_is_secure_below_el3(env
)) {
495 return CP_ACCESS_TRAP_EL2
;
497 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
498 return CP_ACCESS_TRAP_EL3
;
503 /* Check for traps to performance monitor registers, which are controlled
504 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
506 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
509 int el
= arm_current_el(env
);
511 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
512 && !arm_is_secure_below_el3(env
)) {
513 return CP_ACCESS_TRAP_EL2
;
515 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
516 return CP_ACCESS_TRAP_EL3
;
521 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
523 ARMCPU
*cpu
= arm_env_get_cpu(env
);
525 raw_write(env
, ri
, value
);
526 tlb_flush(CPU(cpu
)); /* Flush TLB as domain not tracked in TLB */
529 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
531 ARMCPU
*cpu
= arm_env_get_cpu(env
);
533 if (raw_read(env
, ri
) != value
) {
534 /* Unlike real hardware the qemu TLB uses virtual addresses,
535 * not modified virtual addresses, so this causes a TLB flush.
538 raw_write(env
, ri
, value
);
542 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
545 ARMCPU
*cpu
= arm_env_get_cpu(env
);
547 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_PMSA
)
548 && !extended_addresses_enabled(env
)) {
549 /* For VMSA (when not using the LPAE long descriptor page table
550 * format) this register includes the ASID, so do a TLB flush.
551 * For PMSA it is purely a process ID and no action is needed.
555 raw_write(env
, ri
, value
);
558 /* IS variants of TLB operations must affect all cores */
559 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
562 CPUState
*cs
= ENV_GET_CPU(env
);
564 tlb_flush_all_cpus_synced(cs
);
567 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
570 CPUState
*cs
= ENV_GET_CPU(env
);
572 tlb_flush_all_cpus_synced(cs
);
575 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
578 CPUState
*cs
= ENV_GET_CPU(env
);
580 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
583 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
586 CPUState
*cs
= ENV_GET_CPU(env
);
588 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
592 * Non-IS variants of TLB operations are upgraded to
593 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
594 * force broadcast of these operations.
596 static bool tlb_force_broadcast(CPUARMState
*env
)
598 return (env
->cp15
.hcr_el2
& HCR_FB
) &&
599 arm_current_el(env
) == 1 && arm_is_secure_below_el3(env
);
602 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
605 /* Invalidate all (TLBIALL) */
606 ARMCPU
*cpu
= arm_env_get_cpu(env
);
608 if (tlb_force_broadcast(env
)) {
609 tlbiall_is_write(env
, NULL
, value
);
616 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
619 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
620 ARMCPU
*cpu
= arm_env_get_cpu(env
);
622 if (tlb_force_broadcast(env
)) {
623 tlbimva_is_write(env
, NULL
, value
);
627 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
630 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
633 /* Invalidate by ASID (TLBIASID) */
634 ARMCPU
*cpu
= arm_env_get_cpu(env
);
636 if (tlb_force_broadcast(env
)) {
637 tlbiasid_is_write(env
, NULL
, value
);
644 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
647 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
648 ARMCPU
*cpu
= arm_env_get_cpu(env
);
650 if (tlb_force_broadcast(env
)) {
651 tlbimvaa_is_write(env
, NULL
, value
);
655 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
658 static void tlbiall_nsnh_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
661 CPUState
*cs
= ENV_GET_CPU(env
);
663 tlb_flush_by_mmuidx(cs
,
664 ARMMMUIdxBit_S12NSE1
|
665 ARMMMUIdxBit_S12NSE0
|
669 static void tlbiall_nsnh_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
672 CPUState
*cs
= ENV_GET_CPU(env
);
674 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
675 ARMMMUIdxBit_S12NSE1
|
676 ARMMMUIdxBit_S12NSE0
|
680 static void tlbiipas2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
683 /* Invalidate by IPA. This has to invalidate any structures that
684 * contain only stage 2 translation information, but does not need
685 * to apply to structures that contain combined stage 1 and stage 2
686 * translation information.
687 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
689 CPUState
*cs
= ENV_GET_CPU(env
);
692 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
696 pageaddr
= sextract64(value
<< 12, 0, 40);
698 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
701 static void tlbiipas2_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
704 CPUState
*cs
= ENV_GET_CPU(env
);
707 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
711 pageaddr
= sextract64(value
<< 12, 0, 40);
713 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
717 static void tlbiall_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
720 CPUState
*cs
= ENV_GET_CPU(env
);
722 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
725 static void tlbiall_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
728 CPUState
*cs
= ENV_GET_CPU(env
);
730 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
733 static void tlbimva_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
736 CPUState
*cs
= ENV_GET_CPU(env
);
737 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
739 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
742 static void tlbimva_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
745 CPUState
*cs
= ENV_GET_CPU(env
);
746 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
748 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
752 static const ARMCPRegInfo cp_reginfo
[] = {
753 /* Define the secure and non-secure FCSE identifier CP registers
754 * separately because there is no secure bank in V8 (no _EL3). This allows
755 * the secure register to be properly reset and migrated. There is also no
756 * v8 EL1 version of the register so the non-secure instance stands alone.
759 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
760 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
761 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
762 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
763 { .name
= "FCSEIDR_S",
764 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
765 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
766 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
767 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
768 /* Define the secure and non-secure context identifier CP registers
769 * separately because there is no secure bank in V8 (no _EL3). This allows
770 * the secure register to be properly reset and migrated. In the
771 * non-secure case, the 32-bit register will have reset and migration
772 * disabled during registration as it is handled by the 64-bit instance.
774 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
775 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
776 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
777 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
778 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
779 { .name
= "CONTEXTIDR_S", .state
= ARM_CP_STATE_AA32
,
780 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
781 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
782 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
783 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
787 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
788 /* NB: Some of these registers exist in v8 but with more precise
789 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
791 /* MMU Domain access control / MPU write buffer control */
793 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
794 .access
= PL1_RW
, .resetvalue
= 0,
795 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
796 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
797 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
798 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
799 * For v6 and v5, these mappings are overly broad.
801 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
802 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
803 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
804 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
805 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
806 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
807 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
808 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
809 /* Cache maintenance ops; some of this space may be overridden later. */
810 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
811 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
812 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
816 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
817 /* Not all pre-v6 cores implemented this WFI, so this is slightly
820 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
821 .access
= PL1_W
, .type
= ARM_CP_WFI
},
825 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
826 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
827 * is UNPREDICTABLE; we choose to NOP as most implementations do).
829 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
830 .access
= PL1_W
, .type
= ARM_CP_WFI
},
831 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
832 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
833 * OMAPCP will override this space.
835 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
836 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
838 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
839 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
841 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
842 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
843 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
845 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
846 * implementing it as RAZ means the "debug architecture version" bits
847 * will read as a reserved value, which should cause Linux to not try
848 * to use the debug hardware.
850 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
851 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
852 /* MMU TLB control. Note that the wildcarding means we cover not just
853 * the unified TLB ops but also the dside/iside/inner-shareable variants.
855 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
856 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
857 .type
= ARM_CP_NO_RAW
},
858 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
859 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
860 .type
= ARM_CP_NO_RAW
},
861 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
862 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
863 .type
= ARM_CP_NO_RAW
},
864 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
865 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
866 .type
= ARM_CP_NO_RAW
},
867 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
868 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
869 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
870 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
874 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
879 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
880 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
881 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
882 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
883 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
885 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
886 /* VFP coprocessor: cp10 & cp11 [23:20] */
887 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
889 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
890 /* ASEDIS [31] bit is RAO/WI */
894 /* VFPv3 and upwards with NEON implement 32 double precision
895 * registers (D0-D31).
897 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
898 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
899 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
905 env
->cp15
.cpacr_el1
= value
;
908 static void cpacr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
910 /* Call cpacr_write() so that we reset with the correct RAO bits set
911 * for our CPU features.
913 cpacr_write(env
, ri
, 0);
916 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
919 if (arm_feature(env
, ARM_FEATURE_V8
)) {
920 /* Check if CPACR accesses are to be trapped to EL2 */
921 if (arm_current_el(env
) == 1 &&
922 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
923 return CP_ACCESS_TRAP_EL2
;
924 /* Check if CPACR accesses are to be trapped to EL3 */
925 } else if (arm_current_el(env
) < 3 &&
926 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
927 return CP_ACCESS_TRAP_EL3
;
934 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
937 /* Check if CPTR accesses are set to trap to EL3 */
938 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
939 return CP_ACCESS_TRAP_EL3
;
945 static const ARMCPRegInfo v6_cp_reginfo
[] = {
946 /* prefetch by MVA in v6, NOP in v7 */
947 { .name
= "MVA_prefetch",
948 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
949 .access
= PL1_W
, .type
= ARM_CP_NOP
},
950 /* We need to break the TB after ISB to execute self-modifying code
951 * correctly and also to take any pending interrupts immediately.
952 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
954 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
955 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
956 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
957 .access
= PL0_W
, .type
= ARM_CP_NOP
},
958 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
959 .access
= PL0_W
, .type
= ARM_CP_NOP
},
960 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
962 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
963 offsetof(CPUARMState
, cp15
.ifar_ns
) },
965 /* Watchpoint Fault Address Register : should actually only be present
966 * for 1136, 1176, 11MPCore.
968 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
969 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
970 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
971 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
972 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
973 .resetfn
= cpacr_reset
, .writefn
= cpacr_write
},
977 /* Definitions for the PMU registers */
978 #define PMCRN_MASK 0xf800
979 #define PMCRN_SHIFT 11
987 #define PMXEVTYPER_P 0x80000000
988 #define PMXEVTYPER_U 0x40000000
989 #define PMXEVTYPER_NSK 0x20000000
990 #define PMXEVTYPER_NSU 0x10000000
991 #define PMXEVTYPER_NSH 0x08000000
992 #define PMXEVTYPER_M 0x04000000
993 #define PMXEVTYPER_MT 0x02000000
994 #define PMXEVTYPER_EVTCOUNT 0x0000ffff
995 #define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
996 PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
997 PMXEVTYPER_M | PMXEVTYPER_MT | \
1000 #define PMCCFILTR 0xf8000000
1001 #define PMCCFILTR_M PMXEVTYPER_M
1002 #define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
1004 static inline uint32_t pmu_num_counters(CPUARMState
*env
)
1006 return (env
->cp15
.c9_pmcr
& PMCRN_MASK
) >> PMCRN_SHIFT
;
1009 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
1010 static inline uint64_t pmu_counter_mask(CPUARMState
*env
)
1012 return (1 << 31) | ((1 << pmu_num_counters(env
)) - 1);
1015 typedef struct pm_event
{
1016 uint16_t number
; /* PMEVTYPER.evtCount is 16 bits wide */
1017 /* If the event is supported on this CPU (used to generate PMCEID[01]) */
1018 bool (*supported
)(CPUARMState
*);
1020 * Retrieve the current count of the underlying event. The programmed
1021 * counters hold a difference from the return value from this function
1023 uint64_t (*get_count
)(CPUARMState
*);
1025 * Return how many nanoseconds it will take (at a minimum) for count events
1026 * to occur. A negative value indicates the counter will never overflow, or
1027 * that the counter has otherwise arranged for the overflow bit to be set
1028 * and the PMU interrupt to be raised on overflow.
1030 int64_t (*ns_per_count
)(uint64_t);
1033 static bool event_always_supported(CPUARMState
*env
)
1038 static uint64_t swinc_get_count(CPUARMState
*env
)
1041 * SW_INCR events are written directly to the pmevcntr's by writes to
1042 * PMSWINC, so there is no underlying count maintained by the PMU itself
1047 static int64_t swinc_ns_per(uint64_t ignored
)
1053 * Return the underlying cycle count for the PMU cycle counters. If we're in
1054 * usermode, simply return 0.
1056 static uint64_t cycles_get_count(CPUARMState
*env
)
1058 #ifndef CONFIG_USER_ONLY
1059 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
1060 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
1062 return cpu_get_host_ticks();
1066 #ifndef CONFIG_USER_ONLY
1067 static int64_t cycles_ns_per(uint64_t cycles
)
1069 return (ARM_CPU_FREQ
/ NANOSECONDS_PER_SECOND
) * cycles
;
1072 static bool instructions_supported(CPUARMState
*env
)
1074 return use_icount
== 1 /* Precise instruction counting */;
1077 static uint64_t instructions_get_count(CPUARMState
*env
)
1079 return (uint64_t)cpu_get_icount_raw();
1082 static int64_t instructions_ns_per(uint64_t icount
)
1084 return cpu_icount_to_ns((int64_t)icount
);
1088 static const pm_event pm_events
[] = {
1089 { .number
= 0x000, /* SW_INCR */
1090 .supported
= event_always_supported
,
1091 .get_count
= swinc_get_count
,
1092 .ns_per_count
= swinc_ns_per
,
1094 #ifndef CONFIG_USER_ONLY
1095 { .number
= 0x008, /* INST_RETIRED, Instruction architecturally executed */
1096 .supported
= instructions_supported
,
1097 .get_count
= instructions_get_count
,
1098 .ns_per_count
= instructions_ns_per
,
1100 { .number
= 0x011, /* CPU_CYCLES, Cycle */
1101 .supported
= event_always_supported
,
1102 .get_count
= cycles_get_count
,
1103 .ns_per_count
= cycles_ns_per
,
1109 * Note: Before increasing MAX_EVENT_ID beyond 0x3f into the 0x40xx range of
1110 * events (i.e. the statistical profiling extension), this implementation
1111 * should first be updated to something sparse instead of the current
1112 * supported_event_map[] array.
1114 #define MAX_EVENT_ID 0x11
1115 #define UNSUPPORTED_EVENT UINT16_MAX
1116 static uint16_t supported_event_map
[MAX_EVENT_ID
+ 1];
1119 * Called upon CPU initialization to initialize PMCEID[01]_EL0 and build a map
1120 * of ARM event numbers to indices in our pm_events array.
1122 * Note: Events in the 0x40XX range are not currently supported.
1124 void pmu_init(ARMCPU
*cpu
)
1129 * Empty supported_event_map and cpu->pmceid[01] before adding supported
1132 for (i
= 0; i
< ARRAY_SIZE(supported_event_map
); i
++) {
1133 supported_event_map
[i
] = UNSUPPORTED_EVENT
;
1138 for (i
= 0; i
< ARRAY_SIZE(pm_events
); i
++) {
1139 const pm_event
*cnt
= &pm_events
[i
];
1140 assert(cnt
->number
<= MAX_EVENT_ID
);
1141 /* We do not currently support events in the 0x40xx range */
1142 assert(cnt
->number
<= 0x3f);
1144 if (cnt
->supported(&cpu
->env
)) {
1145 supported_event_map
[cnt
->number
] = i
;
1146 uint64_t event_mask
= 1 << (cnt
->number
& 0x1f);
1147 if (cnt
->number
& 0x20) {
1148 cpu
->pmceid1
|= event_mask
;
1150 cpu
->pmceid0
|= event_mask
;
1157 * Check at runtime whether a PMU event is supported for the current machine
1159 static bool event_supported(uint16_t number
)
1161 if (number
> MAX_EVENT_ID
) {
1164 return supported_event_map
[number
] != UNSUPPORTED_EVENT
;
1167 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1170 /* Performance monitor registers user accessibility is controlled
1171 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
1172 * trapping to EL2 or EL3 for other accesses.
1174 int el
= arm_current_el(env
);
1176 if (el
== 0 && !(env
->cp15
.c9_pmuserenr
& 1)) {
1177 return CP_ACCESS_TRAP
;
1179 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
1180 && !arm_is_secure_below_el3(env
)) {
1181 return CP_ACCESS_TRAP_EL2
;
1183 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
1184 return CP_ACCESS_TRAP_EL3
;
1187 return CP_ACCESS_OK
;
1190 static CPAccessResult
pmreg_access_xevcntr(CPUARMState
*env
,
1191 const ARMCPRegInfo
*ri
,
1194 /* ER: event counter read trap control */
1195 if (arm_feature(env
, ARM_FEATURE_V8
)
1196 && arm_current_el(env
) == 0
1197 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0
1199 return CP_ACCESS_OK
;
1202 return pmreg_access(env
, ri
, isread
);
1205 static CPAccessResult
pmreg_access_swinc(CPUARMState
*env
,
1206 const ARMCPRegInfo
*ri
,
1209 /* SW: software increment write trap control */
1210 if (arm_feature(env
, ARM_FEATURE_V8
)
1211 && arm_current_el(env
) == 0
1212 && (env
->cp15
.c9_pmuserenr
& (1 << 1)) != 0
1214 return CP_ACCESS_OK
;
1217 return pmreg_access(env
, ri
, isread
);
1220 static CPAccessResult
pmreg_access_selr(CPUARMState
*env
,
1221 const ARMCPRegInfo
*ri
,
1224 /* ER: event counter read trap control */
1225 if (arm_feature(env
, ARM_FEATURE_V8
)
1226 && arm_current_el(env
) == 0
1227 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0) {
1228 return CP_ACCESS_OK
;
1231 return pmreg_access(env
, ri
, isread
);
1234 static CPAccessResult
pmreg_access_ccntr(CPUARMState
*env
,
1235 const ARMCPRegInfo
*ri
,
1238 /* CR: cycle counter read trap control */
1239 if (arm_feature(env
, ARM_FEATURE_V8
)
1240 && arm_current_el(env
) == 0
1241 && (env
->cp15
.c9_pmuserenr
& (1 << 2)) != 0
1243 return CP_ACCESS_OK
;
1246 return pmreg_access(env
, ri
, isread
);
1249 /* Returns true if the counter (pass 31 for PMCCNTR) should count events using
1250 * the current EL, security state, and register configuration.
1252 static bool pmu_counter_enabled(CPUARMState
*env
, uint8_t counter
)
1255 bool e
, p
, u
, nsk
, nsu
, nsh
, m
;
1256 bool enabled
, prohibited
, filtered
;
1257 bool secure
= arm_is_secure(env
);
1258 int el
= arm_current_el(env
);
1259 uint8_t hpmn
= env
->cp15
.mdcr_el2
& MDCR_HPMN
;
1261 if (!arm_feature(env
, ARM_FEATURE_EL2
) ||
1262 (counter
< hpmn
|| counter
== 31)) {
1263 e
= env
->cp15
.c9_pmcr
& PMCRE
;
1265 e
= env
->cp15
.mdcr_el2
& MDCR_HPME
;
1267 enabled
= e
&& (env
->cp15
.c9_pmcnten
& (1 << counter
));
1270 if (el
== 2 && (counter
< hpmn
|| counter
== 31)) {
1271 prohibited
= env
->cp15
.mdcr_el2
& MDCR_HPMD
;
1276 prohibited
= arm_feature(env
, ARM_FEATURE_EL3
) &&
1277 (env
->cp15
.mdcr_el3
& MDCR_SPME
);
1280 if (prohibited
&& counter
== 31) {
1281 prohibited
= env
->cp15
.c9_pmcr
& PMCRDP
;
1284 if (counter
== 31) {
1285 filter
= env
->cp15
.pmccfiltr_el0
;
1287 filter
= env
->cp15
.c14_pmevtyper
[counter
];
1290 p
= filter
& PMXEVTYPER_P
;
1291 u
= filter
& PMXEVTYPER_U
;
1292 nsk
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSK
);
1293 nsu
= arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_NSU
);
1294 nsh
= arm_feature(env
, ARM_FEATURE_EL2
) && (filter
& PMXEVTYPER_NSH
);
1295 m
= arm_el_is_aa64(env
, 1) &&
1296 arm_feature(env
, ARM_FEATURE_EL3
) && (filter
& PMXEVTYPER_M
);
1299 filtered
= secure
? u
: u
!= nsu
;
1300 } else if (el
== 1) {
1301 filtered
= secure
? p
: p
!= nsk
;
1302 } else if (el
== 2) {
1308 if (counter
!= 31) {
1310 * If not checking PMCCNTR, ensure the counter is setup to an event we
1313 uint16_t event
= filter
& PMXEVTYPER_EVTCOUNT
;
1314 if (!event_supported(event
)) {
1319 return enabled
&& !prohibited
&& !filtered
;
1322 static void pmu_update_irq(CPUARMState
*env
)
1324 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1325 qemu_set_irq(cpu
->pmu_interrupt
, (env
->cp15
.c9_pmcr
& PMCRE
) &&
1326 (env
->cp15
.c9_pminten
& env
->cp15
.c9_pmovsr
));
1330 * Ensure c15_ccnt is the guest-visible count so that operations such as
1331 * enabling/disabling the counter or filtering, modifying the count itself,
1332 * etc. can be done logically. This is essentially a no-op if the counter is
1333 * not enabled at the time of the call.
1335 void pmccntr_op_start(CPUARMState
*env
)
1337 uint64_t cycles
= cycles_get_count(env
);
1339 if (pmu_counter_enabled(env
, 31)) {
1340 uint64_t eff_cycles
= cycles
;
1341 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1342 /* Increment once every 64 processor clock cycles */
1346 uint64_t new_pmccntr
= eff_cycles
- env
->cp15
.c15_ccnt_delta
;
1348 uint64_t overflow_mask
= env
->cp15
.c9_pmcr
& PMCRLC
? \
1349 1ull << 63 : 1ull << 31;
1350 if (env
->cp15
.c15_ccnt
& ~new_pmccntr
& overflow_mask
) {
1351 env
->cp15
.c9_pmovsr
|= (1 << 31);
1352 pmu_update_irq(env
);
1355 env
->cp15
.c15_ccnt
= new_pmccntr
;
1357 env
->cp15
.c15_ccnt_delta
= cycles
;
1361 * If PMCCNTR is enabled, recalculate the delta between the clock and the
1362 * guest-visible count. A call to pmccntr_op_finish should follow every call to
1365 void pmccntr_op_finish(CPUARMState
*env
)
1367 if (pmu_counter_enabled(env
, 31)) {
1368 #ifndef CONFIG_USER_ONLY
1369 /* Calculate when the counter will next overflow */
1370 uint64_t remaining_cycles
= -env
->cp15
.c15_ccnt
;
1371 if (!(env
->cp15
.c9_pmcr
& PMCRLC
)) {
1372 remaining_cycles
= (uint32_t)remaining_cycles
;
1374 int64_t overflow_in
= cycles_ns_per(remaining_cycles
);
1376 if (overflow_in
> 0) {
1377 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1379 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1380 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1384 uint64_t prev_cycles
= env
->cp15
.c15_ccnt_delta
;
1385 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1386 /* Increment once every 64 processor clock cycles */
1389 env
->cp15
.c15_ccnt_delta
= prev_cycles
- env
->cp15
.c15_ccnt
;
1393 static void pmevcntr_op_start(CPUARMState
*env
, uint8_t counter
)
1396 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1398 if (event_supported(event
)) {
1399 uint16_t event_idx
= supported_event_map
[event
];
1400 count
= pm_events
[event_idx
].get_count(env
);
1403 if (pmu_counter_enabled(env
, counter
)) {
1404 uint32_t new_pmevcntr
= count
- env
->cp15
.c14_pmevcntr_delta
[counter
];
1406 if (env
->cp15
.c14_pmevcntr
[counter
] & ~new_pmevcntr
& INT32_MIN
) {
1407 env
->cp15
.c9_pmovsr
|= (1 << counter
);
1408 pmu_update_irq(env
);
1410 env
->cp15
.c14_pmevcntr
[counter
] = new_pmevcntr
;
1412 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1415 static void pmevcntr_op_finish(CPUARMState
*env
, uint8_t counter
)
1417 if (pmu_counter_enabled(env
, counter
)) {
1418 #ifndef CONFIG_USER_ONLY
1419 uint16_t event
= env
->cp15
.c14_pmevtyper
[counter
] & PMXEVTYPER_EVTCOUNT
;
1420 uint16_t event_idx
= supported_event_map
[event
];
1421 uint64_t delta
= UINT32_MAX
-
1422 (uint32_t)env
->cp15
.c14_pmevcntr
[counter
] + 1;
1423 int64_t overflow_in
= pm_events
[event_idx
].ns_per_count(delta
);
1425 if (overflow_in
> 0) {
1426 int64_t overflow_at
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
1428 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1429 timer_mod_anticipate_ns(cpu
->pmu_timer
, overflow_at
);
1433 env
->cp15
.c14_pmevcntr_delta
[counter
] -=
1434 env
->cp15
.c14_pmevcntr
[counter
];
1438 void pmu_op_start(CPUARMState
*env
)
1441 pmccntr_op_start(env
);
1442 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1443 pmevcntr_op_start(env
, i
);
1447 void pmu_op_finish(CPUARMState
*env
)
1450 pmccntr_op_finish(env
);
1451 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1452 pmevcntr_op_finish(env
, i
);
1456 void pmu_pre_el_change(ARMCPU
*cpu
, void *ignored
)
1458 pmu_op_start(&cpu
->env
);
1461 void pmu_post_el_change(ARMCPU
*cpu
, void *ignored
)
1463 pmu_op_finish(&cpu
->env
);
1466 void arm_pmu_timer_cb(void *opaque
)
1468 ARMCPU
*cpu
= opaque
;
1471 * Update all the counter values based on the current underlying counts,
1472 * triggering interrupts to be raised, if necessary. pmu_op_finish() also
1473 * has the effect of setting the cpu->pmu_timer to the next earliest time a
1474 * counter may expire.
1476 pmu_op_start(&cpu
->env
);
1477 pmu_op_finish(&cpu
->env
);
1480 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1485 if (value
& PMCRC
) {
1486 /* The counter has been reset */
1487 env
->cp15
.c15_ccnt
= 0;
1490 if (value
& PMCRP
) {
1492 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1493 env
->cp15
.c14_pmevcntr
[i
] = 0;
1497 /* only the DP, X, D and E bits are writable */
1498 env
->cp15
.c9_pmcr
&= ~0x39;
1499 env
->cp15
.c9_pmcr
|= (value
& 0x39);
1504 static void pmswinc_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1508 for (i
= 0; i
< pmu_num_counters(env
); i
++) {
1509 /* Increment a counter's count iff: */
1510 if ((value
& (1 << i
)) && /* counter's bit is set */
1511 /* counter is enabled and not filtered */
1512 pmu_counter_enabled(env
, i
) &&
1513 /* counter is SW_INCR */
1514 (env
->cp15
.c14_pmevtyper
[i
] & PMXEVTYPER_EVTCOUNT
) == 0x0) {
1515 pmevcntr_op_start(env
, i
);
1518 * Detect if this write causes an overflow since we can't predict
1519 * PMSWINC overflows like we can for other events
1521 uint32_t new_pmswinc
= env
->cp15
.c14_pmevcntr
[i
] + 1;
1523 if (env
->cp15
.c14_pmevcntr
[i
] & ~new_pmswinc
& INT32_MIN
) {
1524 env
->cp15
.c9_pmovsr
|= (1 << i
);
1525 pmu_update_irq(env
);
1528 env
->cp15
.c14_pmevcntr
[i
] = new_pmswinc
;
1530 pmevcntr_op_finish(env
, i
);
1535 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1538 pmccntr_op_start(env
);
1539 ret
= env
->cp15
.c15_ccnt
;
1540 pmccntr_op_finish(env
);
1544 static void pmselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1547 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1548 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1549 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1552 env
->cp15
.c9_pmselr
= value
& 0x1f;
1555 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1558 pmccntr_op_start(env
);
1559 env
->cp15
.c15_ccnt
= value
;
1560 pmccntr_op_finish(env
);
1563 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1566 uint64_t cur_val
= pmccntr_read(env
, NULL
);
1568 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
1571 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1574 pmccntr_op_start(env
);
1575 env
->cp15
.pmccfiltr_el0
= value
& PMCCFILTR_EL0
;
1576 pmccntr_op_finish(env
);
1579 static void pmccfiltr_write_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1582 pmccntr_op_start(env
);
1583 /* M is not accessible from AArch32 */
1584 env
->cp15
.pmccfiltr_el0
= (env
->cp15
.pmccfiltr_el0
& PMCCFILTR_M
) |
1585 (value
& PMCCFILTR
);
1586 pmccntr_op_finish(env
);
1589 static uint64_t pmccfiltr_read_a32(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1591 /* M is not visible in AArch32 */
1592 return env
->cp15
.pmccfiltr_el0
& PMCCFILTR
;
1595 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1598 value
&= pmu_counter_mask(env
);
1599 env
->cp15
.c9_pmcnten
|= value
;
1602 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1605 value
&= pmu_counter_mask(env
);
1606 env
->cp15
.c9_pmcnten
&= ~value
;
1609 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1612 value
&= pmu_counter_mask(env
);
1613 env
->cp15
.c9_pmovsr
&= ~value
;
1614 pmu_update_irq(env
);
1617 static void pmovsset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1620 value
&= pmu_counter_mask(env
);
1621 env
->cp15
.c9_pmovsr
|= value
;
1622 pmu_update_irq(env
);
1625 static void pmevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1626 uint64_t value
, const uint8_t counter
)
1628 if (counter
== 31) {
1629 pmccfiltr_write(env
, ri
, value
);
1630 } else if (counter
< pmu_num_counters(env
)) {
1631 pmevcntr_op_start(env
, counter
);
1634 * If this counter's event type is changing, store the current
1635 * underlying count for the new type in c14_pmevcntr_delta[counter] so
1636 * pmevcntr_op_finish has the correct baseline when it converts back to
1639 uint16_t old_event
= env
->cp15
.c14_pmevtyper
[counter
] &
1640 PMXEVTYPER_EVTCOUNT
;
1641 uint16_t new_event
= value
& PMXEVTYPER_EVTCOUNT
;
1642 if (old_event
!= new_event
) {
1644 if (event_supported(new_event
)) {
1645 uint16_t event_idx
= supported_event_map
[new_event
];
1646 count
= pm_events
[event_idx
].get_count(env
);
1648 env
->cp15
.c14_pmevcntr_delta
[counter
] = count
;
1651 env
->cp15
.c14_pmevtyper
[counter
] = value
& PMXEVTYPER_MASK
;
1652 pmevcntr_op_finish(env
, counter
);
1654 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1655 * PMSELR value is equal to or greater than the number of implemented
1656 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1660 static uint64_t pmevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1661 const uint8_t counter
)
1663 if (counter
== 31) {
1664 return env
->cp15
.pmccfiltr_el0
;
1665 } else if (counter
< pmu_num_counters(env
)) {
1666 return env
->cp15
.c14_pmevtyper
[counter
];
1669 * We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1670 * are CONSTRAINED UNPREDICTABLE. See comments in pmevtyper_write().
1676 static void pmevtyper_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1679 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1680 pmevtyper_write(env
, ri
, value
, counter
);
1683 static void pmevtyper_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1686 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1687 env
->cp15
.c14_pmevtyper
[counter
] = value
;
1690 * pmevtyper_rawwrite is called between a pair of pmu_op_start and
1691 * pmu_op_finish calls when loading saved state for a migration. Because
1692 * we're potentially updating the type of event here, the value written to
1693 * c14_pmevcntr_delta by the preceeding pmu_op_start call may be for a
1694 * different counter type. Therefore, we need to set this value to the
1695 * current count for the counter type we're writing so that pmu_op_finish
1696 * has the correct count for its calculation.
1698 uint16_t event
= value
& PMXEVTYPER_EVTCOUNT
;
1699 if (event_supported(event
)) {
1700 uint16_t event_idx
= supported_event_map
[event
];
1701 env
->cp15
.c14_pmevcntr_delta
[counter
] =
1702 pm_events
[event_idx
].get_count(env
);
1706 static uint64_t pmevtyper_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1708 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1709 return pmevtyper_read(env
, ri
, counter
);
1712 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1715 pmevtyper_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1718 static uint64_t pmxevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1720 return pmevtyper_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1723 static void pmevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1724 uint64_t value
, uint8_t counter
)
1726 if (counter
< pmu_num_counters(env
)) {
1727 pmevcntr_op_start(env
, counter
);
1728 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1729 pmevcntr_op_finish(env
, counter
);
1732 * We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1733 * are CONSTRAINED UNPREDICTABLE.
1737 static uint64_t pmevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1740 if (counter
< pmu_num_counters(env
)) {
1742 pmevcntr_op_start(env
, counter
);
1743 ret
= env
->cp15
.c14_pmevcntr
[counter
];
1744 pmevcntr_op_finish(env
, counter
);
1747 /* We opt to behave as a RAZ/WI when attempts to access PM[X]EVCNTR
1748 * are CONSTRAINED UNPREDICTABLE. */
1753 static void pmevcntr_writefn(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1756 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1757 pmevcntr_write(env
, ri
, value
, counter
);
1760 static uint64_t pmevcntr_readfn(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1762 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1763 return pmevcntr_read(env
, ri
, counter
);
1766 static void pmevcntr_rawwrite(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1769 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1770 assert(counter
< pmu_num_counters(env
));
1771 env
->cp15
.c14_pmevcntr
[counter
] = value
;
1772 pmevcntr_write(env
, ri
, value
, counter
);
1775 static uint64_t pmevcntr_rawread(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1777 uint8_t counter
= ((ri
->crm
& 3) << 3) | (ri
->opc2
& 7);
1778 assert(counter
< pmu_num_counters(env
));
1779 return env
->cp15
.c14_pmevcntr
[counter
];
1782 static void pmxevcntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1785 pmevcntr_write(env
, ri
, value
, env
->cp15
.c9_pmselr
& 31);
1788 static uint64_t pmxevcntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1790 return pmevcntr_read(env
, ri
, env
->cp15
.c9_pmselr
& 31);
1793 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1796 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1797 env
->cp15
.c9_pmuserenr
= value
& 0xf;
1799 env
->cp15
.c9_pmuserenr
= value
& 1;
1803 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1806 /* We have no event counters so only the C bit can be changed */
1807 value
&= pmu_counter_mask(env
);
1808 env
->cp15
.c9_pminten
|= value
;
1809 pmu_update_irq(env
);
1812 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1815 value
&= pmu_counter_mask(env
);
1816 env
->cp15
.c9_pminten
&= ~value
;
1817 pmu_update_irq(env
);
1820 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1823 /* Note that even though the AArch64 view of this register has bits
1824 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1825 * architectural requirements for bits which are RES0 only in some
1826 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1827 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1829 raw_write(env
, ri
, value
& ~0x1FULL
);
1832 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1834 /* Begin with base v8.0 state. */
1835 uint32_t valid_mask
= 0x3fff;
1836 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1838 if (arm_el_is_aa64(env
, 3)) {
1839 value
|= SCR_FW
| SCR_AW
; /* these two bits are RES1. */
1840 valid_mask
&= ~SCR_NET
;
1842 valid_mask
&= ~(SCR_RW
| SCR_ST
);
1845 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1846 valid_mask
&= ~SCR_HCE
;
1848 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1849 * supported if EL2 exists. The bit is UNK/SBZP when
1850 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1851 * when EL2 is unavailable.
1852 * On ARMv8, this bit is always available.
1854 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1855 !arm_feature(env
, ARM_FEATURE_V8
)) {
1856 valid_mask
&= ~SCR_SMD
;
1859 if (cpu_isar_feature(aa64_lor
, cpu
)) {
1860 valid_mask
|= SCR_TLOR
;
1862 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
1863 valid_mask
|= SCR_API
| SCR_APK
;
1866 /* Clear all-context RES0 bits. */
1867 value
&= valid_mask
;
1868 raw_write(env
, ri
, value
);
1871 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1873 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1875 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1878 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1879 ri
->secure
& ARM_CP_SECSTATE_S
);
1881 return cpu
->ccsidr
[index
];
1884 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1887 raw_write(env
, ri
, value
& 0xf);
1890 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1892 CPUState
*cs
= ENV_GET_CPU(env
);
1893 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1896 if (hcr_el2
& HCR_IMO
) {
1897 if (cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) {
1901 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1906 if (hcr_el2
& HCR_FMO
) {
1907 if (cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) {
1911 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1916 /* External aborts are not possible in QEMU so A bit is always clear */
1920 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1921 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1922 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1923 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1924 /* Performance monitors are implementation defined in v7,
1925 * but with an ARM recommended set of registers, which we
1928 * Performance registers fall into three categories:
1929 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1930 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1931 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1932 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1933 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1935 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1936 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1937 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1938 .writefn
= pmcntenset_write
,
1939 .accessfn
= pmreg_access
,
1940 .raw_writefn
= raw_write
},
1941 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1942 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1943 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1944 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1945 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1946 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1948 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1949 .accessfn
= pmreg_access
,
1950 .writefn
= pmcntenclr_write
,
1951 .type
= ARM_CP_ALIAS
},
1952 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1953 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1954 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1955 .type
= ARM_CP_ALIAS
,
1956 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1957 .writefn
= pmcntenclr_write
},
1958 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1959 .access
= PL0_RW
, .type
= ARM_CP_IO
,
1960 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
1961 .accessfn
= pmreg_access
,
1962 .writefn
= pmovsr_write
,
1963 .raw_writefn
= raw_write
},
1964 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1965 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1966 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1967 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1968 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1969 .writefn
= pmovsr_write
,
1970 .raw_writefn
= raw_write
},
1971 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1972 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
1973 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1974 .writefn
= pmswinc_write
},
1975 { .name
= "PMSWINC_EL0", .state
= ARM_CP_STATE_AA64
,
1976 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 4,
1977 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
,
1978 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
1979 .writefn
= pmswinc_write
},
1980 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1981 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1982 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmselr
),
1983 .accessfn
= pmreg_access_selr
, .writefn
= pmselr_write
,
1984 .raw_writefn
= raw_write
},
1985 { .name
= "PMSELR_EL0", .state
= ARM_CP_STATE_AA64
,
1986 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 5,
1987 .access
= PL0_RW
, .accessfn
= pmreg_access_selr
,
1988 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmselr
),
1989 .writefn
= pmselr_write
, .raw_writefn
= raw_write
, },
1990 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1991 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1992 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1993 .accessfn
= pmreg_access_ccntr
},
1994 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1995 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1996 .access
= PL0_RW
, .accessfn
= pmreg_access_ccntr
,
1998 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ccnt
),
1999 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
,
2000 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
, },
2001 { .name
= "PMCCFILTR", .cp
= 15, .opc1
= 0, .crn
= 14, .crm
= 15, .opc2
= 7,
2002 .writefn
= pmccfiltr_write_a32
, .readfn
= pmccfiltr_read_a32
,
2003 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2004 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2006 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
2007 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
2008 .writefn
= pmccfiltr_write
, .raw_writefn
= raw_write
,
2009 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2011 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
2013 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
2014 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2015 .accessfn
= pmreg_access
,
2016 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
2017 { .name
= "PMXEVTYPER_EL0", .state
= ARM_CP_STATE_AA64
,
2018 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 1,
2019 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2020 .accessfn
= pmreg_access
,
2021 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
2022 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
2023 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2024 .accessfn
= pmreg_access_xevcntr
,
2025 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
2026 { .name
= "PMXEVCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
2027 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 2,
2028 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2029 .accessfn
= pmreg_access_xevcntr
,
2030 .writefn
= pmxevcntr_write
, .readfn
= pmxevcntr_read
},
2031 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
2032 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
2033 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmuserenr
),
2035 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2036 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
2037 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
2038 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
2039 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
2041 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
2042 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
2043 .access
= PL1_RW
, .accessfn
= access_tpm
,
2044 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2045 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pminten
),
2047 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
2048 { .name
= "PMINTENSET_EL1", .state
= ARM_CP_STATE_AA64
,
2049 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 1,
2050 .access
= PL1_RW
, .accessfn
= access_tpm
,
2052 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2053 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
,
2054 .resetvalue
= 0x0 },
2055 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
2056 .access
= PL1_RW
, .accessfn
= access_tpm
,
2057 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2058 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2059 .writefn
= pmintenclr_write
, },
2060 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
2061 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
2062 .access
= PL1_RW
, .accessfn
= access_tpm
,
2063 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2064 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
2065 .writefn
= pmintenclr_write
},
2066 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
2067 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
2068 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
2069 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
2070 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
2071 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
2072 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
2073 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
2074 /* Auxiliary ID register: this actually has an IMPDEF value but for now
2075 * just RAZ for all cores:
2077 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
2078 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
2079 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2080 /* Auxiliary fault status registers: these also are IMPDEF, and we
2081 * choose to RAZ/WI for all cores.
2083 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2084 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
2085 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2086 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2087 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
2088 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
2089 /* MAIR can just read-as-written because we don't implement caches
2090 * and so don't need to care about memory attributes.
2092 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
2093 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
2094 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
2096 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
2097 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
2098 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
2100 /* For non-long-descriptor page tables these are PRRR and NMRR;
2101 * regardless they still act as reads-as-written for QEMU.
2103 /* MAIR0/1 are defined separately from their 64-bit counterpart which
2104 * allows them to assign the correct fieldoffset based on the endianness
2105 * handled in the field definitions.
2107 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
2108 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
2109 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
2110 offsetof(CPUARMState
, cp15
.mair0_ns
) },
2111 .resetfn
= arm_cp_reset_ignore
},
2112 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
2113 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
2114 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
2115 offsetof(CPUARMState
, cp15
.mair1_ns
) },
2116 .resetfn
= arm_cp_reset_ignore
},
2117 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
2118 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
2119 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
2120 /* 32 bit ITLB invalidates */
2121 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
2122 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2123 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
2124 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2125 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
2126 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2127 /* 32 bit DTLB invalidates */
2128 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
2129 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2130 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
2131 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2132 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
2133 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2134 /* 32 bit TLB invalidates */
2135 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
2136 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
2137 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
2138 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
2139 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
2140 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
2141 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
2142 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
2146 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
2147 /* 32 bit TLB invalidates, Inner Shareable */
2148 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
2149 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
2150 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
2151 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
2152 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
2153 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2154 .writefn
= tlbiasid_is_write
},
2155 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
2156 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
2157 .writefn
= tlbimvaa_is_write
},
2161 static const ARMCPRegInfo pmovsset_cp_reginfo
[] = {
2162 /* PMOVSSET is not implemented in v7 before v7ve */
2163 { .name
= "PMOVSSET", .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 3,
2164 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2165 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2166 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
2167 .writefn
= pmovsset_write
,
2168 .raw_writefn
= raw_write
},
2169 { .name
= "PMOVSSET_EL0", .state
= ARM_CP_STATE_AA64
,
2170 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 3,
2171 .access
= PL0_RW
, .accessfn
= pmreg_access
,
2172 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
2173 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
2174 .writefn
= pmovsset_write
,
2175 .raw_writefn
= raw_write
},
2179 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2186 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2189 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
2190 return CP_ACCESS_TRAP
;
2192 return CP_ACCESS_OK
;
2195 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
2196 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
2197 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
2199 .writefn
= teecr_write
},
2200 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
2201 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
2202 .accessfn
= teehbr_access
, .resetvalue
= 0 },
2206 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
2207 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
2208 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
2210 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
2211 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
2213 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
2214 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
2215 .resetfn
= arm_cp_reset_ignore
},
2216 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
2217 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
2218 .access
= PL0_R
|PL1_W
,
2219 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
2221 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
2222 .access
= PL0_R
|PL1_W
,
2223 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
2224 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
2225 .resetfn
= arm_cp_reset_ignore
},
2226 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
2227 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
2229 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
2230 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
2232 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
2233 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
2238 #ifndef CONFIG_USER_ONLY
2240 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2243 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
2244 * Writable only at the highest implemented exception level.
