semihosting: Allow optional use of semihosting from userspace
[qemu.git] / target / arm / translate-a64.c
blob3decc8da573720bb3ab7213217b5d0b19b65d64b
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
30 #include "semihosting/semihost.h"
31 #include "exec/gen-icount.h"
32 #include "exec/helper-proto.h"
33 #include "exec/helper-gen.h"
34 #include "exec/log.h"
35 #include "cpregs.h"
36 #include "translate-a64.h"
37 #include "qemu/atomic128.h"
39 static TCGv_i64 cpu_X[32];
40 static TCGv_i64 cpu_pc;
42 /* Load/store exclusive handling */
43 static TCGv_i64 cpu_exclusive_high;
45 static const char *regnames[] = {
46 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
47 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
48 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
49 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
52 enum a64_shift_type {
53 A64_SHIFT_TYPE_LSL = 0,
54 A64_SHIFT_TYPE_LSR = 1,
55 A64_SHIFT_TYPE_ASR = 2,
56 A64_SHIFT_TYPE_ROR = 3
59 /* Table based decoder typedefs - used when the relevant bits for decode
60 * are too awkwardly scattered across the instruction (eg SIMD).
62 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
64 typedef struct AArch64DecodeTable {
65 uint32_t pattern;
66 uint32_t mask;
67 AArch64DecodeFn *disas_fn;
68 } AArch64DecodeTable;
70 /* initialize TCG globals. */
71 void a64_translate_init(void)
73 int i;
75 cpu_pc = tcg_global_mem_new_i64(cpu_env,
76 offsetof(CPUARMState, pc),
77 "pc");
78 for (i = 0; i < 32; i++) {
79 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
80 offsetof(CPUARMState, xregs[i]),
81 regnames[i]);
84 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
85 offsetof(CPUARMState, exclusive_high), "exclusive_high");
89 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
91 static int get_a64_user_mem_index(DisasContext *s)
94 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
95 * which is the usual mmu_idx for this cpu state.
97 ARMMMUIdx useridx = s->mmu_idx;
99 if (s->unpriv) {
101 * We have pre-computed the condition for AccType_UNPRIV.
102 * Therefore we should never get here with a mmu_idx for
103 * which we do not know the corresponding user mmu_idx.
105 switch (useridx) {
106 case ARMMMUIdx_E10_1:
107 case ARMMMUIdx_E10_1_PAN:
108 useridx = ARMMMUIdx_E10_0;
109 break;
110 case ARMMMUIdx_E20_2:
111 case ARMMMUIdx_E20_2_PAN:
112 useridx = ARMMMUIdx_E20_0;
113 break;
114 case ARMMMUIdx_SE10_1:
115 case ARMMMUIdx_SE10_1_PAN:
116 useridx = ARMMMUIdx_SE10_0;
117 break;
118 case ARMMMUIdx_SE20_2:
119 case ARMMMUIdx_SE20_2_PAN:
120 useridx = ARMMMUIdx_SE20_0;
121 break;
122 default:
123 g_assert_not_reached();
126 return arm_to_core_mmu_idx(useridx);
129 static void set_btype_raw(int val)
131 tcg_gen_st_i32(tcg_constant_i32(val), cpu_env,
132 offsetof(CPUARMState, btype));
135 static void set_btype(DisasContext *s, int val)
137 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
138 tcg_debug_assert(val >= 1 && val <= 3);
139 set_btype_raw(val);
140 s->btype = -1;
143 static void reset_btype(DisasContext *s)
145 if (s->btype != 0) {
146 set_btype_raw(0);
147 s->btype = 0;
151 void gen_a64_set_pc_im(uint64_t val)
153 tcg_gen_movi_i64(cpu_pc, val);
157 * Handle Top Byte Ignore (TBI) bits.
159 * If address tagging is enabled via the TCR TBI bits:
160 * + for EL2 and EL3 there is only one TBI bit, and if it is set
161 * then the address is zero-extended, clearing bits [63:56]
162 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
163 * and TBI1 controls addressses with bit 55 == 1.
164 * If the appropriate TBI bit is set for the address then
165 * the address is sign-extended from bit 55 into bits [63:56]
167 * Here We have concatenated TBI{1,0} into tbi.
169 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
170 TCGv_i64 src, int tbi)
172 if (tbi == 0) {
173 /* Load unmodified address */
174 tcg_gen_mov_i64(dst, src);
175 } else if (!regime_has_2_ranges(s->mmu_idx)) {
176 /* Force tag byte to all zero */
177 tcg_gen_extract_i64(dst, src, 0, 56);
178 } else {
179 /* Sign-extend from bit 55. */
180 tcg_gen_sextract_i64(dst, src, 0, 56);
182 switch (tbi) {
183 case 1:
184 /* tbi0 but !tbi1: only use the extension if positive */
185 tcg_gen_and_i64(dst, dst, src);
186 break;
187 case 2:
188 /* !tbi0 but tbi1: only use the extension if negative */
189 tcg_gen_or_i64(dst, dst, src);
190 break;
191 case 3:
192 /* tbi0 and tbi1: always use the extension */
193 break;
194 default:
195 g_assert_not_reached();
200 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
203 * If address tagging is enabled for instructions via the TCR TBI bits,
204 * then loading an address into the PC will clear out any tag.
206 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
210 * Handle MTE and/or TBI.
212 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
213 * for the tag to be present in the FAR_ELx register. But for user-only
214 * mode we do not have a TLB with which to implement this, so we must
215 * remove the top byte now.
217 * Always return a fresh temporary that we can increment independently
218 * of the write-back address.
221 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
223 TCGv_i64 clean = new_tmp_a64(s);
224 #ifdef CONFIG_USER_ONLY
225 gen_top_byte_ignore(s, clean, addr, s->tbid);
226 #else
227 tcg_gen_mov_i64(clean, addr);
228 #endif
229 return clean;
232 /* Insert a zero tag into src, with the result at dst. */
233 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
235 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
238 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
239 MMUAccessType acc, int log2_size)
241 gen_helper_probe_access(cpu_env, ptr,
242 tcg_constant_i32(acc),
243 tcg_constant_i32(get_mem_index(s)),
244 tcg_constant_i32(1 << log2_size));
248 * For MTE, check a single logical or atomic access. This probes a single
249 * address, the exact one specified. The size and alignment of the access
250 * is not relevant to MTE, per se, but watchpoints do require the size,
251 * and we want to recognize those before making any other changes to state.
253 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
254 bool is_write, bool tag_checked,
255 int log2_size, bool is_unpriv,
256 int core_idx)
258 if (tag_checked && s->mte_active[is_unpriv]) {
259 TCGv_i64 ret;
260 int desc = 0;
262 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
263 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
264 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
265 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
266 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
268 ret = new_tmp_a64(s);
269 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
271 return ret;
273 return clean_data_tbi(s, addr);
276 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
277 bool tag_checked, int log2_size)
279 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
280 false, get_mem_index(s));
284 * For MTE, check multiple logical sequential accesses.
286 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
287 bool tag_checked, int size)
289 if (tag_checked && s->mte_active[0]) {
290 TCGv_i64 ret;
291 int desc = 0;
293 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
294 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
295 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
296 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
297 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
299 ret = new_tmp_a64(s);
300 gen_helper_mte_check(ret, cpu_env, tcg_constant_i32(desc), addr);
302 return ret;
304 return clean_data_tbi(s, addr);
307 typedef struct DisasCompare64 {
308 TCGCond cond;
309 TCGv_i64 value;
310 } DisasCompare64;
312 static void a64_test_cc(DisasCompare64 *c64, int cc)
314 DisasCompare c32;
316 arm_test_cc(&c32, cc);
318 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
319 * properly. The NE/EQ comparisons are also fine with this choice. */
320 c64->cond = c32.cond;
321 c64->value = tcg_temp_new_i64();
322 tcg_gen_ext_i32_i64(c64->value, c32.value);
324 arm_free_cc(&c32);
327 static void a64_free_cc(DisasCompare64 *c64)
329 tcg_temp_free_i64(c64->value);
332 static void gen_rebuild_hflags(DisasContext *s)
334 gen_helper_rebuild_hflags_a64(cpu_env, tcg_constant_i32(s->current_el));
337 static void gen_exception_internal(int excp)
339 assert(excp_is_internal(excp));
340 gen_helper_exception_internal(cpu_env, tcg_constant_i32(excp));
343 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
345 gen_a64_set_pc_im(pc);
346 gen_exception_internal(excp);
347 s->base.is_jmp = DISAS_NORETURN;
350 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
352 gen_a64_set_pc_im(s->pc_curr);
353 gen_helper_exception_bkpt_insn(cpu_env, tcg_constant_i32(syndrome));
354 s->base.is_jmp = DISAS_NORETURN;
357 static void gen_step_complete_exception(DisasContext *s)
359 /* We just completed step of an insn. Move from Active-not-pending
360 * to Active-pending, and then also take the swstep exception.