2246 int el
= arm_current_el(env
);
2250 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
2251 return CP_ACCESS_TRAP
;
2255 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
2256 arm_is_secure_below_el3(env
)) {
2257 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
2258 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2266 if (!isread
&& el
< arm_highest_el(env
)) {
2267 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2270 return CP_ACCESS_OK
;
2273 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
2276 unsigned int cur_el
= arm_current_el(env
);
2277 bool secure
= arm_is_secure(env
);
2279 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
2281 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
2282 return CP_ACCESS_TRAP
;
2285 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
2286 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
2287 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
2288 return CP_ACCESS_TRAP_EL2
;
2290 return CP_ACCESS_OK
;
2293 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
2296 unsigned int cur_el
= arm_current_el(env
);
2297 bool secure
= arm_is_secure(env
);
2299 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
2300 * EL0[PV]TEN is zero.
2303 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
2304 return CP_ACCESS_TRAP
;
2307 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
2308 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
2309 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
2310 return CP_ACCESS_TRAP_EL2
;
2312 return CP_ACCESS_OK
;
2315 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
2316 const ARMCPRegInfo
*ri
,
2319 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
2322 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
2323 const ARMCPRegInfo
*ri
,
2326 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
2329 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2332 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
2335 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2338 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
2341 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
2342 const ARMCPRegInfo
*ri
,
2345 /* The AArch64 register view of the secure physical timer is
2346 * always accessible from EL3, and configurably accessible from
2349 switch (arm_current_el(env
)) {
2351 if (!arm_is_secure(env
)) {
2352 return CP_ACCESS_TRAP
;
2354 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
2355 return CP_ACCESS_TRAP_EL3
;
2357 return CP_ACCESS_OK
;
2360 return CP_ACCESS_TRAP
;
2362 return CP_ACCESS_OK
;
2364 g_assert_not_reached();
2368 static uint64_t gt_get_countervalue(CPUARMState
*env
)
2370 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
2373 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
2375 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
2378 /* Timer enabled: calculate and set current ISTATUS, irq, and
2379 * reset timer to when ISTATUS next has to change
2381 uint64_t offset
= timeridx
== GTIMER_VIRT
?
2382 cpu
->env
.cp15
.cntvoff_el2
: 0;
2383 uint64_t count
= gt_get_countervalue(&cpu
->env
);
2384 /* Note that this must be unsigned 64 bit arithmetic: */
2385 int istatus
= count
- offset
>= gt
->cval
;
2389 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
2391 irqstate
= (istatus
&& !(gt
->ctl
& 2));
2392 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2395 /* Next transition is when count rolls back over to zero */
2396 nexttick
= UINT64_MAX
;
2398 /* Next transition is when we hit cval */
2399 nexttick
= gt
->cval
+ offset
;
2401 /* Note that the desired next expiry time might be beyond the
2402 * signed-64-bit range of a QEMUTimer -- in this case we just
2403 * set the timer for as far in the future as possible. When the
2404 * timer expires we will reset the timer for any remaining period.
2406 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
2407 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
2409 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
2410 trace_arm_gt_recalc(timeridx
, irqstate
, nexttick
);
2412 /* Timer disabled: ISTATUS and timer output always clear */
2414 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
2415 timer_del(cpu
->gt_timer
[timeridx
]);
2416 trace_arm_gt_recalc_disabled(timeridx
);
2420 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2423 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2425 timer_del(cpu
->gt_timer
[timeridx
]);
2428 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2430 return gt_get_countervalue(env
);
2433 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2435 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
2438 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2442 trace_arm_gt_cval_write(timeridx
, value
);
2443 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
2444 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
2447 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2450 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
2452 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
2453 (gt_get_countervalue(env
) - offset
));
2456 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2460 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
2462 trace_arm_gt_tval_write(timeridx
, value
);
2463 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
2464 sextract64(value
, 0, 32);
2465 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
2468 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2472 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2473 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
2475 trace_arm_gt_ctl_write(timeridx
, value
);
2476 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
2477 if ((oldval
^ value
) & 1) {
2478 /* Enable toggled */
2479 gt_recalc_timer(cpu
, timeridx
);
2480 } else if ((oldval
^ value
) & 2) {
2481 /* IMASK toggled: don't need to recalculate,
2482 * just set the interrupt line based on ISTATUS
2484 int irqstate
= (oldval
& 4) && !(value
& 2);
2486 trace_arm_gt_imask_toggle(timeridx
, irqstate
);
2487 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
2491 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2493 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
2496 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2499 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
2502 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2504 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
2507 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2510 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
2513 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2516 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
2519 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2521 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
2524 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2527 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
2530 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2532 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
2535 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2538 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
2541 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2544 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
2547 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2550 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2552 trace_arm_gt_cntvoff_write(value
);
2553 raw_write(env
, ri
, value
);
2554 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2557 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2559 gt_timer_reset(env
, ri
, GTIMER_HYP
);
2562 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2565 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
2568 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2570 return gt_tval_read(env
, ri
, GTIMER_HYP
);
2573 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2576 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
2579 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2582 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
2585 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2587 gt_timer_reset(env
, ri
, GTIMER_SEC
);
2590 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2593 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
2596 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2598 return gt_tval_read(env
, ri
, GTIMER_SEC
);
2601 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2604 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
2607 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2610 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
2613 void arm_gt_ptimer_cb(void *opaque
)
2615 ARMCPU
*cpu
= opaque
;
2617 gt_recalc_timer(cpu
, GTIMER_PHYS
);
2620 void arm_gt_vtimer_cb(void *opaque
)
2622 ARMCPU
*cpu
= opaque
;
2624 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2627 void arm_gt_htimer_cb(void *opaque
)
2629 ARMCPU
*cpu
= opaque
;
2631 gt_recalc_timer(cpu
, GTIMER_HYP
);
2634 void arm_gt_stimer_cb(void *opaque
)
2636 ARMCPU
*cpu
= opaque
;
2638 gt_recalc_timer(cpu
, GTIMER_SEC
);
2641 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2642 /* Note that CNTFRQ is purely reads-as-written for the benefit
2643 * of software; writing it doesn't actually change the timer frequency.
2644 * Our reset value matches the fixed frequency we implement the timer at.
2646 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
2647 .type
= ARM_CP_ALIAS
,
2648 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2649 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
2651 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2652 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2653 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2654 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2655 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
2657 /* overall control: mostly access permissions */
2658 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
2659 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
2661 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
2664 /* per-timer control */
2665 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2666 .secure
= ARM_CP_SECSTATE_NS
,
2667 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
2668 .accessfn
= gt_ptimer_access
,
2669 .fieldoffset
= offsetoflow32(CPUARMState
,
2670 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2671 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2673 { .name
= "CNTP_CTL_S",
2674 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2675 .secure
= ARM_CP_SECSTATE_S
,
2676 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
2677 .accessfn
= gt_ptimer_access
,
2678 .fieldoffset
= offsetoflow32(CPUARMState
,
2679 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2680 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2682 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2683 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
2684 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2685 .accessfn
= gt_ptimer_access
,
2686 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2688 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2690 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
2691 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
2692 .accessfn
= gt_vtimer_access
,
2693 .fieldoffset
= offsetoflow32(CPUARMState
,
2694 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2695 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2697 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2698 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
2699 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2700 .accessfn
= gt_vtimer_access
,
2701 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2703 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2705 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2706 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2707 .secure
= ARM_CP_SECSTATE_NS
,
2708 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2709 .accessfn
= gt_ptimer_access
,
2710 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2712 { .name
= "CNTP_TVAL_S",
2713 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2714 .secure
= ARM_CP_SECSTATE_S
,
2715 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2716 .accessfn
= gt_ptimer_access
,
2717 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
2719 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2720 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
2721 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2722 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
2723 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2725 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
2726 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2727 .accessfn
= gt_vtimer_access
,
2728 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2730 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2731 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
2732 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2733 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
2734 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2736 /* The counter itself */
2737 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
2738 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2739 .accessfn
= gt_pct_access
,
2740 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2742 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
2743 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
2744 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2745 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
2747 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
2748 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2749 .accessfn
= gt_vct_access
,
2750 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2752 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2753 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2754 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2755 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
2757 /* Comparison value, indicating when the timer goes off */
2758 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
2759 .secure
= ARM_CP_SECSTATE_NS
,
2760 .access
= PL1_RW
| PL0_R
,
2761 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2762 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2763 .accessfn
= gt_ptimer_access
,
2764 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2766 { .name
= "CNTP_CVAL_S", .cp
= 15, .crm
= 14, .opc1
= 2,
2767 .secure
= ARM_CP_SECSTATE_S
,
2768 .access
= PL1_RW
| PL0_R
,
2769 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2770 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2771 .accessfn
= gt_ptimer_access
,
2772 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2774 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2775 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
2776 .access
= PL1_RW
| PL0_R
,
2778 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2779 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
2780 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2782 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
2783 .access
= PL1_RW
| PL0_R
,
2784 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2785 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2786 .accessfn
= gt_vtimer_access
,
2787 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2789 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2790 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
2791 .access
= PL1_RW
| PL0_R
,
2793 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2794 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
2795 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2797 /* Secure timer -- this is actually restricted to only EL3
2798 * and configurably Secure-EL1 via the accessfn.
2800 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2801 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
2802 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
2803 .accessfn
= gt_stimer_access
,
2804 .readfn
= gt_sec_tval_read
,
2805 .writefn
= gt_sec_tval_write
,
2806 .resetfn
= gt_sec_timer_reset
,
2808 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
2809 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
2810 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2811 .accessfn
= gt_stimer_access
,
2812 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2814 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2816 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2817 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
2818 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2819 .accessfn
= gt_stimer_access
,
2820 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2821 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2828 /* In user-mode most of the generic timer registers are inaccessible
2829 * however modern kernels (4.12+) allow access to cntvct_el0
2832 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2834 /* Currently we have no support for QEMUTimer in linux-user so we
2835 * can't call gt_get_countervalue(env), instead we directly
2836 * call the lower level functions.
2838 return cpu_get_clock() / GTIMER_SCALE
;
2841 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2842 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2843 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2844 .type
= ARM_CP_CONST
, .access
= PL0_R
/* no PL1_RW in linux-user */,
2845 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2846 .resetvalue
= NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
,
2848 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2849 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2850 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2851 .readfn
= gt_virt_cnt_read
,
2858 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2860 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2861 raw_write(env
, ri
, value
);
2862 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
2863 raw_write(env
, ri
, value
& 0xfffff6ff);
2865 raw_write(env
, ri
, value
& 0xfffff1ff);
2869 #ifndef CONFIG_USER_ONLY
2870 /* get_phys_addr() isn't present for user-mode-only targets */
2872 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2876 /* The ATS12NSO* operations must trap to EL3 if executed in
2877 * Secure EL1 (which can only happen if EL3 is AArch64).
2878 * They are simply UNDEF if executed from NS EL1.
2879 * They function normally from EL2 or EL3.
2881 if (arm_current_el(env
) == 1) {
2882 if (arm_is_secure_below_el3(env
)) {
2883 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
2885 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2888 return CP_ACCESS_OK
;
2891 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
2892 MMUAccessType access_type
, ARMMMUIdx mmu_idx
)
2895 target_ulong page_size
;
2899 bool format64
= false;
2900 MemTxAttrs attrs
= {};
2901 ARMMMUFaultInfo fi
= {};
2902 ARMCacheAttrs cacheattrs
= {};
2904 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
, &phys_addr
, &attrs
,
2905 &prot
, &page_size
, &fi
, &cacheattrs
);
2909 } else if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2912 * * TTBCR.EAE determines whether the result is returned using the
2913 * 32-bit or the 64-bit PAR format
2914 * * Instructions executed in Hyp mode always use the 64bit format
2916 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2917 * * The Non-secure TTBCR.EAE bit is set to 1
2918 * * The implementation includes EL2, and the value of HCR.VM is 1
2920 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2922 * ATS1Hx always uses the 64bit format.
2924 format64
= arm_s1_regime_using_lpae_format(env
, mmu_idx
);
2926 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2927 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
2928 format64
|= env
->cp15
.hcr_el2
& (HCR_VM
| HCR_DC
);
2930 format64
|= arm_current_el(env
) == 2;
2936 /* Create a 64-bit PAR */
2937 par64
= (1 << 11); /* LPAE bit always set */
2939 par64
|= phys_addr
& ~0xfffULL
;
2940 if (!attrs
.secure
) {
2941 par64
|= (1 << 9); /* NS */
2943 par64
|= (uint64_t)cacheattrs
.attrs
<< 56; /* ATTR */
2944 par64
|= cacheattrs
.shareability
<< 7; /* SH */
2946 uint32_t fsr
= arm_fi_to_lfsc(&fi
);
2949 par64
|= (fsr
& 0x3f) << 1; /* FS */
2951 par64
|= (1 << 9); /* S */
2954 par64
|= (1 << 8); /* PTW */
2958 /* fsr is a DFSR/IFSR value for the short descriptor
2959 * translation table format (with WnR always clear).
2960 * Convert it to a 32-bit PAR.
2963 /* We do not set any attribute bits in the PAR */
2964 if (page_size
== (1 << 24)
2965 && arm_feature(env
, ARM_FEATURE_V7
)) {
2966 par64
= (phys_addr
& 0xff000000) | (1 << 1);
2968 par64
= phys_addr
& 0xfffff000;
2970 if (!attrs
.secure
) {
2971 par64
|= (1 << 9); /* NS */
2974 uint32_t fsr
= arm_fi_to_sfsc(&fi
);
2976 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
2977 ((fsr
& 0xf) << 1) | 1;
2983 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2985 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
2988 int el
= arm_current_el(env
);
2989 bool secure
= arm_is_secure_below_el3(env
);
2991 switch (ri
->opc2
& 6) {
2993 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2996 mmu_idx
= ARMMMUIdx_S1E3
;
2999 mmu_idx
= ARMMMUIdx_S1NSE1
;
3002 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
3005 g_assert_not_reached();
3009 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
3012 mmu_idx
= ARMMMUIdx_S1SE0
;
3015 mmu_idx
= ARMMMUIdx_S1NSE0
;
3018 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
3021 g_assert_not_reached();
3025 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
3026 mmu_idx
= ARMMMUIdx_S12NSE1
;
3029 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
3030 mmu_idx
= ARMMMUIdx_S12NSE0
;
3033 g_assert_not_reached();
3036 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
3038 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3041 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3044 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3047 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S1E2
);
3049 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
3052 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3055 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
3056 return CP_ACCESS_TRAP
;
3058 return CP_ACCESS_OK
;
3061 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3064 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
3066 int secure
= arm_is_secure_below_el3(env
);
3068 switch (ri
->opc2
& 6) {
3071 case 0: /* AT S1E1R, AT S1E1W */
3072 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
3074 case 4: /* AT S1E2R, AT S1E2W */
3075 mmu_idx
= ARMMMUIdx_S1E2
;
3077 case 6: /* AT S1E3R, AT S1E3W */
3078 mmu_idx
= ARMMMUIdx_S1E3
;
3081 g_assert_not_reached();
3084 case 2: /* AT S1E0R, AT S1E0W */
3085 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
3087 case 4: /* AT S12E1R, AT S12E1W */
3088 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
3090 case 6: /* AT S12E0R, AT S12E0W */
3091 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
3094 g_assert_not_reached();
3097 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
3101 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
3102 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
3103 .access
= PL1_RW
, .resetvalue
= 0,
3104 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
3105 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
3106 .writefn
= par_write
},
3107 #ifndef CONFIG_USER_ONLY
3108 /* This underdecoding is safe because the reginfo is NO_RAW. */
3109 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
3110 .access
= PL1_W
, .accessfn
= ats_access
,
3111 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
3116 /* Return basic MPU access permission bits. */
3117 static uint32_t simple_mpu_ap_bits(uint32_t val
)
3124 for (i
= 0; i
< 16; i
+= 2) {
3125 ret
|= (val
>> i
) & mask
;
3131 /* Pad basic MPU access permission bits to extended format. */
3132 static uint32_t extended_mpu_ap_bits(uint32_t val
)
3139 for (i
= 0; i
< 16; i
+= 2) {
3140 ret
|= (val
& mask
) << i
;
3146 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3149 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
3152 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3154 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
3157 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3160 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
3163 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3165 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
3168 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3170 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3176 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3180 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3183 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3184 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
3190 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
3191 tlb_flush(CPU(cpu
)); /* Mappings may have changed - purge! */
3195 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3198 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3199 uint32_t nrgs
= cpu
->pmsav7_dregion
;
3201 if (value
>= nrgs
) {
3202 qemu_log_mask(LOG_GUEST_ERROR
,
3203 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
3204 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
3208 raw_write(env
, ri
, value
);
3211 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
3212 /* Reset for all these registers is handled in arm_cpu_reset(),
3213 * because the PMSAv7 is also used by M-profile CPUs, which do
3214 * not register cpregs but still need the state to be reset.
3216 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
3217 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3218 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
3219 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3220 .resetfn
= arm_cp_reset_ignore
},
3221 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
3222 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3223 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
3224 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3225 .resetfn
= arm_cp_reset_ignore
},
3226 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
3227 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
3228 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
3229 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
3230 .resetfn
= arm_cp_reset_ignore
},
3231 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
3233 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.rnr
[M_REG_NS
]),
3234 .writefn
= pmsav7_rgnr_write
,
3235 .resetfn
= arm_cp_reset_ignore
},
3239 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
3240 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3241 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3242 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3243 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
3244 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3245 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3246 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3247 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
3248 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
3250 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
3252 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
3254 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
3256 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
3258 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
3259 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
3261 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
3262 /* Protection region base and size registers */
3263 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
3264 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3265 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
3266 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
3267 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3268 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
3269 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
3270 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3271 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
3272 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
3273 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3274 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
3275 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
3276 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3277 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
3278 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
3279 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3280 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
3281 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
3282 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3283 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
3284 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
3285 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
3286 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
3290 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3293 TCR
*tcr
= raw_ptr(env
, ri
);
3294 int maskshift
= extract32(value
, 0, 3);
3296 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
3297 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
3298 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
3299 * using Long-desciptor translation table format */
3300 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
3301 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3302 /* In an implementation that includes the Security Extensions
3303 * TTBCR has additional fields PD0 [4] and PD1 [5] for
3304 * Short-descriptor translation table format.
3306 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
3312 /* Update the masks corresponding to the TCR bank being written
3313 * Note that we always calculate mask and base_mask, but
3314 * they are only used for short-descriptor tables (ie if EAE is 0);
3315 * for long-descriptor tables the TCR fields are used differently
3316 * and the mask and base_mask values are meaningless.
3318 tcr
->raw_tcr
= value
;
3319 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
3320 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
3323 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3326 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3327 TCR
*tcr
= raw_ptr(env
, ri
);
3329 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
3330 /* With LPAE the TTBCR could result in a change of ASID
3331 * via the TTBCR.A1 bit, so do a TLB flush.
3333 tlb_flush(CPU(cpu
));
3335 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
3336 value
= deposit64(tcr
->raw_tcr
, 0, 32, value
);
3337 vmsa_ttbcr_raw_write(env
, ri
, value
);
3340 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3342 TCR
*tcr
= raw_ptr(env
, ri
);
3344 /* Reset both the TCR as well as the masks corresponding to the bank of
3345 * the TCR being reset.
3349 tcr
->base_mask
= 0xffffc000u
;
3352 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3355 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3356 TCR
*tcr
= raw_ptr(env
, ri
);
3358 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
3359 tlb_flush(CPU(cpu
));
3360 tcr
->raw_tcr
= value
;
3363 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3366 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
3367 if (cpreg_field_is_64bit(ri
) &&
3368 extract64(raw_read(env
, ri
) ^ value
, 48, 16) != 0) {
3369 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3370 tlb_flush(CPU(cpu
));
3372 raw_write(env
, ri
, value
);
3375 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3378 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3379 CPUState
*cs
= CPU(cpu
);
3381 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
3382 if (raw_read(env
, ri
) != value
) {
3383 tlb_flush_by_mmuidx(cs
,
3384 ARMMMUIdxBit_S12NSE1
|
3385 ARMMMUIdxBit_S12NSE0
|
3387 raw_write(env
, ri
, value
);
3391 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
3392 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
3393 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3394 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
3395 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
3396 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
3397 .access
= PL1_RW
, .resetvalue
= 0,
3398 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
3399 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
3400 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
3401 .access
= PL1_RW
, .resetvalue
= 0,
3402 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
3403 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
3404 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
3405 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
3406 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
3411 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
3412 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
3413 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
3415 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
3416 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
3417 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
3418 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3419 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3420 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
3421 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
3422 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
3423 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
3424 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3425 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
3426 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
3427 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3428 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
3429 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
3430 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
3431 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
3432 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
3433 .raw_writefn
= vmsa_ttbcr_raw_write
,
3434 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
3435 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
3439 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
3440 * qemu tlbs nor adjusting cached masks.
3442 static const ARMCPRegInfo ttbcr2_reginfo
= {
3443 .name
= "TTBCR2", .cp
= 15, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 3,
3444 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
3445 .bank_fieldoffsets
= { offsetofhigh32(CPUARMState
, cp15
.tcr_el
[3]),
3446 offsetofhigh32(CPUARMState
, cp15
.tcr_el
[1]) },
3449 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3452 env
->cp15
.c15_ticonfig
= value
& 0xe7;
3453 /* The OS_TYPE bit in this register changes the reported CPUID! */
3454 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
3455 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
3458 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3461 env
->cp15
.c15_threadid
= value
& 0xffff;
3464 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3467 /* Wait-for-interrupt (deprecated) */
3468 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
3471 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3474 /* On OMAP there are registers indicating the max/min index of dcache lines
3475 * containing a dirty line; cache flush operations have to reset these.
3477 env
->cp15
.c15_i_max
= 0x000;
3478 env
->cp15
.c15_i_min
= 0xff0;
3481 static const ARMCPRegInfo omap_cp_reginfo
[] = {
3482 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
3483 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
3484 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
3486 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
3487 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3488 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
3490 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
3491 .writefn
= omap_ticonfig_write
},
3492 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
3494 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
3495 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
3496 .access
= PL1_RW
, .resetvalue
= 0xff0,
3497 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
3498 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
3500 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
3501 .writefn
= omap_threadid_write
},
3502 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
3503 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3504 .type
= ARM_CP_NO_RAW
,
3505 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
3506 /* TODO: Peripheral port remap register:
3507 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
3508 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
3511 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
3512 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
3513 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
3514 .writefn
= omap_cachemaint_write
},
3515 { .name
= "C9", .cp
= 15, .crn
= 9,
3516 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
3517 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
3521 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3524 env
->cp15
.c15_cpar
= value
& 0x3fff;
3527 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
3528 { .name
= "XSCALE_CPAR",
3529 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
3530 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
3531 .writefn
= xscale_cpar_write
, },
3532 { .name
= "XSCALE_AUXCR",
3533 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
3534 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
3536 /* XScale specific cache-lockdown: since we have no cache we NOP these
3537 * and hope the guest does not really rely on cache behaviour.
3539 { .name
= "XSCALE_LOCK_ICACHE_LINE",
3540 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
3541 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3542 { .name
= "XSCALE_UNLOCK_ICACHE",
3543 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
3544 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3545 { .name
= "XSCALE_DCACHE_LOCK",
3546 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
3547 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
3548 { .name
= "XSCALE_UNLOCK_DCACHE",
3549 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
3550 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3554 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
3555 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
3556 * implementation of this implementation-defined space.
3557 * Ideally this should eventually disappear in favour of actually
3558 * implementing the correct behaviour for all cores.
3560 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
3561 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3563 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
3568 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
3569 /* Cache status: RAZ because we have no cache so it's always clean */
3570 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
3571 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3576 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
3577 /* We never have a a block transfer operation in progress */
3578 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
3579 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3581 /* The cache ops themselves: these all NOP for QEMU */
3582 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
3583 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3584 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
3585 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3586 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
3587 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3588 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
3589 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3590 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
3591 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3592 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
3593 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3597 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
3598 /* The cache test-and-clean instructions always return (1 << 30)
3599 * to indicate that there are no dirty cache lines.
3601 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
3602 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3603 .resetvalue
= (1 << 30) },
3604 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
3605 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3606 .resetvalue
= (1 << 30) },
3610 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
3611 /* Ignore ReadBuffer accesses */
3612 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
3613 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3614 .access
= PL1_RW
, .resetvalue
= 0,
3615 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
3619 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3621 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3622 unsigned int cur_el
= arm_current_el(env
);
3623 bool secure
= arm_is_secure(env
);
3625 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3626 return env
->cp15
.vpidr_el2
;
3628 return raw_read(env
, ri
);
3631 static uint64_t mpidr_read_val(CPUARMState
*env
)
3633 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
3634 uint64_t mpidr
= cpu
->mp_affinity
;
3636 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
3637 mpidr
|= (1U << 31);
3638 /* Cores which are uniprocessor (non-coherent)
3639 * but still implement the MP extensions set
3640 * bit 30. (For instance, Cortex-R5).
3642 if (cpu
->mp_is_up
) {
3643 mpidr
|= (1u << 30);
3649 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3651 unsigned int cur_el
= arm_current_el(env
);
3652 bool secure
= arm_is_secure(env
);
3654 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3655 return env
->cp15
.vmpidr_el2
;
3657 return mpidr_read_val(env
);
3660 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
3662 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
3663 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
3664 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3666 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3667 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
3668 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3670 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
3671 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
3672 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
3673 offsetof(CPUARMState
, cp15
.par_ns
)} },
3674 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
3675 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3676 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3677 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
3678 .writefn
= vmsa_ttbr_write
, },
3679 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
3680 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3681 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3682 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
3683 .writefn
= vmsa_ttbr_write
, },
3687 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3689 return vfp_get_fpcr(env
);
3692 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3695 vfp_set_fpcr(env
, value
);
3698 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3700 return vfp_get_fpsr(env
);
3703 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3706 vfp_set_fpsr(env
, value
);
3709 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3712 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
3713 return CP_ACCESS_TRAP
;
3715 return CP_ACCESS_OK
;
3718 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3721 env
->daif
= value
& PSTATE_DAIF
;
3724 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
3725 const ARMCPRegInfo
*ri
,
3728 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3729 * SCTLR_EL1.UCI is set.
3731 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
3732 return CP_ACCESS_TRAP
;
3734 return CP_ACCESS_OK
;
3737 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3738 * Page D4-1736 (DDI0487A.b)
3741 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3744 CPUState
*cs
= ENV_GET_CPU(env
);
3745 bool sec
= arm_is_secure_below_el3(env
);
3748 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3749 ARMMMUIdxBit_S1SE1
|
3750 ARMMMUIdxBit_S1SE0
);
3752 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3753 ARMMMUIdxBit_S12NSE1
|
3754 ARMMMUIdxBit_S12NSE0
);
3758 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3761 CPUState
*cs
= ENV_GET_CPU(env
);
3763 if (tlb_force_broadcast(env
)) {
3764 tlbi_aa64_vmalle1is_write(env
, NULL
, value
);
3768 if (arm_is_secure_below_el3(env
)) {
3769 tlb_flush_by_mmuidx(cs
,
3770 ARMMMUIdxBit_S1SE1
|
3771 ARMMMUIdxBit_S1SE0
);
3773 tlb_flush_by_mmuidx(cs
,
3774 ARMMMUIdxBit_S12NSE1
|
3775 ARMMMUIdxBit_S12NSE0
);
3779 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3782 /* Note that the 'ALL' scope must invalidate both stage 1 and
3783 * stage 2 translations, whereas most other scopes only invalidate
3784 * stage 1 translations.
3786 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3787 CPUState
*cs
= CPU(cpu
);
3789 if (arm_is_secure_below_el3(env
)) {
3790 tlb_flush_by_mmuidx(cs
,
3791 ARMMMUIdxBit_S1SE1
|
3792 ARMMMUIdxBit_S1SE0
);
3794 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3795 tlb_flush_by_mmuidx(cs
,
3796 ARMMMUIdxBit_S12NSE1
|
3797 ARMMMUIdxBit_S12NSE0
|
3800 tlb_flush_by_mmuidx(cs
,
3801 ARMMMUIdxBit_S12NSE1
|
3802 ARMMMUIdxBit_S12NSE0
);
3807 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3810 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3811 CPUState
*cs
= CPU(cpu
);
3813 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
3816 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3819 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3820 CPUState
*cs
= CPU(cpu
);
3822 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E3
);
3825 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3828 /* Note that the 'ALL' scope must invalidate both stage 1 and
3829 * stage 2 translations, whereas most other scopes only invalidate
3830 * stage 1 translations.
3832 CPUState
*cs
= ENV_GET_CPU(env
);
3833 bool sec
= arm_is_secure_below_el3(env
);
3834 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
3837 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3838 ARMMMUIdxBit_S1SE1
|
3839 ARMMMUIdxBit_S1SE0
);
3840 } else if (has_el2
) {
3841 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3842 ARMMMUIdxBit_S12NSE1
|
3843 ARMMMUIdxBit_S12NSE0
|
3846 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3847 ARMMMUIdxBit_S12NSE1
|
3848 ARMMMUIdxBit_S12NSE0
);
3852 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3855 CPUState
*cs
= ENV_GET_CPU(env
);
3857 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
3860 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3863 CPUState
*cs
= ENV_GET_CPU(env
);
3865 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E3
);
3868 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3871 /* Invalidate by VA, EL2
3872 * Currently handles both VAE2 and VALE2, since we don't support
3873 * flush-last-level-only.
3875 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3876 CPUState
*cs
= CPU(cpu
);
3877 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3879 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
3882 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3885 /* Invalidate by VA, EL3
3886 * Currently handles both VAE3 and VALE3, since we don't support
3887 * flush-last-level-only.
3889 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3890 CPUState
*cs
= CPU(cpu
);
3891 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3893 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E3
);
3896 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3899 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3900 CPUState
*cs
= CPU(cpu
);
3901 bool sec
= arm_is_secure_below_el3(env
);
3902 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3905 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3906 ARMMMUIdxBit_S1SE1
|
3907 ARMMMUIdxBit_S1SE0
);
3909 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3910 ARMMMUIdxBit_S12NSE1
|
3911 ARMMMUIdxBit_S12NSE0
);
3915 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3918 /* Invalidate by VA, EL1&0 (AArch64 version).
3919 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3920 * since we don't support flush-for-specific-ASID-only or
3921 * flush-last-level-only.
3923 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3924 CPUState
*cs
= CPU(cpu
);
3925 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3927 if (tlb_force_broadcast(env
)) {
3928 tlbi_aa64_vae1is_write(env
, NULL
, value
);
3932 if (arm_is_secure_below_el3(env
)) {
3933 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3934 ARMMMUIdxBit_S1SE1
|
3935 ARMMMUIdxBit_S1SE0
);
3937 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3938 ARMMMUIdxBit_S12NSE1
|
3939 ARMMMUIdxBit_S12NSE0
);
3943 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3946 CPUState
*cs
= ENV_GET_CPU(env
);
3947 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3949 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3953 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3956 CPUState
*cs
= ENV_GET_CPU(env
);
3957 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3959 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3963 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3966 /* Invalidate by IPA. This has to invalidate any structures that
3967 * contain only stage 2 translation information, but does not need
3968 * to apply to structures that contain combined stage 1 and stage 2
3969 * translation information.
3970 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3972 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3973 CPUState
*cs
= CPU(cpu
);
3976 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3980 pageaddr
= sextract64(value
<< 12, 0, 48);
3982 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
3985 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3988 CPUState
*cs
= ENV_GET_CPU(env
);
3991 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3995 pageaddr
= sextract64(value
<< 12, 0, 48);
3997 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
4001 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4004 /* We don't implement EL2, so the only control on DC ZVA is the
4005 * bit in the SCTLR which can prohibit access for EL0.
4007 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
4008 return CP_ACCESS_TRAP
;
4010 return CP_ACCESS_OK
;
4013 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4015 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4016 int dzp_bit
= 1 << 4;
4018 /* DZP indicates whether DC ZVA access is allowed */
4019 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
4022 return cpu
->dcz_blocksize
| dzp_bit
;
4025 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4028 if (!(env
->pstate
& PSTATE_SP
)) {
4029 /* Access to SP_EL0 is undefined if it's being used as
4030 * the stack pointer.
4032 return CP_ACCESS_TRAP_UNCATEGORIZED
;
4034 return CP_ACCESS_OK
;
4037 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
4039 return env
->pstate
& PSTATE_SP
;
4042 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
4044 update_spsel(env
, val
);
4047 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4050 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4052 if (raw_read(env
, ri
) == value
) {
4053 /* Skip the TLB flush if nothing actually changed; Linux likes
4054 * to do a lot of pointless SCTLR writes.
4059 if (arm_feature(env
, ARM_FEATURE_PMSA
) && !cpu
->has_mpu
) {
4060 /* M bit is RAZ/WI for PMSA with no MPU implemented */
4064 raw_write(env
, ri
, value
);
4065 /* ??? Lots of these bits are not implemented. */
4066 /* This may enable/disable the MMU, so do a TLB flush. */
4067 tlb_flush(CPU(cpu
));
4070 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4073 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
4074 return CP_ACCESS_TRAP_FP_EL2
;
4076 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
4077 return CP_ACCESS_TRAP_FP_EL3
;
4079 return CP_ACCESS_OK
;
4082 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4085 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
4088 static const ARMCPRegInfo v8_cp_reginfo
[] = {
4089 /* Minimal set of EL0-visible registers. This will need to be expanded
4090 * significantly for system emulation of AArch64 CPUs.
4092 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
4093 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
4094 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
4095 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
4096 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
4097 .type
= ARM_CP_NO_RAW
,
4098 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
4099 .fieldoffset
= offsetof(CPUARMState
, daif
),
4100 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
4101 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
4102 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
4103 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4104 .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
4105 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
4106 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
4107 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
4108 .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
4109 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
4110 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
4111 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
4112 .readfn
= aa64_dczid_read
},
4113 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
4114 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
4115 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
4116 #ifndef CONFIG_USER_ONLY
4117 /* Avoid overhead of an access check that always passes in user-mode */
4118 .accessfn
= aa64_zva_access
,
4121 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
4122 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
4123 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
4124 /* Cache ops: all NOPs since we don't emulate caches */
4125 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
4126 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
4127 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4128 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
4129 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
4130 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4131 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
4132 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
4133 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4134 .accessfn
= aa64_cacheop_access
},
4135 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
4136 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
4137 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4138 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
4139 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
4140 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4141 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
4142 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
4143 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4144 .accessfn
= aa64_cacheop_access
},
4145 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
4146 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
4147 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4148 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
4149 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
4150 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4151 .accessfn
= aa64_cacheop_access
},
4152 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
4153 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
4154 .access
= PL0_W
, .type
= ARM_CP_NOP
,
4155 .accessfn
= aa64_cacheop_access
},
4156 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
4157 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
4158 .access
= PL1_W
, .type
= ARM_CP_NOP
},
4159 /* TLBI operations */
4160 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
4161 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
4162 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4163 .writefn
= tlbi_aa64_vmalle1is_write
},
4164 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
4165 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
4166 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4167 .writefn
= tlbi_aa64_vae1is_write
},
4168 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
4169 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
4170 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4171 .writefn
= tlbi_aa64_vmalle1is_write
},
4172 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
4173 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
4174 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4175 .writefn
= tlbi_aa64_vae1is_write
},
4176 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
4177 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
4178 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4179 .writefn
= tlbi_aa64_vae1is_write
},
4180 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
4181 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
4182 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4183 .writefn
= tlbi_aa64_vae1is_write
},
4184 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
4185 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
4186 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4187 .writefn
= tlbi_aa64_vmalle1_write
},
4188 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
4189 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
4190 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4191 .writefn
= tlbi_aa64_vae1_write
},
4192 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
4193 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
4194 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4195 .writefn
= tlbi_aa64_vmalle1_write
},
4196 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
4197 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
4198 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4199 .writefn
= tlbi_aa64_vae1_write
},
4200 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
4201 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
4202 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4203 .writefn
= tlbi_aa64_vae1_write
},
4204 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
4205 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
4206 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4207 .writefn
= tlbi_aa64_vae1_write
},
4208 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
4209 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
4210 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4211 .writefn
= tlbi_aa64_ipas2e1is_write
},
4212 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
4213 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
4214 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4215 .writefn
= tlbi_aa64_ipas2e1is_write
},
4216 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
4217 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4218 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4219 .writefn
= tlbi_aa64_alle1is_write
},
4220 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
4221 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
4222 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4223 .writefn
= tlbi_aa64_alle1is_write
},
4224 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
4225 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
4226 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4227 .writefn
= tlbi_aa64_ipas2e1_write
},
4228 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
4229 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
4230 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4231 .writefn
= tlbi_aa64_ipas2e1_write
},
4232 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
4233 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4234 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4235 .writefn
= tlbi_aa64_alle1_write
},
4236 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
4237 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
4238 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4239 .writefn
= tlbi_aa64_alle1is_write
},
4240 #ifndef CONFIG_USER_ONLY
4241 /* 64 bit address translation operations */
4242 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
4243 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
4244 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4245 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
4246 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
4247 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4248 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
4249 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
4250 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4251 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
4252 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
4253 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4254 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
4255 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
4256 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4257 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
4258 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
4259 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4260 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
4261 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
4262 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4263 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
4264 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
4265 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4266 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
4267 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
4268 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
4269 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4270 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
4271 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
4272 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4273 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
4274 .type
= ARM_CP_ALIAS
,
4275 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
4276 .access
= PL1_RW
, .resetvalue
= 0,
4277 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
4278 .writefn
= par_write
},
4280 /* TLB invalidate last level of translation table walk */
4281 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
4282 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
4283 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
4284 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
4285 .writefn
= tlbimvaa_is_write
},
4286 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
4287 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
4288 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
4289 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
4290 { .name
= "TLBIMVALH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
4291 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4292 .writefn
= tlbimva_hyp_write
},
4293 { .name
= "TLBIMVALHIS",
4294 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
4295 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4296 .writefn
= tlbimva_hyp_is_write
},
4297 { .name
= "TLBIIPAS2",
4298 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
4299 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4300 .writefn
= tlbiipas2_write
},
4301 { .name
= "TLBIIPAS2IS",
4302 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
4303 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4304 .writefn
= tlbiipas2_is_write
},
4305 { .name
= "TLBIIPAS2L",
4306 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
4307 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4308 .writefn
= tlbiipas2_write
},
4309 { .name
= "TLBIIPAS2LIS",
4310 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
4311 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4312 .writefn
= tlbiipas2_is_write
},
4313 /* 32 bit cache operations */
4314 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
4315 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4316 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
4317 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4318 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
4319 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4320 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
4321 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4322 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
4323 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4324 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
4325 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4326 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
4327 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4328 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
4329 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4330 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
4331 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4332 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
4333 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4334 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
4335 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4336 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
4337 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4338 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
4339 .type
= ARM_CP_NOP
, .access
= PL1_W
},
4340 /* MMU Domain access control / MPU write buffer control */
4341 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
4342 .access
= PL1_RW
, .resetvalue
= 0,
4343 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
4344 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
4345 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
4346 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
4347 .type
= ARM_CP_ALIAS
,
4348 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
4350 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
4351 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
4352 .type
= ARM_CP_ALIAS
,
4353 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
4355 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
4356 /* We rely on the access checks not allowing the guest to write to the
4357 * state field when SPSel indicates that it's being used as the stack
4360 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
4361 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
4362 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
4363 .type
= ARM_CP_ALIAS
,
4364 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
4365 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
4366 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
4367 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
4368 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
4369 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
4370 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
4371 .type
= ARM_CP_NO_RAW
,
4372 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
4373 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
4374 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
4375 .type
= ARM_CP_ALIAS
,
4376 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
4377 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
4378 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
4379 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
4380 .access
= PL2_RW
, .resetvalue
= 0,
4381 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
4382 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
4383 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
4384 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
4385 .access
= PL2_RW
, .resetvalue
= 0,
4386 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
4387 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
4388 .type
= ARM_CP_ALIAS
,
4389 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
4391 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
4392 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
4393 .type
= ARM_CP_ALIAS
,
4394 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
4396 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
4397 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
4398 .type
= ARM_CP_ALIAS
,
4399 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
4401 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
4402 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
4403 .type
= ARM_CP_ALIAS
,
4404 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
4406 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
4407 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
4408 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
4410 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
4411 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
4412 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
4413 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
4414 .writefn
= sdcr_write
,
4415 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
4419 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
4420 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
4421 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4422 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
4424 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
4425 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4426 .type
= ARM_CP_NO_RAW
,
4427 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4429 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4430 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
4431 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
4432 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4433 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
4434 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
4436 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4437 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4438 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
4439 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4440 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4441 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
4442 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4444 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
4445 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
4446 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4447 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4448 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
4449 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4451 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
4452 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
4453 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4455 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
4456 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
4457 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4459 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
4460 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
4461 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4463 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4464 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
4465 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4466 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4467 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4468 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4469 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4470 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
4471 .cp
= 15, .opc1
= 6, .crm
= 2,
4472 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4473 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
4474 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
4475 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
4476 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4477 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4478 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
4479 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4480 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4481 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
4482 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4483 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
4484 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
4485 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4486 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
4487 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4489 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4490 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
4491 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4492 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
4493 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
4494 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4495 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
4496 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4498 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
4499 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
4500 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4501 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
4502 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
4504 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
4505 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
4506 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4507 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4508 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
4509 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4510 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4511 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
4512 .access
= PL2_RW
, .accessfn
= access_tda
,
4513 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4514 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4515 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4516 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
4517 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4518 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4519 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
4520 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4521 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4522 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
4523 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4524 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
4525 .type
= ARM_CP_CONST
,
4526 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
4527 .access
= PL2_RW
, .resetvalue
= 0 },
4531 /* Ditto, but for registers which exist in ARMv8 but not v7 */
4532 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo
[] = {
4533 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
4534 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
4536 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4540 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
4542 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4543 uint64_t valid_mask
= HCR_MASK
;
4545 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
4546 valid_mask
&= ~HCR_HCD
;
4547 } else if (cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
4548 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
4549 * However, if we're using the SMC PSCI conduit then QEMU is
4550 * effectively acting like EL3 firmware and so the guest at
4551 * EL2 should retain the ability to prevent EL1 from being
4552 * able to make SMC calls into the ersatz firmware, so in
4553 * that case HCR.TSC should be read/write.
4555 valid_mask
&= ~HCR_TSC
;
4557 if (cpu_isar_feature(aa64_lor
, cpu
)) {
4558 valid_mask
|= HCR_TLOR
;
4560 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
4561 valid_mask
|= HCR_API
| HCR_APK
;
4564 /* Clear RES0 bits. */
4565 value
&= valid_mask
;
4567 /* These bits change the MMU setup:
4568 * HCR_VM enables stage 2 translation
4569 * HCR_PTW forbids certain page-table setups
4570 * HCR_DC Disables stage1 and enables stage2 translation
4572 if ((env
->cp15
.hcr_el2
^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
4573 tlb_flush(CPU(cpu
));
4575 env
->cp15
.hcr_el2
= value
;
4578 * Updates to VI and VF require us to update the status of
4579 * virtual interrupts, which are the logical OR of these bits
4580 * and the state of the input lines from the GIC. (This requires
4581 * that we have the iothread lock, which is done by marking the
4582 * reginfo structs as ARM_CP_IO.)
4583 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
4584 * possible for it to be taken immediately, because VIRQ and
4585 * VFIQ are masked unless running at EL0 or EL1, and HCR
4586 * can only be written at EL2.
4588 g_assert(qemu_mutex_iothread_locked());
4589 arm_cpu_update_virq(cpu
);
4590 arm_cpu_update_vfiq(cpu
);
4593 static void hcr_writehigh(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4596 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4597 value
= deposit64(env
->cp15
.hcr_el2
, 32, 32, value
);
4598 hcr_write(env
, NULL
, value
);
4601 static void hcr_writelow(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4604 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4605 value
= deposit64(env
->cp15
.hcr_el2
, 0, 32, value
);
4606 hcr_write(env
, NULL
, value
);
4610 * Return the effective value of HCR_EL2.
4611 * Bits that are not included here:
4612 * RW (read from SCR_EL3.RW as needed)
4614 uint64_t arm_hcr_el2_eff(CPUARMState
*env
)
4616 uint64_t ret
= env
->cp15
.hcr_el2
;
4618 if (arm_is_secure_below_el3(env
)) {
4620 * "This register has no effect if EL2 is not enabled in the
4621 * current Security state". This is ARMv8.4-SecEL2 speak for
4622 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4624 * Prior to that, the language was "In an implementation that
4625 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4626 * as if this field is 0 for all purposes other than a direct
4627 * read or write access of HCR_EL2". With lots of enumeration
4628 * on a per-field basis. In current QEMU, this is condition
4629 * is arm_is_secure_below_el3.
4631 * Since the v8.4 language applies to the entire register, and
4632 * appears to be backward compatible, use that.
4635 } else if (ret
& HCR_TGE
) {
4636 /* These bits are up-to-date as of ARMv8.4. */
4637 if (ret
& HCR_E2H
) {
4638 ret
&= ~(HCR_VM
| HCR_FMO
| HCR_IMO
| HCR_AMO
|
4639 HCR_BSU_MASK
| HCR_DC
| HCR_TWI
| HCR_TWE
|
4640 HCR_TID0
| HCR_TID2
| HCR_TPCP
| HCR_TPU
|
4641 HCR_TDZ
| HCR_CD
| HCR_ID
| HCR_MIOCNCE
);
4643 ret
|= HCR_FMO
| HCR_IMO
| HCR_AMO
;
4645 ret
&= ~(HCR_SWIO
| HCR_PTW
| HCR_VF
| HCR_VI
| HCR_VSE
|
4646 HCR_FB
| HCR_TID1
| HCR_TID3
| HCR_TSC
| HCR_TACR
|
4647 HCR_TSW
| HCR_TTLB
| HCR_TVM
| HCR_HCD
| HCR_TRVM
|
4654 static const ARMCPRegInfo el2_cp_reginfo
[] = {
4655 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
4657 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4658 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4659 .writefn
= hcr_write
},
4660 { .name
= "HCR", .state
= ARM_CP_STATE_AA32
,
4661 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
4662 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4663 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4664 .writefn
= hcr_writelow
},
4665 { .name
= "HACR_EL2", .state
= ARM_CP_STATE_BOTH
,
4666 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 7,
4667 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4668 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
4669 .type
= ARM_CP_ALIAS
,
4670 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
4672 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
4673 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
4674 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
4675 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
4676 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4677 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
4678 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
4679 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
4680 .type
= ARM_CP_ALIAS
,
4681 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
4683 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el
[2]) },
4684 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
4685 .type
= ARM_CP_ALIAS
,
4686 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
4688 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
4689 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4690 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
4691 .access
= PL2_RW
, .writefn
= vbar_write
,
4692 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
4694 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
4695 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
4696 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
4697 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
4698 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4699 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
4700 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
4701 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
4702 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4703 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
4704 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
4706 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
4707 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
4708 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
4709 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
4710 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4711 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
4712 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4714 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4715 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
4716 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
4717 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4719 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
4720 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
4721 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4723 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
4724 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
4725 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4727 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4728 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
4730 /* no .writefn needed as this can't cause an ASID change;
4731 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4733 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
4734 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
4735 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4736 .type
= ARM_CP_ALIAS
,
4737 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4738 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4739 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
4740 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4742 /* no .writefn needed as this can't cause an ASID change;
4743 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4745 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4746 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
4747 .cp
= 15, .opc1
= 6, .crm
= 2,
4748 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4749 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4750 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
4751 .writefn
= vttbr_write
},
4752 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
4753 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
4754 .access
= PL2_RW
, .writefn
= vttbr_write
,
4755 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
4756 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4757 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
4758 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4759 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
4760 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4761 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
4762 .access
= PL2_RW
, .resetvalue
= 0,
4763 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
4764 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
4765 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
4766 .access
= PL2_RW
, .resetvalue
= 0,
4767 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4768 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
4769 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4770 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4771 { .name
= "TLBIALLNSNH",
4772 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4773 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4774 .writefn
= tlbiall_nsnh_write
},
4775 { .name
= "TLBIALLNSNHIS",
4776 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4777 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4778 .writefn
= tlbiall_nsnh_is_write
},
4779 { .name
= "TLBIALLH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
4780 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4781 .writefn
= tlbiall_hyp_write
},
4782 { .name
= "TLBIALLHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
4783 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4784 .writefn
= tlbiall_hyp_is_write
},
4785 { .name
= "TLBIMVAH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
4786 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4787 .writefn
= tlbimva_hyp_write
},
4788 { .name
= "TLBIMVAHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
4789 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4790 .writefn
= tlbimva_hyp_is_write
},
4791 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
4792 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
4793 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4794 .writefn
= tlbi_aa64_alle2_write
},
4795 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
4796 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
4797 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4798 .writefn
= tlbi_aa64_vae2_write
},
4799 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
4800 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
4801 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4802 .writefn
= tlbi_aa64_vae2_write
},
4803 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
4804 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
4805 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4806 .writefn
= tlbi_aa64_alle2is_write
},
4807 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
4808 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
4809 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4810 .writefn
= tlbi_aa64_vae2is_write
},
4811 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
4812 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
4813 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4814 .writefn
= tlbi_aa64_vae2is_write
},
4815 #ifndef CONFIG_USER_ONLY
4816 /* Unlike the other EL2-related AT operations, these must
4817 * UNDEF from EL3 if EL2 is not implemented, which is why we
4818 * define them here rather than with the rest of the AT ops.
4820 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
4821 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
4822 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
4823 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4824 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
4825 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
4826 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
4827 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4828 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4829 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4830 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4831 * to behave as if SCR.NS was 1.
4833 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
4835 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
4836 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
4838 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
4839 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4840 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
4841 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4842 * reset values as IMPDEF. We choose to reset to 3 to comply with
4843 * both ARMv7 and ARMv8.
4845 .access
= PL2_RW
, .resetvalue
= 3,
4846 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
4847 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
4848 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
4849 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
4850 .writefn
= gt_cntvoff_write
,
4851 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
4852 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
4853 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
4854 .writefn
= gt_cntvoff_write
,
4855 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
4856 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
4857 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
4858 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
4859 .type
= ARM_CP_IO
, .access
= PL2_RW
,
4860 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
4861 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
4862 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
4863 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
4864 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
4865 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
4866 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
4867 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
4868 .resetfn
= gt_hyp_timer_reset
,
4869 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
4870 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4872 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
4874 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
4876 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
4878 /* The only field of MDCR_EL2 that has a defined architectural reset value
4879 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4880 * don't implement any PMU event counters, so using zero as a reset
4881 * value for MDCR_EL2 is okay
4883 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4884 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
4885 .access
= PL2_RW
, .resetvalue
= 0,
4886 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
4887 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
4888 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4889 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4890 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
4891 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
4892 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4894 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
4895 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4896 .cp
= 15, .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
4898 .fieldoffset
= offsetof(CPUARMState
, cp15
.hstr_el2
) },
4902 static const ARMCPRegInfo el2_v8_cp_reginfo
[] = {
4903 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
4904 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
4905 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
4907 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.hcr_el2
),
4908 .writefn
= hcr_writehigh
},
4912 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4915 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4916 * At Secure EL1 it traps to EL3.
4918 if (arm_current_el(env
) == 3) {
4919 return CP_ACCESS_OK
;
4921 if (arm_is_secure_below_el3(env
)) {
4922 return CP_ACCESS_TRAP_EL3
;
4924 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4926 return CP_ACCESS_OK
;
4928 return CP_ACCESS_TRAP_UNCATEGORIZED
;
4931 static const ARMCPRegInfo el3_cp_reginfo
[] = {
4932 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
4933 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
4934 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
4935 .resetvalue
= 0, .writefn
= scr_write
},
4936 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
4937 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
4938 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
4939 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
4940 .writefn
= scr_write
},
4941 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
4942 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
4943 .access
= PL3_RW
, .resetvalue
= 0,
4944 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
4946 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
4947 .access
= PL3_RW
, .resetvalue
= 0,
4948 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
4949 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4950 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
4951 .writefn
= vbar_write
, .resetvalue
= 0,
4952 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
4953 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
4954 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
4955 .access
= PL3_RW
, .resetvalue
= 0,
4956 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
4957 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
4958 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
4960 /* no .writefn needed as this can't cause an ASID change;
4961 * we must provide a .raw_writefn and .resetfn because we handle
4962 * reset and migration for the AArch32 TTBCR(S), which might be
4963 * using mask and base_mask.
4965 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
4966 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
4967 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
4968 .type
= ARM_CP_ALIAS
,
4969 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
4971 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
4972 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
4973 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
4974 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
4975 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
4976 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
4977 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
4978 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
4979 .type
= ARM_CP_ALIAS
,
4980 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
4982 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
4983 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4984 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
4985 .access
= PL3_RW
, .writefn
= vbar_write
,
4986 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
4988 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
4989 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
4990 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
4991 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
4992 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
4993 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
4994 .access
= PL3_RW
, .resetvalue
= 0,
4995 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
4996 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
4997 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
4998 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5000 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
5001 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
5002 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5004 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
5005 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
5006 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5008 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
5009 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
5010 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5011 .writefn
= tlbi_aa64_alle3is_write
},
5012 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
5013 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
5014 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5015 .writefn
= tlbi_aa64_vae3is_write
},
5016 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
5017 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
5018 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5019 .writefn
= tlbi_aa64_vae3is_write
},
5020 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
5021 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
5022 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5023 .writefn
= tlbi_aa64_alle3_write
},
5024 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
5025 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
5026 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5027 .writefn
= tlbi_aa64_vae3_write
},
5028 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
5029 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
5030 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
5031 .writefn
= tlbi_aa64_vae3_write
},
5035 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5038 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
5039 * but the AArch32 CTR has its own reginfo struct)
5041 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
5042 return CP_ACCESS_TRAP
;
5044 return CP_ACCESS_OK
;
5047 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5050 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
5051 * read via a bit in OSLSR_EL1.
5055 if (ri
->state
== ARM_CP_STATE_AA32
) {
5056 oslock
= (value
== 0xC5ACCE55);
5061 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
5064 static const ARMCPRegInfo debug_cp_reginfo
[] = {
5065 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
5066 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
5067 * unlike DBGDRAR it is never accessible from EL0.
5068 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
5071 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
5072 .access
= PL0_R
, .accessfn
= access_tdra
,
5073 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5074 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
5075 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
5076 .access
= PL1_R
, .accessfn
= access_tdra
,
5077 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5078 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
5079 .access
= PL0_R
, .accessfn
= access_tdra
,
5080 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5081 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
5082 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
5083 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
5084 .access
= PL1_RW
, .accessfn
= access_tda
,
5085 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
5087 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
5088 * We don't implement the configurable EL0 access.
5090 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
5091 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
5092 .type
= ARM_CP_ALIAS
,
5093 .access
= PL1_R
, .accessfn
= access_tda
,
5094 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
5095 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
5096 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
5097 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
5098 .accessfn
= access_tdosa
,
5099 .writefn
= oslar_write
},
5100 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
5101 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
5102 .access
= PL1_R
, .resetvalue
= 10,
5103 .accessfn
= access_tdosa
,
5104 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
5105 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
5106 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
5107 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
5108 .access
= PL1_RW
, .accessfn
= access_tdosa
,
5109 .type
= ARM_CP_NOP
},
5110 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
5111 * implement vector catch debug events yet.
5114 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
5115 .access
= PL1_RW
, .accessfn
= access_tda
,
5116 .type
= ARM_CP_NOP
},
5117 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
5118 * to save and restore a 32-bit guest's DBGVCR)
5120 { .name
= "DBGVCR32_EL2", .state
= ARM_CP_STATE_AA64
,
5121 .opc0
= 2, .opc1
= 4, .crn
= 0, .crm
= 7, .opc2
= 0,
5122 .access
= PL2_RW
, .accessfn
= access_tda
,
5123 .type
= ARM_CP_NOP
},
5124 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
5125 * Channel but Linux may try to access this register. The 32-bit
5126 * alias is DBGDCCINT.
5128 { .name
= "MDCCINT_EL1", .state
= ARM_CP_STATE_BOTH
,
5129 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
5130 .access
= PL1_RW
, .accessfn
= access_tda
,
5131 .type
= ARM_CP_NOP
},
5135 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
5136 /* 64 bit access versions of the (dummy) debug registers */
5137 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
5138 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
5139 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
5140 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
5144 /* Return the exception level to which exceptions should be taken
5145 * via SVEAccessTrap. If an exception should be routed through
5146 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
5147 * take care of raising that exception.
5148 * C.f. the ARM pseudocode function CheckSVEEnabled.
5150 int sve_exception_el(CPUARMState
*env
, int el
)
5152 #ifndef CONFIG_USER_ONLY
5154 bool disabled
= false;
5156 /* The CPACR.ZEN controls traps to EL1:
5157 * 0, 2 : trap EL0 and EL1 accesses
5158 * 1 : trap only EL0 accesses
5159 * 3 : trap no accesses
5161 if (!extract32(env
->cp15
.cpacr_el1
, 16, 1)) {
5163 } else if (!extract32(env
->cp15
.cpacr_el1
, 17, 1)) {
5168 return (arm_feature(env
, ARM_FEATURE_EL2
)
5169 && (arm_hcr_el2_eff(env
) & HCR_TGE
) ? 2 : 1);
5172 /* Check CPACR.FPEN. */
5173 if (!extract32(env
->cp15
.cpacr_el1
, 20, 1)) {
5175 } else if (!extract32(env
->cp15
.cpacr_el1
, 21, 1)) {
5183 /* CPTR_EL2. Since TZ and TFP are positive,
5184 * they will be zero when EL2 is not present.
5186 if (el
<= 2 && !arm_is_secure_below_el3(env
)) {
5187 if (env
->cp15
.cptr_el
[2] & CPTR_TZ
) {
5190 if (env
->cp15
.cptr_el
[2] & CPTR_TFP
) {
5195 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
5196 if (arm_feature(env
, ARM_FEATURE_EL3
)
5197 && !(env
->cp15
.cptr_el
[3] & CPTR_EZ
)) {
5205 * Given that SVE is enabled, return the vector length for EL.
5207 uint32_t sve_zcr_len_for_el(CPUARMState
*env
, int el
)
5209 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5210 uint32_t zcr_len
= cpu
->sve_max_vq
- 1;
5213 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[1]);
5215 if (el
< 2 && arm_feature(env
, ARM_FEATURE_EL2
)) {
5216 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[2]);
5218 if (el
< 3 && arm_feature(env
, ARM_FEATURE_EL3
)) {
5219 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[3]);
5224 static void zcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5227 int cur_el
= arm_current_el(env
);
5228 int old_len
= sve_zcr_len_for_el(env
, cur_el
);
5231 /* Bits other than [3:0] are RAZ/WI. */
5232 raw_write(env
, ri
, value
& 0xf);
5235 * Because we arrived here, we know both FP and SVE are enabled;
5236 * otherwise we would have trapped access to the ZCR_ELn register.
5238 new_len
= sve_zcr_len_for_el(env
, cur_el
);
5239 if (new_len
< old_len
) {
5240 aarch64_sve_narrow_vq(env
, new_len
+ 1);
5244 static const ARMCPRegInfo zcr_el1_reginfo
= {
5245 .name
= "ZCR_EL1", .state
= ARM_CP_STATE_AA64
,
5246 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 2, .opc2
= 0,
5247 .access
= PL1_RW
, .type
= ARM_CP_SVE
,
5248 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[1]),
5249 .writefn
= zcr_write
, .raw_writefn
= raw_write
5252 static const ARMCPRegInfo zcr_el2_reginfo
= {
5253 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
5254 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
5255 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
5256 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[2]),
5257 .writefn
= zcr_write
, .raw_writefn
= raw_write
5260 static const ARMCPRegInfo zcr_no_el2_reginfo
= {
5261 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
5262 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
5263 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
5264 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
5267 static const ARMCPRegInfo zcr_el3_reginfo
= {
5268 .name
= "ZCR_EL3", .state
= ARM_CP_STATE_AA64
,
5269 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 2, .opc2
= 0,
5270 .access
= PL3_RW
, .type
= ARM_CP_SVE
,
5271 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[3]),
5272 .writefn
= zcr_write
, .raw_writefn
= raw_write
5275 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
5277 CPUARMState
*env
= &cpu
->env
;
5279 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
5280 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
5282 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
5284 if (env
->cpu_watchpoint
[n
]) {
5285 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
5286 env
->cpu_watchpoint
[n
] = NULL
;
5289 if (!extract64(wcr
, 0, 1)) {
5290 /* E bit clear : watchpoint disabled */
5294 switch (extract64(wcr
, 3, 2)) {
5296 /* LSC 00 is reserved and must behave as if the wp is disabled */
5299 flags
|= BP_MEM_READ
;
5302 flags
|= BP_MEM_WRITE
;
5305 flags
|= BP_MEM_ACCESS
;
5309 /* Attempts to use both MASK and BAS fields simultaneously are
5310 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
5311 * thus generating a watchpoint for every byte in the masked region.
5313 mask
= extract64(wcr
, 24, 4);
5314 if (mask
== 1 || mask
== 2) {
5315 /* Reserved values of MASK; we must act as if the mask value was
5316 * some non-reserved value, or as if the watchpoint were disabled.
5317 * We choose the latter.
5321 /* Watchpoint covers an aligned area up to 2GB in size */
5323 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
5324 * whether the watchpoint fires when the unmasked bits match; we opt
5325 * to generate the exceptions.
5329 /* Watchpoint covers bytes defined by the byte address select bits */
5330 int bas
= extract64(wcr
, 5, 8);
5334 /* This must act as if the watchpoint is disabled */
5338 if (extract64(wvr
, 2, 1)) {
5339 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
5340 * ignored, and BAS[3:0] define which bytes to watch.
5344 /* The BAS bits are supposed to be programmed to indicate a contiguous
5345 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
5346 * we fire for each byte in the word/doubleword addressed by the WVR.
5347 * We choose to ignore any non-zero bits after the first range of 1s.
5349 basstart
= ctz32(bas
);
5350 len
= cto32(bas
>> basstart
);
5354 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
5355 &env
->cpu_watchpoint
[n
]);
5358 void hw_watchpoint_update_all(ARMCPU
*cpu
)
5361 CPUARMState
*env
= &cpu
->env
;
5363 /* Completely clear out existing QEMU watchpoints and our array, to
5364 * avoid possible stale entries following migration load.
5366 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
5367 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
5369 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
5370 hw_watchpoint_update(cpu
, i
);
5374 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5377 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5380 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
5381 * register reads and behaves as if values written are sign extended.
5382 * Bits [1:0] are RES0.
5384 value
= sextract64(value
, 0, 49) & ~3ULL;
5386 raw_write(env
, ri
, value
);
5387 hw_watchpoint_update(cpu
, i
);
5390 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5393 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5396 raw_write(env
, ri
, value
);
5397 hw_watchpoint_update(cpu
, i
);
5400 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
5402 CPUARMState
*env
= &cpu
->env
;
5403 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
5404 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
5409 if (env
->cpu_breakpoint
[n
]) {
5410 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
5411 env
->cpu_breakpoint
[n
] = NULL
;
5414 if (!extract64(bcr
, 0, 1)) {
5415 /* E bit clear : watchpoint disabled */
5419 bt
= extract64(bcr
, 20, 4);
5422 case 4: /* unlinked address mismatch (reserved if AArch64) */
5423 case 5: /* linked address mismatch (reserved if AArch64) */
5424 qemu_log_mask(LOG_UNIMP
,
5425 "arm: address mismatch breakpoint types not implemented\n");
5427 case 0: /* unlinked address match */
5428 case 1: /* linked address match */
5430 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
5431 * we behave as if the register was sign extended. Bits [1:0] are
5432 * RES0. The BAS field is used to allow setting breakpoints on 16
5433 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
5434 * a bp will fire if the addresses covered by the bp and the addresses
5435 * covered by the insn overlap but the insn doesn't start at the
5436 * start of the bp address range. We choose to require the insn and
5437 * the bp to have the same address. The constraints on writing to
5438 * BAS enforced in dbgbcr_write mean we have only four cases:
5439 * 0b0000 => no breakpoint
5440 * 0b0011 => breakpoint on addr
5441 * 0b1100 => breakpoint on addr + 2
5442 * 0b1111 => breakpoint on addr
5443 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
5445 int bas
= extract64(bcr
, 5, 4);
5446 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
5455 case 2: /* unlinked context ID match */
5456 case 8: /* unlinked VMID match (reserved if no EL2) */
5457 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
5458 qemu_log_mask(LOG_UNIMP
,
5459 "arm: unlinked context breakpoint types not implemented\n");
5461 case 9: /* linked VMID match (reserved if no EL2) */
5462 case 11: /* linked context ID and VMID match (reserved if no EL2) */
5463 case 3: /* linked context ID match */
5465 /* We must generate no events for Linked context matches (unless
5466 * they are linked to by some other bp/wp, which is handled in
5467 * updates for the linking bp/wp). We choose to also generate no events
5468 * for reserved values.
5473 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
5476 void hw_breakpoint_update_all(ARMCPU
*cpu
)
5479 CPUARMState
*env
= &cpu
->env
;
5481 /* Completely clear out existing QEMU breakpoints and our array, to
5482 * avoid possible stale entries following migration load.
5484 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
5485 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
5487 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
5488 hw_breakpoint_update(cpu
, i
);
5492 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5495 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5498 raw_write(env
, ri
, value
);
5499 hw_breakpoint_update(cpu
, i
);
5502 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5505 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5508 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
5511 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
5512 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
5514 raw_write(env
, ri
, value
);
5515 hw_breakpoint_update(cpu
, i
);
5518 static void define_debug_regs(ARMCPU
*cpu
)
5520 /* Define v7 and v8 architectural debug registers.
5521 * These are just dummy implementations for now.
5524 int wrps
, brps
, ctx_cmps
;
5525 ARMCPRegInfo dbgdidr
= {
5526 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
5527 .access
= PL0_R
, .accessfn
= access_tda
,
5528 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
5531 /* Note that all these register fields hold "number of Xs minus 1". */
5532 brps
= extract32(cpu
->dbgdidr
, 24, 4);
5533 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
5534 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
5536 assert(ctx_cmps
<= brps
);
5538 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
5539 * of the debug registers such as number of breakpoints;
5540 * check that if they both exist then they agree.
5542 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
5543 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
5544 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
5545 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
5548 define_one_arm_cp_reg(cpu
, &dbgdidr
);
5549 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
5551 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
5552 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
5555 for (i
= 0; i
< brps
+ 1; i
++) {
5556 ARMCPRegInfo dbgregs
[] = {
5557 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
5558 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
5559 .access
= PL1_RW
, .accessfn
= access_tda
,
5560 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
5561 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
5563 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
5564 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
5565 .access
= PL1_RW
, .accessfn
= access_tda
,
5566 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
5567 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
5571 define_arm_cp_regs(cpu
, dbgregs
);
5574 for (i
= 0; i
< wrps
+ 1; i
++) {
5575 ARMCPRegInfo dbgregs
[] = {
5576 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
5577 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
5578 .access
= PL1_RW
, .accessfn
= access_tda
,
5579 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
5580 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
5582 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
5583 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
5584 .access
= PL1_RW
, .accessfn
= access_tda
,
5585 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
5586 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
5590 define_arm_cp_regs(cpu
, dbgregs
);
5594 /* We don't know until after realize whether there's a GICv3
5595 * attached, and that is what registers the gicv3 sysregs.
5596 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5599 static uint64_t id_pfr1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5601 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5602 uint64_t pfr1
= cpu
->id_pfr1
;
5604 if (env
->gicv3state
) {
5610 static uint64_t id_aa64pfr0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5612 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5613 uint64_t pfr0
= cpu
->isar
.id_aa64pfr0
;
5615 if (env
->gicv3state
) {
5621 /* Shared logic between LORID and the rest of the LOR* registers.
5622 * Secure state has already been delt with.
5624 static CPAccessResult
access_lor_ns(CPUARMState
*env
)
5626 int el
= arm_current_el(env
);
5628 if (el
< 2 && (arm_hcr_el2_eff(env
) & HCR_TLOR
)) {
5629 return CP_ACCESS_TRAP_EL2
;
5631 if (el
< 3 && (env
->cp15
.scr_el3
& SCR_TLOR
)) {
5632 return CP_ACCESS_TRAP_EL3
;
5634 return CP_ACCESS_OK
;
5637 static CPAccessResult
access_lorid(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5640 if (arm_is_secure_below_el3(env
)) {
5641 /* Access ok in secure mode. */
5642 return CP_ACCESS_OK
;
5644 return access_lor_ns(env
);
5647 static CPAccessResult
access_lor_other(CPUARMState
*env
,
5648 const ARMCPRegInfo
*ri
, bool isread
)
5650 if (arm_is_secure_below_el3(env
)) {
5651 /* Access denied in secure mode. */
5652 return CP_ACCESS_TRAP
;
5654 return access_lor_ns(env
);
5657 #ifdef TARGET_AARCH64
5658 static CPAccessResult
access_pauth(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5661 int el
= arm_current_el(env
);
5664 arm_feature(env
, ARM_FEATURE_EL2
) &&
5665 !(arm_hcr_el2_eff(env
) & HCR_APK
)) {
5666 return CP_ACCESS_TRAP_EL2
;
5669 arm_feature(env
, ARM_FEATURE_EL3
) &&
5670 !(env
->cp15
.scr_el3
& SCR_APK
)) {
5671 return CP_ACCESS_TRAP_EL3
;
5673 return CP_ACCESS_OK
;
5676 static const ARMCPRegInfo pauth_reginfo
[] = {
5677 { .name
= "APDAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5678 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 0,
5679 .access
= PL1_RW
, .accessfn
= access_pauth
,
5680 .fieldoffset
= offsetof(CPUARMState
, apda_key
.lo
) },
5681 { .name
= "APDAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5682 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 1,
5683 .access
= PL1_RW
, .accessfn
= access_pauth
,
5684 .fieldoffset
= offsetof(CPUARMState
, apda_key
.hi
) },
5685 { .name
= "APDBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5686 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 2,
5687 .access
= PL1_RW
, .accessfn
= access_pauth
,
5688 .fieldoffset
= offsetof(CPUARMState
, apdb_key
.lo
) },
5689 { .name
= "APDBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5690 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 2, .opc2
= 3,
5691 .access
= PL1_RW
, .accessfn
= access_pauth
,
5692 .fieldoffset
= offsetof(CPUARMState
, apdb_key
.hi
) },
5693 { .name
= "APGAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5694 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 0,
5695 .access
= PL1_RW
, .accessfn
= access_pauth
,
5696 .fieldoffset
= offsetof(CPUARMState
, apga_key
.lo
) },
5697 { .name
= "APGAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5698 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 3, .opc2
= 1,
5699 .access
= PL1_RW
, .accessfn
= access_pauth
,
5700 .fieldoffset
= offsetof(CPUARMState
, apga_key
.hi
) },
5701 { .name
= "APIAKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5702 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 0,
5703 .access
= PL1_RW
, .accessfn
= access_pauth
,
5704 .fieldoffset
= offsetof(CPUARMState
, apia_key
.lo
) },
5705 { .name
= "APIAKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5706 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 1,
5707 .access
= PL1_RW
, .accessfn
= access_pauth
,
5708 .fieldoffset
= offsetof(CPUARMState
, apia_key
.hi
) },
5709 { .name
= "APIBKEYLO_EL1", .state
= ARM_CP_STATE_AA64
,
5710 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 2,
5711 .access
= PL1_RW
, .accessfn
= access_pauth
,
5712 .fieldoffset
= offsetof(CPUARMState
, apib_key
.lo
) },
5713 { .name
= "APIBKEYHI_EL1", .state
= ARM_CP_STATE_AA64
,
5714 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 1, .opc2
= 3,
5715 .access
= PL1_RW
, .accessfn
= access_pauth
,
5716 .fieldoffset
= offsetof(CPUARMState
, apib_key
.hi
) },
5721 void register_cp_regs_for_features(ARMCPU
*cpu
)
5723 /* Register all the coprocessor registers based on feature bits */
5724 CPUARMState
*env
= &cpu
->env
;
5725 if (arm_feature(env
, ARM_FEATURE_M
)) {
5726 /* M profile has no coprocessor registers */
5730 define_arm_cp_regs(cpu
, cp_reginfo
);
5731 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
5732 /* Must go early as it is full of wildcards that may be
5733 * overridden by later definitions.
5735 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
5738 if (arm_feature(env
, ARM_FEATURE_V6
)) {
5739 /* The ID registers all have impdef reset values */
5740 ARMCPRegInfo v6_idregs
[] = {
5741 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
5742 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
5743 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5744 .resetvalue
= cpu
->id_pfr0
},
5745 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5746 * the value of the GIC field until after we define these regs.
5748 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
5749 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
5750 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
5751 .readfn
= id_pfr1_read
,
5752 .writefn
= arm_cp_write_ignore
},
5753 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
5754 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
5755 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5756 .resetvalue
= cpu
->id_dfr0
},
5757 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
5758 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
5759 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5760 .resetvalue
= cpu
->id_afr0
},
5761 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
5762 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
5763 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5764 .resetvalue
= cpu
->id_mmfr0
},
5765 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
5766 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
5767 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5768 .resetvalue
= cpu
->id_mmfr1
},
5769 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
5770 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
5771 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5772 .resetvalue
= cpu
->id_mmfr2
},
5773 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
5774 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
5775 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5776 .resetvalue
= cpu
->id_mmfr3
},
5777 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
5778 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
5779 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5780 .resetvalue
= cpu
->isar
.id_isar0
},
5781 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
5782 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
5783 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5784 .resetvalue
= cpu
->isar
.id_isar1
},
5785 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
5786 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
5787 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5788 .resetvalue
= cpu
->isar
.id_isar2
},
5789 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
5790 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
5791 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5792 .resetvalue
= cpu
->isar
.id_isar3
},
5793 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
5794 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
5795 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5796 .resetvalue
= cpu
->isar
.id_isar4
},
5797 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
5798 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
5799 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5800 .resetvalue
= cpu
->isar
.id_isar5
},
5801 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
5802 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
5803 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5804 .resetvalue
= cpu
->id_mmfr4
},
5805 { .name
= "ID_ISAR6", .state
= ARM_CP_STATE_BOTH
,
5806 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
5807 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5808 .resetvalue
= cpu
->isar
.id_isar6
},
5811 define_arm_cp_regs(cpu
, v6_idregs
);
5812 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
5814 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
5816 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
5817 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
5819 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
5820 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
5821 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
5823 if (arm_feature(env
, ARM_FEATURE_V7VE
)) {
5824 define_arm_cp_regs(cpu
, pmovsset_cp_reginfo
);
5826 if (arm_feature(env
, ARM_FEATURE_V7
)) {
5827 /* v7 performance monitor control register: same implementor
5828 * field as main ID register, and we implement four counters in
5829 * addition to the cycle count register.
5831 unsigned int i
, pmcrn
= 4;
5832 ARMCPRegInfo pmcr
= {
5833 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
5835 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
5836 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
5837 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
5838 .raw_writefn
= raw_write
,
5840 ARMCPRegInfo pmcr64
= {
5841 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
5842 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
5843 .access
= PL0_RW
, .accessfn
= pmreg_access
,
5845 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
5846 .resetvalue
= (cpu
->midr
& 0xff000000) | (pmcrn
<< PMCRN_SHIFT
),
5847 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
5849 define_one_arm_cp_reg(cpu
, &pmcr
);
5850 define_one_arm_cp_reg(cpu
, &pmcr64
);
5851 for (i
= 0; i
< pmcrn
; i
++) {
5852 char *pmevcntr_name
= g_strdup_printf("PMEVCNTR%d", i
);
5853 char *pmevcntr_el0_name
= g_strdup_printf("PMEVCNTR%d_EL0", i
);
5854 char *pmevtyper_name
= g_strdup_printf("PMEVTYPER%d", i
);
5855 char *pmevtyper_el0_name
= g_strdup_printf("PMEVTYPER%d_EL0", i
);
5856 ARMCPRegInfo pmev_regs
[] = {
5857 { .name
= pmevcntr_name
, .cp
= 15, .crn
= 14,
5858 .crm
= 8 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
5859 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
5860 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
5861 .accessfn
= pmreg_access
},
5862 { .name
= pmevcntr_el0_name
, .state
= ARM_CP_STATE_AA64
,
5863 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 8 | (3 & (i
>> 3)),
5864 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
5866 .readfn
= pmevcntr_readfn
, .writefn
= pmevcntr_writefn
,
5867 .raw_readfn
= pmevcntr_rawread
,
5868 .raw_writefn
= pmevcntr_rawwrite
},
5869 { .name
= pmevtyper_name
, .cp
= 15, .crn
= 14,
5870 .crm
= 12 | (3 & (i
>> 3)), .opc1
= 0, .opc2
= i
& 7,
5871 .access
= PL0_RW
, .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
5872 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
5873 .accessfn
= pmreg_access
},
5874 { .name
= pmevtyper_el0_name
, .state
= ARM_CP_STATE_AA64
,
5875 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 12 | (3 & (i
>> 3)),
5876 .opc2
= i
& 7, .access
= PL0_RW
, .accessfn
= pmreg_access
,
5878 .readfn
= pmevtyper_readfn
, .writefn
= pmevtyper_writefn
,
5879 .raw_writefn
= pmevtyper_rawwrite
},
5882 define_arm_cp_regs(cpu
, pmev_regs
);
5883 g_free(pmevcntr_name
);
5884 g_free(pmevcntr_el0_name
);
5885 g_free(pmevtyper_name
);
5886 g_free(pmevtyper_el0_name
);
5888 ARMCPRegInfo clidr
= {
5889 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
5890 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
5891 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
5893 define_one_arm_cp_reg(cpu
, &clidr
);
5894 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
5895 define_debug_regs(cpu
);
5897 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
5899 if (FIELD_EX32(cpu
->id_dfr0
, ID_DFR0
, PERFMON
) >= 4 &&
5900 FIELD_EX32(cpu
->id_dfr0
, ID_DFR0
, PERFMON
) != 0xf) {
5901 ARMCPRegInfo v81_pmu_regs
[] = {
5902 { .name
= "PMCEID2", .state
= ARM_CP_STATE_AA32
,
5903 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 4,
5904 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
5905 .resetvalue
= extract64(cpu
->pmceid0
, 32, 32) },
5906 { .name
= "PMCEID3", .state
= ARM_CP_STATE_AA32
,
5907 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 5,
5908 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
5909 .resetvalue
= extract64(cpu
->pmceid1
, 32, 32) },
5912 define_arm_cp_regs(cpu
, v81_pmu_regs
);
5914 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5915 /* AArch64 ID registers, which all have impdef reset values.
5916 * Note that within the ID register ranges the unused slots
5917 * must all RAZ, not UNDEF; future architecture versions may
5918 * define new registers here.
5920 ARMCPRegInfo v8_idregs
[] = {
5921 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5922 * know the right value for the GIC field until after we
5923 * define these regs.
5925 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5926 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
5927 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
5928 .readfn
= id_aa64pfr0_read
,
5929 .writefn
= arm_cp_write_ignore
},
5930 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5931 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
5932 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5933 .resetvalue
= cpu
->isar
.id_aa64pfr1
},
5934 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5935 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
5936 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5938 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5939 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
5940 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5942 { .name
= "ID_AA64ZFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5943 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
5944 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5945 /* At present, only SVEver == 0 is defined anyway. */
5947 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5948 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
5949 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5951 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5952 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
5953 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5955 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5956 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
5957 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5959 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5960 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
5961 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5962 .resetvalue
= cpu
->id_aa64dfr0
},
5963 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5964 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
5965 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5966 .resetvalue
= cpu
->id_aa64dfr1
},
5967 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5968 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
5969 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5971 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5972 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
5973 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5975 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5976 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
5977 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5978 .resetvalue
= cpu
->id_aa64afr0
},
5979 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5980 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
5981 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5982 .resetvalue
= cpu
->id_aa64afr1
},
5983 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5984 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
5985 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5987 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5988 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
5989 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5991 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
5992 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
5993 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5994 .resetvalue
= cpu
->isar
.id_aa64isar0
},
5995 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
5996 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
5997 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5998 .resetvalue
= cpu
->isar
.id_aa64isar1
},
5999 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6000 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
6001 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6003 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6004 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
6005 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6007 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6008 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
6009 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6011 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6012 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
6013 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6015 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6016 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
6017 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6019 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6020 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
6021 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6023 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6024 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
6025 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6026 .resetvalue
= cpu
->isar
.id_aa64mmfr0
},
6027 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6028 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
6029 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6030 .resetvalue
= cpu
->isar
.id_aa64mmfr1
},
6031 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6032 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
6033 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6035 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6036 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
6037 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6039 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6040 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
6041 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6043 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6044 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
6045 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6047 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6048 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
6049 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6051 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6052 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
6053 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6055 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
6056 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
6057 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6058 .resetvalue
= cpu
->isar
.mvfr0
},
6059 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
6060 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
6061 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6062 .resetvalue
= cpu
->isar
.mvfr1
},
6063 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
6064 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
6065 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6066 .resetvalue
= cpu
->isar
.mvfr2
},
6067 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6068 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
6069 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6071 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6072 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
6073 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6075 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6076 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
6077 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6079 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6080 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
6081 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6083 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
6084 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
6085 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6087 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
6088 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
6089 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6090 .resetvalue
= extract64(cpu
->pmceid0
, 0, 32) },
6091 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
6092 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
6093 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6094 .resetvalue
= cpu
->pmceid0
},
6095 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
6096 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
6097 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6098 .resetvalue
= extract64(cpu
->pmceid1
, 0, 32) },
6099 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
6100 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
6101 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
6102 .resetvalue
= cpu
->pmceid1
},
6105 #ifdef CONFIG_USER_ONLY
6106 ARMCPRegUserSpaceInfo v8_user_idregs
[] = {
6107 { .name
= "ID_AA64PFR0_EL1",
6108 .exported_bits
= 0x000f000f00ff0000,
6109 .fixed_bits
= 0x0000000000000011 },
6110 { .name
= "ID_AA64PFR1_EL1",
6111 .exported_bits
= 0x00000000000000f0 },
6112 { .name
= "ID_AA64ZFR0_EL1" },
6113 { .name
= "ID_AA64MMFR0_EL1",
6114 .fixed_bits
= 0x00000000ff000000 },
6115 { .name
= "ID_AA64MMFR1_EL1" },
6116 { .name
= "ID_AA64DFR0_EL1",
6117 .fixed_bits
= 0x0000000000000006 },
6118 { .name
= "ID_AA64DFR1_EL1" },
6119 { .name
= "ID_AA64AFR0_EL1" },
6120 { .name
= "ID_AA64AFR1_EL1" },
6121 { .name
= "ID_AA64ISAR0_EL1",
6122 .exported_bits
= 0x00fffffff0fffff0 },
6123 { .name
= "ID_AA64ISAR1_EL1",
6124 .exported_bits
= 0x000000f0ffffffff },
6125 REGUSERINFO_SENTINEL
6127 modify_arm_cp_regs(v8_idregs
, v8_user_idregs
);
6129 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
6130 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
6131 !arm_feature(env
, ARM_FEATURE_EL2
)) {
6132 ARMCPRegInfo rvbar
= {
6133 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
6134 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
6135 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
6137 define_one_arm_cp_reg(cpu
, &rvbar
);
6139 define_arm_cp_regs(cpu
, v8_idregs
);
6140 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
6142 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
6143 uint64_t vmpidr_def
= mpidr_read_val(env
);
6144 ARMCPRegInfo vpidr_regs
[] = {
6145 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
6146 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6147 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
6148 .resetvalue
= cpu
->midr
, .type
= ARM_CP_ALIAS
,
6149 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vpidr_el2
) },
6150 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
6151 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6152 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
6153 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
6154 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
6155 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6156 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
6157 .resetvalue
= vmpidr_def
, .type
= ARM_CP_ALIAS
,
6158 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vmpidr_el2
) },
6159 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
6160 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6162 .resetvalue
= vmpidr_def
,
6163 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
6166 define_arm_cp_regs(cpu
, vpidr_regs
);
6167 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
6168 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6169 define_arm_cp_regs(cpu
, el2_v8_cp_reginfo
);
6171 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
6172 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
6173 ARMCPRegInfo rvbar
= {
6174 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
6175 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
6176 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
6178 define_one_arm_cp_reg(cpu
, &rvbar
);
6181 /* If EL2 is missing but higher ELs are enabled, we need to
6182 * register the no_el2 reginfos.
6184 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6185 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
6186 * of MIDR_EL1 and MPIDR_EL1.