361 * This corresponds to making the (IMPDEF) choice to prioritize
362 * swstep exceptions over asynchronous exceptions taken to an exception
363 * level where debug is disabled. This choice has the advantage that
364 * we do not need to maintain internal state corresponding to the
365 * ISV/EX syndrome bits between completion of the step and generation
366 * of the exception, and our syndrome information is always correct.
368 gen_ss_advance(s);
369 gen_swstep_exception(s, 1, s->is_ldex);
370 s->base.is_jmp = DISAS_NORETURN;
373 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
375 if (s->ss_active) {
376 return false;
378 return translator_use_goto_tb(&s->base, dest);
381 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
383 if (use_goto_tb(s, dest)) {
384 tcg_gen_goto_tb(n);
385 gen_a64_set_pc_im(dest);
386 tcg_gen_exit_tb(s->base.tb, n);
387 s->base.is_jmp = DISAS_NORETURN;
388 } else {
389 gen_a64_set_pc_im(dest);
390 if (s->ss_active) {
391 gen_step_complete_exception(s);
392 } else {
393 tcg_gen_lookup_and_goto_ptr();
394 s->base.is_jmp = DISAS_NORETURN;
399 static void init_tmp_a64_array(DisasContext *s)
401 #ifdef CONFIG_DEBUG_TCG
402 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
403 #endif
404 s->tmp_a64_count = 0;
407 static void free_tmp_a64(DisasContext *s)
409 int i;
410 for (i = 0; i < s->tmp_a64_count; i++) {
411 tcg_temp_free_i64(s->tmp_a64[i]);
413 init_tmp_a64_array(s);
416 TCGv_i64 new_tmp_a64(DisasContext *s)
418 assert(s->tmp_a64_count < TMP_A64_MAX);
419 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
422 TCGv_i64 new_tmp_a64_local(DisasContext *s)
424 assert(s->tmp_a64_count < TMP_A64_MAX);
425 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_local_new_i64();
428 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
430 TCGv_i64 t = new_tmp_a64(s);
431 tcg_gen_movi_i64(t, 0);
432 return t;
436 * Register access functions
438 * These functions are used for directly accessing a register in where
439 * changes to the final register value are likely to be made. If you
440 * need to use a register for temporary calculation (e.g. index type
441 * operations) use the read_* form.
443 * B1.2.1 Register mappings
445 * In instruction register encoding 31 can refer to ZR (zero register) or
446 * the SP (stack pointer) depending on context. In QEMU's case we map SP
447 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
448 * This is the point of the _sp forms.
450 TCGv_i64 cpu_reg(DisasContext *s, int reg)
452 if (reg == 31) {
453 return new_tmp_a64_zero(s);
454 } else {
455 return cpu_X[reg];
459 /* register access for when 31 == SP */
460 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
462 return cpu_X[reg];
465 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
466 * representing the register contents. This TCGv is an auto-freed
467 * temporary so it need not be explicitly freed, and may be modified.
469 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
471 TCGv_i64 v = new_tmp_a64(s);
472 if (reg != 31) {
473 if (sf) {
474 tcg_gen_mov_i64(v, cpu_X[reg]);
475 } else {
476 tcg_gen_ext32u_i64(v, cpu_X[reg]);
478 } else {
479 tcg_gen_movi_i64(v, 0);
481 return v;
484 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
486 TCGv_i64 v = new_tmp_a64(s);
487 if (sf) {
488 tcg_gen_mov_i64(v, cpu_X[reg]);
489 } else {
490 tcg_gen_ext32u_i64(v, cpu_X[reg]);
492 return v;
495 /* Return the offset into CPUARMState of a slice (from
496 * the least significant end) of FP register Qn (ie
497 * Dn, Sn, Hn or Bn).
498 * (Note that this is not the same mapping as for A32; see cpu.h)
500 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
502 return vec_reg_offset(s, regno, 0, size);
505 /* Offset of the high half of the 128 bit vector Qn */
506 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
508 return vec_reg_offset(s, regno, 1, MO_64);
511 /* Convenience accessors for reading and writing single and double
512 * FP registers. Writing clears the upper parts of the associated
513 * 128 bit vector register, as required by the architecture.
514 * Note that unlike the GP register accessors, the values returned
515 * by the read functions must be manually freed.
517 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
519 TCGv_i64 v = tcg_temp_new_i64();
521 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
522 return v;
525 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
527 TCGv_i32 v = tcg_temp_new_i32();
529 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
530 return v;
533 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
535 TCGv_i32 v = tcg_temp_new_i32();
537 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
538 return v;
541 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
542 * If SVE is not enabled, then there are only 128 bits in the vector.
544 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
546 unsigned ofs = fp_reg_offset(s, rd, MO_64);
547 unsigned vsz = vec_full_reg_size(s);
549 /* Nop move, with side effect of clearing the tail. */
550 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
553 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
555 unsigned ofs = fp_reg_offset(s, reg, MO_64);
557 tcg_gen_st_i64(v, cpu_env, ofs);
558 clear_vec_high(s, false, reg);
561 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
563 TCGv_i64 tmp = tcg_temp_new_i64();
565 tcg_gen_extu_i32_i64(tmp, v);
566 write_fp_dreg(s, reg, tmp);
567 tcg_temp_free_i64(tmp);
570 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
571 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
572 GVecGen2Fn *gvec_fn, int vece)
574 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
575 is_q ? 16 : 8, vec_full_reg_size(s));
578 /* Expand a 2-operand + immediate AdvSIMD vector operation using
579 * an expander function.
581 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
582 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
584 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
585 imm, is_q ? 16 : 8, vec_full_reg_size(s));
588 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
589 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
590 GVecGen3Fn *gvec_fn, int vece)
592 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
593 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
596 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
597 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
598 int rx, GVecGen4Fn *gvec_fn, int vece)
600 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
601 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
602 is_q ? 16 : 8, vec_full_reg_size(s));
605 /* Expand a 2-operand operation using an out-of-line helper. */
606 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
607 int rn, int data, gen_helper_gvec_2 *fn)
609 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
610 vec_full_reg_offset(s, rn),
611 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
614 /* Expand a 3-operand operation using an out-of-line helper. */
615 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
616 int rn, int rm, int data, gen_helper_gvec_3 *fn)
618 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
619 vec_full_reg_offset(s, rn),
620 vec_full_reg_offset(s, rm),
621 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
624 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
625 * an out-of-line helper.
627 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
628 int rm, bool is_fp16, int data,
629 gen_helper_gvec_3_ptr *fn)
631 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
632 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
633 vec_full_reg_offset(s, rn),
634 vec_full_reg_offset(s, rm), fpst,
635 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
636 tcg_temp_free_ptr(fpst);
639 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
640 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
641 int rm, gen_helper_gvec_3_ptr *fn)
643 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
645 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
646 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
647 vec_full_reg_offset(s, rn),
648 vec_full_reg_offset(s, rm), qc_ptr,
649 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
650 tcg_temp_free_ptr(qc_ptr);
653 /* Expand a 4-operand operation using an out-of-line helper. */
654 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
655 int rm, int ra, int data, gen_helper_gvec_4 *fn)
657 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
658 vec_full_reg_offset(s, rn),
659 vec_full_reg_offset(s, rm),
660 vec_full_reg_offset(s, ra),
661 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
665 * Expand a 4-operand + fpstatus pointer + simd data value operation using
666 * an out-of-line helper.
668 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
669 int rm, int ra, bool is_fp16, int data,
670 gen_helper_gvec_4_ptr *fn)
672 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
673 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
674 vec_full_reg_offset(s, rn),
675 vec_full_reg_offset(s, rm),
676 vec_full_reg_offset(s, ra), fpst,
677 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
678 tcg_temp_free_ptr(fpst);
681 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
682 * than the 32 bit equivalent.
684 static inline void gen_set_NZ64(TCGv_i64 result)
686 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
687 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
690 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
691 static inline void gen_logic_CC(int sf, TCGv_i64 result)
693 if (sf) {
694 gen_set_NZ64(result);
695 } else {
696 tcg_gen_extrl_i64_i32(cpu_ZF, result);
697 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
699 tcg_gen_movi_i32(cpu_CF, 0);
700 tcg_gen_movi_i32(cpu_VF, 0);
703 /* dest = T0 + T1; compute C, N, V and Z flags */
704 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
706 if (sf) {
707 TCGv_i64 result, flag, tmp;
708 result = tcg_temp_new_i64();
709 flag = tcg_temp_new_i64();
710 tmp = tcg_temp_new_i64();
712 tcg_gen_movi_i64(tmp, 0);
713 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
715 tcg_gen_extrl_i64_i32(cpu_CF, flag);
717 gen_set_NZ64(result);
719 tcg_gen_xor_i64(flag, result, t0);
720 tcg_gen_xor_i64(tmp, t0, t1);
721 tcg_gen_andc_i64(flag, flag, tmp);
722 tcg_temp_free_i64(tmp);
723 tcg_gen_extrh_i64_i32(cpu_VF, flag);
725 tcg_gen_mov_i64(dest, result);
726 tcg_temp_free_i64(result);
727 tcg_temp_free_i64(flag);
728 } else {
729 /* 32 bit arithmetic */
730 TCGv_i32 t0_32 = tcg_temp_new_i32();
731 TCGv_i32 t1_32 = tcg_temp_new_i32();
732 TCGv_i32 tmp = tcg_temp_new_i32();
734 tcg_gen_movi_i32(tmp, 0);
735 tcg_gen_extrl_i64_i32(t0_32, t0);
736 tcg_gen_extrl_i64_i32(t1_32, t1);
737 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
738 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
739 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
740 tcg_gen_xor_i32(tmp, t0_32, t1_32);
741 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
742 tcg_gen_extu_i32_i64(dest, cpu_NF);
744 tcg_temp_free_i32(tmp);
745 tcg_temp_free_i32(t0_32);
746 tcg_temp_free_i32(t1_32);
750 /* dest = T0 - T1; compute C, N, V and Z flags */
751 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
753 if (sf) {
754 /* 64 bit arithmetic */
755 TCGv_i64 result, flag, tmp;
757 result = tcg_temp_new_i64();
758 flag = tcg_temp_new_i64();
759 tcg_gen_sub_i64(result, t0, t1);
761 gen_set_NZ64(result);
763 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
764 tcg_gen_extrl_i64_i32(cpu_CF, flag);
766 tcg_gen_xor_i64(flag, result, t0);
767 tmp = tcg_temp_new_i64();
768 tcg_gen_xor_i64(tmp, t0, t1);
769 tcg_gen_and_i64(flag, flag, tmp);
770 tcg_temp_free_i64(tmp);
771 tcg_gen_extrh_i64_i32(cpu_VF, flag);
772 tcg_gen_mov_i64(dest, result);
773 tcg_temp_free_i64(flag);
774 tcg_temp_free_i64(result);
775 } else {
776 /* 32 bit arithmetic */
777 TCGv_i32 t0_32 = tcg_temp_new_i32();
778 TCGv_i32 t1_32 = tcg_temp_new_i32();
779 TCGv_i32 tmp;
781 tcg_gen_extrl_i64_i32(t0_32, t0);
782 tcg_gen_extrl_i64_i32(t1_32, t1);
783 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
784 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
785 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
786 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
787 tmp = tcg_temp_new_i32();
788 tcg_gen_xor_i32(tmp, t0_32, t1_32);
789 tcg_temp_free_i32(t0_32);
790 tcg_temp_free_i32(t1_32);
791 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
792 tcg_temp_free_i32(tmp);
793 tcg_gen_extu_i32_i64(dest, cpu_NF);
797 /* dest = T0 + T1 + CF; do not compute flags. */
798 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
800 TCGv_i64 flag = tcg_temp_new_i64();
801 tcg_gen_extu_i32_i64(flag, cpu_CF);
802 tcg_gen_add_i64(dest, t0, t1);
803 tcg_gen_add_i64(dest, dest, flag);
804 tcg_temp_free_i64(flag);
806 if (!sf) {
807 tcg_gen_ext32u_i64(dest, dest);
811 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
812 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
814 if (sf) {
815 TCGv_i64 result = tcg_temp_new_i64();
816 TCGv_i64 cf_64 = tcg_temp_new_i64();
817 TCGv_i64 vf_64 = tcg_temp_new_i64();
818 TCGv_i64 tmp = tcg_temp_new_i64();
819 TCGv_i64 zero = tcg_constant_i64(0);
821 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
822 tcg_gen_add2_i64(result, cf_64, t0, zero, cf_64, zero);
823 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, zero);
824 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
825 gen_set_NZ64(result);
827 tcg_gen_xor_i64(vf_64, result, t0);
828 tcg_gen_xor_i64(tmp, t0, t1);
829 tcg_gen_andc_i64(vf_64, vf_64, tmp);
830 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
832 tcg_gen_mov_i64(dest, result);
834 tcg_temp_free_i64(tmp);
835 tcg_temp_free_i64(vf_64);
836 tcg_temp_free_i64(cf_64);
837 tcg_temp_free_i64(result);
838 } else {
839 TCGv_i32 t0_32 = tcg_temp_new_i32();
840 TCGv_i32 t1_32 = tcg_temp_new_i32();
841 TCGv_i32 tmp = tcg_temp_new_i32();
842 TCGv_i32 zero = tcg_constant_i32(0);
844 tcg_gen_extrl_i64_i32(t0_32, t0);
845 tcg_gen_extrl_i64_i32(t1_32, t1);
846 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, zero, cpu_CF, zero);
847 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, zero);
849 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
850 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
851 tcg_gen_xor_i32(tmp, t0_32, t1_32);
852 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
853 tcg_gen_extu_i32_i64(dest, cpu_NF);
855 tcg_temp_free_i32(tmp);
856 tcg_temp_free_i32(t1_32);
857 tcg_temp_free_i32(t0_32);
862 * Load/Store generators
866 * Store from GPR register to memory.
868 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
869 TCGv_i64 tcg_addr, MemOp memop, int memidx,
870 bool iss_valid,
871 unsigned int iss_srt,
872 bool iss_sf, bool iss_ar)
874 memop = finalize_memop(s, memop);
875 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
877 if (iss_valid) {
878 uint32_t syn;
880 syn = syn_data_abort_with_iss(0,
881 (memop & MO_SIZE),
882 false,
883 iss_srt,
884 iss_sf,
885 iss_ar,
886 0, 0, 0, 0, 0, false);
887 disas_set_insn_syndrome(s, syn);
891 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
892 TCGv_i64 tcg_addr, MemOp memop,
893 bool iss_valid,
894 unsigned int iss_srt,
895 bool iss_sf, bool iss_ar)
897 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
898 iss_valid, iss_srt, iss_sf, iss_ar);
902 * Load from memory to GPR register
904 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
905 MemOp memop, bool extend, int memidx,
906 bool iss_valid, unsigned int iss_srt,
907 bool iss_sf, bool iss_ar)
909 memop = finalize_memop(s, memop);
910 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
912 if (extend && (memop & MO_SIGN)) {
913 g_assert((memop & MO_SIZE) <= MO_32);
914 tcg_gen_ext32u_i64(dest, dest);
917 if (iss_valid) {
918 uint32_t syn;
920 syn = syn_data_abort_with_iss(0,
921 (memop & MO_SIZE),
922 (memop & MO_SIGN) != 0,
923 iss_srt,
924 iss_sf,
925 iss_ar,
926 0, 0, 0, 0, 0, false);
927 disas_set_insn_syndrome(s, syn);
931 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
932 MemOp memop, bool extend,
933 bool iss_valid, unsigned int iss_srt,
934 bool iss_sf, bool iss_ar)
936 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
937 iss_valid, iss_srt, iss_sf, iss_ar);
941 * Store from FP register to memory
943 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
945 /* This writes the bottom N bits of a 128 bit wide vector to memory */
946 TCGv_i64 tmplo = tcg_temp_new_i64();
947 MemOp mop;
949 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
951 if (size < 4) {
952 mop = finalize_memop(s, size);
953 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
954 } else {
955 bool be = s->be_data == MO_BE;
956 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
957 TCGv_i64 tmphi = tcg_temp_new_i64();
959 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
961 mop = s->be_data | MO_UQ;
962 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
963 mop | (s->align_mem ? MO_ALIGN_16 : 0));
964 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
965 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
966 get_mem_index(s), mop);
968 tcg_temp_free_i64(tcg_hiaddr);
969 tcg_temp_free_i64(tmphi);
972 tcg_temp_free_i64(tmplo);
976 * Load from memory to FP register
978 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
980 /* This always zero-extends and writes to a full 128 bit wide vector */
981 TCGv_i64 tmplo = tcg_temp_new_i64();
982 TCGv_i64 tmphi = NULL;
983 MemOp mop;
985 if (size < 4) {
986 mop = finalize_memop(s, size);
987 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
988 } else {
989 bool be = s->be_data == MO_BE;
990 TCGv_i64 tcg_hiaddr;
992 tmphi = tcg_temp_new_i64();
993 tcg_hiaddr = tcg_temp_new_i64();
995 mop = s->be_data | MO_UQ;
996 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
997 mop | (s->align_mem ? MO_ALIGN_16 : 0));
998 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
999 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
1000 get_mem_index(s), mop);
1001 tcg_temp_free_i64(tcg_hiaddr);
1004 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1005 tcg_temp_free_i64(tmplo);
1007 if (tmphi) {
1008 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1009 tcg_temp_free_i64(tmphi);
1011 clear_vec_high(s, tmphi != NULL, destidx);
1015 * Vector load/store helpers.