6188 ARMCPRegInfo vpidr_regs
[] = {
6189 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
6190 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
6191 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
6192 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
6193 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
6194 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
6195 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
6196 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
6197 .type
= ARM_CP_NO_RAW
,
6198 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
6201 define_arm_cp_regs(cpu
, vpidr_regs
);
6202 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
6203 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6204 define_arm_cp_regs(cpu
, el3_no_el2_v8_cp_reginfo
);
6208 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6209 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
6210 ARMCPRegInfo el3_regs
[] = {
6211 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
6212 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
6213 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
6214 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
6215 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
6217 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
6218 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
6219 .resetvalue
= cpu
->reset_sctlr
},
6223 define_arm_cp_regs(cpu
, el3_regs
);
6225 /* The behaviour of NSACR is sufficiently various that we don't
6226 * try to describe it in a single reginfo:
6227 * if EL3 is 64 bit, then trap to EL3 from S EL1,
6228 * reads as constant 0xc00 from NS EL1 and NS EL2
6229 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
6230 * if v7 without EL3, register doesn't exist
6231 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
6233 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6234 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
6235 ARMCPRegInfo nsacr
= {
6236 .name
= "NSACR", .type
= ARM_CP_CONST
,
6237 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6238 .access
= PL1_RW
, .accessfn
= nsacr_access
,
6241 define_one_arm_cp_reg(cpu
, &nsacr
);
6243 ARMCPRegInfo nsacr
= {
6245 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6246 .access
= PL3_RW
| PL1_R
,
6248 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
6250 define_one_arm_cp_reg(cpu
, &nsacr
);
6253 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6254 ARMCPRegInfo nsacr
= {
6255 .name
= "NSACR", .type
= ARM_CP_CONST
,
6256 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
6260 define_one_arm_cp_reg(cpu
, &nsacr
);
6264 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
6265 if (arm_feature(env
, ARM_FEATURE_V6
)) {
6266 /* PMSAv6 not implemented */
6267 assert(arm_feature(env
, ARM_FEATURE_V7
));
6268 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
6269 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
6271 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
6274 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
6275 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
6276 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
6277 if (FIELD_EX32(cpu
->id_mmfr4
, ID_MMFR4
, HPDS
) != 0) {
6278 define_one_arm_cp_reg(cpu
, &ttbcr2_reginfo
);
6281 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
6282 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
6284 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
6285 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
6287 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
6288 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
6290 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
6291 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
6293 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
6294 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
6296 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
6297 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
6299 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
6300 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
6302 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
6303 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
6305 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
6306 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
6308 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
6309 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
6311 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
6312 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
6314 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
6315 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
6316 * be read-only (ie write causes UNDEF exception).
6319 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
6320 /* Pre-v8 MIDR space.
6321 * Note that the MIDR isn't a simple constant register because
6322 * of the TI925 behaviour where writes to another register can
6323 * cause the MIDR value to change.
6325 * Unimplemented registers in the c15 0 0 0 space default to
6326 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
6327 * and friends override accordingly.
6330 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
6331 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
6332 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
6333 .readfn
= midr_read
,
6334 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
6335 .type
= ARM_CP_OVERRIDE
},
6336 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
6338 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
6339 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6341 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
6342 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6344 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
6345 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6347 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
6348 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6350 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
6351 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6354 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
6355 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6356 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
6357 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
6358 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
6359 .readfn
= midr_read
},
6360 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
6361 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
6362 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
6363 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
6364 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
6365 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
6366 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
6367 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6368 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
6369 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
6372 ARMCPRegInfo id_cp_reginfo
[] = {
6373 /* These are common to v8 and pre-v8 */
6375 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
6376 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
6377 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
6378 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
6379 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
6380 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
6381 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
6383 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
6384 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6387 /* TLBTR is specific to VMSA */
6388 ARMCPRegInfo id_tlbtr_reginfo
= {
6390 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
6391 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
6393 /* MPUIR is specific to PMSA V6+ */
6394 ARMCPRegInfo id_mpuir_reginfo
= {
6396 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
6397 .access
= PL1_R
, .type
= ARM_CP_CONST
,
6398 .resetvalue
= cpu
->pmsav7_dregion
<< 8
6400 ARMCPRegInfo crn0_wi_reginfo
= {
6401 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
6402 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
6403 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
6405 #ifdef CONFIG_USER_ONLY
6406 ARMCPRegUserSpaceInfo id_v8_user_midr_cp_reginfo
[] = {
6407 { .name
= "MIDR_EL1",
6408 .exported_bits
= 0x00000000ffffffff },
6409 { .name
= "REVIDR_EL1" },
6410 REGUSERINFO_SENTINEL
6412 modify_arm_cp_regs(id_v8_midr_cp_reginfo
, id_v8_user_midr_cp_reginfo
);
6414 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
6415 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
6417 /* Register the blanket "writes ignored" value first to cover the
6418 * whole space. Then update the specific ID registers to allow write
6419 * access, so that they ignore writes rather than causing them to
6422 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
6423 for (r
= id_pre_v8_midr_cp_reginfo
;
6424 r
->type
!= ARM_CP_SENTINEL
; r
++) {
6427 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
6430 id_mpuir_reginfo
.access
= PL1_RW
;
6431 id_tlbtr_reginfo
.access
= PL1_RW
;
6433 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6434 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
6436 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
6438 define_arm_cp_regs(cpu
, id_cp_reginfo
);
6439 if (!arm_feature(env
, ARM_FEATURE_PMSA
)) {
6440 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
6441 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
6442 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
6446 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
6447 ARMCPRegInfo mpidr_cp_reginfo
[] = {
6448 { .name
= "MPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
6449 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
6450 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
6453 #ifdef CONFIG_USER_ONLY
6454 ARMCPRegUserSpaceInfo mpidr_user_cp_reginfo
[] = {
6455 { .name
= "MPIDR_EL1",
6456 .fixed_bits
= 0x0000000080000000 },
6457 REGUSERINFO_SENTINEL
6459 modify_arm_cp_regs(mpidr_cp_reginfo
, mpidr_user_cp_reginfo
);
6461 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
6464 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
6465 ARMCPRegInfo auxcr_reginfo
[] = {
6466 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
6467 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
6468 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
6469 .resetvalue
= cpu
->reset_auxcr
},
6470 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
6471 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
6472 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
6474 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
6475 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
6476 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
6480 define_arm_cp_regs(cpu
, auxcr_reginfo
);
6481 if (arm_feature(env
, ARM_FEATURE_V8
)) {
6482 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
6483 ARMCPRegInfo hactlr2_reginfo
= {
6484 .name
= "HACTLR2", .state
= ARM_CP_STATE_AA32
,
6485 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 3,
6486 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
6489 define_one_arm_cp_reg(cpu
, &hactlr2_reginfo
);
6493 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
6494 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
6495 /* 32 bit view is [31:18] 0...0 [43:32]. */
6496 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
6497 | extract64(cpu
->reset_cbar
, 32, 12);
6498 ARMCPRegInfo cbar_reginfo
[] = {
6500 .type
= ARM_CP_CONST
,
6501 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
6502 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
6503 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
6504 .type
= ARM_CP_CONST
,
6505 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
6506 .access
= PL1_R
, .resetvalue
= cbar32
},
6509 /* We don't implement a r/w 64 bit CBAR currently */
6510 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
6511 define_arm_cp_regs(cpu
, cbar_reginfo
);
6513 ARMCPRegInfo cbar
= {
6515 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
6516 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
6517 .fieldoffset
= offsetof(CPUARMState
,
6518 cp15
.c15_config_base_address
)
6520 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
6521 cbar
.access
= PL1_R
;
6522 cbar
.fieldoffset
= 0;
6523 cbar
.type
= ARM_CP_CONST
;
6525 define_one_arm_cp_reg(cpu
, &cbar
);
6529 if (arm_feature(env
, ARM_FEATURE_VBAR
)) {
6530 ARMCPRegInfo vbar_cp_reginfo
[] = {
6531 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
6532 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
6533 .access
= PL1_RW
, .writefn
= vbar_write
,
6534 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
6535 offsetof(CPUARMState
, cp15
.vbar_ns
) },
6539 define_arm_cp_regs(cpu
, vbar_cp_reginfo
);
6542 /* Generic registers whose values depend on the implementation */
6544 ARMCPRegInfo sctlr
= {
6545 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
6546 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
6548 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
6549 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
6550 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
6551 .raw_writefn
= raw_write
,
6553 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
6554 /* Normally we would always end the TB on an SCTLR write, but Linux
6555 * arch/arm/mach-pxa/sleep.S expects two instructions following
6556 * an MMU enable to execute from cache. Imitate this behaviour.
6558 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
6560 define_one_arm_cp_reg(cpu
, &sctlr
);
6563 if (cpu_isar_feature(aa64_lor
, cpu
)) {
6565 * A trivial implementation of ARMv8.1-LOR leaves all of these
6566 * registers fixed at 0, which indicates that there are zero
6567 * supported Limited Ordering regions.
6569 static const ARMCPRegInfo lor_reginfo
[] = {
6570 { .name
= "LORSA_EL1", .state
= ARM_CP_STATE_AA64
,
6571 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 0,
6572 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6573 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6574 { .name
= "LOREA_EL1", .state
= ARM_CP_STATE_AA64
,
6575 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 1,
6576 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6577 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6578 { .name
= "LORN_EL1", .state
= ARM_CP_STATE_AA64
,
6579 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 2,
6580 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6581 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6582 { .name
= "LORC_EL1", .state
= ARM_CP_STATE_AA64
,
6583 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 3,
6584 .access
= PL1_RW
, .accessfn
= access_lor_other
,
6585 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6586 { .name
= "LORID_EL1", .state
= ARM_CP_STATE_AA64
,
6587 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 7,
6588 .access
= PL1_R
, .accessfn
= access_lorid
,
6589 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
6592 define_arm_cp_regs(cpu
, lor_reginfo
);
6595 if (cpu_isar_feature(aa64_sve
, cpu
)) {
6596 define_one_arm_cp_reg(cpu
, &zcr_el1_reginfo
);
6597 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
6598 define_one_arm_cp_reg(cpu
, &zcr_el2_reginfo
);
6600 define_one_arm_cp_reg(cpu
, &zcr_no_el2_reginfo
);
6602 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6603 define_one_arm_cp_reg(cpu
, &zcr_el3_reginfo
);
6607 #ifdef TARGET_AARCH64
6608 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
6609 define_arm_cp_regs(cpu
, pauth_reginfo
);
6614 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
6616 CPUState
*cs
= CPU(cpu
);
6617 CPUARMState
*env
= &cpu
->env
;
6619 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
6620 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
6621 aarch64_fpu_gdb_set_reg
,
6622 34, "aarch64-fpu.xml", 0);
6623 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
6624 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
6625 51, "arm-neon.xml", 0);
6626 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
6627 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
6628 35, "arm-vfp3.xml", 0);
6629 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
6630 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
6631 19, "arm-vfp.xml", 0);
6633 gdb_register_coprocessor(cs
, arm_gdb_get_sysreg
, arm_gdb_set_sysreg
,
6634 arm_gen_dynamic_xml(cs
),
6635 "system-registers.xml", 0);
6638 /* Sort alphabetically by type name, except for "any". */
6639 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
6641 ObjectClass
*class_a
= (ObjectClass
*)a
;
6642 ObjectClass
*class_b
= (ObjectClass
*)b
;
6643 const char *name_a
, *name_b
;
6645 name_a
= object_class_get_name(class_a
);
6646 name_b
= object_class_get_name(class_b
);
6647 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
6649 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
6652 return strcmp(name_a
, name_b
);
6656 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
6658 ObjectClass
*oc
= data
;
6659 CPUListState
*s
= user_data
;
6660 const char *typename
;
6663 typename
= object_class_get_name(oc
);
6664 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
6665 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
6670 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
6674 .cpu_fprintf
= cpu_fprintf
,
6678 list
= object_class_get_list(TYPE_ARM_CPU
, false);
6679 list
= g_slist_sort(list
, arm_cpu_list_compare
);
6680 (*cpu_fprintf
)(f
, "Available CPUs:\n");
6681 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
6685 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
6687 ObjectClass
*oc
= data
;
6688 CpuDefinitionInfoList
**cpu_list
= user_data
;
6689 CpuDefinitionInfoList
*entry
;
6690 CpuDefinitionInfo
*info
;
6691 const char *typename
;
6693 typename
= object_class_get_name(oc
);
6694 info
= g_malloc0(sizeof(*info
));
6695 info
->name
= g_strndup(typename
,
6696 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
6697 info
->q_typename
= g_strdup(typename
);
6699 entry
= g_malloc0(sizeof(*entry
));
6700 entry
->value
= info
;
6701 entry
->next
= *cpu_list
;
6705 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
6707 CpuDefinitionInfoList
*cpu_list
= NULL
;
6710 list
= object_class_get_list(TYPE_ARM_CPU
, false);
6711 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
6717 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
6718 void *opaque
, int state
, int secstate
,
6719 int crm
, int opc1
, int opc2
,
6722 /* Private utility function for define_one_arm_cp_reg_with_opaque():
6723 * add a single reginfo struct to the hash table.
6725 uint32_t *key
= g_new(uint32_t, 1);
6726 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
6727 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
6728 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
6730 r2
->name
= g_strdup(name
);
6731 /* Reset the secure state to the specific incoming state. This is
6732 * necessary as the register may have been defined with both states.
6734 r2
->secure
= secstate
;
6736 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
6737 /* Register is banked (using both entries in array).
6738 * Overwriting fieldoffset as the array is only used to define
6739 * banked registers but later only fieldoffset is used.
6741 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
6744 if (state
== ARM_CP_STATE_AA32
) {
6745 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
6746 /* If the register is banked then we don't need to migrate or
6747 * reset the 32-bit instance in certain cases:
6749 * 1) If the register has both 32-bit and 64-bit instances then we
6750 * can count on the 64-bit instance taking care of the
6752 * 2) If ARMv8 is enabled then we can count on a 64-bit version
6753 * taking care of the secure bank. This requires that separate
6754 * 32 and 64-bit definitions are provided.
6756 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
6757 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
6758 r2
->type
|= ARM_CP_ALIAS
;
6760 } else if ((secstate
!= r
->secure
) && !ns
) {
6761 /* The register is not banked so we only want to allow migration of
6762 * the non-secure instance.
6764 r2
->type
|= ARM_CP_ALIAS
;
6767 if (r
->state
== ARM_CP_STATE_BOTH
) {
6768 /* We assume it is a cp15 register if the .cp field is left unset.
6774 #ifdef HOST_WORDS_BIGENDIAN
6775 if (r2
->fieldoffset
) {
6776 r2
->fieldoffset
+= sizeof(uint32_t);
6781 if (state
== ARM_CP_STATE_AA64
) {
6782 /* To allow abbreviation of ARMCPRegInfo
6783 * definitions, we treat cp == 0 as equivalent to
6784 * the value for "standard guest-visible sysreg".
6785 * STATE_BOTH definitions are also always "standard
6786 * sysreg" in their AArch64 view (the .cp value may
6787 * be non-zero for the benefit of the AArch32 view).
6789 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
6790 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
6792 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
6793 r2
->opc0
, opc1
, opc2
);
6795 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
6798 r2
->opaque
= opaque
;
6800 /* reginfo passed to helpers is correct for the actual access,
6801 * and is never ARM_CP_STATE_BOTH:
6804 /* Make sure reginfo passed to helpers for wildcarded regs
6805 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6810 /* By convention, for wildcarded registers only the first
6811 * entry is used for migration; the others are marked as
6812 * ALIAS so we don't try to transfer the register
6813 * multiple times. Special registers (ie NOP/WFI) are
6814 * never migratable and not even raw-accessible.
6816 if ((r
->type
& ARM_CP_SPECIAL
)) {
6817 r2
->type
|= ARM_CP_NO_RAW
;
6819 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
6820 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
6821 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
6822 r2
->type
|= ARM_CP_ALIAS
| ARM_CP_NO_GDB
;
6825 /* Check that raw accesses are either forbidden or handled. Note that
6826 * we can't assert this earlier because the setup of fieldoffset for
6827 * banked registers has to be done first.
6829 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
6830 assert(!raw_accessors_invalid(r2
));
6833 /* Overriding of an existing definition must be explicitly
6836 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
6837 ARMCPRegInfo
*oldreg
;
6838 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
6839 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
6840 fprintf(stderr
, "Register redefined: cp=%d %d bit "
6841 "crn=%d crm=%d opc1=%d opc2=%d, "
6842 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
6843 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
6844 oldreg
->name
, r2
->name
);
6845 g_assert_not_reached();
6848 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
6852 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
6853 const ARMCPRegInfo
*r
, void *opaque
)
6855 /* Define implementations of coprocessor registers.
6856 * We store these in a hashtable because typically
6857 * there are less than 150 registers in a space which
6858 * is 16*16*16*8*8 = 262144 in size.
6859 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6860 * If a register is defined twice then the second definition is
6861 * used, so this can be used to define some generic registers and
6862 * then override them with implementation specific variations.
6863 * At least one of the original and the second definition should
6864 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6865 * against accidental use.
6867 * The state field defines whether the register is to be
6868 * visible in the AArch32 or AArch64 execution state. If the
6869 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6870 * reginfo structure for the AArch32 view, which sees the lower
6871 * 32 bits of the 64 bit register.
6873 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6874 * be wildcarded. AArch64 registers are always considered to be 64
6875 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6876 * the register, if any.
6878 int crm
, opc1
, opc2
, state
;
6879 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
6880 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
6881 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
6882 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
6883 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
6884 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
6885 /* 64 bit registers have only CRm and Opc1 fields */
6886 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
6887 /* op0 only exists in the AArch64 encodings */
6888 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
6889 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6890 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
6891 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6892 * encodes a minimum access level for the register. We roll this
6893 * runtime check into our general permission check code, so check
6894 * here that the reginfo's specified permissions are strict enough
6895 * to encompass the generic architectural permission check.
6897 if (r
->state
!= ARM_CP_STATE_AA32
) {
6901 /* min_EL EL1, but some accessible to EL0 via kernel ABI */
6902 mask
= PL0U_R
| PL1_RW
;
6917 /* unallocated encoding, so not possible */
6925 /* min_EL EL1, secure mode only (we don't check the latter) */
6929 /* broken reginfo with out-of-range opc1 */
6933 /* assert our permissions are not too lax (stricter is fine) */
6934 assert((r
->access
& ~mask
) == 0);
6937 /* Check that the register definition has enough info to handle
6938 * reads and writes if they are permitted.
6940 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
6941 if (r
->access
& PL3_R
) {
6942 assert((r
->fieldoffset
||
6943 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
6946 if (r
->access
& PL3_W
) {
6947 assert((r
->fieldoffset
||
6948 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
6952 /* Bad type field probably means missing sentinel at end of reg list */
6953 assert(cptype_valid(r
->type
));
6954 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
6955 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
6956 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
6957 for (state
= ARM_CP_STATE_AA32
;
6958 state
<= ARM_CP_STATE_AA64
; state
++) {
6959 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
6962 if (state
== ARM_CP_STATE_AA32
) {
6963 /* Under AArch32 CP registers can be common
6964 * (same for secure and non-secure world) or banked.
6968 switch (r
->secure
) {
6969 case ARM_CP_SECSTATE_S
:
6970 case ARM_CP_SECSTATE_NS
:
6971 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6972 r
->secure
, crm
, opc1
, opc2
,
6976 name
= g_strdup_printf("%s_S", r
->name
);
6977 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6979 crm
, opc1
, opc2
, name
);
6981 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6983 crm
, opc1
, opc2
, r
->name
);
6987 /* AArch64 registers get mapped to non-secure instance
6989 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6991 crm
, opc1
, opc2
, r
->name
);
6999 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
7000 const ARMCPRegInfo
*regs
, void *opaque
)
7002 /* Define a whole list of registers */
7003 const ARMCPRegInfo
*r
;
7004 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
7005 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
7010 * Modify ARMCPRegInfo for access from userspace.
7012 * This is a data driven modification directed by
7013 * ARMCPRegUserSpaceInfo. All registers become ARM_CP_CONST as
7014 * user-space cannot alter any values and dynamic values pertaining to
7015 * execution state are hidden from user space view anyway.
7017 void modify_arm_cp_regs(ARMCPRegInfo
*regs
, const ARMCPRegUserSpaceInfo
*mods
)
7019 const ARMCPRegUserSpaceInfo
*m
;
7022 for (m
= mods
; m
->name
; m
++) {
7023 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
7024 if (strcmp(r
->name
, m
->name
) == 0) {
7025 r
->type
= ARM_CP_CONST
;
7027 r
->resetvalue
&= m
->exported_bits
;
7028 r
->resetvalue
|= m
->fixed_bits
;
7035 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
7037 return g_hash_table_lookup(cpregs
, &encoded_cp
);
7040 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
7043 /* Helper coprocessor write function for write-ignore registers */
7046 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
7048 /* Helper coprocessor write function for read-as-zero registers */
7052 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
7054 /* Helper coprocessor reset function for do-nothing-on-reset registers */
7057 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
7059 /* Return true if it is not valid for us to switch to
7060 * this CPU mode (ie all the UNPREDICTABLE cases in
7061 * the ARM ARM CPSRWriteByInstr pseudocode).
7064 /* Changes to or from Hyp via MSR and CPS are illegal. */
7065 if (write_type
== CPSRWriteByInstr
&&
7066 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
7067 mode
== ARM_CPU_MODE_HYP
)) {
7072 case ARM_CPU_MODE_USR
:
7074 case ARM_CPU_MODE_SYS
:
7075 case ARM_CPU_MODE_SVC
:
7076 case ARM_CPU_MODE_ABT
:
7077 case ARM_CPU_MODE_UND
:
7078 case ARM_CPU_MODE_IRQ
:
7079 case ARM_CPU_MODE_FIQ
:
7080 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
7081 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
7083 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
7084 * and CPS are treated as illegal mode changes.
7086 if (write_type
== CPSRWriteByInstr
&&
7087 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
7088 (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
7092 case ARM_CPU_MODE_HYP
:
7093 return !arm_feature(env
, ARM_FEATURE_EL2
)
7094 || arm_current_el(env
) < 2 || arm_is_secure_below_el3(env
);
7095 case ARM_CPU_MODE_MON
:
7096 return arm_current_el(env
) < 3;
7102 uint32_t cpsr_read(CPUARMState
*env
)
7105 ZF
= (env
->ZF
== 0);
7106 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
7107 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
7108 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
7109 | ((env
->condexec_bits
& 0xfc) << 8)
7110 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
7113 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
7114 CPSRWriteType write_type
)
7116 uint32_t changed_daif
;
7118 if (mask
& CPSR_NZCV
) {
7119 env
->ZF
= (~val
) & CPSR_Z
;
7121 env
->CF
= (val
>> 29) & 1;
7122 env
->VF
= (val
<< 3) & 0x80000000;
7125 env
->QF
= ((val
& CPSR_Q
) != 0);
7127 env
->thumb
= ((val
& CPSR_T
) != 0);
7128 if (mask
& CPSR_IT_0_1
) {
7129 env
->condexec_bits
&= ~3;
7130 env
->condexec_bits
|= (val
>> 25) & 3;
7132 if (mask
& CPSR_IT_2_7
) {
7133 env
->condexec_bits
&= 3;
7134 env
->condexec_bits
|= (val
>> 8) & 0xfc;
7136 if (mask
& CPSR_GE
) {
7137 env
->GE
= (val
>> 16) & 0xf;
7140 /* In a V7 implementation that includes the security extensions but does
7141 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
7142 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
7143 * bits respectively.
7145 * In a V8 implementation, it is permitted for privileged software to
7146 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
7148 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
7149 arm_feature(env
, ARM_FEATURE_EL3
) &&
7150 !arm_feature(env
, ARM_FEATURE_EL2
) &&
7151 !arm_is_secure(env
)) {
7153 changed_daif
= (env
->daif
^ val
) & mask
;
7155 if (changed_daif
& CPSR_A
) {
7156 /* Check to see if we are allowed to change the masking of async
7157 * abort exceptions from a non-secure state.
7159 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
7160 qemu_log_mask(LOG_GUEST_ERROR
,
7161 "Ignoring attempt to switch CPSR_A flag from "
7162 "non-secure world with SCR.AW bit clear\n");
7167 if (changed_daif
& CPSR_F
) {
7168 /* Check to see if we are allowed to change the masking of FIQ
7169 * exceptions from a non-secure state.
7171 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
7172 qemu_log_mask(LOG_GUEST_ERROR
,
7173 "Ignoring attempt to switch CPSR_F flag from "
7174 "non-secure world with SCR.FW bit clear\n");
7178 /* Check whether non-maskable FIQ (NMFI) support is enabled.
7179 * If this bit is set software is not allowed to mask
7180 * FIQs, but is allowed to set CPSR_F to 0.
7182 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
7184 qemu_log_mask(LOG_GUEST_ERROR
,
7185 "Ignoring attempt to enable CPSR_F flag "
7186 "(non-maskable FIQ [NMFI] support enabled)\n");
7192 env
->daif
&= ~(CPSR_AIF
& mask
);
7193 env
->daif
|= val
& CPSR_AIF
& mask
;
7195 if (write_type
!= CPSRWriteRaw
&&
7196 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
7197 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
7198 /* Note that we can only get here in USR mode if this is a
7199 * gdb stub write; for this case we follow the architectural
7200 * behaviour for guest writes in USR mode of ignoring an attempt
7201 * to switch mode. (Those are caught by translate.c for writes
7202 * triggered by guest instructions.)
7205 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
7206 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
7207 * v7, and has defined behaviour in v8:
7208 * + leave CPSR.M untouched
7209 * + allow changes to the other CPSR fields
7211 * For user changes via the GDB stub, we don't set PSTATE.IL,
7212 * as this would be unnecessarily harsh for a user error.
7215 if (write_type
!= CPSRWriteByGDBStub
&&
7216 arm_feature(env
, ARM_FEATURE_V8
)) {
7220 qemu_log_mask(LOG_GUEST_ERROR
,
7221 "Illegal AArch32 mode switch attempt from %s to %s\n",
7222 aarch32_mode_name(env
->uncached_cpsr
),
7223 aarch32_mode_name(val
));
7225 qemu_log_mask(CPU_LOG_INT
, "%s %s to %s PC 0x%" PRIx32
"\n",
7226 write_type
== CPSRWriteExceptionReturn
?
7227 "Exception return from AArch32" :
7228 "AArch32 mode switch from",
7229 aarch32_mode_name(env
->uncached_cpsr
),
7230 aarch32_mode_name(val
), env
->regs
[15]);
7231 switch_mode(env
, val
& CPSR_M
);
7234 mask
&= ~CACHED_CPSR_BITS
;
7235 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
7238 /* Sign/zero extend */
7239 uint32_t HELPER(sxtb16
)(uint32_t x
)
7242 res
= (uint16_t)(int8_t)x
;
7243 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
7247 uint32_t HELPER(uxtb16
)(uint32_t x
)
7250 res
= (uint16_t)(uint8_t)x
;
7251 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
7255 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
7259 if (num
== INT_MIN
&& den
== -1)
7264 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
7271 uint32_t HELPER(rbit
)(uint32_t x
)
7276 #ifdef CONFIG_USER_ONLY
7278 /* These should probably raise undefined insn exceptions. */
7279 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
7281 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7283 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
7286 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
7288 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7290 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
7294 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
7296 /* translate.c should never generate calls here in user-only mode */
7297 g_assert_not_reached();
7300 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
7302 /* translate.c should never generate calls here in user-only mode */
7303 g_assert_not_reached();
7306 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
7308 /* The TT instructions can be used by unprivileged code, but in
7309 * user-only emulation we don't have the MPU.
7310 * Luckily since we know we are NonSecure unprivileged (and that in
7311 * turn means that the A flag wasn't specified), all the bits in the
7312 * register must be zero:
7313 * IREGION: 0 because IRVALID is 0
7314 * IRVALID: 0 because NS
7316 * NSRW: 0 because NS
7318 * RW: 0 because unpriv and A flag not set
7319 * R: 0 because unpriv and A flag not set
7320 * SRVALID: 0 because NS
7321 * MRVALID: 0 because unpriv and A flag not set
7322 * SREGION: 0 becaus SRVALID is 0
7323 * MREGION: 0 because MRVALID is 0
7328 static void switch_mode(CPUARMState
*env
, int mode
)
7330 ARMCPU
*cpu
= arm_env_get_cpu(env
);
7332 if (mode
!= ARM_CPU_MODE_USR
) {
7333 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
7337 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
7338 uint32_t cur_el
, bool secure
)
7343 void aarch64_sync_64_to_32(CPUARMState
*env
)
7345 g_assert_not_reached();
7350 static void switch_mode(CPUARMState
*env
, int mode
)
7355 old_mode
= env
->uncached_cpsr
& CPSR_M
;
7356 if (mode
== old_mode
)
7359 if (old_mode
== ARM_CPU_MODE_FIQ
) {
7360 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
7361 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
7362 } else if (mode
== ARM_CPU_MODE_FIQ
) {
7363 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
7364 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
7367 i
= bank_number(old_mode
);
7368 env
->banked_r13
[i
] = env
->regs
[13];
7369 env
->banked_spsr
[i
] = env
->spsr
;
7371 i
= bank_number(mode
);
7372 env
->regs
[13] = env
->banked_r13
[i
];
7373 env
->spsr
= env
->banked_spsr
[i
];
7375 env
->banked_r14
[r14_bank_number(old_mode
)] = env
->regs
[14];
7376 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
7379 /* Physical Interrupt Target EL Lookup Table
7381 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
7383 * The below multi-dimensional table is used for looking up the target
7384 * exception level given numerous condition criteria. Specifically, the
7385 * target EL is based on SCR and HCR routing controls as well as the
7386 * currently executing EL and secure state.
7389 * target_el_table[2][2][2][2][2][4]
7390 * | | | | | +--- Current EL
7391 * | | | | +------ Non-secure(0)/Secure(1)
7392 * | | | +--------- HCR mask override
7393 * | | +------------ SCR exec state control
7394 * | +--------------- SCR mask override
7395 * +------------------ 32-bit(0)/64-bit(1) EL3
7397 * The table values are as such:
7401 * The ARM ARM target EL table includes entries indicating that an "exception
7402 * is not taken". The two cases where this is applicable are:
7403 * 1) An exception is taken from EL3 but the SCR does not have the exception
7405 * 2) An exception is taken from EL2 but the HCR does not have the exception
7407 * In these two cases, the below table contain a target of EL1. This value is
7408 * returned as it is expected that the consumer of the table data will check
7409 * for "target EL >= current EL" to ensure the exception is not taken.
7413 * BIT IRQ IMO Non-secure Secure
7414 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
7416 static const int8_t target_el_table
[2][2][2][2][2][4] = {
7417 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7418 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
7419 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
7420 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
7421 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7422 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
7423 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
7424 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
7425 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
7426 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
7427 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
7428 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
7429 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7430 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
7431 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
7432 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
7436 * Determine the target EL for physical exceptions
7438 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
7439 uint32_t cur_el
, bool secure
)
7441 CPUARMState
*env
= cs
->env_ptr
;
7446 /* Is the highest EL AArch64? */
7447 bool is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
7450 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
7451 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
7453 /* Either EL2 is the highest EL (and so the EL2 register width
7454 * is given by is64); or there is no EL2 or EL3, in which case
7455 * the value of 'rw' does not affect the table lookup anyway.
7460 hcr_el2
= arm_hcr_el2_eff(env
);
7463 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
7464 hcr
= hcr_el2
& HCR_IMO
;
7467 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
7468 hcr
= hcr_el2
& HCR_FMO
;
7471 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
7472 hcr
= hcr_el2
& HCR_AMO
;
7476 /* Perform a table-lookup for the target EL given the current state */
7477 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
7479 assert(target_el
> 0);
7484 static bool v7m_stack_write(ARMCPU
*cpu
, uint32_t addr
, uint32_t value
,
7485 ARMMMUIdx mmu_idx
, bool ignfault
)
7487 CPUState
*cs
= CPU(cpu
);
7488 CPUARMState
*env
= &cpu
->env
;
7489 MemTxAttrs attrs
= {};
7491 target_ulong page_size
;
7494 ARMMMUFaultInfo fi
= {};
7495 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
7499 if (get_phys_addr(env
, addr
, MMU_DATA_STORE
, mmu_idx
, &physaddr
,
7500 &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
7501 /* MPU/SAU lookup failed */
7502 if (fi
.type
== ARMFault_QEMU_SFault
) {
7503 qemu_log_mask(CPU_LOG_INT
,
7504 "...SecureFault with SFSR.AUVIOL during stacking\n");
7505 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
7506 env
->v7m
.sfar
= addr
;
7507 exc
= ARMV7M_EXCP_SECURE
;
7510 qemu_log_mask(CPU_LOG_INT
, "...MemManageFault with CFSR.MSTKERR\n");
7511 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MSTKERR_MASK
;
7512 exc
= ARMV7M_EXCP_MEM
;
7513 exc_secure
= secure
;
7517 address_space_stl_le(arm_addressspace(cs
, attrs
), physaddr
, value
,
7519 if (txres
!= MEMTX_OK
) {
7520 /* BusFault trying to write the data */
7521 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.STKERR\n");
7522 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_STKERR_MASK
;
7523 exc
= ARMV7M_EXCP_BUS
;
7530 /* By pending the exception at this point we are making
7531 * the IMPDEF choice "overridden exceptions pended" (see the
7532 * MergeExcInfo() pseudocode). The other choice would be to not
7533 * pend them now and then make a choice about which to throw away
7534 * later if we have two derived exceptions.
7535 * The only case when we must not pend the exception but instead
7536 * throw it away is if we are doing the push of the callee registers
7537 * and we've already generated a derived exception. Even in this
7538 * case we will still update the fault status registers.
7541 armv7m_nvic_set_pending_derived(env
->nvic
, exc
, exc_secure
);
7546 static bool v7m_stack_read(ARMCPU
*cpu
, uint32_t *dest
, uint32_t addr
,
7549 CPUState
*cs
= CPU(cpu
);
7550 CPUARMState
*env
= &cpu
->env
;
7551 MemTxAttrs attrs
= {};
7553 target_ulong page_size
;
7556 ARMMMUFaultInfo fi
= {};
7557 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
7562 if (get_phys_addr(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &physaddr
,
7563 &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
7564 /* MPU/SAU lookup failed */
7565 if (fi
.type
== ARMFault_QEMU_SFault
) {
7566 qemu_log_mask(CPU_LOG_INT
,
7567 "...SecureFault with SFSR.AUVIOL during unstack\n");
7568 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
7569 env
->v7m
.sfar
= addr
;
7570 exc
= ARMV7M_EXCP_SECURE
;
7573 qemu_log_mask(CPU_LOG_INT
,
7574 "...MemManageFault with CFSR.MUNSTKERR\n");
7575 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MUNSTKERR_MASK
;
7576 exc
= ARMV7M_EXCP_MEM
;
7577 exc_secure
= secure
;
7582 value
= address_space_ldl(arm_addressspace(cs
, attrs
), physaddr
,
7584 if (txres
!= MEMTX_OK
) {
7585 /* BusFault trying to read the data */
7586 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.UNSTKERR\n");
7587 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_UNSTKERR_MASK
;
7588 exc
= ARMV7M_EXCP_BUS
;
7597 /* By pending the exception at this point we are making
7598 * the IMPDEF choice "overridden exceptions pended" (see the
7599 * MergeExcInfo() pseudocode). The other choice would be to not
7600 * pend them now and then make a choice about which to throw away
7601 * later if we have two derived exceptions.
7603 armv7m_nvic_set_pending(env
->nvic
, exc
, exc_secure
);
7607 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
7608 * This may change the current stack pointer between Main and Process
7609 * stack pointers if it is done for the CONTROL register for the current
7612 static void write_v7m_control_spsel_for_secstate(CPUARMState
*env
,
7616 bool old_is_psp
= v7m_using_psp(env
);
7618 env
->v7m
.control
[secstate
] =
7619 deposit32(env
->v7m
.control
[secstate
],
7620 R_V7M_CONTROL_SPSEL_SHIFT
,
7621 R_V7M_CONTROL_SPSEL_LENGTH
, new_spsel
);
7623 if (secstate
== env
->v7m
.secure
) {
7624 bool new_is_psp
= v7m_using_psp(env
);
7627 if (old_is_psp
!= new_is_psp
) {
7628 tmp
= env
->v7m
.other_sp
;
7629 env
->v7m
.other_sp
= env
->regs
[13];
7630 env
->regs
[13] = tmp
;
7635 /* Write to v7M CONTROL.SPSEL bit. This may change the current
7636 * stack pointer between Main and Process stack pointers.
7638 static void write_v7m_control_spsel(CPUARMState
*env
, bool new_spsel
)
7640 write_v7m_control_spsel_for_secstate(env
, new_spsel
, env
->v7m
.secure
);
7643 void write_v7m_exception(CPUARMState
*env
, uint32_t new_exc
)
7645 /* Write a new value to v7m.exception, thus transitioning into or out
7646 * of Handler mode; this may result in a change of active stack pointer.
7648 bool new_is_psp
, old_is_psp
= v7m_using_psp(env
);
7651 env
->v7m
.exception
= new_exc
;
7653 new_is_psp
= v7m_using_psp(env
);
7655 if (old_is_psp
!= new_is_psp
) {
7656 tmp
= env
->v7m
.other_sp
;
7657 env
->v7m
.other_sp
= env
->regs
[13];
7658 env
->regs
[13] = tmp
;
7662 /* Switch M profile security state between NS and S */
7663 static void switch_v7m_security_state(CPUARMState
*env
, bool new_secstate
)
7665 uint32_t new_ss_msp
, new_ss_psp
;
7667 if (env
->v7m
.secure
== new_secstate
) {
7671 /* All the banked state is accessed by looking at env->v7m.secure
7672 * except for the stack pointer; rearrange the SP appropriately.
7674 new_ss_msp
= env
->v7m
.other_ss_msp
;
7675 new_ss_psp
= env
->v7m
.other_ss_psp
;
7677 if (v7m_using_psp(env
)) {
7678 env
->v7m
.other_ss_psp
= env
->regs
[13];
7679 env
->v7m
.other_ss_msp
= env
->v7m
.other_sp
;
7681 env
->v7m
.other_ss_msp
= env
->regs
[13];
7682 env
->v7m
.other_ss_psp
= env
->v7m
.other_sp
;
7685 env
->v7m
.secure
= new_secstate
;
7687 if (v7m_using_psp(env
)) {
7688 env
->regs
[13] = new_ss_psp
;
7689 env
->v7m
.other_sp
= new_ss_msp
;
7691 env
->regs
[13] = new_ss_msp
;
7692 env
->v7m
.other_sp
= new_ss_psp
;
7696 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
7699 * - if the return value is a magic value, do exception return (like BX)
7700 * - otherwise bit 0 of the return value is the target security state
7704 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7705 /* Covers FNC_RETURN and EXC_RETURN magic */
7706 min_magic
= FNC_RETURN_MIN_MAGIC
;
7708 /* EXC_RETURN magic only */
7709 min_magic
= EXC_RETURN_MIN_MAGIC
;
7712 if (dest
>= min_magic
) {
7713 /* This is an exception return magic value; put it where
7714 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
7715 * Note that if we ever add gen_ss_advance() singlestep support to
7716 * M profile this should count as an "instruction execution complete"
7717 * event (compare gen_bx_excret_final_code()).
7719 env
->regs
[15] = dest
& ~1;
7720 env
->thumb
= dest
& 1;
7721 HELPER(exception_internal
)(env
, EXCP_EXCEPTION_EXIT
);
7725 /* translate.c should have made BXNS UNDEF unless we're secure */
7726 assert(env
->v7m
.secure
);
7728 switch_v7m_security_state(env
, dest
& 1);
7730 env
->regs
[15] = dest
& ~1;
7733 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
7735 /* Handle v7M BLXNS:
7736 * - bit 0 of the destination address is the target security state
7739 /* At this point regs[15] is the address just after the BLXNS */
7740 uint32_t nextinst
= env
->regs
[15] | 1;
7741 uint32_t sp
= env
->regs
[13] - 8;
7744 /* translate.c will have made BLXNS UNDEF unless we're secure */
7745 assert(env
->v7m
.secure
);
7748 /* target is Secure, so this is just a normal BLX,
7749 * except that the low bit doesn't indicate Thumb/not.
7751 env
->regs
[14] = nextinst
;
7753 env
->regs
[15] = dest
& ~1;
7757 /* Target is non-secure: first push a stack frame */
7758 if (!QEMU_IS_ALIGNED(sp
, 8)) {
7759 qemu_log_mask(LOG_GUEST_ERROR
,
7760 "BLXNS with misaligned SP is UNPREDICTABLE\n");
7763 if (sp
< v7m_sp_limit(env
)) {
7764 raise_exception(env
, EXCP_STKOF
, 0, 1);
7767 saved_psr
= env
->v7m
.exception
;
7768 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
) {
7769 saved_psr
|= XPSR_SFPA
;
7772 /* Note that these stores can throw exceptions on MPU faults */
7773 cpu_stl_data(env
, sp
, nextinst
);
7774 cpu_stl_data(env
, sp
+ 4, saved_psr
);
7777 env
->regs
[14] = 0xfeffffff;
7778 if (arm_v7m_is_handler_mode(env
)) {
7779 /* Write a dummy value to IPSR, to avoid leaking the current secure
7780 * exception number to non-secure code. This is guaranteed not
7781 * to cause write_v7m_exception() to actually change stacks.
7783 write_v7m_exception(env
, 1);
7785 switch_v7m_security_state(env
, 0);
7787 env
->regs
[15] = dest
;
7790 static uint32_t *get_v7m_sp_ptr(CPUARMState
*env
, bool secure
, bool threadmode
,
7793 /* Return a pointer to the location where we currently store the
7794 * stack pointer for the requested security state and thread mode.
7795 * This pointer will become invalid if the CPU state is updated
7796 * such that the stack pointers are switched around (eg changing
7797 * the SPSEL control bit).
7798 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7799 * Unlike that pseudocode, we require the caller to pass us in the
7800 * SPSEL control bit value; this is because we also use this
7801 * function in handling of pushing of the callee-saves registers
7802 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7803 * and in the tailchain codepath the SPSEL bit comes from the exception
7804 * return magic LR value from the previous exception. The pseudocode
7805 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7806 * to make this utility function generic enough to do the job.
7808 bool want_psp
= threadmode
&& spsel
;
7810 if (secure
== env
->v7m
.secure
) {
7811 if (want_psp
== v7m_using_psp(env
)) {
7812 return &env
->regs
[13];
7814 return &env
->v7m
.other_sp
;
7818 return &env
->v7m
.other_ss_psp
;
7820 return &env
->v7m
.other_ss_msp
;
7825 static bool arm_v7m_load_vector(ARMCPU
*cpu
, int exc
, bool targets_secure
,
7828 CPUState
*cs
= CPU(cpu
);
7829 CPUARMState
*env
= &cpu
->env
;
7831 uint32_t addr
= env
->v7m
.vecbase
[targets_secure
] + exc
* 4;
7832 uint32_t vector_entry
;
7833 MemTxAttrs attrs
= {};
7837 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targets_secure
, true);
7839 /* We don't do a get_phys_addr() here because the rules for vector
7840 * loads are special: they always use the default memory map, and
7841 * the default memory map permits reads from all addresses.