1017 * The principal difference between this and a FP load is that we don't
1018 * zero extend as we are filling a partial chunk of the vector register.
1019 * These functions don't support 128 bit loads/stores, which would be
1020 * normal load/store operations.
1022 * The _i32 versions are useful when operating on 32 bit quantities
1023 * (eg for floating point single or using Neon helper functions).
1026 /* Get value of an element within a vector register */
1027 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1028 int element, MemOp memop)
1030 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1031 switch ((unsigned)memop) {
1032 case MO_8:
1033 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1034 break;
1035 case MO_16:
1036 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1037 break;
1038 case MO_32:
1039 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1040 break;
1041 case MO_8|MO_SIGN:
1042 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1043 break;
1044 case MO_16|MO_SIGN:
1045 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1046 break;
1047 case MO_32|MO_SIGN:
1048 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1049 break;
1050 case MO_64:
1051 case MO_64|MO_SIGN:
1052 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1053 break;
1054 default:
1055 g_assert_not_reached();
1059 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1060 int element, MemOp memop)
1062 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1063 switch (memop) {
1064 case MO_8:
1065 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1066 break;
1067 case MO_16:
1068 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1069 break;
1070 case MO_8|MO_SIGN:
1071 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1072 break;
1073 case MO_16|MO_SIGN:
1074 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1075 break;
1076 case MO_32:
1077 case MO_32|MO_SIGN:
1078 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1079 break;
1080 default:
1081 g_assert_not_reached();
1085 /* Set value of an element within a vector register */
1086 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1087 int element, MemOp memop)
1089 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1090 switch (memop) {
1091 case MO_8:
1092 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1093 break;
1094 case MO_16:
1095 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1096 break;
1097 case MO_32:
1098 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1099 break;
1100 case MO_64:
1101 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1102 break;
1103 default:
1104 g_assert_not_reached();
1108 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1109 int destidx, int element, MemOp memop)
1111 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1112 switch (memop) {
1113 case MO_8:
1114 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1115 break;
1116 case MO_16:
1117 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1118 break;
1119 case MO_32:
1120 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1121 break;
1122 default:
1123 g_assert_not_reached();
1127 /* Store from vector register to memory */
1128 static void do_vec_st(DisasContext *s, int srcidx, int element,
1129 TCGv_i64 tcg_addr, MemOp mop)
1131 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1133 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1134 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1136 tcg_temp_free_i64(tcg_tmp);
1139 /* Load from memory to vector register */
1140 static void do_vec_ld(DisasContext *s, int destidx, int element,
1141 TCGv_i64 tcg_addr, MemOp mop)
1143 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1145 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1146 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1148 tcg_temp_free_i64(tcg_tmp);
1151 /* Check that FP/Neon access is enabled. If it is, return
1152 * true. If not, emit code to generate an appropriate exception,
1153 * and return false; the caller should not emit any code for
1154 * the instruction. Note that this check must happen after all
1155 * unallocated-encoding checks (otherwise the syndrome information
1156 * for the resulting exception will be incorrect).
1158 static bool fp_access_check_only(DisasContext *s)
1160 if (s->fp_excp_el) {
1161 assert(!s->fp_access_checked);
1162 s->fp_access_checked = true;
1164 gen_exception_insn_el(s, s->pc_curr, EXCP_UDEF,
1165 syn_fp_access_trap(1, 0xe, false, 0),
1166 s->fp_excp_el);
1167 return false;
1169 s->fp_access_checked = true;
1170 return true;
1173 static bool fp_access_check(DisasContext *s)
1175 if (!fp_access_check_only(s)) {
1176 return false;
1178 if (s->sme_trap_nonstreaming && s->is_nonstreaming) {
1179 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1180 syn_smetrap(SME_ET_Streaming, false));
1181 return false;
1183 return true;
1187 * Check that SVE access is enabled. If it is, return true.
1188 * If not, emit code to generate an appropriate exception and return false.
1189 * This function corresponds to CheckSVEEnabled().
1191 bool sve_access_check(DisasContext *s)
1193 if (s->pstate_sm || !dc_isar_feature(aa64_sve, s)) {
1194 assert(dc_isar_feature(aa64_sme, s));
1195 if (!sme_sm_enabled_check(s)) {
1196 goto fail_exit;
1198 } else if (s->sve_excp_el) {
1199 gen_exception_insn_el(s, s->pc_curr, EXCP_UDEF,
1200 syn_sve_access_trap(), s->sve_excp_el);
1201 goto fail_exit;
1203 s->sve_access_checked = true;
1204 return fp_access_check(s);
1206 fail_exit:
1207 /* Assert that we only raise one exception per instruction. */
1208 assert(!s->sve_access_checked);
1209 s->sve_access_checked = true;
1210 return false;
1214 * Check that SME access is enabled, raise an exception if not.
1215 * Note that this function corresponds to CheckSMEAccess and is
1216 * only used directly for cpregs.
1218 static bool sme_access_check(DisasContext *s)
1220 if (s->sme_excp_el) {
1221 gen_exception_insn_el(s, s->pc_curr, EXCP_UDEF,
1222 syn_smetrap(SME_ET_AccessTrap, false),
1223 s->sme_excp_el);
1224 return false;
1226 return true;
1229 /* This function corresponds to CheckSMEEnabled. */
1230 bool sme_enabled_check(DisasContext *s)
1233 * Note that unlike sve_excp_el, we have not constrained sme_excp_el
1234 * to be zero when fp_excp_el has priority. This is because we need
1235 * sme_excp_el by itself for cpregs access checks.
1237 if (!s->fp_excp_el || s->sme_excp_el < s->fp_excp_el) {
1238 s->fp_access_checked = true;
1239 return sme_access_check(s);
1241 return fp_access_check_only(s);
1244 /* Common subroutine for CheckSMEAnd*Enabled. */
1245 bool sme_enabled_check_with_svcr(DisasContext *s, unsigned req)
1247 if (!sme_enabled_check(s)) {
1248 return false;
1250 if (FIELD_EX64(req, SVCR, SM) && !s->pstate_sm) {
1251 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1252 syn_smetrap(SME_ET_NotStreaming, false));
1253 return false;
1255 if (FIELD_EX64(req, SVCR, ZA) && !s->pstate_za) {
1256 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1257 syn_smetrap(SME_ET_InactiveZA, false));
1258 return false;
1260 return true;
1264 * This utility function is for doing register extension with an
1265 * optional shift. You will likely want to pass a temporary for the
1266 * destination register. See DecodeRegExtend() in the ARM ARM.
1268 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1269 int option, unsigned int shift)
1271 int extsize = extract32(option, 0, 2);
1272 bool is_signed = extract32(option, 2, 1);
1274 if (is_signed) {
1275 switch (extsize) {
1276 case 0:
1277 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1278 break;
1279 case 1:
1280 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1281 break;
1282 case 2:
1283 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1284 break;
1285 case 3:
1286 tcg_gen_mov_i64(tcg_out, tcg_in);
1287 break;
1289 } else {
1290 switch (extsize) {
1291 case 0:
1292 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1293 break;
1294 case 1:
1295 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1296 break;
1297 case 2:
1298 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1299 break;
1300 case 3:
1301 tcg_gen_mov_i64(tcg_out, tcg_in);
1302 break;
1306 if (shift) {
1307 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1311 static inline void gen_check_sp_alignment(DisasContext *s)
1313 /* The AArch64 architecture mandates that (if enabled via PSTATE
1314 * or SCTLR bits) there is a check that SP is 16-aligned on every
1315 * SP-relative load or store (with an exception generated if it is not).
1316 * In line with general QEMU practice regarding misaligned accesses,
1317 * we omit these checks for the sake of guest program performance.
1318 * This function is provided as a hook so we can more easily add these
1319 * checks in future (possibly as a "favour catching guest program bugs
1320 * over speed" user selectable option).
1325 * This provides a simple table based table lookup decoder. It is
1326 * intended to be used when the relevant bits for decode are too
1327 * awkwardly placed and switch/if based logic would be confusing and
1328 * deeply nested. Since it's a linear search through the table, tables
1329 * should be kept small.
1331 * It returns the first handler where insn & mask == pattern, or
1332 * NULL if there is no match.
1333 * The table is terminated by an empty mask (i.e. 0)
1335 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1336 uint32_t insn)
1338 const AArch64DecodeTable *tptr = table;
1340 while (tptr->mask) {
1341 if ((insn & tptr->mask) == tptr->pattern) {
1342 return tptr->disas_fn;
1344 tptr++;
1346 return NULL;
1350 * The instruction disassembly implemented here matches
1351 * the instruction encoding classifications in chapter C4
1352 * of the ARM Architecture Reference Manual (DDI0487B_a);
1353 * classification names and decode diagrams here should generally
1354 * match up with those in the manual.