7842 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7843 * that we want this special case which would always say "yes",
7844 * we just do the SAU lookup here followed by a direct physical load.
7846 attrs
.secure
= targets_secure
;
7849 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7850 V8M_SAttributes sattrs
= {};
7852 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
7854 attrs
.secure
= false;
7855 } else if (!targets_secure
) {
7856 /* NS access to S memory */
7861 vector_entry
= address_space_ldl(arm_addressspace(cs
, attrs
), addr
,
7863 if (result
!= MEMTX_OK
) {
7866 *pvec
= vector_entry
;
7870 /* All vector table fetch fails are reported as HardFault, with
7871 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7872 * technically the underlying exception is a MemManage or BusFault
7873 * that is escalated to HardFault.) This is a terminal exception,
7874 * so we will either take the HardFault immediately or else enter
7875 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7877 exc_secure
= targets_secure
||
7878 !(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
);
7879 env
->v7m
.hfsr
|= R_V7M_HFSR_VECTTBL_MASK
| R_V7M_HFSR_FORCED_MASK
;
7880 armv7m_nvic_set_pending_derived(env
->nvic
, ARMV7M_EXCP_HARD
, exc_secure
);
7884 static bool v7m_push_callee_stack(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
7887 /* For v8M, push the callee-saves register part of the stack frame.
7888 * Compare the v8M pseudocode PushCalleeStack().
7889 * In the tailchaining case this may not be the current stack.
7891 CPUARMState
*env
= &cpu
->env
;
7892 uint32_t *frame_sp_p
;
7900 bool mode
= lr
& R_V7M_EXCRET_MODE_MASK
;
7901 bool priv
= !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_NPRIV_MASK
) ||
7904 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, M_REG_S
, priv
);
7905 frame_sp_p
= get_v7m_sp_ptr(env
, M_REG_S
, mode
,
7906 lr
& R_V7M_EXCRET_SPSEL_MASK
);
7907 want_psp
= mode
&& (lr
& R_V7M_EXCRET_SPSEL_MASK
);
7909 limit
= env
->v7m
.psplim
[M_REG_S
];
7911 limit
= env
->v7m
.msplim
[M_REG_S
];
7914 mmu_idx
= arm_mmu_idx(env
);
7915 frame_sp_p
= &env
->regs
[13];
7916 limit
= v7m_sp_limit(env
);
7919 frameptr
= *frame_sp_p
- 0x28;
7920 if (frameptr
< limit
) {
7922 * Stack limit failure: set SP to the limit value, and generate
7923 * STKOF UsageFault. Stack pushes below the limit must not be
7924 * performed. It is IMPDEF whether pushes above the limit are
7925 * performed; we choose not to.
7927 qemu_log_mask(CPU_LOG_INT
,
7928 "...STKOF during callee-saves register stacking\n");
7929 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
7930 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
7932 *frame_sp_p
= limit
;
7936 /* Write as much of the stack frame as we can. A write failure may
7937 * cause us to pend a derived exception.
7940 v7m_stack_write(cpu
, frameptr
, 0xfefa125b, mmu_idx
, ignore_faults
) &&
7941 v7m_stack_write(cpu
, frameptr
+ 0x8, env
->regs
[4], mmu_idx
,
7943 v7m_stack_write(cpu
, frameptr
+ 0xc, env
->regs
[5], mmu_idx
,
7945 v7m_stack_write(cpu
, frameptr
+ 0x10, env
->regs
[6], mmu_idx
,
7947 v7m_stack_write(cpu
, frameptr
+ 0x14, env
->regs
[7], mmu_idx
,
7949 v7m_stack_write(cpu
, frameptr
+ 0x18, env
->regs
[8], mmu_idx
,
7951 v7m_stack_write(cpu
, frameptr
+ 0x1c, env
->regs
[9], mmu_idx
,
7953 v7m_stack_write(cpu
, frameptr
+ 0x20, env
->regs
[10], mmu_idx
,
7955 v7m_stack_write(cpu
, frameptr
+ 0x24, env
->regs
[11], mmu_idx
,
7958 /* Update SP regardless of whether any of the stack accesses failed. */
7959 *frame_sp_p
= frameptr
;
7964 static void v7m_exception_taken(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
7965 bool ignore_stackfaults
)
7967 /* Do the "take the exception" parts of exception entry,
7968 * but not the pushing of state to the stack. This is
7969 * similar to the pseudocode ExceptionTaken() function.
7971 CPUARMState
*env
= &cpu
->env
;
7973 bool targets_secure
;
7975 bool push_failed
= false;
7977 armv7m_nvic_get_pending_irq_info(env
->nvic
, &exc
, &targets_secure
);
7978 qemu_log_mask(CPU_LOG_INT
, "...taking pending %s exception %d\n",
7979 targets_secure
? "secure" : "nonsecure", exc
);
7981 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7982 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
7983 (lr
& R_V7M_EXCRET_S_MASK
)) {
7984 /* The background code (the owner of the registers in the
7985 * exception frame) is Secure. This means it may either already
7986 * have or now needs to push callee-saves registers.
7988 if (targets_secure
) {
7989 if (dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
)) {
7990 /* We took an exception from Secure to NonSecure
7991 * (which means the callee-saved registers got stacked)
7992 * and are now tailchaining to a Secure exception.
7993 * Clear DCRS so eventual return from this Secure
7994 * exception unstacks the callee-saved registers.
7996 lr
&= ~R_V7M_EXCRET_DCRS_MASK
;
7999 /* We're going to a non-secure exception; push the
8000 * callee-saves registers to the stack now, if they're
8001 * not already saved.
8003 if (lr
& R_V7M_EXCRET_DCRS_MASK
&&
8004 !(dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
))) {
8005 push_failed
= v7m_push_callee_stack(cpu
, lr
, dotailchain
,
8006 ignore_stackfaults
);
8008 lr
|= R_V7M_EXCRET_DCRS_MASK
;
8012 lr
&= ~R_V7M_EXCRET_ES_MASK
;
8013 if (targets_secure
|| !arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
8014 lr
|= R_V7M_EXCRET_ES_MASK
;
8016 lr
&= ~R_V7M_EXCRET_SPSEL_MASK
;
8017 if (env
->v7m
.control
[targets_secure
] & R_V7M_CONTROL_SPSEL_MASK
) {
8018 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
8021 /* Clear registers if necessary to prevent non-secure exception
8022 * code being able to see register values from secure code.
8023 * Where register values become architecturally UNKNOWN we leave
8024 * them with their previous values.
8026 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
8027 if (!targets_secure
) {
8028 /* Always clear the caller-saved registers (they have been
8029 * pushed to the stack earlier in v7m_push_stack()).
8030 * Clear callee-saved registers if the background code is
8031 * Secure (in which case these regs were saved in
8032 * v7m_push_callee_stack()).
8036 for (i
= 0; i
< 13; i
++) {
8037 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
8038 if (i
< 4 || i
> 11 || (lr
& R_V7M_EXCRET_S_MASK
)) {
8043 xpsr_write(env
, 0, XPSR_NZCV
| XPSR_Q
| XPSR_GE
| XPSR_IT
);
8048 if (push_failed
&& !ignore_stackfaults
) {
8049 /* Derived exception on callee-saves register stacking:
8050 * we might now want to take a different exception which
8051 * targets a different security state, so try again from the top.
8053 qemu_log_mask(CPU_LOG_INT
,
8054 "...derived exception on callee-saves register stacking");
8055 v7m_exception_taken(cpu
, lr
, true, true);
8059 if (!arm_v7m_load_vector(cpu
, exc
, targets_secure
, &addr
)) {
8060 /* Vector load failed: derived exception */
8061 qemu_log_mask(CPU_LOG_INT
, "...derived exception on vector table load");
8062 v7m_exception_taken(cpu
, lr
, true, true);
8066 /* Now we've done everything that might cause a derived exception
8067 * we can go ahead and activate whichever exception we're going to
8068 * take (which might now be the derived exception).
8070 armv7m_nvic_acknowledge_irq(env
->nvic
);
8072 /* Switch to target security state -- must do this before writing SPSEL */
8073 switch_v7m_security_state(env
, targets_secure
);
8074 write_v7m_control_spsel(env
, 0);
8075 arm_clear_exclusive(env
);
8077 env
->condexec_bits
= 0;
8079 env
->regs
[15] = addr
& 0xfffffffe;
8080 env
->thumb
= addr
& 1;
8083 static bool v7m_push_stack(ARMCPU
*cpu
)
8085 /* Do the "set up stack frame" part of exception entry,
8086 * similar to pseudocode PushStack().
8087 * Return true if we generate a derived exception (and so
8088 * should ignore further stack faults trying to process
8089 * that derived exception.)
8092 CPUARMState
*env
= &cpu
->env
;
8093 uint32_t xpsr
= xpsr_read(env
);
8094 uint32_t frameptr
= env
->regs
[13];
8095 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
8097 /* Align stack pointer if the guest wants that */
8098 if ((frameptr
& 4) &&
8099 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKALIGN_MASK
)) {
8101 xpsr
|= XPSR_SPREALIGN
;
8106 if (arm_feature(env
, ARM_FEATURE_V8
)) {
8107 uint32_t limit
= v7m_sp_limit(env
);
8109 if (frameptr
< limit
) {
8111 * Stack limit failure: set SP to the limit value, and generate
8112 * STKOF UsageFault. Stack pushes below the limit must not be
8113 * performed. It is IMPDEF whether pushes above the limit are
8114 * performed; we choose not to.
8116 qemu_log_mask(CPU_LOG_INT
,
8117 "...STKOF during stacking\n");
8118 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
8119 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
8121 env
->regs
[13] = limit
;
8126 /* Write as much of the stack frame as we can. If we fail a stack
8127 * write this will result in a derived exception being pended
8128 * (which may be taken in preference to the one we started with
8129 * if it has higher priority).
8132 v7m_stack_write(cpu
, frameptr
, env
->regs
[0], mmu_idx
, false) &&
8133 v7m_stack_write(cpu
, frameptr
+ 4, env
->regs
[1], mmu_idx
, false) &&
8134 v7m_stack_write(cpu
, frameptr
+ 8, env
->regs
[2], mmu_idx
, false) &&
8135 v7m_stack_write(cpu
, frameptr
+ 12, env
->regs
[3], mmu_idx
, false) &&
8136 v7m_stack_write(cpu
, frameptr
+ 16, env
->regs
[12], mmu_idx
, false) &&
8137 v7m_stack_write(cpu
, frameptr
+ 20, env
->regs
[14], mmu_idx
, false) &&
8138 v7m_stack_write(cpu
, frameptr
+ 24, env
->regs
[15], mmu_idx
, false) &&
8139 v7m_stack_write(cpu
, frameptr
+ 28, xpsr
, mmu_idx
, false);
8141 /* Update SP regardless of whether any of the stack accesses failed. */
8142 env
->regs
[13] = frameptr
;
8147 static void do_v7m_exception_exit(ARMCPU
*cpu
)
8149 CPUARMState
*env
= &cpu
->env
;
8152 bool ufault
= false;
8153 bool sfault
= false;
8154 bool return_to_sp_process
;
8155 bool return_to_handler
;
8156 bool rettobase
= false;
8157 bool exc_secure
= false;
8158 bool return_to_secure
;
8160 /* If we're not in Handler mode then jumps to magic exception-exit
8161 * addresses don't have magic behaviour. However for the v8M
8162 * security extensions the magic secure-function-return has to
8163 * work in thread mode too, so to avoid doing an extra check in
8164 * the generated code we allow exception-exit magic to also cause the
8165 * internal exception and bring us here in thread mode. Correct code
8166 * will never try to do this (the following insn fetch will always
8167 * fault) so we the overhead of having taken an unnecessary exception
8170 if (!arm_v7m_is_handler_mode(env
)) {
8174 /* In the spec pseudocode ExceptionReturn() is called directly
8175 * from BXWritePC() and gets the full target PC value including
8176 * bit zero. In QEMU's implementation we treat it as a normal
8177 * jump-to-register (which is then caught later on), and so split
8178 * the target value up between env->regs[15] and env->thumb in
8179 * gen_bx(). Reconstitute it.
8181 excret
= env
->regs
[15];
8186 qemu_log_mask(CPU_LOG_INT
, "Exception return: magic PC %" PRIx32
8187 " previous exception %d\n",
8188 excret
, env
->v7m
.exception
);
8190 if ((excret
& R_V7M_EXCRET_RES1_MASK
) != R_V7M_EXCRET_RES1_MASK
) {
8191 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero high bits in exception "
8192 "exit PC value 0x%" PRIx32
" are UNPREDICTABLE\n",
8196 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
8197 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
8198 * we pick which FAULTMASK to clear.
8200 if (!env
->v7m
.secure
&&
8201 ((excret
& R_V7M_EXCRET_ES_MASK
) ||
8202 !(excret
& R_V7M_EXCRET_DCRS_MASK
))) {
8204 /* For all other purposes, treat ES as 0 (R_HXSR) */
8205 excret
&= ~R_V7M_EXCRET_ES_MASK
;
8207 exc_secure
= excret
& R_V7M_EXCRET_ES_MASK
;
8210 if (env
->v7m
.exception
!= ARMV7M_EXCP_NMI
) {
8211 /* Auto-clear FAULTMASK on return from other than NMI.
8212 * If the security extension is implemented then this only
8213 * happens if the raw execution priority is >= 0; the
8214 * value of the ES bit in the exception return value indicates
8215 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
8217 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
8218 if (armv7m_nvic_raw_execution_priority(env
->nvic
) >= 0) {
8219 env
->v7m
.faultmask
[exc_secure
] = 0;
8222 env
->v7m
.faultmask
[M_REG_NS
] = 0;
8226 switch (armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
,
8229 /* attempt to exit an exception that isn't active */
8233 /* still an irq active now */
8236 /* we returned to base exception level, no nesting.
8237 * (In the pseudocode this is written using "NestedActivation != 1"
8238 * where we have 'rettobase == false'.)
8243 g_assert_not_reached();
8246 return_to_handler
= !(excret
& R_V7M_EXCRET_MODE_MASK
);
8247 return_to_sp_process
= excret
& R_V7M_EXCRET_SPSEL_MASK
;
8248 return_to_secure
= arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
8249 (excret
& R_V7M_EXCRET_S_MASK
);
8251 if (arm_feature(env
, ARM_FEATURE_V8
)) {
8252 if (!arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
8253 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
8254 * we choose to take the UsageFault.
8256 if ((excret
& R_V7M_EXCRET_S_MASK
) ||
8257 (excret
& R_V7M_EXCRET_ES_MASK
) ||
8258 !(excret
& R_V7M_EXCRET_DCRS_MASK
)) {
8262 if (excret
& R_V7M_EXCRET_RES0_MASK
) {
8266 /* For v7M we only recognize certain combinations of the low bits */
8267 switch (excret
& 0xf) {
8268 case 1: /* Return to Handler */
8270 case 13: /* Return to Thread using Process stack */
8271 case 9: /* Return to Thread using Main stack */
8272 /* We only need to check NONBASETHRDENA for v7M, because in
8273 * v8M this bit does not exist (it is RES1).
8276 !(env
->v7m
.ccr
[env
->v7m
.secure
] &
8277 R_V7M_CCR_NONBASETHRDENA_MASK
)) {
8287 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
8288 * Handler mode (and will be until we write the new XPSR.Interrupt
8289 * field) this does not switch around the current stack pointer.
8290 * We must do this before we do any kind of tailchaining, including
8291 * for the derived exceptions on integrity check failures, or we will
8292 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
8294 write_v7m_control_spsel_for_secstate(env
, return_to_sp_process
, exc_secure
);
8297 env
->v7m
.sfsr
|= R_V7M_SFSR_INVER_MASK
;
8298 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
8299 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
8300 "stackframe: failed EXC_RETURN.ES validity check\n");
8301 v7m_exception_taken(cpu
, excret
, true, false);
8306 /* Bad exception return: instead of popping the exception
8307 * stack, directly take a usage fault on the current stack.
8309 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
8310 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
8311 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
8312 "stackframe: failed exception return integrity check\n");
8313 v7m_exception_taken(cpu
, excret
, true, false);
8318 * Tailchaining: if there is currently a pending exception that
8319 * is high enough priority to preempt execution at the level we're
8320 * about to return to, then just directly take that exception now,
8321 * avoiding an unstack-and-then-stack. Note that now we have
8322 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
8323 * our current execution priority is already the execution priority we are
8324 * returning to -- none of the state we would unstack or set based on
8325 * the EXCRET value affects it.
8327 if (armv7m_nvic_can_take_pending_exception(env
->nvic
)) {
8328 qemu_log_mask(CPU_LOG_INT
, "...tailchaining to pending exception\n");
8329 v7m_exception_taken(cpu
, excret
, true, false);
8333 switch_v7m_security_state(env
, return_to_secure
);
8336 /* The stack pointer we should be reading the exception frame from
8337 * depends on bits in the magic exception return type value (and
8338 * for v8M isn't necessarily the stack pointer we will eventually
8339 * end up resuming execution with). Get a pointer to the location
8340 * in the CPU state struct where the SP we need is currently being
8341 * stored; we will use and modify it in place.
8342 * We use this limited C variable scope so we don't accidentally
8343 * use 'frame_sp_p' after we do something that makes it invalid.
8345 uint32_t *frame_sp_p
= get_v7m_sp_ptr(env
,
8348 return_to_sp_process
);
8349 uint32_t frameptr
= *frame_sp_p
;
8352 bool return_to_priv
= return_to_handler
||
8353 !(env
->v7m
.control
[return_to_secure
] & R_V7M_CONTROL_NPRIV_MASK
);
8355 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, return_to_secure
,
8358 if (!QEMU_IS_ALIGNED(frameptr
, 8) &&
8359 arm_feature(env
, ARM_FEATURE_V8
)) {
8360 qemu_log_mask(LOG_GUEST_ERROR
,
8361 "M profile exception return with non-8-aligned SP "
8362 "for destination state is UNPREDICTABLE\n");
8365 /* Do we need to pop callee-saved registers? */
8366 if (return_to_secure
&&
8367 ((excret
& R_V7M_EXCRET_ES_MASK
) == 0 ||
8368 (excret
& R_V7M_EXCRET_DCRS_MASK
) == 0)) {
8369 uint32_t expected_sig
= 0xfefa125b;
8370 uint32_t actual_sig
;
8372 pop_ok
= v7m_stack_read(cpu
, &actual_sig
, frameptr
, mmu_idx
);
8374 if (pop_ok
&& expected_sig
!= actual_sig
) {
8375 /* Take a SecureFault on the current stack */
8376 env
->v7m
.sfsr
|= R_V7M_SFSR_INVIS_MASK
;
8377 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
8378 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
8379 "stackframe: failed exception return integrity "
8380 "signature check\n");
8381 v7m_exception_taken(cpu
, excret
, true, false);
8386 v7m_stack_read(cpu
, &env
->regs
[4], frameptr
+ 0x8, mmu_idx
) &&
8387 v7m_stack_read(cpu
, &env
->regs
[5], frameptr
+ 0xc, mmu_idx
) &&
8388 v7m_stack_read(cpu
, &env
->regs
[6], frameptr
+ 0x10, mmu_idx
) &&
8389 v7m_stack_read(cpu
, &env
->regs
[7], frameptr
+ 0x14, mmu_idx
) &&
8390 v7m_stack_read(cpu
, &env
->regs
[8], frameptr
+ 0x18, mmu_idx
) &&
8391 v7m_stack_read(cpu
, &env
->regs
[9], frameptr
+ 0x1c, mmu_idx
) &&
8392 v7m_stack_read(cpu
, &env
->regs
[10], frameptr
+ 0x20, mmu_idx
) &&
8393 v7m_stack_read(cpu
, &env
->regs
[11], frameptr
+ 0x24, mmu_idx
);
8400 v7m_stack_read(cpu
, &env
->regs
[0], frameptr
, mmu_idx
) &&
8401 v7m_stack_read(cpu
, &env
->regs
[1], frameptr
+ 0x4, mmu_idx
) &&
8402 v7m_stack_read(cpu
, &env
->regs
[2], frameptr
+ 0x8, mmu_idx
) &&
8403 v7m_stack_read(cpu
, &env
->regs
[3], frameptr
+ 0xc, mmu_idx
) &&
8404 v7m_stack_read(cpu
, &env
->regs
[12], frameptr
+ 0x10, mmu_idx
) &&
8405 v7m_stack_read(cpu
, &env
->regs
[14], frameptr
+ 0x14, mmu_idx
) &&
8406 v7m_stack_read(cpu
, &env
->regs
[15], frameptr
+ 0x18, mmu_idx
) &&
8407 v7m_stack_read(cpu
, &xpsr
, frameptr
+ 0x1c, mmu_idx
);
8410 /* v7m_stack_read() pended a fault, so take it (as a tail
8411 * chained exception on the same stack frame)
8413 qemu_log_mask(CPU_LOG_INT
, "...derived exception on unstacking\n");
8414 v7m_exception_taken(cpu
, excret
, true, false);
8418 /* Returning from an exception with a PC with bit 0 set is defined
8419 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
8420 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
8421 * the lsbit, and there are several RTOSes out there which incorrectly
8422 * assume the r15 in the stack frame should be a Thumb-style "lsbit
8423 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
8424 * complain about the badly behaved guest.
8426 if (env
->regs
[15] & 1) {
8427 env
->regs
[15] &= ~1U;
8428 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
8429 qemu_log_mask(LOG_GUEST_ERROR
,
8430 "M profile return from interrupt with misaligned "
8431 "PC is UNPREDICTABLE on v7M\n");
8435 if (arm_feature(env
, ARM_FEATURE_V8
)) {
8436 /* For v8M we have to check whether the xPSR exception field
8437 * matches the EXCRET value for return to handler/thread
8438 * before we commit to changing the SP and xPSR.
8440 bool will_be_handler
= (xpsr
& XPSR_EXCP
) != 0;
8441 if (return_to_handler
!= will_be_handler
) {
8442 /* Take an INVPC UsageFault on the current stack.
8443 * By this point we will have switched to the security state
8444 * for the background state, so this UsageFault will target
8447 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
8449 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
8450 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
8451 "stackframe: failed exception return integrity "
8453 v7m_exception_taken(cpu
, excret
, true, false);
8458 /* Commit to consuming the stack frame */
8460 /* Undo stack alignment (the SPREALIGN bit indicates that the original
8461 * pre-exception SP was not 8-aligned and we added a padding word to
8462 * align it, so we undo this by ORing in the bit that increases it
8463 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
8464 * would work too but a logical OR is how the pseudocode specifies it.)
8466 if (xpsr
& XPSR_SPREALIGN
) {
8469 *frame_sp_p
= frameptr
;
8471 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
8472 xpsr_write(env
, xpsr
, ~XPSR_SPREALIGN
);
8474 /* The restored xPSR exception field will be zero if we're
8475 * resuming in Thread mode. If that doesn't match what the
8476 * exception return excret specified then this is a UsageFault.
8477 * v7M requires we make this check here; v8M did it earlier.
8479 if (return_to_handler
!= arm_v7m_is_handler_mode(env
)) {
8480 /* Take an INVPC UsageFault by pushing the stack again;
8481 * we know we're v7M so this is never a Secure UsageFault.
8483 bool ignore_stackfaults
;
8485 assert(!arm_feature(env
, ARM_FEATURE_V8
));
8486 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, false);
8487 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
8488 ignore_stackfaults
= v7m_push_stack(cpu
);
8489 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on new stackframe: "
8490 "failed exception return integrity check\n");
8491 v7m_exception_taken(cpu
, excret
, false, ignore_stackfaults
);
8495 /* Otherwise, we have a successful exception exit. */
8496 arm_clear_exclusive(env
);
8497 qemu_log_mask(CPU_LOG_INT
, "...successful exception return\n");
8500 static bool do_v7m_function_return(ARMCPU
*cpu
)
8502 /* v8M security extensions magic function return.
8504 * (1) throw an exception (longjump)
8505 * (2) return true if we successfully handled the function return
8506 * (3) return false if we failed a consistency check and have
8507 * pended a UsageFault that needs to be taken now
8509 * At this point the magic return value is split between env->regs[15]
8510 * and env->thumb. We don't bother to reconstitute it because we don't
8511 * need it (all values are handled the same way).
8513 CPUARMState
*env
= &cpu
->env
;
8514 uint32_t newpc
, newpsr
, newpsr_exc
;
8516 qemu_log_mask(CPU_LOG_INT
, "...really v7M secure function return\n");
8519 bool threadmode
, spsel
;
8522 uint32_t *frame_sp_p
;
8525 /* Pull the return address and IPSR from the Secure stack */
8526 threadmode
= !arm_v7m_is_handler_mode(env
);
8527 spsel
= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SPSEL_MASK
;
8529 frame_sp_p
= get_v7m_sp_ptr(env
, true, threadmode
, spsel
);
8530 frameptr
= *frame_sp_p
;
8532 /* These loads may throw an exception (for MPU faults). We want to
8533 * do them as secure, so work out what MMU index that is.
8535 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
8536 oi
= make_memop_idx(MO_LE
, arm_to_core_mmu_idx(mmu_idx
));
8537 newpc
= helper_le_ldul_mmu(env
, frameptr
, oi
, 0);
8538 newpsr
= helper_le_ldul_mmu(env
, frameptr
+ 4, oi
, 0);
8540 /* Consistency checks on new IPSR */
8541 newpsr_exc
= newpsr
& XPSR_EXCP
;
8542 if (!((env
->v7m
.exception
== 0 && newpsr_exc
== 0) ||
8543 (env
->v7m
.exception
== 1 && newpsr_exc
!= 0))) {
8544 /* Pend the fault and tell our caller to take it */
8545 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
8546 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
8548 qemu_log_mask(CPU_LOG_INT
,
8549 "...taking INVPC UsageFault: "
8550 "IPSR consistency check failed\n");
8554 *frame_sp_p
= frameptr
+ 8;
8557 /* This invalidates frame_sp_p */
8558 switch_v7m_security_state(env
, true);
8559 env
->v7m
.exception
= newpsr_exc
;
8560 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
8561 if (newpsr
& XPSR_SFPA
) {
8562 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_SFPA_MASK
;
8564 xpsr_write(env
, 0, XPSR_IT
);
8565 env
->thumb
= newpc
& 1;
8566 env
->regs
[15] = newpc
& ~1;
8568 qemu_log_mask(CPU_LOG_INT
, "...function return successful\n");
8572 static void arm_log_exception(int idx
)
8574 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
8575 const char *exc
= NULL
;
8576 static const char * const excnames
[] = {
8577 [EXCP_UDEF
] = "Undefined Instruction",
8579 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
8580 [EXCP_DATA_ABORT
] = "Data Abort",
8583 [EXCP_BKPT
] = "Breakpoint",
8584 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
8585 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
8586 [EXCP_HVC
] = "Hypervisor Call",
8587 [EXCP_HYP_TRAP
] = "Hypervisor Trap",
8588 [EXCP_SMC
] = "Secure Monitor Call",
8589 [EXCP_VIRQ
] = "Virtual IRQ",
8590 [EXCP_VFIQ
] = "Virtual FIQ",
8591 [EXCP_SEMIHOST
] = "Semihosting call",
8592 [EXCP_NOCP
] = "v7M NOCP UsageFault",
8593 [EXCP_INVSTATE
] = "v7M INVSTATE UsageFault",
8594 [EXCP_STKOF
] = "v8M STKOF UsageFault",
8597 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
8598 exc
= excnames
[idx
];
8603 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
8607 static bool v7m_read_half_insn(ARMCPU
*cpu
, ARMMMUIdx mmu_idx
,
8608 uint32_t addr
, uint16_t *insn
)
8610 /* Load a 16-bit portion of a v7M instruction, returning true on success,
8611 * or false on failure (in which case we will have pended the appropriate
8613 * We need to do the instruction fetch's MPU and SAU checks
8614 * like this because there is no MMU index that would allow
8615 * doing the load with a single function call. Instead we must
8616 * first check that the security attributes permit the load
8617 * and that they don't mismatch on the two halves of the instruction,
8618 * and then we do the load as a secure load (ie using the security
8619 * attributes of the address, not the CPU, as architecturally required).
8621 CPUState
*cs
= CPU(cpu
);
8622 CPUARMState
*env
= &cpu
->env
;
8623 V8M_SAttributes sattrs
= {};
8624 MemTxAttrs attrs
= {};
8625 ARMMMUFaultInfo fi
= {};
8627 target_ulong page_size
;
8631 v8m_security_lookup(env
, addr
, MMU_INST_FETCH
, mmu_idx
, &sattrs
);
8632 if (!sattrs
.nsc
|| sattrs
.ns
) {
8633 /* This must be the second half of the insn, and it straddles a
8634 * region boundary with the second half not being S&NSC.
8636 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
8637 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
8638 qemu_log_mask(CPU_LOG_INT
,
8639 "...really SecureFault with SFSR.INVEP\n");
8642 if (get_phys_addr(env
, addr
, MMU_INST_FETCH
, mmu_idx
,
8643 &physaddr
, &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
8644 /* the MPU lookup failed */
8645 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
8646 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
, env
->v7m
.secure
);
8647 qemu_log_mask(CPU_LOG_INT
, "...really MemManage with CFSR.IACCVIOL\n");
8650 *insn
= address_space_lduw_le(arm_addressspace(cs
, attrs
), physaddr
,
8652 if (txres
!= MEMTX_OK
) {
8653 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
8654 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
8655 qemu_log_mask(CPU_LOG_INT
, "...really BusFault with CFSR.IBUSERR\n");
8661 static bool v7m_handle_execute_nsc(ARMCPU
*cpu
)
8663 /* Check whether this attempt to execute code in a Secure & NS-Callable
8664 * memory region is for an SG instruction; if so, then emulate the
8665 * effect of the SG instruction and return true. Otherwise pend
8666 * the correct kind of exception and return false.
8668 CPUARMState
*env
= &cpu
->env
;
8672 /* We should never get here unless get_phys_addr_pmsav8() caused
8673 * an exception for NS executing in S&NSC memory.
8675 assert(!env
->v7m
.secure
);
8676 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
8678 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
8679 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
8681 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15], &insn
)) {
8689 if (insn
!= 0xe97f) {
8690 /* Not an SG instruction first half (we choose the IMPDEF
8691 * early-SG-check option).
8696 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15] + 2, &insn
)) {
8700 if (insn
!= 0xe97f) {
8701 /* Not an SG instruction second half (yes, both halves of the SG
8702 * insn have the same hex value)
8707 /* OK, we have confirmed that we really have an SG instruction.
8708 * We know we're NS in S memory so don't need to repeat those checks.
8710 qemu_log_mask(CPU_LOG_INT
, "...really an SG instruction at 0x%08" PRIx32
8711 ", executing it\n", env
->regs
[15]);
8712 env
->regs
[14] &= ~1;
8713 switch_v7m_security_state(env
, true);
8714 xpsr_write(env
, 0, XPSR_IT
);
8719 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
8720 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
8721 qemu_log_mask(CPU_LOG_INT
,
8722 "...really SecureFault with SFSR.INVEP\n");
8726 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
8728 ARMCPU
*cpu
= ARM_CPU(cs
);
8729 CPUARMState
*env
= &cpu
->env
;
8731 bool ignore_stackfaults
;
8733 arm_log_exception(cs
->exception_index
);
8735 /* For exceptions we just mark as pending on the NVIC, and let that
8737 switch (cs
->exception_index
) {
8739 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
8740 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNDEFINSTR_MASK
;
8743 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
8744 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_NOCP_MASK
;
8747 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
8748 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVSTATE_MASK
;
8751 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
8752 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
8755 /* The PC already points to the next instruction. */
8756 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
, env
->v7m
.secure
);
8758 case EXCP_PREFETCH_ABORT
:
8759 case EXCP_DATA_ABORT
:
8760 /* Note that for M profile we don't have a guest facing FSR, but
8761 * the env->exception.fsr will be populated by the code that
8762 * raises the fault, in the A profile short-descriptor format.
8764 switch (env
->exception
.fsr
& 0xf) {
8765 case M_FAKE_FSR_NSC_EXEC
:
8766 /* Exception generated when we try to execute code at an address
8767 * which is marked as Secure & Non-Secure Callable and the CPU
8768 * is in the Non-Secure state. The only instruction which can
8769 * be executed like this is SG (and that only if both halves of
8770 * the SG instruction have the same security attributes.)
8771 * Everything else must generate an INVEP SecureFault, so we
8772 * emulate the SG instruction here.
8774 if (v7m_handle_execute_nsc(cpu
)) {
8778 case M_FAKE_FSR_SFAULT
:
8779 /* Various flavours of SecureFault for attempts to execute or
8780 * access data in the wrong security state.
8782 switch (cs
->exception_index
) {
8783 case EXCP_PREFETCH_ABORT
:
8784 if (env
->v7m
.secure
) {
8785 env
->v7m
.sfsr
|= R_V7M_SFSR_INVTRAN_MASK
;
8786 qemu_log_mask(CPU_LOG_INT
,
8787 "...really SecureFault with SFSR.INVTRAN\n");
8789 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
8790 qemu_log_mask(CPU_LOG_INT
,
8791 "...really SecureFault with SFSR.INVEP\n");
8794 case EXCP_DATA_ABORT
:
8795 /* This must be an NS access to S memory */
8796 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
8797 qemu_log_mask(CPU_LOG_INT
,
8798 "...really SecureFault with SFSR.AUVIOL\n");
8801 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
8803 case 0x8: /* External Abort */
8804 switch (cs
->exception_index
) {
8805 case EXCP_PREFETCH_ABORT
:
8806 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
8807 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IBUSERR\n");
8809 case EXCP_DATA_ABORT
:
8810 env
->v7m
.cfsr
[M_REG_NS
] |=
8811 (R_V7M_CFSR_PRECISERR_MASK
| R_V7M_CFSR_BFARVALID_MASK
);
8812 env
->v7m
.bfar
= env
->exception
.vaddress
;
8813 qemu_log_mask(CPU_LOG_INT
,
8814 "...with CFSR.PRECISERR and BFAR 0x%x\n",
8818 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
8821 /* All other FSR values are either MPU faults or "can't happen
8822 * for M profile" cases.
8824 switch (cs
->exception_index
) {
8825 case EXCP_PREFETCH_ABORT
:
8826 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
8827 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IACCVIOL\n");
8829 case EXCP_DATA_ABORT
:
8830 env
->v7m
.cfsr
[env
->v7m
.secure
] |=
8831 (R_V7M_CFSR_DACCVIOL_MASK
| R_V7M_CFSR_MMARVALID_MASK
);
8832 env
->v7m
.mmfar
[env
->v7m
.secure
] = env
->exception
.vaddress
;
8833 qemu_log_mask(CPU_LOG_INT
,
8834 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8835 env
->v7m
.mmfar
[env
->v7m
.secure
]);
8838 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
,
8844 if (semihosting_enabled()) {
8846 nr
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
)) & 0xff;
8849 qemu_log_mask(CPU_LOG_INT
,
8850 "...handling as semihosting call 0x%x\n",
8852 env
->regs
[0] = do_arm_semihosting(env
);
8856 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
, false);
8860 case EXCP_EXCEPTION_EXIT
:
8861 if (env
->regs
[15] < EXC_RETURN_MIN_MAGIC
) {
8862 /* Must be v8M security extension function return */
8863 assert(env
->regs
[15] >= FNC_RETURN_MIN_MAGIC
);
8864 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
8865 if (do_v7m_function_return(cpu
)) {
8869 do_v7m_exception_exit(cpu
);
8874 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8875 return; /* Never happens. Keep compiler happy. */
8878 if (arm_feature(env
, ARM_FEATURE_V8
)) {
8879 lr
= R_V7M_EXCRET_RES1_MASK
|
8880 R_V7M_EXCRET_DCRS_MASK
|
8881 R_V7M_EXCRET_FTYPE_MASK
;
8882 /* The S bit indicates whether we should return to Secure
8883 * or NonSecure (ie our current state).
8884 * The ES bit indicates whether we're taking this exception
8885 * to Secure or NonSecure (ie our target state). We set it
8886 * later, in v7m_exception_taken().
8887 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8888 * This corresponds to the ARM ARM pseudocode for v8M setting
8889 * some LR bits in PushStack() and some in ExceptionTaken();
8890 * the distinction matters for the tailchain cases where we
8891 * can take an exception without pushing the stack.
8893 if (env
->v7m
.secure
) {
8894 lr
|= R_V7M_EXCRET_S_MASK
;
8897 lr
= R_V7M_EXCRET_RES1_MASK
|
8898 R_V7M_EXCRET_S_MASK
|
8899 R_V7M_EXCRET_DCRS_MASK
|
8900 R_V7M_EXCRET_FTYPE_MASK
|
8901 R_V7M_EXCRET_ES_MASK
;
8902 if (env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
) {
8903 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
8906 if (!arm_v7m_is_handler_mode(env
)) {
8907 lr
|= R_V7M_EXCRET_MODE_MASK
;
8910 ignore_stackfaults
= v7m_push_stack(cpu
);
8911 v7m_exception_taken(cpu
, lr
, false, ignore_stackfaults
);
8914 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8915 * register set. This is necessary when switching between AArch32 and AArch64
8918 void aarch64_sync_32_to_64(CPUARMState
*env
)
8921 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
8923 /* We can blanket copy R[0:7] to X[0:7] */
8924 for (i
= 0; i
< 8; i
++) {
8925 env
->xregs
[i
] = env
->regs
[i
];
8928 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8929 * Otherwise, they come from the banked user regs.
8931 if (mode
== ARM_CPU_MODE_FIQ
) {
8932 for (i
= 8; i
< 13; i
++) {
8933 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
8936 for (i
= 8; i
< 13; i
++) {
8937 env
->xregs
[i
] = env
->regs
[i
];
8941 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8942 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8943 * from the mode banked register.
8945 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
8946 env
->xregs
[13] = env
->regs
[13];
8947 env
->xregs
[14] = env
->regs
[14];
8949 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
8950 /* HYP is an exception in that it is copied from r14 */
8951 if (mode
== ARM_CPU_MODE_HYP
) {
8952 env
->xregs
[14] = env
->regs
[14];
8954 env
->xregs
[14] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)];
8958 if (mode
== ARM_CPU_MODE_HYP
) {
8959 env
->xregs
[15] = env
->regs
[13];
8961 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
8964 if (mode
== ARM_CPU_MODE_IRQ
) {
8965 env
->xregs
[16] = env
->regs
[14];
8966 env
->xregs
[17] = env
->regs
[13];
8968 env
->xregs
[16] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)];
8969 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
8972 if (mode
== ARM_CPU_MODE_SVC
) {
8973 env
->xregs
[18] = env
->regs
[14];
8974 env
->xregs
[19] = env
->regs
[13];
8976 env
->xregs
[18] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)];
8977 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
8980 if (mode
== ARM_CPU_MODE_ABT
) {
8981 env
->xregs
[20] = env
->regs
[14];
8982 env
->xregs
[21] = env
->regs
[13];
8984 env
->xregs
[20] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)];
8985 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
8988 if (mode
== ARM_CPU_MODE_UND
) {
8989 env
->xregs
[22] = env
->regs
[14];
8990 env
->xregs
[23] = env
->regs
[13];
8992 env
->xregs
[22] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)];
8993 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
8996 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8997 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8998 * FIQ bank for r8-r14.
9000 if (mode
== ARM_CPU_MODE_FIQ
) {
9001 for (i
= 24; i
< 31; i
++) {
9002 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
9005 for (i
= 24; i
< 29; i
++) {
9006 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
9008 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
9009 env
->xregs
[30] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)];
9012 env
->pc
= env
->regs
[15];
9015 /* Function used to synchronize QEMU's AArch32 register set with AArch64
9016 * register set. This is necessary when switching between AArch32 and AArch64
9019 void aarch64_sync_64_to_32(CPUARMState
*env
)
9022 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
9024 /* We can blanket copy X[0:7] to R[0:7] */
9025 for (i
= 0; i
< 8; i
++) {
9026 env
->regs
[i
] = env
->xregs
[i
];
9029 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
9030 * Otherwise, we copy x8-x12 into the banked user regs.
9032 if (mode
== ARM_CPU_MODE_FIQ
) {
9033 for (i
= 8; i
< 13; i
++) {
9034 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
9037 for (i
= 8; i
< 13; i
++) {
9038 env
->regs
[i
] = env
->xregs
[i
];
9042 /* Registers r13 & r14 depend on the current mode.
9043 * If we are in a given mode, we copy the corresponding x registers to r13
9044 * and r14. Otherwise, we copy the x register to the banked r13 and r14
9047 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
9048 env
->regs
[13] = env
->xregs
[13];
9049 env
->regs
[14] = env
->xregs
[14];
9051 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
9053 /* HYP is an exception in that it does not have its own banked r14 but
9054 * shares the USR r14
9056 if (mode
== ARM_CPU_MODE_HYP
) {
9057 env
->regs
[14] = env
->xregs
[14];
9059 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
9063 if (mode
== ARM_CPU_MODE_HYP
) {
9064 env
->regs
[13] = env
->xregs
[15];
9066 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
9069 if (mode
== ARM_CPU_MODE_IRQ
) {
9070 env
->regs
[14] = env
->xregs
[16];
9071 env
->regs
[13] = env
->xregs
[17];
9073 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
9074 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
9077 if (mode
== ARM_CPU_MODE_SVC
) {
9078 env
->regs
[14] = env
->xregs
[18];
9079 env
->regs
[13] = env
->xregs
[19];
9081 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
9082 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
9085 if (mode
== ARM_CPU_MODE_ABT
) {
9086 env
->regs
[14] = env
->xregs
[20];
9087 env
->regs
[13] = env
->xregs
[21];
9089 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
9090 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
9093 if (mode
== ARM_CPU_MODE_UND
) {
9094 env
->regs
[14] = env
->xregs
[22];
9095 env
->regs
[13] = env
->xregs
[23];
9097 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
9098 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
9101 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
9102 * mode, then we can copy to r8-r14. Otherwise, we copy to the
9103 * FIQ bank for r8-r14.