1357 /* Unconditional branch (immediate)
1358 * 31 30 26 25 0
1359 * +----+-----------+-------------------------------------+
1360 * | op | 0 0 1 0 1 | imm26 |
1361 * +----+-----------+-------------------------------------+
1363 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1365 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1367 if (insn & (1U << 31)) {
1368 /* BL Branch with link */
1369 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1372 /* B Branch / BL Branch with link */
1373 reset_btype(s);
1374 gen_goto_tb(s, 0, addr);
1377 /* Compare and branch (immediate)
1378 * 31 30 25 24 23 5 4 0
1379 * +----+-------------+----+---------------------+--------+
1380 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1381 * +----+-------------+----+---------------------+--------+
1383 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1385 unsigned int sf, op, rt;
1386 uint64_t addr;
1387 TCGLabel *label_match;
1388 TCGv_i64 tcg_cmp;
1390 sf = extract32(insn, 31, 1);
1391 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1392 rt = extract32(insn, 0, 5);
1393 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1395 tcg_cmp = read_cpu_reg(s, rt, sf);
1396 label_match = gen_new_label();
1398 reset_btype(s);
1399 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1400 tcg_cmp, 0, label_match);
1402 gen_goto_tb(s, 0, s->base.pc_next);
1403 gen_set_label(label_match);
1404 gen_goto_tb(s, 1, addr);
1407 /* Test and branch (immediate)
1408 * 31 30 25 24 23 19 18 5 4 0
1409 * +----+-------------+----+-------+-------------+------+
1410 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1411 * +----+-------------+----+-------+-------------+------+
1413 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1415 unsigned int bit_pos, op, rt;
1416 uint64_t addr;
1417 TCGLabel *label_match;
1418 TCGv_i64 tcg_cmp;
1420 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1421 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1422 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1423 rt = extract32(insn, 0, 5);
1425 tcg_cmp = tcg_temp_new_i64();
1426 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1427 label_match = gen_new_label();
1429 reset_btype(s);
1430 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1431 tcg_cmp, 0, label_match);
1432 tcg_temp_free_i64(tcg_cmp);
1433 gen_goto_tb(s, 0, s->base.pc_next);
1434 gen_set_label(label_match);
1435 gen_goto_tb(s, 1, addr);
1438 /* Conditional branch (immediate)
1439 * 31 25 24 23 5 4 3 0
1440 * +---------------+----+---------------------+----+------+
1441 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1442 * +---------------+----+---------------------+----+------+
1444 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1446 unsigned int cond;
1447 uint64_t addr;
1449 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1450 unallocated_encoding(s);
1451 return;
1453 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1454 cond = extract32(insn, 0, 4);
1456 reset_btype(s);
1457 if (cond < 0x0e) {
1458 /* genuinely conditional branches */
1459 TCGLabel *label_match = gen_new_label();
1460 arm_gen_test_cc(cond, label_match);
1461 gen_goto_tb(s, 0, s->base.pc_next);
1462 gen_set_label(label_match);
1463 gen_goto_tb(s, 1, addr);
1464 } else {
1465 /* 0xe and 0xf are both "always" conditions */
1466 gen_goto_tb(s, 0, addr);
1470 /* HINT instruction group, including various allocated HINTs */
1471 static void handle_hint(DisasContext *s, uint32_t insn,
1472 unsigned int op1, unsigned int op2, unsigned int crm)
1474 unsigned int selector = crm << 3 | op2;
1476 if (op1 != 3) {
1477 unallocated_encoding(s);
1478 return;
1481 switch (selector) {
1482 case 0b00000: /* NOP */
1483 break;
1484 case 0b00011: /* WFI */
1485 s->base.is_jmp = DISAS_WFI;
1486 break;
1487 case 0b00001: /* YIELD */
1488 /* When running in MTTCG we don't generate jumps to the yield and
1489 * WFE helpers as it won't affect the scheduling of other vCPUs.
1490 * If we wanted to more completely model WFE/SEV so we don't busy
1491 * spin unnecessarily we would need to do something more involved.
1493 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1494 s->base.is_jmp = DISAS_YIELD;
1496 break;
1497 case 0b00010: /* WFE */
1498 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1499 s->base.is_jmp = DISAS_WFE;
1501 break;
1502 case 0b00100: /* SEV */
1503 case 0b00101: /* SEVL */
1504 case 0b00110: /* DGH */
1505 /* we treat all as NOP at least for now */
1506 break;
1507 case 0b00111: /* XPACLRI */
1508 if (s->pauth_active) {
1509 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1511 break;
1512 case 0b01000: /* PACIA1716 */
1513 if (s->pauth_active) {
1514 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1516 break;
1517 case 0b01010: /* PACIB1716 */
1518 if (s->pauth_active) {
1519 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1521 break;
1522 case 0b01100: /* AUTIA1716 */
1523 if (s->pauth_active) {
1524 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1526 break;
1527 case 0b01110: /* AUTIB1716 */
1528 if (s->pauth_active) {
1529 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1531 break;
1532 case 0b10000: /* ESB */
1533 /* Without RAS, we must implement this as NOP. */
1534 if (dc_isar_feature(aa64_ras, s)) {
1536 * QEMU does not have a source of physical SErrors,
1537 * so we are only concerned with virtual SErrors.
1538 * The pseudocode in the ARM for this case is
1539 * if PSTATE.EL IN {EL0, EL1} && EL2Enabled() then
1540 * AArch64.vESBOperation();
1541 * Most of the condition can be evaluated at translation time.
1542 * Test for EL2 present, and defer test for SEL2 to runtime.
1544 if (s->current_el <= 1 && arm_dc_feature(s, ARM_FEATURE_EL2)) {
1545 gen_helper_vesb(cpu_env);
1548 break;
1549 case 0b11000: /* PACIAZ */
1550 if (s->pauth_active) {
1551 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1552 new_tmp_a64_zero(s));
1554 break;
1555 case 0b11001: /* PACIASP */
1556 if (s->pauth_active) {
1557 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1559 break;
1560 case 0b11010: /* PACIBZ */
1561 if (s->pauth_active) {
1562 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1563 new_tmp_a64_zero(s));
1565 break;
1566 case 0b11011: /* PACIBSP */
1567 if (s->pauth_active) {
1568 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1570 break;
1571 case 0b11100: /* AUTIAZ */
1572 if (s->pauth_active) {
1573 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1574 new_tmp_a64_zero(s));
1576 break;
1577 case 0b11101: /* AUTIASP */
1578 if (s->pauth_active) {
1579 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1581 break;
1582 case 0b11110: /* AUTIBZ */
1583 if (s->pauth_active) {
1584 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1585 new_tmp_a64_zero(s));
1587 break;
1588 case 0b11111: /* AUTIBSP */
1589 if (s->pauth_active) {
1590 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1592 break;
1593 default:
1594 /* default specified as NOP equivalent */
1595 break;
1599 static void gen_clrex(DisasContext *s, uint32_t insn)
1601 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1604 /* CLREX, DSB, DMB, ISB */
1605 static void handle_sync(DisasContext *s, uint32_t insn,
1606 unsigned int op1, unsigned int op2, unsigned int crm)
1608 TCGBar bar;
1610 if (op1 != 3) {
1611 unallocated_encoding(s);
1612 return;
1615 switch (op2) {
1616 case 2: /* CLREX */
1617 gen_clrex(s, insn);
1618 return;
1619 case 4: /* DSB */
1620 case 5: /* DMB */
1621 switch (crm & 3) {
1622 case 1: /* MBReqTypes_Reads */
1623 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1624 break;
1625 case 2: /* MBReqTypes_Writes */
1626 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1627 break;
1628 default: /* MBReqTypes_All */
1629 bar = TCG_BAR_SC | TCG_MO_ALL;
1630 break;
1632 tcg_gen_mb(bar);
1633 return;
1634 case 6: /* ISB */
1635 /* We need to break the TB after this insn to execute
1636 * a self-modified code correctly and also to take
1637 * any pending interrupts immediately.
1639 reset_btype(s);
1640 gen_goto_tb(s, 0, s->base.pc_next);
1641 return;
1643 case 7: /* SB */
1644 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1645 goto do_unallocated;
1648 * TODO: There is no speculation barrier opcode for TCG;
1649 * MB and end the TB instead.