9105 if (mode
== ARM_CPU_MODE_FIQ
) {
9106 for (i
= 24; i
< 31; i
++) {
9107 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
9110 for (i
= 24; i
< 29; i
++) {
9111 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
9113 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
9114 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
9117 env
->regs
[15] = env
->pc
;
9120 static void take_aarch32_exception(CPUARMState
*env
, int new_mode
,
9121 uint32_t mask
, uint32_t offset
,
9124 /* Change the CPU state so as to actually take the exception. */
9125 switch_mode(env
, new_mode
);
9127 * For exceptions taken to AArch32 we must clear the SS bit in both
9128 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
9130 env
->uncached_cpsr
&= ~PSTATE_SS
;
9131 env
->spsr
= cpsr_read(env
);
9132 /* Clear IT bits. */
9133 env
->condexec_bits
= 0;
9134 /* Switch to the new mode, and to the correct instruction set. */
9135 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
9136 /* Set new mode endianness */
9137 env
->uncached_cpsr
&= ~CPSR_E
;
9138 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
9139 env
->uncached_cpsr
|= CPSR_E
;
9141 /* J and IL must always be cleared for exception entry */
9142 env
->uncached_cpsr
&= ~(CPSR_IL
| CPSR_J
);
9145 if (new_mode
== ARM_CPU_MODE_HYP
) {
9146 env
->thumb
= (env
->cp15
.sctlr_el
[2] & SCTLR_TE
) != 0;
9147 env
->elr_el
[2] = env
->regs
[15];
9150 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
9151 * and we should just guard the thumb mode on V4
9153 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
9155 (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
9157 env
->regs
[14] = env
->regs
[15] + offset
;
9159 env
->regs
[15] = newpc
;
9162 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState
*cs
)
9165 * Handle exception entry to Hyp mode; this is sufficiently
9166 * different to entry to other AArch32 modes that we handle it
9169 * The vector table entry used is always the 0x14 Hyp mode entry point,
9170 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
9171 * The offset applied to the preferred return address is always zero
9172 * (see DDI0487C.a section G1.12.3).
9173 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
9175 uint32_t addr
, mask
;
9176 ARMCPU
*cpu
= ARM_CPU(cs
);
9177 CPUARMState
*env
= &cpu
->env
;
9179 switch (cs
->exception_index
) {
9187 /* Fall through to prefetch abort. */
9188 case EXCP_PREFETCH_ABORT
:
9189 env
->cp15
.ifar_s
= env
->exception
.vaddress
;
9190 qemu_log_mask(CPU_LOG_INT
, "...with HIFAR 0x%x\n",
9191 (uint32_t)env
->exception
.vaddress
);
9194 case EXCP_DATA_ABORT
:
9195 env
->cp15
.dfar_s
= env
->exception
.vaddress
;
9196 qemu_log_mask(CPU_LOG_INT
, "...with HDFAR 0x%x\n",
9197 (uint32_t)env
->exception
.vaddress
);
9212 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
9215 if (cs
->exception_index
!= EXCP_IRQ
&& cs
->exception_index
!= EXCP_FIQ
) {
9216 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
9218 * QEMU syndrome values are v8-style. v7 has the IL bit
9219 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
9220 * If this is a v7 CPU, squash the IL bit in those cases.
9222 if (cs
->exception_index
== EXCP_PREFETCH_ABORT
||
9223 (cs
->exception_index
== EXCP_DATA_ABORT
&&
9224 !(env
->exception
.syndrome
& ARM_EL_ISV
)) ||
9225 syn_get_ec(env
->exception
.syndrome
) == EC_UNCATEGORIZED
) {
9226 env
->exception
.syndrome
&= ~ARM_EL_IL
;
9229 env
->cp15
.esr_el
[2] = env
->exception
.syndrome
;
9232 if (arm_current_el(env
) != 2 && addr
< 0x14) {
9237 if (!(env
->cp15
.scr_el3
& SCR_EA
)) {
9240 if (!(env
->cp15
.scr_el3
& SCR_IRQ
)) {
9243 if (!(env
->cp15
.scr_el3
& SCR_FIQ
)) {
9247 addr
+= env
->cp15
.hvbar
;
9249 take_aarch32_exception(env
, ARM_CPU_MODE_HYP
, mask
, 0, addr
);
9252 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
9254 ARMCPU
*cpu
= ARM_CPU(cs
);
9255 CPUARMState
*env
= &cpu
->env
;
9262 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
9263 switch (syn_get_ec(env
->exception
.syndrome
)) {
9265 case EC_BREAKPOINT_SAME_EL
:
9269 case EC_WATCHPOINT_SAME_EL
:
9275 case EC_VECTORCATCH
:
9284 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
9287 if (env
->exception
.target_el
== 2) {
9288 arm_cpu_do_interrupt_aarch32_hyp(cs
);
9292 switch (cs
->exception_index
) {
9294 new_mode
= ARM_CPU_MODE_UND
;
9303 new_mode
= ARM_CPU_MODE_SVC
;
9306 /* The PC already points to the next instruction. */
9310 /* Fall through to prefetch abort. */
9311 case EXCP_PREFETCH_ABORT
:
9312 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
9313 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
9314 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
9315 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
9316 new_mode
= ARM_CPU_MODE_ABT
;
9318 mask
= CPSR_A
| CPSR_I
;
9321 case EXCP_DATA_ABORT
:
9322 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
9323 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
9324 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
9326 (uint32_t)env
->exception
.vaddress
);
9327 new_mode
= ARM_CPU_MODE_ABT
;
9329 mask
= CPSR_A
| CPSR_I
;
9333 new_mode
= ARM_CPU_MODE_IRQ
;
9335 /* Disable IRQ and imprecise data aborts. */
9336 mask
= CPSR_A
| CPSR_I
;
9338 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
9339 /* IRQ routed to monitor mode */
9340 new_mode
= ARM_CPU_MODE_MON
;
9345 new_mode
= ARM_CPU_MODE_FIQ
;
9347 /* Disable FIQ, IRQ and imprecise data aborts. */
9348 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
9349 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
9350 /* FIQ routed to monitor mode */
9351 new_mode
= ARM_CPU_MODE_MON
;
9356 new_mode
= ARM_CPU_MODE_IRQ
;
9358 /* Disable IRQ and imprecise data aborts. */
9359 mask
= CPSR_A
| CPSR_I
;
9363 new_mode
= ARM_CPU_MODE_FIQ
;
9365 /* Disable FIQ, IRQ and imprecise data aborts. */
9366 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
9370 new_mode
= ARM_CPU_MODE_MON
;
9372 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
9376 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
9377 return; /* Never happens. Keep compiler happy. */
9380 if (new_mode
== ARM_CPU_MODE_MON
) {
9381 addr
+= env
->cp15
.mvbar
;
9382 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
9383 /* High vectors. When enabled, base address cannot be remapped. */
9386 /* ARM v7 architectures provide a vector base address register to remap
9387 * the interrupt vector table.
9388 * This register is only followed in non-monitor mode, and is banked.
9389 * Note: only bits 31:5 are valid.
9391 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
9394 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
9395 env
->cp15
.scr_el3
&= ~SCR_NS
;
9398 take_aarch32_exception(env
, new_mode
, mask
, offset
, addr
);
9401 /* Handle exception entry to a target EL which is using AArch64 */
9402 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
9404 ARMCPU
*cpu
= ARM_CPU(cs
);
9405 CPUARMState
*env
= &cpu
->env
;
9406 unsigned int new_el
= env
->exception
.target_el
;
9407 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
9408 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
9409 unsigned int cur_el
= arm_current_el(env
);
9412 * Note that new_el can never be 0. If cur_el is 0, then
9413 * el0_a64 is is_a64(), else el0_a64 is ignored.
9415 aarch64_sve_change_el(env
, cur_el
, new_el
, is_a64(env
));
9417 if (cur_el
< new_el
) {
9418 /* Entry vector offset depends on whether the implemented EL
9419 * immediately lower than the target level is using AArch32 or AArch64
9425 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
9428 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
9431 is_aa64
= is_a64(env
);
9434 g_assert_not_reached();
9442 } else if (pstate_read(env
) & PSTATE_SP
) {
9446 switch (cs
->exception_index
) {
9447 case EXCP_PREFETCH_ABORT
:
9448 case EXCP_DATA_ABORT
:
9449 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
9450 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
9451 env
->cp15
.far_el
[new_el
]);
9459 if (syn_get_ec(env
->exception
.syndrome
) == EC_ADVSIMDFPACCESSTRAP
) {
9461 * QEMU internal FP/SIMD syndromes from AArch32 include the
9462 * TA and coproc fields which are only exposed if the exception
9463 * is taken to AArch32 Hyp mode. Mask them out to get a valid
9464 * AArch64 format syndrome.
9466 env
->exception
.syndrome
&= ~MAKE_64BIT_MASK(0, 20);
9468 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
9479 qemu_log_mask(CPU_LOG_INT
,
9480 "...handling as semihosting call 0x%" PRIx64
"\n",
9482 env
->xregs
[0] = do_arm_semihosting(env
);
9485 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
9489 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
9490 aarch64_save_sp(env
, arm_current_el(env
));
9491 env
->elr_el
[new_el
] = env
->pc
;
9493 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
9494 env
->elr_el
[new_el
] = env
->regs
[15];
9496 aarch64_sync_32_to_64(env
);
9498 env
->condexec_bits
= 0;
9500 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
9501 env
->elr_el
[new_el
]);
9503 pstate_write(env
, PSTATE_DAIF
| new_mode
);
9505 aarch64_restore_sp(env
, new_el
);
9509 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
9510 new_el
, env
->pc
, pstate_read(env
));
9513 static inline bool check_for_semihosting(CPUState
*cs
)
9515 /* Check whether this exception is a semihosting call; if so
9516 * then handle it and return true; otherwise return false.
9518 ARMCPU
*cpu
= ARM_CPU(cs
);
9519 CPUARMState
*env
= &cpu
->env
;
9522 if (cs
->exception_index
== EXCP_SEMIHOST
) {
9523 /* This is always the 64-bit semihosting exception.
9524 * The "is this usermode" and "is semihosting enabled"
9525 * checks have been done at translate time.
9527 qemu_log_mask(CPU_LOG_INT
,
9528 "...handling as semihosting call 0x%" PRIx64
"\n",
9530 env
->xregs
[0] = do_arm_semihosting(env
);
9537 /* Only intercept calls from privileged modes, to provide some
9538 * semblance of security.
9540 if (cs
->exception_index
!= EXCP_SEMIHOST
&&
9541 (!semihosting_enabled() ||
9542 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
))) {
9546 switch (cs
->exception_index
) {
9548 /* This is always a semihosting call; the "is this usermode"
9549 * and "is semihosting enabled" checks have been done at
9554 /* Check for semihosting interrupt. */
9556 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, arm_sctlr_b(env
))
9562 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, arm_sctlr_b(env
))
9564 if (imm
== 0x123456) {
9570 /* See if this is a semihosting syscall. */
9572 imm
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
))
9584 qemu_log_mask(CPU_LOG_INT
,
9585 "...handling as semihosting call 0x%x\n",
9587 env
->regs
[0] = do_arm_semihosting(env
);
9592 /* Handle a CPU exception for A and R profile CPUs.
9593 * Do any appropriate logging, handle PSCI calls, and then hand off
9594 * to the AArch64-entry or AArch32-entry function depending on the
9595 * target exception level's register width.
9597 void arm_cpu_do_interrupt(CPUState
*cs
)
9599 ARMCPU
*cpu
= ARM_CPU(cs
);
9600 CPUARMState
*env
= &cpu
->env
;
9601 unsigned int new_el
= env
->exception
.target_el
;
9603 assert(!arm_feature(env
, ARM_FEATURE_M
));
9605 arm_log_exception(cs
->exception_index
);
9606 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
9608 if (qemu_loglevel_mask(CPU_LOG_INT
)
9609 && !excp_is_internal(cs
->exception_index
)) {
9610 qemu_log_mask(CPU_LOG_INT
, "...with ESR 0x%x/0x%" PRIx32
"\n",
9611 syn_get_ec(env
->exception
.syndrome
),
9612 env
->exception
.syndrome
);
9615 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
9616 arm_handle_psci_call(cpu
);
9617 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
9621 /* Semihosting semantics depend on the register width of the
9622 * code that caused the exception, not the target exception level,
9623 * so must be handled here.
9625 if (check_for_semihosting(cs
)) {
9629 /* Hooks may change global state so BQL should be held, also the
9630 * BQL needs to be held for any modification of
9631 * cs->interrupt_request.
9633 g_assert(qemu_mutex_iothread_locked());
9635 arm_call_pre_el_change_hook(cpu
);
9637 assert(!excp_is_internal(cs
->exception_index
));
9638 if (arm_el_is_aa64(env
, new_el
)) {
9639 arm_cpu_do_interrupt_aarch64(cs
);
9641 arm_cpu_do_interrupt_aarch32(cs
);
9644 arm_call_el_change_hook(cpu
);
9646 if (!kvm_enabled()) {
9647 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
9650 #endif /* !CONFIG_USER_ONLY */
9652 /* Return the exception level which controls this address translation regime */
9653 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
9656 case ARMMMUIdx_S2NS
:
9657 case ARMMMUIdx_S1E2
:
9659 case ARMMMUIdx_S1E3
:
9661 case ARMMMUIdx_S1SE0
:
9662 return arm_el_is_aa64(env
, 3) ? 1 : 3;
9663 case ARMMMUIdx_S1SE1
:
9664 case ARMMMUIdx_S1NSE0
:
9665 case ARMMMUIdx_S1NSE1
:
9666 case ARMMMUIdx_MPrivNegPri
:
9667 case ARMMMUIdx_MUserNegPri
:
9668 case ARMMMUIdx_MPriv
:
9669 case ARMMMUIdx_MUser
:
9670 case ARMMMUIdx_MSPrivNegPri
:
9671 case ARMMMUIdx_MSUserNegPri
:
9672 case ARMMMUIdx_MSPriv
:
9673 case ARMMMUIdx_MSUser
:
9676 g_assert_not_reached();
9680 #ifndef CONFIG_USER_ONLY
9682 /* Return the SCTLR value which controls this address translation regime */
9683 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
9685 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
9688 /* Return true if the specified stage of address translation is disabled */
9689 static inline bool regime_translation_disabled(CPUARMState
*env
,
9692 if (arm_feature(env
, ARM_FEATURE_M
)) {
9693 switch (env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)] &
9694 (R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
)) {
9695 case R_V7M_MPU_CTRL_ENABLE_MASK
:
9696 /* Enabled, but not for HardFault and NMI */
9697 return mmu_idx
& ARM_MMU_IDX_M_NEGPRI
;
9698 case R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
:
9699 /* Enabled for all cases */
9703 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
9704 * we warned about that in armv7m_nvic.c when the guest set it.
9710 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9711 /* HCR.DC means HCR.VM behaves as 1 */
9712 return (env
->cp15
.hcr_el2
& (HCR_DC
| HCR_VM
)) == 0;
9715 if (env
->cp15
.hcr_el2
& HCR_TGE
) {
9716 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
9717 if (!regime_is_secure(env
, mmu_idx
) && regime_el(env
, mmu_idx
) == 1) {
9722 if ((env
->cp15
.hcr_el2
& HCR_DC
) &&
9723 (mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
)) {
9724 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
9728 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
9731 static inline bool regime_translation_big_endian(CPUARMState
*env
,
9734 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
9737 /* Return the TTBR associated with this translation regime */
9738 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9741 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9742 return env
->cp15
.vttbr_el2
;
9745 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
9747 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
9751 #endif /* !CONFIG_USER_ONLY */
9753 /* Return the TCR controlling this translation regime */
9754 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
9756 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9757 return &env
->cp15
.vtcr_el2
;
9759 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
9762 /* Convert a possible stage1+2 MMU index into the appropriate
9765 static inline ARMMMUIdx
stage_1_mmu_idx(ARMMMUIdx mmu_idx
)
9767 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
9768 mmu_idx
+= (ARMMMUIdx_S1NSE0
- ARMMMUIdx_S12NSE0
);
9773 /* Return true if the translation regime is using LPAE format page tables */
9774 static inline bool regime_using_lpae_format(CPUARMState
*env
,
9777 int el
= regime_el(env
, mmu_idx
);
9778 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
9781 if (arm_feature(env
, ARM_FEATURE_LPAE
)
9782 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
9788 /* Returns true if the stage 1 translation regime is using LPAE format page
9789 * tables. Used when raising alignment exceptions, whose FSR changes depending
9790 * on whether the long or short descriptor format is in use. */
9791 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
9793 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
9795 return regime_using_lpae_format(env
, mmu_idx
);
9798 #ifndef CONFIG_USER_ONLY
9799 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
9802 case ARMMMUIdx_S1SE0
:
9803 case ARMMMUIdx_S1NSE0
:
9804 case ARMMMUIdx_MUser
:
9805 case ARMMMUIdx_MSUser
:
9806 case ARMMMUIdx_MUserNegPri
:
9807 case ARMMMUIdx_MSUserNegPri
:
9811 case ARMMMUIdx_S12NSE0
:
9812 case ARMMMUIdx_S12NSE1
:
9813 g_assert_not_reached();
9817 /* Translate section/page access permissions to page
9818 * R/W protection flags
9821 * @mmu_idx: MMU index indicating required translation regime
9822 * @ap: The 3-bit access permissions (AP[2:0])
9823 * @domain_prot: The 2-bit domain access permissions
9825 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9826 int ap
, int domain_prot
)
9828 bool is_user
= regime_is_user(env
, mmu_idx
);
9830 if (domain_prot
== 3) {
9831 return PAGE_READ
| PAGE_WRITE
;
9836 if (arm_feature(env
, ARM_FEATURE_V7
)) {
9839 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
9841 return is_user
? 0 : PAGE_READ
;
9848 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
9853 return PAGE_READ
| PAGE_WRITE
;
9856 return PAGE_READ
| PAGE_WRITE
;
9857 case 4: /* Reserved. */
9860 return is_user
? 0 : PAGE_READ
;
9864 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
9869 g_assert_not_reached();
9873 /* Translate section/page access permissions to page
9874 * R/W protection flags.
9876 * @ap: The 2-bit simple AP (AP[2:1])
9877 * @is_user: TRUE if accessing from PL0
9879 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
9883 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
9885 return PAGE_READ
| PAGE_WRITE
;
9887 return is_user
? 0 : PAGE_READ
;
9891 g_assert_not_reached();
9896 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
9898 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
9901 /* Translate S2 section/page access permissions to protection flags
9904 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9905 * @xn: XN (execute-never) bit
9907 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
9918 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
9925 /* Translate section/page access permissions to protection flags
9928 * @mmu_idx: MMU index indicating required translation regime
9929 * @is_aa64: TRUE if AArch64
9930 * @ap: The 2-bit simple AP (AP[2:1])
9931 * @ns: NS (non-secure) bit
9932 * @xn: XN (execute-never) bit
9933 * @pxn: PXN (privileged execute-never) bit
9935 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
9936 int ap
, int ns
, int xn
, int pxn
)
9938 bool is_user
= regime_is_user(env
, mmu_idx
);
9939 int prot_rw
, user_rw
;
9943 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
9945 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
9949 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
9952 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
9956 /* TODO have_wxn should be replaced with
9957 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9958 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9959 * compatible processors have EL2, which is required for [U]WXN.
9961 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
9964 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
9968 switch (regime_el(env
, mmu_idx
)) {
9971 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
9978 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
9979 switch (regime_el(env
, mmu_idx
)) {
9983 xn
= xn
|| !(user_rw
& PAGE_READ
);
9987 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
9989 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
9990 (uwxn
&& (user_rw
& PAGE_WRITE
));
10000 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
10003 return prot_rw
| PAGE_EXEC
;
10006 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
10007 uint32_t *table
, uint32_t address
)
10009 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
10010 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
10012 if (address
& tcr
->mask
) {
10013 if (tcr
->raw_tcr
& TTBCR_PD1
) {
10014 /* Translation table walk disabled for TTBR1 */
10017 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
10019 if (tcr
->raw_tcr
& TTBCR_PD0
) {
10020 /* Translation table walk disabled for TTBR0 */
10023 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
10025 *table
|= (address
>> 18) & 0x3ffc;
10029 /* Translate a S1 pagetable walk through S2 if needed. */
10030 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
10031 hwaddr addr
, MemTxAttrs txattrs
,
10032 ARMMMUFaultInfo
*fi
)
10034 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
10035 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
10036 target_ulong s2size
;
10040 ARMCacheAttrs cacheattrs
= {};
10041 ARMCacheAttrs
*pcacheattrs
= NULL
;
10043 if (env
->cp15
.hcr_el2
& HCR_PTW
) {
10045 * PTW means we must fault if this S1 walk touches S2 Device
10046 * memory; otherwise we don't care about the attributes and can
10047 * save the S2 translation the effort of computing them.
10049 pcacheattrs
= &cacheattrs
;
10052 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
10053 &txattrs
, &s2prot
, &s2size
, fi
, pcacheattrs
);
10055 assert(fi
->type
!= ARMFault_None
);
10061 if (pcacheattrs
&& (pcacheattrs
->attrs
& 0xf0) == 0) {
10062 /* Access was to Device memory: generate Permission fault */
10063 fi
->type
= ARMFault_Permission
;
10074 /* All loads done in the course of a page table walk go through here. */
10075 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
10076 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
10078 ARMCPU
*cpu
= ARM_CPU(cs
);
10079 CPUARMState
*env
= &cpu
->env
;
10080 MemTxAttrs attrs
= {};
10081 MemTxResult result
= MEMTX_OK
;
10085 attrs
.secure
= is_secure
;
10086 as
= arm_addressspace(cs
, attrs
);
10087 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
10091 if (regime_translation_big_endian(env
, mmu_idx
)) {
10092 data
= address_space_ldl_be(as
, addr
, attrs
, &result
);
10094 data
= address_space_ldl_le(as
, addr
, attrs
, &result
);
10096 if (result
== MEMTX_OK
) {
10099 fi
->type
= ARMFault_SyncExternalOnWalk
;
10100 fi
->ea
= arm_extabort_type(result
);
10104 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
10105 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
10107 ARMCPU
*cpu
= ARM_CPU(cs
);
10108 CPUARMState
*env
= &cpu
->env
;
10109 MemTxAttrs attrs
= {};
10110 MemTxResult result
= MEMTX_OK
;
10114 attrs
.secure
= is_secure
;
10115 as
= arm_addressspace(cs
, attrs
);
10116 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
10120 if (regime_translation_big_endian(env
, mmu_idx
)) {
10121 data
= address_space_ldq_be(as
, addr
, attrs
, &result
);
10123 data
= address_space_ldq_le(as
, addr
, attrs
, &result
);
10125 if (result
== MEMTX_OK
) {
10128 fi
->type
= ARMFault_SyncExternalOnWalk
;
10129 fi
->ea
= arm_extabort_type(result
);
10133 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
10134 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10135 hwaddr
*phys_ptr
, int *prot
,
10136 target_ulong
*page_size
,
10137 ARMMMUFaultInfo
*fi
)
10139 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
10150 /* Pagetable walk. */
10151 /* Lookup l1 descriptor. */
10152 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
10153 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10154 fi
->type
= ARMFault_Translation
;
10157 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10159 if (fi
->type
!= ARMFault_None
) {
10163 domain
= (desc
>> 5) & 0x0f;
10164 if (regime_el(env
, mmu_idx
) == 1) {
10165 dacr
= env
->cp15
.dacr_ns
;
10167 dacr
= env
->cp15
.dacr_s
;
10169 domain_prot
= (dacr
>> (domain
* 2)) & 3;
10171 /* Section translation fault. */
10172 fi
->type
= ARMFault_Translation
;
10178 if (domain_prot
== 0 || domain_prot
== 2) {
10179 fi
->type
= ARMFault_Domain
;
10184 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
10185 ap
= (desc
>> 10) & 3;
10186 *page_size
= 1024 * 1024;
10188 /* Lookup l2 entry. */
10190 /* Coarse pagetable. */
10191 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
10193 /* Fine pagetable. */
10194 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
10196 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10198 if (fi
->type
!= ARMFault_None
) {
10201 switch (desc
& 3) {
10202 case 0: /* Page translation fault. */
10203 fi
->type
= ARMFault_Translation
;
10205 case 1: /* 64k page. */
10206 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
10207 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
10208 *page_size
= 0x10000;
10210 case 2: /* 4k page. */
10211 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
10212 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
10213 *page_size
= 0x1000;
10215 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
10217 /* ARMv6/XScale extended small page format */
10218 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
10219 || arm_feature(env
, ARM_FEATURE_V6
)) {
10220 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
10221 *page_size
= 0x1000;
10223 /* UNPREDICTABLE in ARMv5; we choose to take a
10224 * page translation fault.
10226 fi
->type
= ARMFault_Translation
;
10230 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
10231 *page_size
= 0x400;
10233 ap
= (desc
>> 4) & 3;
10236 /* Never happens, but compiler isn't smart enough to tell. */
10240 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
10241 *prot
|= *prot
? PAGE_EXEC
: 0;
10242 if (!(*prot
& (1 << access_type
))) {
10243 /* Access permission fault. */
10244 fi
->type
= ARMFault_Permission
;
10247 *phys_ptr
= phys_addr
;
10250 fi
->domain
= domain
;
10255 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
10256 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10257 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
10258 target_ulong
*page_size
, ARMMMUFaultInfo
*fi
)
10260 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
10274 /* Pagetable walk. */
10275 /* Lookup l1 descriptor. */
10276 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
10277 /* Section translation fault if page walk is disabled by PD0 or PD1 */
10278 fi
->type
= ARMFault_Translation
;
10281 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10283 if (fi
->type
!= ARMFault_None
) {
10287 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
10288 /* Section translation fault, or attempt to use the encoding
10289 * which is Reserved on implementations without PXN.
10291 fi
->type
= ARMFault_Translation
;
10294 if ((type
== 1) || !(desc
& (1 << 18))) {
10295 /* Page or Section. */
10296 domain
= (desc
>> 5) & 0x0f;
10298 if (regime_el(env
, mmu_idx
) == 1) {
10299 dacr
= env
->cp15
.dacr_ns
;
10301 dacr
= env
->cp15
.dacr_s
;
10306 domain_prot
= (dacr
>> (domain
* 2)) & 3;
10307 if (domain_prot
== 0 || domain_prot
== 2) {
10308 /* Section or Page domain fault */
10309 fi
->type
= ARMFault_Domain
;
10313 if (desc
& (1 << 18)) {
10314 /* Supersection. */
10315 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
10316 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
10317 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
10318 *page_size
= 0x1000000;
10321 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
10322 *page_size
= 0x100000;
10324 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
10325 xn
= desc
& (1 << 4);
10327 ns
= extract32(desc
, 19, 1);
10329 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
10330 pxn
= (desc
>> 2) & 1;
10332 ns
= extract32(desc
, 3, 1);
10333 /* Lookup l2 entry. */
10334 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
10335 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
10337 if (fi
->type
!= ARMFault_None
) {
10340 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
10341 switch (desc
& 3) {
10342 case 0: /* Page translation fault. */
10343 fi
->type
= ARMFault_Translation
;
10345 case 1: /* 64k page. */
10346 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
10347 xn
= desc
& (1 << 15);
10348 *page_size
= 0x10000;
10350 case 2: case 3: /* 4k page. */
10351 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
10353 *page_size
= 0x1000;
10356 /* Never happens, but compiler isn't smart enough to tell. */
10360 if (domain_prot
== 3) {
10361 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10363 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
10366 if (xn
&& access_type
== MMU_INST_FETCH
) {
10367 fi
->type
= ARMFault_Permission
;
10371 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
10372 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
10373 /* The simplified model uses AP[0] as an access control bit. */
10374 if ((ap
& 1) == 0) {
10375 /* Access flag fault. */
10376 fi
->type
= ARMFault_AccessFlag
;
10379 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
10381 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
10383 if (*prot
&& !xn
) {
10384 *prot
|= PAGE_EXEC
;
10386 if (!(*prot
& (1 << access_type
))) {
10387 /* Access permission fault. */
10388 fi
->type
= ARMFault_Permission
;
10393 /* The NS bit will (as required by the architecture) have no effect if
10394 * the CPU doesn't support TZ or this is a non-secure translation
10395 * regime, because the attribute will already be non-secure.
10397 attrs
->secure
= false;
10399 *phys_ptr
= phys_addr
;
10402 fi
->domain
= domain
;
10408 * check_s2_mmu_setup
10410 * @is_aa64: True if the translation regime is in AArch64 state
10411 * @startlevel: Suggested starting level
10412 * @inputsize: Bitsize of IPAs
10413 * @stride: Page-table stride (See the ARM ARM)
10415 * Returns true if the suggested S2 translation parameters are OK and
10418 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
10419 int inputsize
, int stride
)
10421 const int grainsize
= stride
+ 3;
10422 int startsizecheck
;
10424 /* Negative levels are never allowed. */
10429 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
10430 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
10435 CPUARMState
*env
= &cpu
->env
;
10436 unsigned int pamax
= arm_pamax(cpu
);
10439 case 13: /* 64KB Pages. */
10440 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
10444 case 11: /* 16KB Pages. */
10445 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
10449 case 9: /* 4KB Pages. */
10450 if (level
== 0 && pamax
<= 42) {
10455 g_assert_not_reached();
10458 /* Inputsize checks. */
10459 if (inputsize
> pamax
&&
10460 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
10461 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
10465 /* AArch32 only supports 4KB pages. Assert on that. */
10466 assert(stride
== 9);
10475 /* Translate from the 4-bit stage 2 representation of
10476 * memory attributes (without cache-allocation hints) to
10477 * the 8-bit representation of the stage 1 MAIR registers
10478 * (which includes allocation hints).
10480 * ref: shared/translation/attrs/S2AttrDecode()
10481 * .../S2ConvertAttrsHints()
10483 static uint8_t convert_stage2_attrs(CPUARMState
*env
, uint8_t s2attrs
)
10485 uint8_t hiattr
= extract32(s2attrs
, 2, 2);
10486 uint8_t loattr
= extract32(s2attrs
, 0, 2);
10487 uint8_t hihint
= 0, lohint
= 0;
10489 if (hiattr
!= 0) { /* normal memory */
10490 if ((env
->cp15
.hcr_el2
& HCR_CD
) != 0) { /* cache disabled */
10491 hiattr
= loattr
= 1; /* non-cacheable */
10493 if (hiattr
!= 1) { /* Write-through or write-back */
10494 hihint
= 3; /* RW allocate */
10496 if (loattr
!= 1) { /* Write-through or write-back */
10497 lohint
= 3; /* RW allocate */
10502 return (hiattr
<< 6) | (hihint
<< 4) | (loattr
<< 2) | lohint
;
10504 #endif /* !CONFIG_USER_ONLY */
10506 ARMVAParameters
aa64_va_parameters_both(CPUARMState
*env
, uint64_t va
,
10509 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
10510 uint32_t el
= regime_el(env
, mmu_idx
);
10511 bool tbi
, tbid
, epd
, hpd
, using16k
, using64k
;
10515 * Bit 55 is always between the two regions, and is canonical for
10516 * determining if address tagging is enabled.
10518 select
= extract64(va
, 55, 1);
10521 tsz
= extract32(tcr
, 0, 6);
10522 using64k
= extract32(tcr
, 14, 1);
10523 using16k
= extract32(tcr
, 15, 1);
10524 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10526 tbi
= tbid
= hpd
= false;
10528 tbi
= extract32(tcr
, 20, 1);
10529 hpd
= extract32(tcr
, 24, 1);
10530 tbid
= extract32(tcr
, 29, 1);
10533 } else if (!select
) {
10534 tsz
= extract32(tcr
, 0, 6);
10535 epd
= extract32(tcr
, 7, 1);
10536 using64k
= extract32(tcr
, 14, 1);
10537 using16k
= extract32(tcr
, 15, 1);
10538 tbi
= extract64(tcr
, 37, 1);
10539 hpd
= extract64(tcr
, 41, 1);
10540 tbid
= extract64(tcr
, 51, 1);
10542 int tg
= extract32(tcr
, 30, 2);
10543 using16k
= tg
== 1;
10544 using64k
= tg
== 3;
10545 tsz
= extract32(tcr
, 16, 6);
10546 epd
= extract32(tcr
, 23, 1);
10547 tbi
= extract64(tcr
, 38, 1);
10548 hpd
= extract64(tcr
, 42, 1);
10549 tbid
= extract64(tcr
, 52, 1);
10551 tsz
= MIN(tsz
, 39); /* TODO: ARMv8.4-TTST */
10552 tsz
= MAX(tsz
, 16); /* TODO: ARMv8.2-LVA */
10554 return (ARMVAParameters
) {
10561 .using16k
= using16k
,
10562 .using64k
= using64k
,
10566 ARMVAParameters
aa64_va_parameters(CPUARMState
*env
, uint64_t va
,
10567 ARMMMUIdx mmu_idx
, bool data
)
10569 ARMVAParameters ret
= aa64_va_parameters_both(env
, va
, mmu_idx
);
10571 /* Present TBI as a composite with TBID. */
10572 ret
.tbi
&= (data
|| !ret
.tbid
);
10576 #ifndef CONFIG_USER_ONLY
10577 static ARMVAParameters
aa32_va_parameters(CPUARMState
*env
, uint32_t va
,
10580 uint64_t tcr
= regime_tcr(env
, mmu_idx
)->raw_tcr
;
10581 uint32_t el
= regime_el(env
, mmu_idx
);
10585 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10587 bool sext
= extract32(tcr
, 4, 1);
10588 bool sign
= extract32(tcr
, 3, 1);
10591 * If the sign-extend bit is not the same as t0sz[3], the result
10592 * is unpredictable. Flag this as a guest error.
10594 if (sign
!= sext
) {
10595 qemu_log_mask(LOG_GUEST_ERROR
,
10596 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
10598 tsz
= sextract32(tcr
, 0, 4) + 8;
10602 } else if (el
== 2) {
10604 tsz
= extract32(tcr
, 0, 3);
10606 hpd
= extract64(tcr
, 24, 1);
10609 int t0sz
= extract32(tcr
, 0, 3);
10610 int t1sz
= extract32(tcr
, 16, 3);
10613 select
= va
> (0xffffffffu
>> t0sz
);
10615 /* Note that we will detect errors later. */
10616 select
= va
>= ~(0xffffffffu
>> t1sz
);
10620 epd
= extract32(tcr
, 7, 1);
10621 hpd
= extract64(tcr
, 41, 1);
10624 epd
= extract32(tcr
, 23, 1);
10625 hpd
= extract64(tcr
, 42, 1);
10627 /* For aarch32, hpd0 is not enabled without t2e as well. */
10628 hpd
&= extract32(tcr
, 6, 1);
10631 return (ARMVAParameters
) {
10639 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
10640 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10641 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
10642 target_ulong
*page_size_ptr
,
10643 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
10645 ARMCPU
*cpu
= arm_env_get_cpu(env
);
10646 CPUState
*cs
= CPU(cpu
);
10647 /* Read an LPAE long-descriptor translation table. */
10648 ARMFaultType fault_type
= ARMFault_Translation
;
10650 ARMVAParameters param
;
10652 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
10653 uint32_t tableattrs
;
10654 target_ulong page_size
;
10657 int addrsize
, inputsize
;
10658 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
10659 int ap
, ns
, xn
, pxn
;
10660 uint32_t el
= regime_el(env
, mmu_idx
);
10662 uint64_t descaddrmask
;
10663 bool aarch64
= arm_el_is_aa64(env
, el
);
10664 bool guarded
= false;
10667 * This code does not handle the different format TCR for VTCR_EL2.
10668 * This code also does not support shareability levels.
10669 * Attribute and permission bit handling should also be checked when adding
10670 * support for those page table walks.
10673 param
= aa64_va_parameters(env
, address
, mmu_idx
,
10674 access_type
!= MMU_INST_FETCH
);
10676 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
10679 ttbr1_valid
= (el
< 2);
10680 addrsize
= 64 - 8 * param
.tbi
;
10681 inputsize
= 64 - param
.tsz
;
10683 param
= aa32_va_parameters(env
, address
, mmu_idx
);
10685 /* There is no TTBR1 for EL2 */
10686 ttbr1_valid
= (el
!= 2);
10687 addrsize
= (mmu_idx
== ARMMMUIdx_S2NS
? 40 : 32);
10688 inputsize
= addrsize
- param
.tsz
;
10692 * We determined the region when collecting the parameters, but we
10693 * have not yet validated that the address is valid for the region.
10694 * Extract the top bits and verify that they all match select.
10696 * For aa32, if inputsize == addrsize, then we have selected the
10697 * region by exclusion in aa32_va_parameters and there is no more
10698 * validation to do here.
10700 if (inputsize
< addrsize
) {
10701 target_ulong top_bits
= sextract64(address
, inputsize
,
10702 addrsize
- inputsize
);
10703 if (-top_bits
!= param
.select
|| (param
.select
&& !ttbr1_valid
)) {
10704 /* The gap between the two regions is a Translation fault */
10705 fault_type
= ARMFault_Translation
;
10710 if (param
.using64k
) {
10712 } else if (param
.using16k
) {
10718 /* Note that QEMU ignores shareability and cacheability attributes,
10719 * so we don't need to do anything with the SH, ORGN, IRGN fields
10720 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
10721 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
10722 * implement any ASID-like capability so we can ignore it (instead
10723 * we will always flush the TLB any time the ASID is changed).
10725 ttbr
= regime_ttbr(env
, mmu_idx
, param
.select
);
10727 /* Here we should have set up all the parameters for the translation:
10728 * inputsize, ttbr, epd, stride, tbi
10732 /* Translation table walk disabled => Translation fault on TLB miss
10733 * Note: This is always 0 on 64-bit EL2 and EL3.
10738 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
10739 /* The starting level depends on the virtual address size (which can
10740 * be up to 48 bits) and the translation granule size. It indicates
10741 * the number of strides (stride bits at a time) needed to
10742 * consume the bits of the input address. In the pseudocode this is:
10743 * level = 4 - RoundUp((inputsize - grainsize) / stride)
10744 * where their 'inputsize' is our 'inputsize', 'grainsize' is
10745 * our 'stride + 3' and 'stride' is our 'stride'.
10746 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
10747 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
10748 * = 4 - (inputsize - 4) / stride;
10750 level
= 4 - (inputsize
- 4) / stride
;
10752 /* For stage 2 translations the starting level is specified by the
10753 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
10755 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
10756 uint32_t startlevel
;
10759 if (!aarch64
|| stride
== 9) {
10760 /* AArch32 or 4KB pages */
10761 startlevel
= 2 - sl0
;
10763 /* 16KB or 64KB pages */
10764 startlevel
= 3 - sl0
;
10767 /* Check that the starting level is valid. */
10768 ok
= check_s2_mmu_setup(cpu
, aarch64
, startlevel
,
10769 inputsize
, stride
);
10771 fault_type
= ARMFault_Translation
;
10774 level
= startlevel
;
10777 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
10778 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
10780 /* Now we can extract the actual base address from the TTBR */
10781 descaddr
= extract64(ttbr
, 0, 48);
10782 descaddr
&= ~indexmask
;
10784 /* The address field in the descriptor goes up to bit 39 for ARMv7
10785 * but up to bit 47 for ARMv8, but we use the descaddrmask
10786 * up to bit 39 for AArch32, because we don't need other bits in that case
10787 * to construct next descriptor address (anyway they should be all zeroes).
10789 descaddrmask
= ((1ull << (aarch64
? 48 : 40)) - 1) &
10790 ~indexmask_grainsize
;
10792 /* Secure accesses start with the page table in secure memory and
10793 * can be downgraded to non-secure at any step. Non-secure accesses
10794 * remain non-secure. We implement this by just ORing in the NSTable/NS
10795 * bits at each step.
10797 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
10799 uint64_t descriptor
;
10802 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
10804 nstable
= extract32(tableattrs
, 4, 1);
10805 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fi
);
10806 if (fi
->type
!= ARMFault_None
) {
10810 if (!(descriptor
& 1) ||
10811 (!(descriptor
& 2) && (level
== 3))) {
10812 /* Invalid, or the Reserved level 3 encoding */
10815 descaddr
= descriptor
& descaddrmask
;
10817 if ((descriptor
& 2) && (level
< 3)) {
10818 /* Table entry. The top five bits are attributes which may
10819 * propagate down through lower levels of the table (and
10820 * which are all arranged so that 0 means "no effect", so
10821 * we can gather them up by ORing in the bits at each level).
10823 tableattrs
|= extract64(descriptor
, 59, 5);
10825 indexmask
= indexmask_grainsize
;
10828 /* Block entry at level 1 or 2, or page entry at level 3.
10829 * These are basically the same thing, although the number
10830 * of bits we pull in from the vaddr varies.
10832 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
10833 descaddr
|= (address
& (page_size
- 1));
10834 /* Extract attributes from the descriptor */
10835 attrs
= extract64(descriptor
, 2, 10)
10836 | (extract64(descriptor
, 52, 12) << 10);
10838 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10839 /* Stage 2 table descriptors do not include any attribute fields */
10842 /* Merge in attributes from table descriptors */
10843 attrs
|= nstable
<< 3; /* NS */
10844 guarded
= extract64(descriptor
, 50, 1); /* GP */
10846 /* HPD disables all the table attributes except NSTable. */
10849 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
10850 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10851 * means "force PL1 access only", which means forcing AP[1] to 0.
10853 attrs
&= ~(extract32(tableattrs
, 2, 1) << 4); /* !APT[0] => AP[1] */
10854 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APT[1] => AP[2] */
10857 /* Here descaddr is the final physical address, and attributes
10858 * are all in attrs.
10860 fault_type
= ARMFault_AccessFlag
;
10861 if ((attrs
& (1 << 8)) == 0) {
10866 ap
= extract32(attrs
, 4, 2);
10867 xn
= extract32(attrs
, 12, 1);
10869 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10871 *prot
= get_S2prot(env
, ap
, xn
);
10873 ns
= extract32(attrs
, 3, 1);
10874 pxn
= extract32(attrs
, 11, 1);
10875 *prot
= get_S1prot(env
, mmu_idx
, aarch64
, ap
, ns
, xn
, pxn
);
10878 fault_type
= ARMFault_Permission
;
10879 if (!(*prot
& (1 << access_type
))) {
10884 /* The NS bit will (as required by the architecture) have no effect if
10885 * the CPU doesn't support TZ or this is a non-secure translation
10886 * regime, because the attribute will already be non-secure.
10888 txattrs
->secure
= false;
10890 /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB. */
10891 if (aarch64
&& guarded
&& cpu_isar_feature(aa64_bti
, cpu
)) {
10892 txattrs
->target_tlb_bit0
= true;
10895 if (cacheattrs
!= NULL
) {
10896 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10897 cacheattrs
->attrs
= convert_stage2_attrs(env
,
10898 extract32(attrs
, 0, 4));
10900 /* Index into MAIR registers for cache attributes */
10901 uint8_t attrindx
= extract32(attrs
, 0, 3);
10902 uint64_t mair
= env
->cp15
.mair_el
[regime_el(env
, mmu_idx
)];
10903 assert(attrindx
<= 7);
10904 cacheattrs
->attrs
= extract64(mair
, attrindx
* 8, 8);
10906 cacheattrs
->shareability
= extract32(attrs
, 6, 2);
10909 *phys_ptr
= descaddr
;
10910 *page_size_ptr
= page_size
;
10914 fi
->type
= fault_type
;
10916 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10917 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
10921 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
10923 int32_t address
, int *prot
)
10925 if (!arm_feature(env
, ARM_FEATURE_M
)) {
10926 *prot
= PAGE_READ
| PAGE_WRITE
;
10928 case 0xF0000000 ... 0xFFFFFFFF:
10929 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) {
10930 /* hivecs execing is ok */
10931 *prot
|= PAGE_EXEC
;
10934 case 0x00000000 ... 0x7FFFFFFF:
10935 *prot
|= PAGE_EXEC
;
10939 /* Default system address map for M profile cores.