1651 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1652 gen_goto_tb(s, 0, s->base.pc_next);
1653 return;
1655 default:
1656 do_unallocated:
1657 unallocated_encoding(s);
1658 return;
1662 static void gen_xaflag(void)
1664 TCGv_i32 z = tcg_temp_new_i32();
1666 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1669 * (!C & !Z) << 31
1670 * (!(C | Z)) << 31
1671 * ~((C | Z) << 31)
1672 * ~-(C | Z)
1673 * (C | Z) - 1
1675 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1676 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1678 /* !(Z & C) */
1679 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1680 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1682 /* (!C & Z) << 31 -> -(Z & ~C) */
1683 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1684 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1686 /* C | Z */
1687 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1689 tcg_temp_free_i32(z);
1692 static void gen_axflag(void)
1694 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1695 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1697 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1698 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1700 tcg_gen_movi_i32(cpu_NF, 0);
1701 tcg_gen_movi_i32(cpu_VF, 0);
1704 /* MSR (immediate) - move immediate to processor state field */
1705 static void handle_msr_i(DisasContext *s, uint32_t insn,
1706 unsigned int op1, unsigned int op2, unsigned int crm)
1708 int op = op1 << 3 | op2;
1710 /* End the TB by default, chaining is ok. */
1711 s->base.is_jmp = DISAS_TOO_MANY;
1713 switch (op) {
1714 case 0x00: /* CFINV */
1715 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1716 goto do_unallocated;
1718 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1719 s->base.is_jmp = DISAS_NEXT;
1720 break;
1722 case 0x01: /* XAFlag */
1723 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1724 goto do_unallocated;
1726 gen_xaflag();
1727 s->base.is_jmp = DISAS_NEXT;
1728 break;
1730 case 0x02: /* AXFlag */
1731 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1732 goto do_unallocated;
1734 gen_axflag();
1735 s->base.is_jmp = DISAS_NEXT;
1736 break;
1738 case 0x03: /* UAO */
1739 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1740 goto do_unallocated;
1742 if (crm & 1) {
1743 set_pstate_bits(PSTATE_UAO);
1744 } else {
1745 clear_pstate_bits(PSTATE_UAO);
1747 gen_rebuild_hflags(s);
1748 break;
1750 case 0x04: /* PAN */
1751 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1752 goto do_unallocated;
1754 if (crm & 1) {
1755 set_pstate_bits(PSTATE_PAN);
1756 } else {
1757 clear_pstate_bits(PSTATE_PAN);
1759 gen_rebuild_hflags(s);
1760 break;
1762 case 0x05: /* SPSel */
1763 if (s->current_el == 0) {
1764 goto do_unallocated;
1766 gen_helper_msr_i_spsel(cpu_env, tcg_constant_i32(crm & PSTATE_SP));
1767 break;
1769 case 0x19: /* SSBS */
1770 if (!dc_isar_feature(aa64_ssbs, s)) {
1771 goto do_unallocated;
1773 if (crm & 1) {
1774 set_pstate_bits(PSTATE_SSBS);
1775 } else {
1776 clear_pstate_bits(PSTATE_SSBS);
1778 /* Don't need to rebuild hflags since SSBS is a nop */
1779 break;
1781 case 0x1a: /* DIT */
1782 if (!dc_isar_feature(aa64_dit, s)) {
1783 goto do_unallocated;
1785 if (crm & 1) {
1786 set_pstate_bits(PSTATE_DIT);
1787 } else {
1788 clear_pstate_bits(PSTATE_DIT);
1790 /* There's no need to rebuild hflags because DIT is a nop */
1791 break;
1793 case 0x1e: /* DAIFSet */
1794 gen_helper_msr_i_daifset(cpu_env, tcg_constant_i32(crm));
1795 break;
1797 case 0x1f: /* DAIFClear */
1798 gen_helper_msr_i_daifclear(cpu_env, tcg_constant_i32(crm));
1799 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1800 s->base.is_jmp = DISAS_UPDATE_EXIT;
1801 break;
1803 case 0x1c: /* TCO */
1804 if (dc_isar_feature(aa64_mte, s)) {
1805 /* Full MTE is enabled -- set the TCO bit as directed. */
1806 if (crm & 1) {
1807 set_pstate_bits(PSTATE_TCO);
1808 } else {
1809 clear_pstate_bits(PSTATE_TCO);
1811 gen_rebuild_hflags(s);
1812 /* Many factors, including TCO, go into MTE_ACTIVE. */
1813 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1814 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1815 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1816 s->base.is_jmp = DISAS_NEXT;
1817 } else {
1818 goto do_unallocated;
1820 break;
1822 case 0x1b: /* SVCR* */
1823 if (!dc_isar_feature(aa64_sme, s) || crm < 2 || crm > 7) {
1824 goto do_unallocated;
1826 if (sme_access_check(s)) {
1827 bool i = crm & 1;
1828 bool changed = false;
1830 if ((crm & 2) && i != s->pstate_sm) {
1831 gen_helper_set_pstate_sm(cpu_env, tcg_constant_i32(i));
1832 changed = true;
1834 if ((crm & 4) && i != s->pstate_za) {
1835 gen_helper_set_pstate_za(cpu_env, tcg_constant_i32(i));
1836 changed = true;
1838 if (changed) {
1839 gen_rebuild_hflags(s);
1840 } else {
1841 s->base.is_jmp = DISAS_NEXT;
1844 break;
1846 default:
1847 do_unallocated:
1848 unallocated_encoding(s);
1849 return;
1853 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1855 TCGv_i32 tmp = tcg_temp_new_i32();
1856 TCGv_i32 nzcv = tcg_temp_new_i32();
1858 /* build bit 31, N */
1859 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1860 /* build bit 30, Z */
1861 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1862 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1863 /* build bit 29, C */
1864 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1865 /* build bit 28, V */
1866 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1867 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1868 /* generate result */
1869 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1871 tcg_temp_free_i32(nzcv);
1872 tcg_temp_free_i32(tmp);
1875 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1877 TCGv_i32 nzcv = tcg_temp_new_i32();
1879 /* take NZCV from R[t] */
1880 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1882 /* bit 31, N */
1883 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1884 /* bit 30, Z */
1885 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1886 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1887 /* bit 29, C */
1888 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1889 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1890 /* bit 28, V */
1891 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1892 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1893 tcg_temp_free_i32(nzcv);
1896 static void gen_sysreg_undef(DisasContext *s, bool isread,
1897 uint8_t op0, uint8_t op1, uint8_t op2,
1898 uint8_t crn, uint8_t crm, uint8_t rt)
1901 * Generate code to emit an UNDEF with correct syndrome
1902 * information for a failed system register access.
1903 * This is EC_UNCATEGORIZED (ie a standard UNDEF) in most cases,
1904 * but if FEAT_IDST is implemented then read accesses to registers
1905 * in the feature ID space are reported with the EC_SYSTEMREGISTERTRAP
1906 * syndrome.
1908 uint32_t syndrome;
1910 if (isread && dc_isar_feature(aa64_ids, s) &&
1911 arm_cpreg_encoding_in_idspace(op0, op1, op2, crn, crm)) {
1912 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1913 } else {
1914 syndrome = syn_uncategorized();
1916 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syndrome);
1919 /* MRS - move from system register
1920 * MSR (register) - move to system register
1921 * SYS
1922 * SYSL
1923 * These are all essentially the same insn in 'read' and 'write'
1924 * versions, with varying op0 fields.
1926 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1927 unsigned int op0, unsigned int op1, unsigned int op2,
1928 unsigned int crn, unsigned int crm, unsigned int rt)
1930 const ARMCPRegInfo *ri;
1931 TCGv_i64 tcg_rt;
1933 ri = get_arm_cp_reginfo(s->cp_regs,
1934 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1935 crn, crm, op0, op1, op2));
1937 if (!ri) {
1938 /* Unknown register; this might be a guest error or a QEMU
1939 * unimplemented feature.
1941 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1942 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1943 isread ? "read" : "write", op0, op1, crn, crm, op2);
1944 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1945 return;
1948 /* Check access permissions */
1949 if (!cp_access_ok(s->current_el, ri, isread)) {
1950 gen_sysreg_undef(s, isread, op0, op1, op2, crn, crm, rt);
1951 return;
1954 if (ri->accessfn) {
1955 /* Emit code to perform further access permissions checks at
1956 * runtime; this may result in an exception.
1958 uint32_t syndrome;
1960 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1961 gen_a64_set_pc_im(s->pc_curr);
1962 gen_helper_access_check_cp_reg(cpu_env,
1963 tcg_constant_ptr(ri),
1964 tcg_constant_i32(syndrome),
1965 tcg_constant_i32(isread));
1966 } else if (ri->type & ARM_CP_RAISES_EXC) {
1968 * The readfn or writefn might raise an exception;
1969 * synchronize the CPU state in case it does.
1971 gen_a64_set_pc_im(s->pc_curr);
1974 /* Handle special cases first */
1975 switch (ri->type & ARM_CP_SPECIAL_MASK) {
1976 case 0:
1977 break;
1978 case ARM_CP_NOP:
1979 return;
1980 case ARM_CP_NZCV:
1981 tcg_rt = cpu_reg(s, rt);
1982 if (isread) {
1983 gen_get_nzcv(tcg_rt);
1984 } else {
1985 gen_set_nzcv(tcg_rt);
1987 return;
1988 case ARM_CP_CURRENTEL:
1989 /* Reads as current EL value from pstate, which is
1990 * guaranteed to be constant by the tb flags.
1992 tcg_rt = cpu_reg(s, rt);
1993 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1994 return;
1995 case ARM_CP_DC_ZVA:
1996 /* Writes clear the aligned block of memory which rt points into. */
1997 if (s->mte_active[0]) {
1998 int desc = 0;
2000 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
2001 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
2002 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
2004 tcg_rt = new_tmp_a64(s);
2005 gen_helper_mte_check_zva(tcg_rt, cpu_env,
2006 tcg_constant_i32(desc), cpu_reg(s, rt));
2007 } else {
2008 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
2010 gen_helper_dc_zva(cpu_env, tcg_rt);
2011 return;
2012 case ARM_CP_DC_GVA:
2014 TCGv_i64 clean_addr, tag;
2017 * DC_GVA, like DC_ZVA, requires that we supply the original
2018 * pointer for an invalid page. Probe that address first.
2020 tcg_rt = cpu_reg(s, rt);
2021 clean_addr = clean_data_tbi(s, tcg_rt);
2022 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
2024 if (s->ata) {
2025 /* Extract the tag from the register to match STZGM. */
2026 tag = tcg_temp_new_i64();
2027 tcg_gen_shri_i64(tag, tcg_rt, 56);
2028 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2029 tcg_temp_free_i64(tag);
2032 return;
2033 case ARM_CP_DC_GZVA:
2035 TCGv_i64 clean_addr, tag;
2037 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
2038 tcg_rt = cpu_reg(s, rt);
2039 clean_addr = clean_data_tbi(s, tcg_rt);
2040 gen_helper_dc_zva(cpu_env, clean_addr);
2042 if (s->ata) {
2043 /* Extract the tag from the register to match STZGM. */
2044 tag = tcg_temp_new_i64();
2045 tcg_gen_shri_i64(tag, tcg_rt, 56);
2046 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
2047 tcg_temp_free_i64(tag);
2050 return;
2051 default:
2052 g_assert_not_reached();
2054 if ((ri->type & ARM_CP_FPU) && !fp_access_check_only(s)) {
2055 return;
2056 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
2057 return;
2058 } else if ((ri->type & ARM_CP_SME) && !sme_access_check(s)) {
2059 return;
2062 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2063 gen_io_start();
2066 tcg_rt = cpu_reg(s, rt);
2068 if (isread) {
2069 if (ri->type & ARM_CP_CONST) {
2070 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
2071 } else if (ri->readfn) {
2072 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tcg_constant_ptr(ri));
2073 } else {
2074 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
2076 } else {
2077 if (ri->type & ARM_CP_CONST) {
2078 /* If not forbidden by access permissions, treat as WI */
2079 return;
2080 } else if (ri->writefn) {
2081 gen_helper_set_cp_reg64(cpu_env, tcg_constant_ptr(ri), tcg_rt);
2082 } else {
2083 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
2087 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
2088 /* I/O operations must end the TB here (whether read or write) */
2089 s->base.is_jmp = DISAS_UPDATE_EXIT;
2091 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
2093 * A write to any coprocessor regiser that ends a TB
2094 * must rebuild the hflags for the next TB.
2096 gen_rebuild_hflags(s);
2098 * We default to ending the TB on a coprocessor register write,
2099 * but allow this to be suppressed by the register definition
2100 * (usually only necessary to work around guest bugs).
2102 s->base.is_jmp = DISAS_UPDATE_EXIT;
2106 /* System
2107 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
2108 * +---------------------+---+-----+-----+-------+-------+-----+------+
2109 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
2110 * +---------------------+---+-----+-----+-------+-------+-----+------+
2112 static void disas_system(DisasContext *s, uint32_t insn)
2114 unsigned int l, op0, op1, crn, crm, op2, rt;
2115 l = extract32(insn, 21, 1);
2116 op0 = extract32(insn, 19, 2);
2117 op1 = extract32(insn, 16, 3);
2118 crn = extract32(insn, 12, 4);
2119 crm = extract32(insn, 8, 4);
2120 op2 = extract32(insn, 5, 3);
2121 rt = extract32(insn, 0, 5);
2123 if (op0 == 0) {
2124 if (l || rt != 31) {
2125 unallocated_encoding(s);
2126 return;
2128 switch (crn) {
2129 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2130 handle_hint(s, insn, op1, op2, crm);
2131 break;
2132 case 3: /* CLREX, DSB, DMB, ISB */
2133 handle_sync(s, insn, op1, op2, crm);
2134 break;
2135 case 4: /* MSR (immediate) */
2136 handle_msr_i(s, insn, op1, op2, crm);
2137 break;
2138 default:
2139 unallocated_encoding(s);
2140 break;
2142 return;
2144 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2147 /* Exception generation
2149 * 31 24 23 21 20 5 4 2 1 0
2150 * +-----------------+-----+------------------------+-----+----+
2151 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2152 * +-----------------------+------------------------+----------+
2154 static void disas_exc(DisasContext *s, uint32_t insn)
2156 int opc = extract32(insn, 21, 3);
2157 int op2_ll = extract32(insn, 0, 5);
2158 int imm16 = extract32(insn, 5, 16);
2160 switch (opc) {
2161 case 0:
2162 /* For SVC, HVC and SMC we advance the single-step state
2163 * machine before taking the exception. This is architecturally
2164 * mandated, to ensure that single-stepping a system call
2165 * instruction works properly.
2167 switch (op2_ll) {
2168 case 1: /* SVC */
2169 gen_ss_advance(s);
2170 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
2171 syn_aa64_svc(imm16));
2172 break;
2173 case 2: /* HVC */
2174 if (s->current_el == 0) {
2175 unallocated_encoding(s);
2176 break;
2178 /* The pre HVC helper handles cases when HVC gets trapped
2179 * as an undefined insn by runtime configuration.
2181 gen_a64_set_pc_im(s->pc_curr);
2182 gen_helper_pre_hvc(cpu_env);
2183 gen_ss_advance(s);
2184 gen_exception_insn_el(s, s->base.pc_next, EXCP_HVC,
2185 syn_aa64_hvc(imm16), 2);
2186 break;
2187 case 3: /* SMC */
2188 if (s->current_el == 0) {
2189 unallocated_encoding(s);
2190 break;
2192 gen_a64_set_pc_im(s->pc_curr);
2193 gen_helper_pre_smc(cpu_env, tcg_constant_i32(syn_aa64_smc(imm16)));
2194 gen_ss_advance(s);
2195 gen_exception_insn_el(s, s->base.pc_next, EXCP_SMC,
2196 syn_aa64_smc(imm16), 3);
2197 break;
2198 default:
2199 unallocated_encoding(s);
2200 break;
2202 break;
2203 case 1:
2204 if (op2_ll != 0) {
2205 unallocated_encoding(s);
2206 break;
2208 /* BRK */
2209 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2210 break;
2211 case 2:
2212 if (op2_ll != 0) {
2213 unallocated_encoding(s);
2214 break;
2216 /* HLT. This has two purposes.
2217 * Architecturally, it is an external halting debug instruction.
2218 * Since QEMU doesn't implement external debug, we treat this as
2219 * it is required for halting debug disabled: it will UNDEF.
2220 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2222 if (semihosting_enabled(false) && imm16 == 0xf000) {
2223 #ifndef CONFIG_USER_ONLY
2224 /* In system mode, don't allow userspace access to semihosting,
2225 * to provide some semblance of security (and for consistency
2226 * with our 32-bit semihosting).