10940 * The architecture specifies which regions are execute-never;
10941 * at the MPU level no other checks are defined.
10944 case 0x00000000 ... 0x1fffffff: /* ROM */
10945 case 0x20000000 ... 0x3fffffff: /* SRAM */
10946 case 0x60000000 ... 0x7fffffff: /* RAM */
10947 case 0x80000000 ... 0x9fffffff: /* RAM */
10948 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10950 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10951 case 0xa0000000 ... 0xbfffffff: /* Device */
10952 case 0xc0000000 ... 0xdfffffff: /* Device */
10953 case 0xe0000000 ... 0xffffffff: /* System */
10954 *prot
= PAGE_READ
| PAGE_WRITE
;
10957 g_assert_not_reached();
10962 static bool pmsav7_use_background_region(ARMCPU
*cpu
,
10963 ARMMMUIdx mmu_idx
, bool is_user
)
10965 /* Return true if we should use the default memory map as a
10966 * "background" region if there are no hits against any MPU regions.
10968 CPUARMState
*env
= &cpu
->env
;
10974 if (arm_feature(env
, ARM_FEATURE_M
)) {
10975 return env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)]
10976 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK
;
10978 return regime_sctlr(env
, mmu_idx
) & SCTLR_BR
;
10982 static inline bool m_is_ppb_region(CPUARMState
*env
, uint32_t address
)
10984 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10985 return arm_feature(env
, ARM_FEATURE_M
) &&
10986 extract32(address
, 20, 12) == 0xe00;
10989 static inline bool m_is_system_region(CPUARMState
*env
, uint32_t address
)
10991 /* True if address is in the M profile system region
10992 * 0xe0000000 - 0xffffffff
10994 return arm_feature(env
, ARM_FEATURE_M
) && extract32(address
, 29, 3) == 0x7;
10997 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
10998 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10999 hwaddr
*phys_ptr
, int *prot
,
11000 target_ulong
*page_size
,
11001 ARMMMUFaultInfo
*fi
)
11003 ARMCPU
*cpu
= arm_env_get_cpu(env
);
11005 bool is_user
= regime_is_user(env
, mmu_idx
);
11007 *phys_ptr
= address
;
11008 *page_size
= TARGET_PAGE_SIZE
;
11011 if (regime_translation_disabled(env
, mmu_idx
) ||
11012 m_is_ppb_region(env
, address
)) {
11013 /* MPU disabled or M profile PPB access: use default memory map.
11014 * The other case which uses the default memory map in the
11015 * v7M ARM ARM pseudocode is exception vector reads from the vector
11016 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
11017 * which always does a direct read using address_space_ldl(), rather
11018 * than going via this function, so we don't need to check that here.
11020 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
11021 } else { /* MPU enabled */
11022 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
11023 /* region search */
11024 uint32_t base
= env
->pmsav7
.drbar
[n
];
11025 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
11027 bool srdis
= false;
11029 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
11034 qemu_log_mask(LOG_GUEST_ERROR
,
11035 "DRSR[%d]: Rsize field cannot be 0\n", n
);
11039 rmask
= (1ull << rsize
) - 1;
11041 if (base
& rmask
) {
11042 qemu_log_mask(LOG_GUEST_ERROR
,
11043 "DRBAR[%d]: 0x%" PRIx32
" misaligned "
11044 "to DRSR region size, mask = 0x%" PRIx32
"\n",
11049 if (address
< base
|| address
> base
+ rmask
) {
11051 * Address not in this region. We must check whether the
11052 * region covers addresses in the same page as our address.
11053 * In that case we must not report a size that covers the
11054 * whole page for a subsequent hit against a different MPU
11055 * region or the background region, because it would result in
11056 * incorrect TLB hits for subsequent accesses to addresses that
11057 * are in this MPU region.
11059 if (ranges_overlap(base
, rmask
,
11060 address
& TARGET_PAGE_MASK
,
11061 TARGET_PAGE_SIZE
)) {
11067 /* Region matched */
11069 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
11071 uint32_t srdis_mask
;
11073 rsize
-= 3; /* sub region size (power of 2) */
11074 snd
= ((address
- base
) >> rsize
) & 0x7;
11075 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
11077 srdis_mask
= srdis
? 0x3 : 0x0;
11078 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
11079 /* This will check in groups of 2, 4 and then 8, whether
11080 * the subregion bits are consistent. rsize is incremented
11081 * back up to give the region size, considering consistent
11082 * adjacent subregions as one region. Stop testing if rsize
11083 * is already big enough for an entire QEMU page.
11085 int snd_rounded
= snd
& ~(i
- 1);
11086 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
11087 snd_rounded
+ 8, i
);
11088 if (srdis_mask
^ srdis_multi
) {
11091 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
11098 if (rsize
< TARGET_PAGE_BITS
) {
11099 *page_size
= 1 << rsize
;
11104 if (n
== -1) { /* no hits */
11105 if (!pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
11106 /* background fault */
11107 fi
->type
= ARMFault_Background
;
11110 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
11111 } else { /* a MPU hit! */
11112 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
11113 uint32_t xn
= extract32(env
->pmsav7
.dracr
[n
], 12, 1);
11115 if (m_is_system_region(env
, address
)) {
11116 /* System space is always execute never */
11120 if (is_user
) { /* User mode AP bit decoding */
11125 break; /* no access */
11127 *prot
|= PAGE_WRITE
;
11131 *prot
|= PAGE_READ
| PAGE_EXEC
;
11134 /* for v7M, same as 6; for R profile a reserved value */
11135 if (arm_feature(env
, ARM_FEATURE_M
)) {
11136 *prot
|= PAGE_READ
| PAGE_EXEC
;
11141 qemu_log_mask(LOG_GUEST_ERROR
,
11142 "DRACR[%d]: Bad value for AP bits: 0x%"
11143 PRIx32
"\n", n
, ap
);
11145 } else { /* Priv. mode AP bits decoding */
11148 break; /* no access */
11152 *prot
|= PAGE_WRITE
;
11156 *prot
|= PAGE_READ
| PAGE_EXEC
;
11159 /* for v7M, same as 6; for R profile a reserved value */
11160 if (arm_feature(env
, ARM_FEATURE_M
)) {
11161 *prot
|= PAGE_READ
| PAGE_EXEC
;
11166 qemu_log_mask(LOG_GUEST_ERROR
,
11167 "DRACR[%d]: Bad value for AP bits: 0x%"
11168 PRIx32
"\n", n
, ap
);
11172 /* execute never */
11174 *prot
&= ~PAGE_EXEC
;
11179 fi
->type
= ARMFault_Permission
;
11181 return !(*prot
& (1 << access_type
));
11184 static bool v8m_is_sau_exempt(CPUARMState
*env
,
11185 uint32_t address
, MMUAccessType access_type
)
11187 /* The architecture specifies that certain address ranges are
11188 * exempt from v8M SAU/IDAU checks.
11191 (access_type
== MMU_INST_FETCH
&& m_is_system_region(env
, address
)) ||
11192 (address
>= 0xe0000000 && address
<= 0xe0002fff) ||
11193 (address
>= 0xe000e000 && address
<= 0xe000efff) ||
11194 (address
>= 0xe002e000 && address
<= 0xe002efff) ||
11195 (address
>= 0xe0040000 && address
<= 0xe0041fff) ||
11196 (address
>= 0xe00ff000 && address
<= 0xe00fffff);
11199 static void v8m_security_lookup(CPUARMState
*env
, uint32_t address
,
11200 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11201 V8M_SAttributes
*sattrs
)
11203 /* Look up the security attributes for this address. Compare the
11204 * pseudocode SecurityCheck() function.
11205 * We assume the caller has zero-initialized *sattrs.
11207 ARMCPU
*cpu
= arm_env_get_cpu(env
);
11209 bool idau_exempt
= false, idau_ns
= true, idau_nsc
= true;
11210 int idau_region
= IREGION_NOTVALID
;
11211 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
11212 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
11215 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_GET_CLASS(cpu
->idau
);
11216 IDAUInterface
*ii
= IDAU_INTERFACE(cpu
->idau
);
11218 iic
->check(ii
, address
, &idau_region
, &idau_exempt
, &idau_ns
,
11222 if (access_type
== MMU_INST_FETCH
&& extract32(address
, 28, 4) == 0xf) {
11223 /* 0xf0000000..0xffffffff is always S for insn fetches */
11227 if (idau_exempt
|| v8m_is_sau_exempt(env
, address
, access_type
)) {
11228 sattrs
->ns
= !regime_is_secure(env
, mmu_idx
);
11232 if (idau_region
!= IREGION_NOTVALID
) {
11233 sattrs
->irvalid
= true;
11234 sattrs
->iregion
= idau_region
;
11237 switch (env
->sau
.ctrl
& 3) {
11238 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
11240 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
11243 default: /* SAU.ENABLE == 1 */
11244 for (r
= 0; r
< cpu
->sau_sregion
; r
++) {
11245 if (env
->sau
.rlar
[r
] & 1) {
11246 uint32_t base
= env
->sau
.rbar
[r
] & ~0x1f;
11247 uint32_t limit
= env
->sau
.rlar
[r
] | 0x1f;
11249 if (base
<= address
&& limit
>= address
) {
11250 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
11251 sattrs
->subpage
= true;
11253 if (sattrs
->srvalid
) {
11254 /* If we hit in more than one region then we must report
11255 * as Secure, not NS-Callable, with no valid region
11258 sattrs
->ns
= false;
11259 sattrs
->nsc
= false;
11260 sattrs
->sregion
= 0;
11261 sattrs
->srvalid
= false;
11264 if (env
->sau
.rlar
[r
] & 2) {
11265 sattrs
->nsc
= true;
11269 sattrs
->srvalid
= true;
11270 sattrs
->sregion
= r
;
11274 * Address not in this region. We must check whether the
11275 * region covers addresses in the same page as our address.
11276 * In that case we must not report a size that covers the
11277 * whole page for a subsequent hit against a different MPU
11278 * region or the background region, because it would result
11279 * in incorrect TLB hits for subsequent accesses to
11280 * addresses that are in this MPU region.
11282 if (limit
>= base
&&
11283 ranges_overlap(base
, limit
- base
+ 1,
11285 TARGET_PAGE_SIZE
)) {
11286 sattrs
->subpage
= true;
11295 * The IDAU will override the SAU lookup results if it specifies
11296 * higher security than the SAU does.
11299 if (sattrs
->ns
|| (!idau_nsc
&& sattrs
->nsc
)) {
11300 sattrs
->ns
= false;
11301 sattrs
->nsc
= idau_nsc
;
11306 static bool pmsav8_mpu_lookup(CPUARMState
*env
, uint32_t address
,
11307 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11308 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
11309 int *prot
, bool *is_subpage
,
11310 ARMMMUFaultInfo
*fi
, uint32_t *mregion
)
11312 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
11313 * that a full phys-to-virt translation does).
11314 * mregion is (if not NULL) set to the region number which matched,
11315 * or -1 if no region number is returned (MPU off, address did not
11316 * hit a region, address hit in multiple regions).
11317 * We set is_subpage to true if the region hit doesn't cover the
11318 * entire TARGET_PAGE the address is within.
11320 ARMCPU
*cpu
= arm_env_get_cpu(env
);
11321 bool is_user
= regime_is_user(env
, mmu_idx
);
11322 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
11324 int matchregion
= -1;
11326 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
11327 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
11329 *is_subpage
= false;
11330 *phys_ptr
= address
;
11336 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
11337 * was an exception vector read from the vector table (which is always
11338 * done using the default system address map), because those accesses
11339 * are done in arm_v7m_load_vector(), which always does a direct
11340 * read using address_space_ldl(), rather than going via this function.
11342 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
11344 } else if (m_is_ppb_region(env
, address
)) {
11346 } else if (pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
11349 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
11350 /* region search */
11351 /* Note that the base address is bits [31:5] from the register
11352 * with bits [4:0] all zeroes, but the limit address is bits
11353 * [31:5] from the register with bits [4:0] all ones.
11355 uint32_t base
= env
->pmsav8
.rbar
[secure
][n
] & ~0x1f;
11356 uint32_t limit
= env
->pmsav8
.rlar
[secure
][n
] | 0x1f;
11358 if (!(env
->pmsav8
.rlar
[secure
][n
] & 0x1)) {
11359 /* Region disabled */
11363 if (address
< base
|| address
> limit
) {
11365 * Address not in this region. We must check whether the
11366 * region covers addresses in the same page as our address.
11367 * In that case we must not report a size that covers the
11368 * whole page for a subsequent hit against a different MPU
11369 * region or the background region, because it would result in
11370 * incorrect TLB hits for subsequent accesses to addresses that
11371 * are in this MPU region.
11373 if (limit
>= base
&&
11374 ranges_overlap(base
, limit
- base
+ 1,
11376 TARGET_PAGE_SIZE
)) {
11377 *is_subpage
= true;
11382 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
11383 *is_subpage
= true;
11387 /* Multiple regions match -- always a failure (unlike
11388 * PMSAv7 where highest-numbered-region wins)
11390 fi
->type
= ARMFault_Permission
;
11401 /* background fault */
11402 fi
->type
= ARMFault_Background
;
11406 if (matchregion
== -1) {
11407 /* hit using the background region */
11408 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
11410 uint32_t ap
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 1, 2);
11411 uint32_t xn
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 0, 1);
11413 if (m_is_system_region(env
, address
)) {
11414 /* System space is always execute never */
11418 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
);
11419 if (*prot
&& !xn
) {
11420 *prot
|= PAGE_EXEC
;
11422 /* We don't need to look the attribute up in the MAIR0/MAIR1
11423 * registers because that only tells us about cacheability.
11426 *mregion
= matchregion
;
11430 fi
->type
= ARMFault_Permission
;
11432 return !(*prot
& (1 << access_type
));
11436 static bool get_phys_addr_pmsav8(CPUARMState
*env
, uint32_t address
,
11437 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11438 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
11439 int *prot
, target_ulong
*page_size
,
11440 ARMMMUFaultInfo
*fi
)
11442 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
11443 V8M_SAttributes sattrs
= {};
11445 bool mpu_is_subpage
;
11447 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
11448 v8m_security_lookup(env
, address
, access_type
, mmu_idx
, &sattrs
);
11449 if (access_type
== MMU_INST_FETCH
) {
11450 /* Instruction fetches always use the MMU bank and the
11451 * transaction attribute determined by the fetch address,
11452 * regardless of CPU state. This is painful for QEMU
11453 * to handle, because it would mean we need to encode
11454 * into the mmu_idx not just the (user, negpri) information
11455 * for the current security state but also that for the
11456 * other security state, which would balloon the number
11457 * of mmu_idx values needed alarmingly.
11458 * Fortunately we can avoid this because it's not actually
11459 * possible to arbitrarily execute code from memory with
11460 * the wrong security attribute: it will always generate
11461 * an exception of some kind or another, apart from the
11462 * special case of an NS CPU executing an SG instruction
11463 * in S&NSC memory. So we always just fail the translation
11464 * here and sort things out in the exception handler
11465 * (including possibly emulating an SG instruction).
11467 if (sattrs
.ns
!= !secure
) {
11469 fi
->type
= ARMFault_QEMU_NSCExec
;
11471 fi
->type
= ARMFault_QEMU_SFault
;
11473 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
11474 *phys_ptr
= address
;
11479 /* For data accesses we always use the MMU bank indicated
11480 * by the current CPU state, but the security attributes
11481 * might downgrade a secure access to nonsecure.
11484 txattrs
->secure
= false;
11485 } else if (!secure
) {
11486 /* NS access to S memory must fault.
11487 * Architecturally we should first check whether the
11488 * MPU information for this address indicates that we
11489 * are doing an unaligned access to Device memory, which
11490 * should generate a UsageFault instead. QEMU does not
11491 * currently check for that kind of unaligned access though.
11492 * If we added it we would need to do so as a special case
11493 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
11495 fi
->type
= ARMFault_QEMU_SFault
;
11496 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
11497 *phys_ptr
= address
;
11504 ret
= pmsav8_mpu_lookup(env
, address
, access_type
, mmu_idx
, phys_ptr
,
11505 txattrs
, prot
, &mpu_is_subpage
, fi
, NULL
);
11506 *page_size
= sattrs
.subpage
|| mpu_is_subpage
? 1 : TARGET_PAGE_SIZE
;
11510 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
11511 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11512 hwaddr
*phys_ptr
, int *prot
,
11513 ARMMMUFaultInfo
*fi
)
11518 bool is_user
= regime_is_user(env
, mmu_idx
);
11520 if (regime_translation_disabled(env
, mmu_idx
)) {
11521 /* MPU disabled. */
11522 *phys_ptr
= address
;
11523 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
11527 *phys_ptr
= address
;
11528 for (n
= 7; n
>= 0; n
--) {
11529 base
= env
->cp15
.c6_region
[n
];
11530 if ((base
& 1) == 0) {
11533 mask
= 1 << ((base
>> 1) & 0x1f);
11534 /* Keep this shift separate from the above to avoid an
11535 (undefined) << 32. */
11536 mask
= (mask
<< 1) - 1;
11537 if (((base
^ address
) & ~mask
) == 0) {
11542 fi
->type
= ARMFault_Background
;
11546 if (access_type
== MMU_INST_FETCH
) {
11547 mask
= env
->cp15
.pmsav5_insn_ap
;
11549 mask
= env
->cp15
.pmsav5_data_ap
;
11551 mask
= (mask
>> (n
* 4)) & 0xf;
11554 fi
->type
= ARMFault_Permission
;
11559 fi
->type
= ARMFault_Permission
;
11563 *prot
= PAGE_READ
| PAGE_WRITE
;
11568 *prot
|= PAGE_WRITE
;
11572 *prot
= PAGE_READ
| PAGE_WRITE
;
11576 fi
->type
= ARMFault_Permission
;
11586 /* Bad permission. */
11587 fi
->type
= ARMFault_Permission
;
11591 *prot
|= PAGE_EXEC
;
11595 /* Combine either inner or outer cacheability attributes for normal
11596 * memory, according to table D4-42 and pseudocode procedure
11597 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
11599 * NB: only stage 1 includes allocation hints (RW bits), leading to
11602 static uint8_t combine_cacheattr_nibble(uint8_t s1
, uint8_t s2
)
11604 if (s1
== 4 || s2
== 4) {
11605 /* non-cacheable has precedence */
11607 } else if (extract32(s1
, 2, 2) == 0 || extract32(s1
, 2, 2) == 2) {
11608 /* stage 1 write-through takes precedence */
11610 } else if (extract32(s2
, 2, 2) == 2) {
11611 /* stage 2 write-through takes precedence, but the allocation hint
11612 * is still taken from stage 1
11614 return (2 << 2) | extract32(s1
, 0, 2);
11615 } else { /* write-back */
11620 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
11621 * and CombineS1S2Desc()
11623 * @s1: Attributes from stage 1 walk
11624 * @s2: Attributes from stage 2 walk
11626 static ARMCacheAttrs
combine_cacheattrs(ARMCacheAttrs s1
, ARMCacheAttrs s2
)
11628 uint8_t s1lo
= extract32(s1
.attrs
, 0, 4), s2lo
= extract32(s2
.attrs
, 0, 4);
11629 uint8_t s1hi
= extract32(s1
.attrs
, 4, 4), s2hi
= extract32(s2
.attrs
, 4, 4);
11632 /* Combine shareability attributes (table D4-43) */
11633 if (s1
.shareability
== 2 || s2
.shareability
== 2) {
11634 /* if either are outer-shareable, the result is outer-shareable */
11635 ret
.shareability
= 2;
11636 } else if (s1
.shareability
== 3 || s2
.shareability
== 3) {
11637 /* if either are inner-shareable, the result is inner-shareable */
11638 ret
.shareability
= 3;
11640 /* both non-shareable */
11641 ret
.shareability
= 0;
11644 /* Combine memory type and cacheability attributes */
11645 if (s1hi
== 0 || s2hi
== 0) {
11646 /* Device has precedence over normal */
11647 if (s1lo
== 0 || s2lo
== 0) {
11648 /* nGnRnE has precedence over anything */
11650 } else if (s1lo
== 4 || s2lo
== 4) {
11651 /* non-Reordering has precedence over Reordering */
11652 ret
.attrs
= 4; /* nGnRE */
11653 } else if (s1lo
== 8 || s2lo
== 8) {
11654 /* non-Gathering has precedence over Gathering */
11655 ret
.attrs
= 8; /* nGRE */
11657 ret
.attrs
= 0xc; /* GRE */
11660 /* Any location for which the resultant memory type is any
11661 * type of Device memory is always treated as Outer Shareable.
11663 ret
.shareability
= 2;
11664 } else { /* Normal memory */
11665 /* Outer/inner cacheability combine independently */
11666 ret
.attrs
= combine_cacheattr_nibble(s1hi
, s2hi
) << 4
11667 | combine_cacheattr_nibble(s1lo
, s2lo
);
11669 if (ret
.attrs
== 0x44) {
11670 /* Any location for which the resultant memory type is Normal
11671 * Inner Non-cacheable, Outer Non-cacheable is always treated
11672 * as Outer Shareable.
11674 ret
.shareability
= 2;
11682 /* get_phys_addr - get the physical address for this virtual address
11684 * Find the physical address corresponding to the given virtual address,
11685 * by doing a translation table walk on MMU based systems or using the
11686 * MPU state on MPU based systems.
11688 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
11689 * prot and page_size may not be filled in, and the populated fsr value provides
11690 * information on why the translation aborted, in the format of a
11691 * DFSR/IFSR fault register, with the following caveats:
11692 * * we honour the short vs long DFSR format differences.
11693 * * the WnR bit is never set (the caller must do this).
11694 * * for PSMAv5 based systems we don't bother to return a full FSR format
11697 * @env: CPUARMState
11698 * @address: virtual address to get physical address for
11699 * @access_type: 0 for read, 1 for write, 2 for execute
11700 * @mmu_idx: MMU index indicating required translation regime
11701 * @phys_ptr: set to the physical address corresponding to the virtual address
11702 * @attrs: set to the memory transaction attributes to use
11703 * @prot: set to the permissions for the page containing phys_ptr
11704 * @page_size: set to the size of the page containing phys_ptr
11705 * @fi: set to fault info if the translation fails
11706 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
11708 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
11709 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
11710 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
11711 target_ulong
*page_size
,
11712 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
11714 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
11715 /* Call ourselves recursively to do the stage 1 and then stage 2
11718 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
11722 ARMCacheAttrs cacheattrs2
= {};
11724 ret
= get_phys_addr(env
, address
, access_type
,
11725 stage_1_mmu_idx(mmu_idx
), &ipa
, attrs
,
11726 prot
, page_size
, fi
, cacheattrs
);
11728 /* If S1 fails or S2 is disabled, return early. */
11729 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
11734 /* S1 is done. Now do S2 translation. */
11735 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
11736 phys_ptr
, attrs
, &s2_prot
,
11738 cacheattrs
!= NULL
? &cacheattrs2
: NULL
);
11740 /* Combine the S1 and S2 perms. */
11743 /* Combine the S1 and S2 cache attributes, if needed */
11744 if (!ret
&& cacheattrs
!= NULL
) {
11745 if (env
->cp15
.hcr_el2
& HCR_DC
) {
11747 * HCR.DC forces the first stage attributes to
11748 * Normal Non-Shareable,
11749 * Inner Write-Back Read-Allocate Write-Allocate,
11750 * Outer Write-Back Read-Allocate Write-Allocate.
11752 cacheattrs
->attrs
= 0xff;
11753 cacheattrs
->shareability
= 0;
11755 *cacheattrs
= combine_cacheattrs(*cacheattrs
, cacheattrs2
);
11761 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
11763 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
11767 /* The page table entries may downgrade secure to non-secure, but
11768 * cannot upgrade an non-secure translation regime's attributes
11771 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
11772 attrs
->user
= regime_is_user(env
, mmu_idx
);
11774 /* Fast Context Switch Extension. This doesn't exist at all in v8.
11775 * In v7 and earlier it affects all stage 1 translations.
11777 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
11778 && !arm_feature(env
, ARM_FEATURE_V8
)) {
11779 if (regime_el(env
, mmu_idx
) == 3) {
11780 address
+= env
->cp15
.fcseidr_s
;
11782 address
+= env
->cp15
.fcseidr_ns
;
11786 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
11788 *page_size
= TARGET_PAGE_SIZE
;
11790 if (arm_feature(env
, ARM_FEATURE_V8
)) {
11792 ret
= get_phys_addr_pmsav8(env
, address
, access_type
, mmu_idx
,
11793 phys_ptr
, attrs
, prot
, page_size
, fi
);
11794 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
11796 ret
= get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
11797 phys_ptr
, prot
, page_size
, fi
);
11800 ret
= get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
11801 phys_ptr
, prot
, fi
);
11803 qemu_log_mask(CPU_LOG_MMU
, "PMSA MPU lookup for %s at 0x%08" PRIx32
11804 " mmu_idx %u -> %s (prot %c%c%c)\n",
11805 access_type
== MMU_DATA_LOAD
? "reading" :
11806 (access_type
== MMU_DATA_STORE
? "writing" : "execute"),
11807 (uint32_t)address
, mmu_idx
,
11808 ret
? "Miss" : "Hit",
11809 *prot
& PAGE_READ
? 'r' : '-',
11810 *prot
& PAGE_WRITE
? 'w' : '-',
11811 *prot
& PAGE_EXEC
? 'x' : '-');
11816 /* Definitely a real MMU, not an MPU */
11818 if (regime_translation_disabled(env
, mmu_idx
)) {
11819 /* MMU disabled. */
11820 *phys_ptr
= address
;
11821 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
11822 *page_size
= TARGET_PAGE_SIZE
;
11826 if (regime_using_lpae_format(env
, mmu_idx
)) {
11827 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
,
11828 phys_ptr
, attrs
, prot
, page_size
,
11830 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
11831 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
,
11832 phys_ptr
, attrs
, prot
, page_size
, fi
);
11834 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
,
11835 phys_ptr
, prot
, page_size
, fi
);
11839 /* Walk the page table and (if the mapping exists) add the page
11840 * to the TLB. Return false on success, or true on failure. Populate
11841 * fsr with ARM DFSR/IFSR fault register format value on failure.
11843 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
11844 MMUAccessType access_type
, int mmu_idx
,
11845 ARMMMUFaultInfo
*fi
)
11847 ARMCPU
*cpu
= ARM_CPU(cs
);
11848 CPUARMState
*env
= &cpu
->env
;
11850 target_ulong page_size
;
11853 MemTxAttrs attrs
= {};
11855 ret
= get_phys_addr(env
, address
, access_type
,
11856 core_to_arm_mmu_idx(env
, mmu_idx
), &phys_addr
,
11857 &attrs
, &prot
, &page_size
, fi
, NULL
);
11860 * Map a single [sub]page. Regions smaller than our declared
11861 * target page size are handled specially, so for those we
11862 * pass in the exact addresses.
11864 if (page_size
>= TARGET_PAGE_SIZE
) {
11865 phys_addr
&= TARGET_PAGE_MASK
;
11866 address
&= TARGET_PAGE_MASK
;
11868 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
11869 prot
, mmu_idx
, page_size
);
11876 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
11879 ARMCPU
*cpu
= ARM_CPU(cs
);
11880 CPUARMState
*env
= &cpu
->env
;
11882 target_ulong page_size
;
11885 ARMMMUFaultInfo fi
= {};
11886 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
11888 *attrs
= (MemTxAttrs
) {};
11890 ret
= get_phys_addr(env
, addr
, 0, mmu_idx
, &phys_addr
,
11891 attrs
, &prot
, &page_size
, &fi
, NULL
);
11899 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
11902 unsigned el
= arm_current_el(env
);
11904 /* First handle registers which unprivileged can read */
11907 case 0 ... 7: /* xPSR sub-fields */
11909 if ((reg
& 1) && el
) {
11910 mask
|= XPSR_EXCP
; /* IPSR (unpriv. reads as zero) */
11913 mask
|= XPSR_NZCV
| XPSR_Q
; /* APSR */
11915 /* EPSR reads as zero */
11916 return xpsr_read(env
) & mask
;
11918 case 20: /* CONTROL */
11919 return env
->v7m
.control
[env
->v7m
.secure
];
11920 case 0x94: /* CONTROL_NS */
11921 /* We have to handle this here because unprivileged Secure code
11922 * can read the NS CONTROL register.
11924 if (!env
->v7m
.secure
) {
11927 return env
->v7m
.control
[M_REG_NS
];
11931 return 0; /* unprivileged reads others as zero */
11934 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
11936 case 0x88: /* MSP_NS */
11937 if (!env
->v7m
.secure
) {
11940 return env
->v7m
.other_ss_msp
;
11941 case 0x89: /* PSP_NS */
11942 if (!env
->v7m
.secure
) {
11945 return env
->v7m
.other_ss_psp
;
11946 case 0x8a: /* MSPLIM_NS */
11947 if (!env
->v7m
.secure
) {
11950 return env
->v7m
.msplim
[M_REG_NS
];
11951 case 0x8b: /* PSPLIM_NS */
11952 if (!env
->v7m
.secure
) {
11955 return env
->v7m
.psplim
[M_REG_NS
];
11956 case 0x90: /* PRIMASK_NS */
11957 if (!env
->v7m
.secure
) {
11960 return env
->v7m
.primask
[M_REG_NS
];
11961 case 0x91: /* BASEPRI_NS */
11962 if (!env
->v7m
.secure
) {
11965 return env
->v7m
.basepri
[M_REG_NS
];
11966 case 0x93: /* FAULTMASK_NS */
11967 if (!env
->v7m
.secure
) {
11970 return env
->v7m
.faultmask
[M_REG_NS
];
11971 case 0x98: /* SP_NS */
11973 /* This gives the non-secure SP selected based on whether we're
11974 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11976 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
11978 if (!env
->v7m
.secure
) {
11981 if (!arm_v7m_is_handler_mode(env
) && spsel
) {
11982 return env
->v7m
.other_ss_psp
;
11984 return env
->v7m
.other_ss_msp
;
11994 return v7m_using_psp(env
) ? env
->v7m
.other_sp
: env
->regs
[13];
11996 return v7m_using_psp(env
) ? env
->regs
[13] : env
->v7m
.other_sp
;
11997 case 10: /* MSPLIM */
11998 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
12001 return env
->v7m
.msplim
[env
->v7m
.secure
];
12002 case 11: /* PSPLIM */
12003 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
12006 return env
->v7m
.psplim
[env
->v7m
.secure
];
12007 case 16: /* PRIMASK */
12008 return env
->v7m
.primask
[env
->v7m
.secure
];
12009 case 17: /* BASEPRI */
12010 case 18: /* BASEPRI_MAX */
12011 return env
->v7m
.basepri
[env
->v7m
.secure
];
12012 case 19: /* FAULTMASK */
12013 return env
->v7m
.faultmask
[env
->v7m
.secure
];
12016 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to read unknown special"
12017 " register %d\n", reg
);
12022 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
12024 /* We're passed bits [11..0] of the instruction; extract
12025 * SYSm and the mask bits.
12026 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
12027 * we choose to treat them as if the mask bits were valid.
12028 * NB that the pseudocode 'mask' variable is bits [11..10],
12029 * whereas ours is [11..8].
12031 uint32_t mask
= extract32(maskreg
, 8, 4);
12032 uint32_t reg
= extract32(maskreg
, 0, 8);
12034 if (arm_current_el(env
) == 0 && reg
> 7) {
12035 /* only xPSR sub-fields may be written by unprivileged */
12039 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
12041 case 0x88: /* MSP_NS */
12042 if (!env
->v7m
.secure
) {
12045 env
->v7m
.other_ss_msp
= val
;
12047 case 0x89: /* PSP_NS */
12048 if (!env
->v7m
.secure
) {
12051 env
->v7m
.other_ss_psp
= val
;
12053 case 0x8a: /* MSPLIM_NS */
12054 if (!env
->v7m
.secure
) {
12057 env
->v7m
.msplim
[M_REG_NS
] = val
& ~7;
12059 case 0x8b: /* PSPLIM_NS */
12060 if (!env
->v7m
.secure
) {
12063 env
->v7m
.psplim
[M_REG_NS
] = val
& ~7;
12065 case 0x90: /* PRIMASK_NS */
12066 if (!env
->v7m
.secure
) {
12069 env
->v7m
.primask
[M_REG_NS
] = val
& 1;
12071 case 0x91: /* BASEPRI_NS */
12072 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
12075 env
->v7m
.basepri
[M_REG_NS
] = val
& 0xff;
12077 case 0x93: /* FAULTMASK_NS */
12078 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
12081 env
->v7m
.faultmask
[M_REG_NS
] = val
& 1;
12083 case 0x94: /* CONTROL_NS */
12084 if (!env
->v7m
.secure
) {
12087 write_v7m_control_spsel_for_secstate(env
,
12088 val
& R_V7M_CONTROL_SPSEL_MASK
,
12090 if (arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
12091 env
->v7m
.control
[M_REG_NS
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
12092 env
->v7m
.control
[M_REG_NS
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
12095 case 0x98: /* SP_NS */
12097 /* This gives the non-secure SP selected based on whether we're
12098 * currently in handler mode or not, using the NS CONTROL.SPSEL.
12100 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
12101 bool is_psp
= !arm_v7m_is_handler_mode(env
) && spsel
;
12104 if (!env
->v7m
.secure
) {
12108 limit
= is_psp
? env
->v7m
.psplim
[false] : env
->v7m
.msplim
[false];
12111 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
12113 cpu_restore_state(cs
, GETPC(), true);
12114 raise_exception(env
, EXCP_STKOF
, 0, 1);
12118 env
->v7m
.other_ss_psp
= val
;
12120 env
->v7m
.other_ss_msp
= val
;
12130 case 0 ... 7: /* xPSR sub-fields */
12131 /* only APSR is actually writable */
12133 uint32_t apsrmask
= 0;
12136 apsrmask
|= XPSR_NZCV
| XPSR_Q
;
12138 if ((mask
& 4) && arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
12139 apsrmask
|= XPSR_GE
;
12141 xpsr_write(env
, val
, apsrmask
);
12145 if (v7m_using_psp(env
)) {
12146 env
->v7m
.other_sp
= val
;
12148 env
->regs
[13] = val
;
12152 if (v7m_using_psp(env
)) {
12153 env
->regs
[13] = val
;
12155 env
->v7m
.other_sp
= val
;
12158 case 10: /* MSPLIM */
12159 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
12162 env
->v7m
.msplim
[env
->v7m
.secure
] = val
& ~7;
12164 case 11: /* PSPLIM */
12165 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
12168 env
->v7m
.psplim
[env
->v7m
.secure
] = val
& ~7;
12170 case 16: /* PRIMASK */
12171 env
->v7m
.primask
[env
->v7m
.secure
] = val
& 1;
12173 case 17: /* BASEPRI */
12174 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
12177 env
->v7m
.basepri
[env
->v7m
.secure
] = val
& 0xff;
12179 case 18: /* BASEPRI_MAX */
12180 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
12184 if (val
!= 0 && (val
< env
->v7m
.basepri
[env
->v7m
.secure
]
12185 || env
->v7m
.basepri
[env
->v7m
.secure
] == 0)) {
12186 env
->v7m
.basepri
[env
->v7m
.secure
] = val
;
12189 case 19: /* FAULTMASK */
12190 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
12193 env
->v7m
.faultmask
[env
->v7m
.secure
] = val
& 1;
12195 case 20: /* CONTROL */
12196 /* Writing to the SPSEL bit only has an effect if we are in
12197 * thread mode; other bits can be updated by any privileged code.
12198 * write_v7m_control_spsel() deals with updating the SPSEL bit in
12199 * env->v7m.control, so we only need update the others.
12200 * For v7M, we must just ignore explicit writes to SPSEL in handler
12201 * mode; for v8M the write is permitted but will have no effect.
12203 if (arm_feature(env
, ARM_FEATURE_V8
) ||
12204 !arm_v7m_is_handler_mode(env
)) {
12205 write_v7m_control_spsel(env
, (val
& R_V7M_CONTROL_SPSEL_MASK
) != 0);
12207 if (arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
12208 env
->v7m
.control
[env
->v7m
.secure
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
12209 env
->v7m
.control
[env
->v7m
.secure
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
12214 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to write unknown special"
12215 " register %d\n", reg
);
12220 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
12222 /* Implement the TT instruction. op is bits [7:6] of the insn. */
12223 bool forceunpriv
= op
& 1;
12225 V8M_SAttributes sattrs
= {};
12227 bool r
, rw
, nsr
, nsrw
, mrvalid
;
12229 ARMMMUFaultInfo fi
= {};
12230 MemTxAttrs attrs
= {};
12235 bool targetsec
= env
->v7m
.secure
;
12238 /* Work out what the security state and privilege level we're
12239 * interested in is...
12242 targetsec
= !targetsec
;
12246 targetpriv
= false;
12248 targetpriv
= arm_v7m_is_handler_mode(env
) ||
12249 !(env
->v7m
.control
[targetsec
] & R_V7M_CONTROL_NPRIV_MASK
);
12252 /* ...and then figure out which MMU index this is */
12253 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targetsec
, targetpriv
);
12255 /* We know that the MPU and SAU don't care about the access type
12256 * for our purposes beyond that we don't want to claim to be
12257 * an insn fetch, so we arbitrarily call this a read.
12260 /* MPU region info only available for privileged or if
12261 * inspecting the other MPU state.
12263 if (arm_current_el(env
) != 0 || alt
) {
12264 /* We can ignore the return value as prot is always set */
12265 pmsav8_mpu_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
,
12266 &phys_addr
, &attrs
, &prot
, &is_subpage
,
12268 if (mregion
== -1) {
12274 r
= prot
& PAGE_READ
;
12275 rw
= prot
& PAGE_WRITE
;
12283 if (env
->v7m
.secure
) {
12284 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
12285 nsr
= sattrs
.ns
&& r
;
12286 nsrw
= sattrs
.ns
&& rw
;
12293 tt_resp
= (sattrs
.iregion
<< 24) |
12294 (sattrs
.irvalid
<< 23) |
12295 ((!sattrs
.ns
) << 22) |
12300 (sattrs
.srvalid
<< 17) |
12302 (sattrs
.sregion
<< 8) |
12310 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
12312 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
12313 * Note that we do not implement the (architecturally mandated)
12314 * alignment fault for attempts to use this on Device memory
12315 * (which matches the usual QEMU behaviour of not implementing either
12316 * alignment faults or any memory attribute handling).
12319 ARMCPU
*cpu
= arm_env_get_cpu(env
);
12320 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
12321 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
12323 #ifndef CONFIG_USER_ONLY
12325 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
12326 * the block size so we might have to do more than one TLB lookup.
12327 * We know that in fact for any v8 CPU the page size is at least 4K
12328 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
12329 * 1K as an artefact of legacy v5 subpage support being present in the
12330 * same QEMU executable.
12332 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
12333 void *hostaddr
[maxidx
];
12335 unsigned mmu_idx
= cpu_mmu_index(env
, false);
12336 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
12338 for (try = 0; try < 2; try++) {
12340 for (i
= 0; i
< maxidx
; i
++) {
12341 hostaddr
[i
] = tlb_vaddr_to_host(env
,
12342 vaddr
+ TARGET_PAGE_SIZE
* i
,
12344 if (!hostaddr
[i
]) {
12349 /* If it's all in the TLB it's fair game for just writing to;
12350 * we know we don't need to update dirty status, etc.
12352 for (i
= 0; i
< maxidx
- 1; i
++) {
12353 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
12355 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
12358 /* OK, try a store and see if we can populate the tlb. This
12359 * might cause an exception if the memory isn't writable,
12360 * in which case we will longjmp out of here. We must for
12361 * this purpose use the actual register value passed to us
12362 * so that we get the fault address right.
12364 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETPC());
12365 /* Now we can populate the other TLB entries, if any */
12366 for (i
= 0; i
< maxidx
; i
++) {
12367 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
12368 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
12369 helper_ret_stb_mmu(env
, va
, 0, oi
, GETPC());
12374 /* Slow path (probably attempt to do this to an I/O device or
12375 * similar, or clearing of a block of code we have translations
12376 * cached for). Just do a series of byte writes as the architecture
12377 * demands. It's not worth trying to use a cpu_physical_memory_map(),
12378 * memset(), unmap() sequence here because:
12379 * + we'd need to account for the blocksize being larger than a page
12380 * + the direct-RAM access case is almost always going to be dealt
12381 * with in the fastpath code above, so there's no speed benefit
12382 * + we would have to deal with the map returning NULL because the
12383 * bounce buffer was in use
12385 for (i
= 0; i
< blocklen
; i
++) {
12386 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETPC());
12390 memset(g2h(vaddr
), 0, blocklen
);
12394 /* Note that signed overflow is undefined in C. The following routines are
12395 careful to use unsigned types where modulo arithmetic is required.
12396 Failure to do so _will_ break on newer gcc. */
12398 /* Signed saturating arithmetic. */
12400 /* Perform 16-bit signed saturating addition. */
12401 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
12406 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
12415 /* Perform 8-bit signed saturating addition. */
12416 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
12421 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
12430 /* Perform 16-bit signed saturating subtraction. */
12431 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
12436 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
12445 /* Perform 8-bit signed saturating subtraction. */
12446 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
12451 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
12460 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
12461 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
12462 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
12463 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
12466 #include "op_addsub.h"
12468 /* Unsigned saturating arithmetic. */
12469 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
12478 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
12486 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
12495 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
12503 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
12504 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
12505 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
12506 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
12509 #include "op_addsub.h"
12511 /* Signed modulo arithmetic. */
12512 #define SARITH16(a, b, n, op) do { \
12514 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
12515 RESULT(sum, n, 16); \
12517 ge |= 3 << (n * 2); \
12520 #define SARITH8(a, b, n, op) do { \
12522 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
12523 RESULT(sum, n, 8); \
12529 #define ADD16(a, b, n) SARITH16(a, b, n, +)
12530 #define SUB16(a, b, n) SARITH16(a, b, n, -)
12531 #define ADD8(a, b, n) SARITH8(a, b, n, +)
12532 #define SUB8(a, b, n) SARITH8(a, b, n, -)
12536 #include "op_addsub.h"
12538 /* Unsigned modulo arithmetic. */
12539 #define ADD16(a, b, n) do { \
12541 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
12542 RESULT(sum, n, 16); \
12543 if ((sum >> 16) == 1) \
12544 ge |= 3 << (n * 2); \
12547 #define ADD8(a, b, n) do { \
12549 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
12550 RESULT(sum, n, 8); \
12551 if ((sum >> 8) == 1) \
12555 #define SUB16(a, b, n) do { \
12557 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
12558 RESULT(sum, n, 16); \
12559 if ((sum >> 16) == 0) \
12560 ge |= 3 << (n * 2); \
12563 #define SUB8(a, b, n) do { \
12565 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
12566 RESULT(sum, n, 8); \
12567 if ((sum >> 8) == 0) \
12574 #include "op_addsub.h"
12576 /* Halved signed arithmetic. */
12577 #define ADD16(a, b, n) \
12578 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
12579 #define SUB16(a, b, n) \
12580 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
12581 #define ADD8(a, b, n) \
12582 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
12583 #define SUB8(a, b, n) \
12584 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
12587 #include "op_addsub.h"
12589 /* Halved unsigned arithmetic. */
12590 #define ADD16(a, b, n) \
12591 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12592 #define SUB16(a, b, n) \
12593 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
12594 #define ADD8(a, b, n) \
12595 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12596 #define SUB8(a, b, n) \
12597 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
12600 #include "op_addsub.h"
12602 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
12610 /* Unsigned sum of absolute byte differences. */
12611 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
12614 sum
= do_usad(a
, b
);
12615 sum
+= do_usad(a
>> 8, b
>> 8);
12616 sum
+= do_usad(a
>> 16, b
>>16);
12617 sum
+= do_usad(a
>> 24, b
>> 24);
12621 /* For ARMv6 SEL instruction. */
12622 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
12634 mask
|= 0xff000000;
12635 return (a
& mask
) | (b
& ~mask
);
12638 /* VFP support. We follow the convention used for VFP instructions:
12639 Single precision routines have a "s" suffix, double precision a
12642 /* Convert host exception flags to vfp form. */
12643 static inline int vfp_exceptbits_from_host(int host_bits
)
12645 int target_bits
= 0;
12647 if (host_bits
& float_flag_invalid
)
12649 if (host_bits
& float_flag_divbyzero
)
12651 if (host_bits
& float_flag_overflow
)
12653 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
12655 if (host_bits
& float_flag_inexact
)
12656 target_bits
|= 0x10;
12657 if (host_bits
& float_flag_input_denormal
)
12658 target_bits
|= 0x80;
12659 return target_bits
;
12662 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
12667 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
12668 | (env
->vfp
.vec_len
<< 16)
12669 | (env
->vfp
.vec_stride
<< 20);
12671 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
12672 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
12673 /* FZ16 does not generate an input denormal exception. */
12674 i
|= (get_float_exception_flags(&env
->vfp
.fp_status_f16
)
12675 & ~float_flag_input_denormal
);
12677 fpscr
|= vfp_exceptbits_from_host(i
);
12681 uint32_t vfp_get_fpscr(CPUARMState
*env
)
12683 return HELPER(vfp_get_fpscr
)(env
);
12686 /* Convert vfp exception flags to target form. */
12687 static inline int vfp_exceptbits_to_host(int target_bits
)
12691 if (target_bits
& 1)
12692 host_bits
|= float_flag_invalid
;
12693 if (target_bits
& 2)
12694 host_bits
|= float_flag_divbyzero
;
12695 if (target_bits
& 4)
12696 host_bits
|= float_flag_overflow
;
12697 if (target_bits
& 8)
12698 host_bits
|= float_flag_underflow
;
12699 if (target_bits
& 0x10)
12700 host_bits
|= float_flag_inexact
;
12701 if (target_bits
& 0x80)
12702 host_bits
|= float_flag_input_denormal
;
12706 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
12711 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
12712 if (!cpu_isar_feature(aa64_fp16
, arm_env_get_cpu(env
))) {
12717 * We don't implement trapped exception handling, so the
12718 * trap enable bits are all RAZ/WI (not RES0!)
12720 val
&= ~(FPCR_IDE
| FPCR_IXE
| FPCR_UFE
| FPCR_OFE
| FPCR_DZE
| FPCR_IOE
);
12722 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
12723 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
12724 env
->vfp
.vec_len
= (val
>> 16) & 7;
12725 env
->vfp
.vec_stride
= (val
>> 20) & 3;
12728 if (changed
& (3 << 22)) {
12729 i
= (val
>> 22) & 3;
12731 case FPROUNDING_TIEEVEN
:
12732 i
= float_round_nearest_even
;
12734 case FPROUNDING_POSINF
:
12735 i
= float_round_up
;
12737 case FPROUNDING_NEGINF
:
12738 i
= float_round_down
;
12740 case FPROUNDING_ZERO
:
12741 i
= float_round_to_zero
;
12744 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
12745 set_float_rounding_mode(i
, &env
->vfp
.fp_status_f16
);
12747 if (changed
& FPCR_FZ16
) {
12748 bool ftz_enabled
= val
& FPCR_FZ16
;
12749 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
12750 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
12752 if (changed
& FPCR_FZ
) {
12753 bool ftz_enabled
= val
& FPCR_FZ
;
12754 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
12755 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
12757 if (changed
& FPCR_DN
) {
12758 bool dnan_enabled
= val
& FPCR_DN
;
12759 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status
);
12760 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status_f16
);
12763 /* The exception flags are ORed together when we read fpscr so we
12764 * only need to preserve the current state in one of our
12765 * float_status values.
12767 i
= vfp_exceptbits_to_host(val
);
12768 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
12769 set_float_exception_flags(0, &env
->vfp
.fp_status_f16
);
12770 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
12773 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
12775 HELPER(vfp_set_fpscr
)(env
, val
);
12778 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
12780 #define VFP_BINOP(name) \
12781 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
12783 float_status *fpst = fpstp; \
12784 return float32_ ## name(a, b, fpst); \
12786 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
12788 float_status *fpst = fpstp; \
12789 return float64_ ## name(a, b, fpst); \
12801 float32
VFP_HELPER(neg
, s
)(float32 a
)
12803 return float32_chs(a
);
12806 float64
VFP_HELPER(neg
, d
)(float64 a
)
12808 return float64_chs(a
);
12811 float32
VFP_HELPER(abs
, s
)(float32 a
)
12813 return float32_abs(a
);
12816 float64
VFP_HELPER(abs
, d
)(float64 a
)
12818 return float64_abs(a
);
12821 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
12823 return float32_sqrt(a
, &env
->vfp
.fp_status
);
12826 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
12828 return float64_sqrt(a
, &env
->vfp
.fp_status
);
12831 /* XXX: check quiet/signaling case */
12832 #define DO_VFP_cmp(p, type) \
12833 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
12836 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
12837 case 0: flags = 0x6; break; \
12838 case -1: flags = 0x8; break; \
12839 case 1: flags = 0x2; break; \
12840 default: case 2: flags = 0x3; break; \
12842 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12843 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12845 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
12848 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
12849 case 0: flags = 0x6; break; \
12850 case -1: flags = 0x8; break; \
12851 case 1: flags = 0x2; break; \
12852 default: case 2: flags = 0x3; break; \
12854 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12855 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12857 DO_VFP_cmp(s
, float32
)
12858 DO_VFP_cmp(d
, float64
)
12861 /* Integer to float and float to integer conversions */
12863 #define CONV_ITOF(name, ftype, fsz, sign) \
12864 ftype HELPER(name)(uint32_t x, void *fpstp) \
12866 float_status *fpst = fpstp; \
12867 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
12870 #define CONV_FTOI(name, ftype, fsz, sign, round) \
12871 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
12873 float_status *fpst = fpstp; \
12874 if (float##fsz##_is_any_nan(x)) { \
12875 float_raise(float_flag_invalid, fpst); \
12878 return float##fsz##_to_##sign##int32##round(x, fpst); \
12881 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
12882 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
12883 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
12884 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12886 FLOAT_CONVS(si
, h
, uint32_t, 16, )
12887 FLOAT_CONVS(si
, s
, float32
, 32, )
12888 FLOAT_CONVS(si
, d
, float64
, 64, )
12889 FLOAT_CONVS(ui
, h
, uint32_t, 16, u
)
12890 FLOAT_CONVS(ui
, s
, float32
, 32, u
)
12891 FLOAT_CONVS(ui
, d
, float64
, 64, u
)
12897 /* floating point conversion */
12898 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
12900 return float32_to_float64(x
, &env
->vfp
.fp_status
);
12903 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
12905 return float64_to_float32(x
, &env
->vfp
.fp_status
);
12908 /* VFP3 fixed point conversion. */
12909 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12910 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
12912 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
12914 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
12915 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12918 if (unlikely(float##fsz##_is_any_nan(x))) { \
12919 float_raise(float_flag_invalid, fpst); \
12922 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
12925 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
12926 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12927 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12928 float_round_to_zero, _round_to_zero) \
12929 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12930 get_float_rounding_mode(fpst), )
12932 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
12933 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12934 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12935 get_float_rounding_mode(fpst), )
12937 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
12938 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
12939 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
12940 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
12941 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
12942 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
12943 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
12944 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
12945 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
12946 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
12947 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
12948 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
12950 #undef VFP_CONV_FIX
12951 #undef VFP_CONV_FIX_FLOAT
12952 #undef VFP_CONV_FLOAT_FIX_ROUND
12953 #undef VFP_CONV_FIX_A64
12955 uint32_t HELPER(vfp_sltoh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12957 return int32_to_float16_scalbn(x
, -shift
, fpst
);
12960 uint32_t HELPER(vfp_ultoh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12962 return uint32_to_float16_scalbn(x
, -shift
, fpst
);
12965 uint32_t HELPER(vfp_sqtoh
)(uint64_t x
, uint32_t shift
, void *fpst
)
12967 return int64_to_float16_scalbn(x
, -shift
, fpst
);
12970 uint32_t HELPER(vfp_uqtoh
)(uint64_t x
, uint32_t shift
, void *fpst
)
12972 return uint64_to_float16_scalbn(x
, -shift
, fpst
);
12975 uint32_t HELPER(vfp_toshh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12977 if (unlikely(float16_is_any_nan(x
))) {
12978 float_raise(float_flag_invalid
, fpst
);
12981 return float16_to_int16_scalbn(x
, get_float_rounding_mode(fpst
),
12985 uint32_t HELPER(vfp_touhh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12987 if (unlikely(float16_is_any_nan(x
))) {
12988 float_raise(float_flag_invalid
, fpst
);
12991 return float16_to_uint16_scalbn(x
, get_float_rounding_mode(fpst
),
12995 uint32_t HELPER(vfp_toslh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12997 if (unlikely(float16_is_any_nan(x
))) {
12998 float_raise(float_flag_invalid
, fpst
);
13001 return float16_to_int32_scalbn(x
, get_float_rounding_mode(fpst
),
13005 uint32_t HELPER(vfp_toulh
)(uint32_t x
, uint32_t shift
, void *fpst
)
13007 if (unlikely(float16_is_any_nan(x
))) {
13008 float_raise(float_flag_invalid
, fpst
);
13011 return float16_to_uint32_scalbn(x
, get_float_rounding_mode(fpst
),
13015 uint64_t HELPER(vfp_tosqh
)(uint32_t x
, uint32_t shift
, void *fpst
)
13017 if (unlikely(float16_is_any_nan(x
))) {
13018 float_raise(float_flag_invalid
, fpst
);
13021 return float16_to_int64_scalbn(x
, get_float_rounding_mode(fpst
),
13025 uint64_t HELPER(vfp_touqh
)(uint32_t x
, uint32_t shift
, void *fpst
)
13027 if (unlikely(float16_is_any_nan(x
))) {
13028 float_raise(float_flag_invalid
, fpst
);
13031 return float16_to_uint64_scalbn(x
, get_float_rounding_mode(fpst
),
13035 /* Set the current fp rounding mode and return the old one.
13036 * The argument is a softfloat float_round_ value.
13038 uint32_t HELPER(set_rmode
)(uint32_t rmode
, void *fpstp
)
13040 float_status
*fp_status
= fpstp
;
13042 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
13043 set_float_rounding_mode(rmode
, fp_status
);
13048 /* Set the current fp rounding mode in the standard fp status and return
13049 * the old one. This is for NEON instructions that need to change the
13050 * rounding mode but wish to use the standard FPSCR values for everything
13051 * else. Always set the rounding mode back to the correct value after
13053 * The argument is a softfloat float_round_ value.
13055 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
13057 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
13059 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
13060 set_float_rounding_mode(rmode
, fp_status
);
13065 /* Half precision conversions. */
13066 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
13068 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13069 * it would affect flushing input denormals.
13071 float_status
*fpst
= fpstp
;
13072 flag save
= get_flush_inputs_to_zero(fpst
);
13073 set_flush_inputs_to_zero(false, fpst
);
13074 float32 r
= float16_to_float32(a
, !ahp_mode
, fpst
);
13075 set_flush_inputs_to_zero(save
, fpst
);
13079 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, void *fpstp
, uint32_t ahp_mode
)
13081 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13082 * it would affect flushing output denormals.
13084 float_status
*fpst
= fpstp
;
13085 flag save
= get_flush_to_zero(fpst
);
13086 set_flush_to_zero(false, fpst
);
13087 float16 r
= float32_to_float16(a
, !ahp_mode
, fpst
);
13088 set_flush_to_zero(save
, fpst
);
13092 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
13094 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13095 * it would affect flushing input denormals.
13097 float_status
*fpst
= fpstp
;
13098 flag save
= get_flush_inputs_to_zero(fpst
);
13099 set_flush_inputs_to_zero(false, fpst
);
13100 float64 r
= float16_to_float64(a
, !ahp_mode
, fpst
);
13101 set_flush_inputs_to_zero(save
, fpst
);
13105 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, void *fpstp
, uint32_t ahp_mode
)
13107 /* Squash FZ16 to 0 for the duration of conversion. In this case,
13108 * it would affect flushing output denormals.
13110 float_status
*fpst
= fpstp
;
13111 flag save
= get_flush_to_zero(fpst
);
13112 set_flush_to_zero(false, fpst
);
13113 float16 r
= float64_to_float16(a
, !ahp_mode
, fpst
);
13114 set_flush_to_zero(save
, fpst
);
13118 #define float32_two make_float32(0x40000000)
13119 #define float32_three make_float32(0x40400000)
13120 #define float32_one_point_five make_float32(0x3fc00000)
13122 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
13124 float_status
*s
= &env
->vfp
.standard_fp_status
;
13125 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
13126 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
13127 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
13128 float_raise(float_flag_input_denormal
, s
);
13130 return float32_two
;
13132 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
13135 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
13137 float_status
*s
= &env
->vfp
.standard_fp_status
;
13139 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
13140 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
13141 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
13142 float_raise(float_flag_input_denormal
, s
);
13144 return float32_one_point_five
;
13146 product
= float32_mul(a
, b
, s
);
13147 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
13150 /* NEON helpers. */
13152 /* Constants 256 and 512 are used in some helpers; we avoid relying on
13153 * int->float conversions at run-time. */
13154 #define float64_256 make_float64(0x4070000000000000LL)
13155 #define float64_512 make_float64(0x4080000000000000LL)
13156 #define float16_maxnorm make_float16(0x7bff)
13157 #define float32_maxnorm make_float32(0x7f7fffff)
13158 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
13160 /* Reciprocal functions
13162 * The algorithm that must be used to calculate the estimate
13163 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
13166 /* See RecipEstimate()
13168 * input is a 9 bit fixed point number
13169 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
13170 * result range 256 .. 511 for a number from 1.0 to 511/256.
13173 static int recip_estimate(int input
)
13176 assert(256 <= input
&& input
< 512);
13177 a
= (input
* 2) + 1;
13180 assert(256 <= r
&& r
< 512);
13185 * Common wrapper to call recip_estimate
13187 * The parameters are exponent and 64 bit fraction (without implicit
13188 * bit) where the binary point is nominally at bit 52. Returns a
13189 * float64 which can then be rounded to the appropriate size by the
13193 static uint64_t call_recip_estimate(int *exp
, int exp_off
, uint64_t frac
)
13195 uint32_t scaled
, estimate
;
13196 uint64_t result_frac
;
13199 /* Handle sub-normals */
13201 if (extract64(frac
, 51, 1) == 0) {
13209 /* scaled = UInt('1':fraction<51:44>) */
13210 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
13211 estimate
= recip_estimate(scaled
);
13213 result_exp
= exp_off
- *exp
;
13214 result_frac
= deposit64(0, 44, 8, estimate
);
13215 if (result_exp
== 0) {
13216 result_frac
= deposit64(result_frac
>> 1, 51, 1, 1);
13217 } else if (result_exp
== -1) {
13218 result_frac
= deposit64(result_frac
>> 2, 50, 2, 1);
13224 return result_frac
;
13227 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
13229 switch (fpst
->float_rounding_mode
) {
13230 case float_round_nearest_even
: /* Round to Nearest */
13232 case float_round_up
: /* Round to +Inf */
13234 case float_round_down
: /* Round to -Inf */
13236 case float_round_to_zero
: /* Round to Zero */
13240 g_assert_not_reached();
13243 uint32_t HELPER(recpe_f16
)(uint32_t input
, void *fpstp
)
13245 float_status
*fpst
= fpstp
;
13246 float16 f16
= float16_squash_input_denormal(input
, fpst
);
13247 uint32_t f16_val
= float16_val(f16
);
13248 uint32_t f16_sign
= float16_is_neg(f16
);
13249 int f16_exp
= extract32(f16_val
, 10, 5);
13250 uint32_t f16_frac
= extract32(f16_val
, 0, 10);
13253 if (float16_is_any_nan(f16
)) {
13255 if (float16_is_signaling_nan(f16
, fpst
)) {
13256 float_raise(float_flag_invalid
, fpst
);
13257 nan
= float16_silence_nan(f16
, fpst
);
13259 if (fpst
->default_nan_mode
) {
13260 nan
= float16_default_nan(fpst
);
13263 } else if (float16_is_infinity(f16
)) {
13264 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
13265 } else if (float16_is_zero(f16
)) {
13266 float_raise(float_flag_divbyzero
, fpst
);
13267 return float16_set_sign(float16_infinity
, float16_is_neg(f16
));
13268 } else if (float16_abs(f16
) < (1 << 8)) {
13269 /* Abs(value) < 2.0^-16 */
13270 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
13271 if (round_to_inf(fpst
, f16_sign
)) {
13272 return float16_set_sign(float16_infinity
, f16_sign
);
13274 return float16_set_sign(float16_maxnorm
, f16_sign
);
13276 } else if (f16_exp
>= 29 && fpst
->flush_to_zero
) {
13277 float_raise(float_flag_underflow
, fpst
);
13278 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
13281 f64_frac
= call_recip_estimate(&f16_exp
, 29,
13282 ((uint64_t) f16_frac
) << (52 - 10));
13284 /* result = sign : result_exp<4:0> : fraction<51:42> */
13285 f16_val
= deposit32(0, 15, 1, f16_sign
);
13286 f16_val
= deposit32(f16_val
, 10, 5, f16_exp
);
13287 f16_val
= deposit32(f16_val
, 0, 10, extract64(f64_frac
, 52 - 10, 10));
13288 return make_float16(f16_val
);
13291 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
13293 float_status
*fpst
= fpstp
;
13294 float32 f32
= float32_squash_input_denormal(input
, fpst
);
13295 uint32_t f32_val
= float32_val(f32
);
13296 bool f32_sign
= float32_is_neg(f32
);
13297 int f32_exp
= extract32(f32_val
, 23, 8);
13298 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
13301 if (float32_is_any_nan(f32
)) {
13303 if (float32_is_signaling_nan(f32
, fpst
)) {
13304 float_raise(float_flag_invalid
, fpst
);
13305 nan
= float32_silence_nan(f32
, fpst
);
13307 if (fpst
->default_nan_mode
) {
13308 nan
= float32_default_nan(fpst
);
13311 } else if (float32_is_infinity(f32
)) {
13312 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
13313 } else if (float32_is_zero(f32
)) {
13314 float_raise(float_flag_divbyzero
, fpst
);
13315 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
13316 } else if (float32_abs(f32
) < (1ULL << 21)) {
13317 /* Abs(value) < 2.0^-128 */
13318 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
13319 if (round_to_inf(fpst
, f32_sign
)) {
13320 return float32_set_sign(float32_infinity
, f32_sign
);
13322 return float32_set_sign(float32_maxnorm
, f32_sign
);
13324 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
13325 float_raise(float_flag_underflow
, fpst
);
13326 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
13329 f64_frac
= call_recip_estimate(&f32_exp
, 253,
13330 ((uint64_t) f32_frac
) << (52 - 23));
13332 /* result = sign : result_exp<7:0> : fraction<51:29> */
13333 f32_val
= deposit32(0, 31, 1, f32_sign
);
13334 f32_val
= deposit32(f32_val
, 23, 8, f32_exp
);
13335 f32_val
= deposit32(f32_val
, 0, 23, extract64(f64_frac
, 52 - 23, 23));
13336 return make_float32(f32_val
);
13339 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
13341 float_status
*fpst
= fpstp
;
13342 float64 f64
= float64_squash_input_denormal(input
, fpst
);
13343 uint64_t f64_val
= float64_val(f64
);
13344 bool f64_sign
= float64_is_neg(f64
);
13345 int f64_exp
= extract64(f64_val
, 52, 11);
13346 uint64_t f64_frac
= extract64(f64_val
, 0, 52);
13348 /* Deal with any special cases */
13349 if (float64_is_any_nan(f64
)) {
13351 if (float64_is_signaling_nan(f64
, fpst
)) {
13352 float_raise(float_flag_invalid
, fpst
);
13353 nan
= float64_silence_nan(f64
, fpst
);
13355 if (fpst
->default_nan_mode
) {
13356 nan
= float64_default_nan(fpst
);
13359 } else if (float64_is_infinity(f64
)) {
13360 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
13361 } else if (float64_is_zero(f64
)) {
13362 float_raise(float_flag_divbyzero
, fpst
);
13363 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
13364 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
13365 /* Abs(value) < 2.0^-1024 */
13366 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
13367 if (round_to_inf(fpst
, f64_sign
)) {
13368 return float64_set_sign(float64_infinity
, f64_sign
);
13370 return float64_set_sign(float64_maxnorm
, f64_sign
);
13372 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
13373 float_raise(float_flag_underflow
, fpst
);
13374 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
13377 f64_frac
= call_recip_estimate(&f64_exp
, 2045, f64_frac
);
13379 /* result = sign : result_exp<10:0> : fraction<51:0>; */
13380 f64_val
= deposit64(0, 63, 1, f64_sign
);
13381 f64_val
= deposit64(f64_val
, 52, 11, f64_exp
);
13382 f64_val
= deposit64(f64_val
, 0, 52, f64_frac
);
13383 return make_float64(f64_val
);
13386 /* The algorithm that must be used to calculate the estimate
13387 * is specified by the ARM ARM.
13390 static int do_recip_sqrt_estimate(int a
)
13394 assert(128 <= a
&& a
< 512);
13402 while (a
* (b
+ 1) * (b
+ 1) < (1 << 28)) {
13405 estimate
= (b
+ 1) / 2;
13406 assert(256 <= estimate
&& estimate
< 512);
13412 static uint64_t recip_sqrt_estimate(int *exp
, int exp_off
, uint64_t frac
)
13418 while (extract64(frac
, 51, 1) == 0) {
13422 frac
= extract64(frac
, 0, 51) << 1;
13426 /* scaled = UInt('01':fraction<51:45>) */
13427 scaled
= deposit32(1 << 7, 0, 7, extract64(frac
, 45, 7));
13429 /* scaled = UInt('1':fraction<51:44>) */
13430 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
13432 estimate
= do_recip_sqrt_estimate(scaled
);
13434 *exp
= (exp_off
- *exp
) / 2;
13435 return extract64(estimate
, 0, 8) << 44;
13438 uint32_t HELPER(rsqrte_f16
)(uint32_t input
, void *fpstp
)
13440 float_status
*s
= fpstp
;
13441 float16 f16
= float16_squash_input_denormal(input
, s
);
13442 uint16_t val
= float16_val(f16
);
13443 bool f16_sign
= float16_is_neg(f16
);
13444 int f16_exp
= extract32(val
, 10, 5);
13445 uint16_t f16_frac
= extract32(val
, 0, 10);
13448 if (float16_is_any_nan(f16
)) {
13450 if (float16_is_signaling_nan(f16
, s
)) {
13451 float_raise(float_flag_invalid
, s
);
13452 nan
= float16_silence_nan(f16
, s
);
13454 if (s
->default_nan_mode
) {
13455 nan
= float16_default_nan(s
);
13458 } else if (float16_is_zero(f16
)) {
13459 float_raise(float_flag_divbyzero
, s
);
13460 return float16_set_sign(float16_infinity
, f16_sign
);
13461 } else if (f16_sign
) {
13462 float_raise(float_flag_invalid
, s
);
13463 return float16_default_nan(s
);
13464 } else if (float16_is_infinity(f16
)) {
13465 return float16_zero
;
13468 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13469 * preserving the parity of the exponent. */
13471 f64_frac
= ((uint64_t) f16_frac
) << (52 - 10);
13473 f64_frac
= recip_sqrt_estimate(&f16_exp
, 44, f64_frac
);
13475 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
13476 val
= deposit32(0, 15, 1, f16_sign
);
13477 val
= deposit32(val
, 10, 5, f16_exp
);
13478 val
= deposit32(val
, 2, 8, extract64(f64_frac
, 52 - 8, 8));
13479 return make_float16(val
);
13482 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
13484 float_status
*s
= fpstp
;
13485 float32 f32
= float32_squash_input_denormal(input
, s
);
13486 uint32_t val
= float32_val(f32
);
13487 uint32_t f32_sign
= float32_is_neg(f32
);
13488 int f32_exp
= extract32(val
, 23, 8);
13489 uint32_t f32_frac
= extract32(val
, 0, 23);
13492 if (float32_is_any_nan(f32
)) {
13494 if (float32_is_signaling_nan(f32
, s
)) {
13495 float_raise(float_flag_invalid
, s
);
13496 nan
= float32_silence_nan(f32
, s
);
13498 if (s
->default_nan_mode
) {
13499 nan
= float32_default_nan(s
);
13502 } else if (float32_is_zero(f32
)) {
13503 float_raise(float_flag_divbyzero
, s
);
13504 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
13505 } else if (float32_is_neg(f32
)) {
13506 float_raise(float_flag_invalid
, s
);
13507 return float32_default_nan(s
);
13508 } else if (float32_is_infinity(f32
)) {
13509 return float32_zero
;
13512 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
13513 * preserving the parity of the exponent. */
13515 f64_frac
= ((uint64_t) f32_frac
) << 29;
13517 f64_frac
= recip_sqrt_estimate(&f32_exp
, 380, f64_frac
);
13519 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
13520 val
= deposit32(0, 31, 1, f32_sign
);
13521 val
= deposit32(val
, 23, 8, f32_exp
);
13522 val
= deposit32(val
, 15, 8, extract64(f64_frac
, 52 - 8, 8));
13523 return make_float32(val
);
13526 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
13528 float_status
*s
= fpstp
;
13529 float64 f64
= float64_squash_input_denormal(input
, s
);
13530 uint64_t val
= float64_val(f64
);
13531 bool f64_sign
= float64_is_neg(f64
);
13532 int f64_exp
= extract64(val
, 52, 11);
13533 uint64_t f64_frac
= extract64(val
, 0, 52);
13535 if (float64_is_any_nan(f64
)) {
13537 if (float64_is_signaling_nan(f64
, s
)) {
13538 float_raise(float_flag_invalid
, s
);
13539 nan
= float64_silence_nan(f64
, s
);
13541 if (s
->default_nan_mode
) {
13542 nan
= float64_default_nan(s
);
13545 } else if (float64_is_zero(f64
)) {
13546 float_raise(float_flag_divbyzero
, s
);
13547 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
13548 } else if (float64_is_neg(f64
)) {
13549 float_raise(float_flag_invalid
, s
);
13550 return float64_default_nan(s
);
13551 } else if (float64_is_infinity(f64
)) {
13552 return float64_zero
;
13555 f64_frac
= recip_sqrt_estimate(&f64_exp
, 3068, f64_frac
);
13557 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
13558 val
= deposit64(0, 61, 1, f64_sign
);
13559 val
= deposit64(val
, 52, 11, f64_exp
);
13560 val
= deposit64(val
, 44, 8, extract64(f64_frac
, 52 - 8, 8));
13561 return make_float64(val
);
13564 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
13566 /* float_status *s = fpstp; */
13567 int input
, estimate
;
13569 if ((a
& 0x80000000) == 0) {
13573 input
= extract32(a
, 23, 9);
13574 estimate
= recip_estimate(input
);
13576 return deposit32(0, (32 - 9), 9, estimate
);
13579 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
13583 if ((a
& 0xc0000000) == 0) {
13587 estimate
= do_recip_sqrt_estimate(extract32(a
, 23, 9));
13589 return deposit32(0, 23, 9, estimate
);
13592 /* VFPv4 fused multiply-accumulate */
13593 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
13595 float_status
*fpst
= fpstp
;
13596 return float32_muladd(a
, b
, c
, 0, fpst
);
13599 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
13601 float_status
*fpst
= fpstp
;
13602 return float64_muladd(a
, b
, c
, 0, fpst
);
13605 /* ARMv8 round to integral */
13606 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
13608 return float32_round_to_int(x
, fp_status
);
13611 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
13613 return float64_round_to_int(x
, fp_status
);
13616 float32
HELPER(rints
)(float32 x
, void *fp_status
)
13618 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
13621 ret
= float32_round_to_int(x
, fp_status
);
13623 /* Suppress any inexact exceptions the conversion produced */
13624 if (!(old_flags
& float_flag_inexact
)) {
13625 new_flags
= get_float_exception_flags(fp_status
);
13626 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
13632 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
13634 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
13637 ret
= float64_round_to_int(x
, fp_status
);
13639 new_flags
= get_float_exception_flags(fp_status
);
13641 /* Suppress any inexact exceptions the conversion produced */
13642 if (!(old_flags
& float_flag_inexact
)) {
13643 new_flags
= get_float_exception_flags(fp_status
);
13644 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
13650 /* Convert ARM rounding mode to softfloat */
13651 int arm_rmode_to_sf(int rmode
)
13654 case FPROUNDING_TIEAWAY
:
13655 rmode
= float_round_ties_away
;
13657 case FPROUNDING_ODD
:
13658 /* FIXME: add support for TIEAWAY and ODD */
13659 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
13661 /* fall through for now */
13662 case FPROUNDING_TIEEVEN
:
13664 rmode
= float_round_nearest_even
;
13666 case FPROUNDING_POSINF
:
13667 rmode
= float_round_up
;
13669 case FPROUNDING_NEGINF
:
13670 rmode
= float_round_down
;
13672 case FPROUNDING_ZERO
:
13673 rmode
= float_round_to_zero
;
13680 * The upper bytes of val (above the number specified by 'bytes') must have
13681 * been zeroed out by the caller.
13683 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
13687 stl_le_p(buf
, val
);
13689 /* zlib crc32 converts the accumulator and output to one's complement. */
13690 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
13693 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
13697 stl_le_p(buf
, val
);
13699 /* Linux crc32c converts the output to one's complement. */
13700 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
13703 /* Return the exception level to which FP-disabled exceptions should
13704 * be taken, or 0 if FP is enabled.
13706 int fp_exception_el(CPUARMState
*env
, int cur_el
)
13708 #ifndef CONFIG_USER_ONLY
13711 /* CPACR and the CPTR registers don't exist before v6, so FP is
13712 * always accessible
13714 if (!arm_feature(env
, ARM_FEATURE_V6
)) {
13718 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
13719 * 0, 2 : trap EL0 and EL1/PL1 accesses
13720 * 1 : trap only EL0 accesses
13721 * 3 : trap no accesses
13723 fpen
= extract32(env
->cp15
.cpacr_el1
, 20, 2);
13727 if (cur_el
== 0 || cur_el
== 1) {
13728 /* Trap to PL1, which might be EL1 or EL3 */
13729 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3)) {
13734 if (cur_el
== 3 && !is_a64(env
)) {
13735 /* Secure PL1 running at EL3 */
13748 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
13749 * check because zero bits in the registers mean "don't trap".
13752 /* CPTR_EL2 : present in v7VE or v8 */
13753 if (cur_el
<= 2 && extract32(env
->cp15
.cptr_el
[2], 10, 1)
13754 && !arm_is_secure_below_el3(env
)) {
13755 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
13759 /* CPTR_EL3 : present in v8 */
13760 if (extract32(env
->cp15
.cptr_el
[3], 10, 1)) {
13761 /* Trap all FP ops to EL3 */
13768 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState
*env
,
13769 bool secstate
, bool priv
)
13771 ARMMMUIdx mmu_idx
= ARM_MMU_IDX_M
;
13774 mmu_idx
|= ARM_MMU_IDX_M_PRIV
;
13777 if (armv7m_nvic_neg_prio_requested(env
->nvic
, secstate
)) {
13778 mmu_idx
|= ARM_MMU_IDX_M_NEGPRI
;
13782 mmu_idx
|= ARM_MMU_IDX_M_S
;
13788 /* Return the MMU index for a v7M CPU in the specified security state */
13789 ARMMMUIdx
arm_v7m_mmu_idx_for_secstate(CPUARMState
*env
, bool secstate
)
13791 bool priv
= arm_current_el(env
) != 0;
13793 return arm_v7m_mmu_idx_for_secstate_and_priv(env
, secstate
, priv
);
13796 ARMMMUIdx
arm_mmu_idx(CPUARMState
*env
)
13800 if (arm_feature(env
, ARM_FEATURE_M
)) {
13801 return arm_v7m_mmu_idx_for_secstate(env
, env
->v7m
.secure
);
13804 el
= arm_current_el(env
);
13805 if (el
< 2 && arm_is_secure_below_el3(env
)) {
13806 return ARMMMUIdx_S1SE0
+ el
;
13808 return ARMMMUIdx_S12NSE0
+ el
;
13812 int cpu_mmu_index(CPUARMState
*env
, bool ifetch
)
13814 return arm_to_core_mmu_idx(arm_mmu_idx(env
));
13817 #ifndef CONFIG_USER_ONLY
13818 ARMMMUIdx
arm_stage1_mmu_idx(CPUARMState
*env
)
13820 return stage_1_mmu_idx(arm_mmu_idx(env
));
13824 void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
13825 target_ulong
*cs_base
, uint32_t *pflags
)
13827 ARMMMUIdx mmu_idx
= arm_mmu_idx(env
);
13828 int current_el
= arm_current_el(env
);
13829 int fp_el
= fp_exception_el(env
, current_el
);
13830 uint32_t flags
= 0;
13833 ARMCPU
*cpu
= arm_env_get_cpu(env
);
13837 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, AARCH64_STATE
, 1);
13839 /* Get control bits for tagged addresses. */
13841 ARMMMUIdx stage1
= stage_1_mmu_idx(mmu_idx
);
13842 ARMVAParameters p0
= aa64_va_parameters_both(env
, 0, stage1
);
13845 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13846 if (regime_el(env
, stage1
) < 2) {
13847 ARMVAParameters p1
= aa64_va_parameters_both(env
, -1, stage1
);
13848 tbid
= (p1
.tbi
<< 1) | p0
.tbi
;
13849 tbii
= tbid
& ~((p1
.tbid
<< 1) | p0
.tbid
);
13852 tbii
= tbid
& !p0
.tbid
;
13855 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBII
, tbii
);
13856 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBID
, tbid
);
13859 if (cpu_isar_feature(aa64_sve
, cpu
)) {
13860 int sve_el
= sve_exception_el(env
, current_el
);
13863 /* If SVE is disabled, but FP is enabled,
13864 * then the effective len is 0.
13866 if (sve_el
!= 0 && fp_el
== 0) {
13869 zcr_len
= sve_zcr_len_for_el(env
, current_el
);
13871 flags
= FIELD_DP32(flags
, TBFLAG_A64
, SVEEXC_EL
, sve_el
);
13872 flags
= FIELD_DP32(flags
, TBFLAG_A64
, ZCR_LEN
, zcr_len
);
13875 if (current_el
== 0) {
13876 /* FIXME: ARMv8.1-VHE S2 translation regime. */
13877 sctlr
= env
->cp15
.sctlr_el
[1];
13879 sctlr
= env
->cp15
.sctlr_el
[current_el
];
13881 if (cpu_isar_feature(aa64_pauth
, cpu
)) {
13883 * In order to save space in flags, we record only whether
13884 * pauth is "inactive", meaning all insns are implemented as
13885 * a nop, or "active" when some action must be performed.
13886 * The decision of which action to take is left to a helper.
13888 if (sctlr
& (SCTLR_EnIA
| SCTLR_EnIB
| SCTLR_EnDA
| SCTLR_EnDB
)) {
13889 flags
= FIELD_DP32(flags
, TBFLAG_A64
, PAUTH_ACTIVE
, 1);
13893 if (cpu_isar_feature(aa64_bti
, cpu
)) {
13894 /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */
13895 if (sctlr
& (current_el
== 0 ? SCTLR_BT0
: SCTLR_BT1
)) {
13896 flags
= FIELD_DP32(flags
, TBFLAG_A64
, BT
, 1);
13898 flags
= FIELD_DP32(flags
, TBFLAG_A64
, BTYPE
, env
->btype
);
13901 *pc
= env
->regs
[15];
13902 flags
= FIELD_DP32(flags
, TBFLAG_A32
, THUMB
, env
->thumb
);
13903 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECLEN
, env
->vfp
.vec_len
);
13904 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECSTRIDE
, env
->vfp
.vec_stride
);
13905 flags
= FIELD_DP32(flags
, TBFLAG_A32
, CONDEXEC
, env
->condexec_bits
);
13906 flags
= FIELD_DP32(flags
, TBFLAG_A32
, SCTLR_B
, arm_sctlr_b(env
));
13907 flags
= FIELD_DP32(flags
, TBFLAG_A32
, NS
, !access_secure_reg(env
));
13908 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)
13909 || arm_el_is_aa64(env
, 1)) {
13910 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VFPEN
, 1);
13912 flags
= FIELD_DP32(flags
, TBFLAG_A32
, XSCALE_CPAR
, env
->cp15
.c15_cpar
);
13915 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, MMUIDX
, arm_to_core_mmu_idx(mmu_idx
));
13917 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13918 * states defined in the ARM ARM for software singlestep:
13919 * SS_ACTIVE PSTATE.SS State
13920 * 0 x Inactive (the TB flag for SS is always 0)
13921 * 1 0 Active-pending
13922 * 1 1 Active-not-pending
13924 if (arm_singlestep_active(env
)) {
13925 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, SS_ACTIVE
, 1);
13927 if (env
->pstate
& PSTATE_SS
) {
13928 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, PSTATE_SS
, 1);
13931 if (env
->uncached_cpsr
& PSTATE_SS
) {
13932 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, PSTATE_SS
, 1);
13936 if (arm_cpu_data_is_big_endian(env
)) {
13937 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, BE_DATA
, 1);
13939 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, FPEXC_EL
, fp_el
);
13941 if (arm_v7m_is_handler_mode(env
)) {
13942 flags
= FIELD_DP32(flags
, TBFLAG_A32
, HANDLER
, 1);
13945 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13946 * suppressing them because the requested execution priority is less than 0.
13948 if (arm_feature(env
, ARM_FEATURE_V8
) &&
13949 arm_feature(env
, ARM_FEATURE_M
) &&
13950 !((mmu_idx
& ARM_MMU_IDX_M_NEGPRI
) &&
13951 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKOFHFNMIGN_MASK
))) {
13952 flags
= FIELD_DP32(flags
, TBFLAG_A32
, STACKCHECK
, 1);
13959 #ifdef TARGET_AARCH64
13961 * The manual says that when SVE is enabled and VQ is widened the
13962 * implementation is allowed to zero the previously inaccessible
13963 * portion of the registers. The corollary to that is that when
13964 * SVE is enabled and VQ is narrowed we are also allowed to zero
13965 * the now inaccessible portion of the registers.
13967 * The intent of this is that no predicate bit beyond VQ is ever set.
13968 * Which means that some operations on predicate registers themselves
13969 * may operate on full uint64_t or even unrolled across the maximum
13970 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13971 * may well be cheaper than conditionals to restrict the operation
13972 * to the relevant portion of a uint16_t[16].
13974 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
)
13979 assert(vq
>= 1 && vq
<= ARM_MAX_VQ
);
13980 assert(vq
<= arm_env_get_cpu(env
)->sve_max_vq
);
13982 /* Zap the high bits of the zregs. */
13983 for (i
= 0; i
< 32; i
++) {
13984 memset(&env
->vfp
.zregs
[i
].d
[2 * vq
], 0, 16 * (ARM_MAX_VQ
- vq
));
13987 /* Zap the high bits of the pregs and ffr. */
13990 pmask
= ~(-1ULL << (16 * (vq
& 3)));
13992 for (j
= vq
/ 4; j
< ARM_MAX_VQ
/ 4; j
++) {
13993 for (i
= 0; i
< 17; ++i
) {
13994 env
->vfp
.pregs
[i
].p
[j
] &= pmask
;
14001 * Notice a change in SVE vector size when changing EL.
14003 void aarch64_sve_change_el(CPUARMState
*env
, int old_el
,
14004 int new_el
, bool el0_a64
)
14006 ARMCPU
*cpu
= arm_env_get_cpu(env
);
14007 int old_len
, new_len
;
14008 bool old_a64
, new_a64
;
14010 /* Nothing to do if no SVE. */
14011 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
14015 /* Nothing to do if FP is disabled in either EL. */
14016 if (fp_exception_el(env
, old_el
) || fp_exception_el(env
, new_el
)) {
14021 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
14022 * at ELx, or not available because the EL is in AArch32 state, then
14023 * for all purposes other than a direct read, the ZCR_ELx.LEN field
14024 * has an effective value of 0".
14026 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
14027 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
14028 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
14029 * we already have the correct register contents when encountering the
14030 * vq0->vq0 transition between EL0->EL1.
14032 old_a64
= old_el
? arm_el_is_aa64(env
, old_el
) : el0_a64
;
14033 old_len
= (old_a64
&& !sve_exception_el(env
, old_el
)
14034 ? sve_zcr_len_for_el(env
, old_el
) : 0);
14035 new_a64
= new_el
? arm_el_is_aa64(env
, new_el
) : el0_a64
;
14036 new_len
= (new_a64
&& !sve_exception_el(env
, new_el
)
14037 ? sve_zcr_len_for_el(env
, new_el
) : 0);
14039 /* When changing vector length, clear inaccessible state. */
14040 if (new_len
< old_len
) {
14041 aarch64_sve_narrow_vq(env
, new_len
+ 1);