2228 if (s->current_el == 0) {
2229 unallocated_encoding(s);
2230 break;
2232 #endif
2233 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
2234 } else {
2235 unallocated_encoding(s);
2237 break;
2238 case 5:
2239 if (op2_ll < 1 || op2_ll > 3) {
2240 unallocated_encoding(s);
2241 break;
2243 /* DCPS1, DCPS2, DCPS3 */
2244 unallocated_encoding(s);
2245 break;
2246 default:
2247 unallocated_encoding(s);
2248 break;
2252 /* Unconditional branch (register)
2253 * 31 25 24 21 20 16 15 10 9 5 4 0
2254 * +---------------+-------+-------+-------+------+-------+
2255 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2256 * +---------------+-------+-------+-------+------+-------+
2258 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2260 unsigned int opc, op2, op3, rn, op4;
2261 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2262 TCGv_i64 dst;
2263 TCGv_i64 modifier;
2265 opc = extract32(insn, 21, 4);
2266 op2 = extract32(insn, 16, 5);
2267 op3 = extract32(insn, 10, 6);
2268 rn = extract32(insn, 5, 5);
2269 op4 = extract32(insn, 0, 5);
2271 if (op2 != 0x1f) {
2272 goto do_unallocated;
2275 switch (opc) {
2276 case 0: /* BR */
2277 case 1: /* BLR */
2278 case 2: /* RET */
2279 btype_mod = opc;
2280 switch (op3) {
2281 case 0:
2282 /* BR, BLR, RET */
2283 if (op4 != 0) {
2284 goto do_unallocated;
2286 dst = cpu_reg(s, rn);
2287 break;
2289 case 2:
2290 case 3:
2291 if (!dc_isar_feature(aa64_pauth, s)) {
2292 goto do_unallocated;
2294 if (opc == 2) {
2295 /* RETAA, RETAB */
2296 if (rn != 0x1f || op4 != 0x1f) {
2297 goto do_unallocated;
2299 rn = 30;
2300 modifier = cpu_X[31];
2301 } else {
2302 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2303 if (op4 != 0x1f) {
2304 goto do_unallocated;
2306 modifier = new_tmp_a64_zero(s);
2308 if (s->pauth_active) {
2309 dst = new_tmp_a64(s);
2310 if (op3 == 2) {
2311 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2312 } else {
2313 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2315 } else {
2316 dst = cpu_reg(s, rn);
2318 break;
2320 default:
2321 goto do_unallocated;
2323 gen_a64_set_pc(s, dst);
2324 /* BLR also needs to load return address */
2325 if (opc == 1) {
2326 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2328 break;
2330 case 8: /* BRAA */
2331 case 9: /* BLRAA */
2332 if (!dc_isar_feature(aa64_pauth, s)) {
2333 goto do_unallocated;
2335 if ((op3 & ~1) != 2) {
2336 goto do_unallocated;
2338 btype_mod = opc & 1;
2339 if (s->pauth_active) {
2340 dst = new_tmp_a64(s);
2341 modifier = cpu_reg_sp(s, op4);
2342 if (op3 == 2) {
2343 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2344 } else {
2345 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2347 } else {
2348 dst = cpu_reg(s, rn);
2350 gen_a64_set_pc(s, dst);
2351 /* BLRAA also needs to load return address */
2352 if (opc == 9) {
2353 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2355 break;
2357 case 4: /* ERET */
2358 if (s->current_el == 0) {
2359 goto do_unallocated;
2361 switch (op3) {
2362 case 0: /* ERET */
2363 if (op4 != 0) {
2364 goto do_unallocated;
2366 dst = tcg_temp_new_i64();
2367 tcg_gen_ld_i64(dst, cpu_env,
2368 offsetof(CPUARMState, elr_el[s->current_el]));
2369 break;
2371 case 2: /* ERETAA */
2372 case 3: /* ERETAB */
2373 if (!dc_isar_feature(aa64_pauth, s)) {
2374 goto do_unallocated;
2376 if (rn != 0x1f || op4 != 0x1f) {
2377 goto do_unallocated;
2379 dst = tcg_temp_new_i64();
2380 tcg_gen_ld_i64(dst, cpu_env,
2381 offsetof(CPUARMState, elr_el[s->current_el]));
2382 if (s->pauth_active) {
2383 modifier = cpu_X[31];
2384 if (op3 == 2) {
2385 gen_helper_autia(dst, cpu_env, dst, modifier);
2386 } else {
2387 gen_helper_autib(dst, cpu_env, dst, modifier);
2390 break;
2392 default:
2393 goto do_unallocated;
2395 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2396 gen_io_start();
2399 gen_helper_exception_return(cpu_env, dst);
2400 tcg_temp_free_i64(dst);
2401 /* Must exit loop to check un-masked IRQs */
2402 s->base.is_jmp = DISAS_EXIT;
2403 return;
2405 case 5: /* DRPS */
2406 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2407 goto do_unallocated;
2408 } else {
2409 unallocated_encoding(s);
2411 return;
2413 default:
2414 do_unallocated:
2415 unallocated_encoding(s);
2416 return;
2419 switch (btype_mod) {
2420 case 0: /* BR */
2421 if (dc_isar_feature(aa64_bti, s)) {
2422 /* BR to {x16,x17} or !guard -> 1, else 3. */
2423 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2425 break;
2427 case 1: /* BLR */
2428 if (dc_isar_feature(aa64_bti, s)) {
2429 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2430 set_btype(s, 2);
2432 break;
2434 default: /* RET or none of the above. */
2435 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2436 break;
2439 s->base.is_jmp = DISAS_JUMP;
2442 /* Branches, exception generating and system instructions */
2443 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2445 switch (extract32(insn, 25, 7)) {
2446 case 0x0a: case 0x0b:
2447 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2448 disas_uncond_b_imm(s, insn);
2449 break;
2450 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2451 disas_comp_b_imm(s, insn);
2452 break;
2453 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2454 disas_test_b_imm(s, insn);
2455 break;
2456 case 0x2a: /* Conditional branch (immediate) */
2457 disas_cond_b_imm(s, insn);
2458 break;
2459 case 0x6a: /* Exception generation / System */
2460 if (insn & (1 << 24)) {
2461 if (extract32(insn, 22, 2) == 0) {
2462 disas_system(s, insn);
2463 } else {
2464 unallocated_encoding(s);
2466 } else {
2467 disas_exc(s, insn);
2469 break;
2470 case 0x6b: /* Unconditional branch (register) */
2471 disas_uncond_b_reg(s, insn);
2472 break;
2473 default:
2474 unallocated_encoding(s);
2475 break;
2480 * Load/Store exclusive instructions are implemented by remembering
2481 * the value/address loaded, and seeing if these are the same
2482 * when the store is performed. This is not actually the architecturally
2483 * mandated semantics, but it works for typical guest code sequences
2484 * and avoids having to monitor regular stores.
2486 * The store exclusive uses the atomic cmpxchg primitives to avoid
2487 * races in multi-threaded linux-user and when MTTCG softmmu is
2488 * enabled.
2490 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2491 TCGv_i64 addr, int size, bool is_pair)
2493 int idx = get_mem_index(s);
2494 MemOp memop = s->be_data;
2496 g_assert(size <= 3);
2497 if (is_pair) {
2498 g_assert(size >= 2);
2499 if (size == 2) {
2500 /* The pair must be single-copy atomic for the doubleword. */
2501 memop |= MO_64 | MO_ALIGN;
2502 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2503 if (s->be_data == MO_LE) {
2504 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2505 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2506 } else {
2507 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2508 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2510 } else {
2511 /* The pair must be single-copy atomic for *each* doubleword, not
2512 the entire quadword, however it must be quadword aligned. */
2513 memop |= MO_64;
2514 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2515 memop | MO_ALIGN_16);
2517 TCGv_i64 addr2 = tcg_temp_new_i64();
2518 tcg_gen_addi_i64(addr2, addr, 8);
2519 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2520 tcg_temp_free_i64(addr2);
2522 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2523 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2525 } else {
2526 memop |= size | MO_ALIGN;
2527 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2528 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2530 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2533 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2534 TCGv_i64 addr, int size, int is_pair)
2536 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2537 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2538 * [addr] = {Rt};
2539 * if (is_pair) {
2540 * [addr + datasize] = {Rt2};
2542 * {Rd} = 0;
2543 * } else {
2544 * {Rd} = 1;
2546 * env->exclusive_addr = -1;
2548 TCGLabel *fail_label = gen_new_label();
2549 TCGLabel *done_label = gen_new_label();
2550 TCGv_i64 tmp;
2552 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2554 tmp = tcg_temp_new_i64();
2555 if (is_pair) {
2556 if (size == 2) {
2557 if (s->be_data == MO_LE) {
2558 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2559 } else {
2560 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2562 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2563 cpu_exclusive_val, tmp,
2564 get_mem_index(s),
2565 MO_64 | MO_ALIGN | s->be_data);
2566 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2567 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2568 if (!HAVE_CMPXCHG128) {
2569 gen_helper_exit_atomic(cpu_env);
2571 * Produce a result so we have a well-formed opcode
2572 * stream when the following (dead) code uses 'tmp'.
2573 * TCG will remove the dead ops for us.
2575 tcg_gen_movi_i64(tmp, 0);
2576 } else if (s->be_data == MO_LE) {
2577 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2578 cpu_exclusive_addr,
2579 cpu_reg(s, rt),
2580 cpu_reg(s, rt2));
2581 } else {
2582 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2583 cpu_exclusive_addr,
2584 cpu_reg(s, rt),
2585 cpu_reg(s, rt2));
2587 } else if (s->be_data == MO_LE) {
2588 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2589 cpu_reg(s, rt), cpu_reg(s, rt2));
2590 } else {
2591 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2592 cpu_reg(s, rt), cpu_reg(s, rt2));
2594 } else {
2595 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2596 cpu_reg(s, rt), get_mem_index(s),
2597 size | MO_ALIGN | s->be_data);
2598 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2600 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2601 tcg_temp_free_i64(tmp);
2602 tcg_gen_br(done_label);
2604 gen_set_label(fail_label);
2605 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2606 gen_set_label(done_label);
2607 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2610 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2611 int rn, int size)
2613 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2614 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2615 int memidx = get_mem_index(s);
2616 TCGv_i64 clean_addr;
2618 if (rn == 31) {
2619 gen_check_sp_alignment(s);
2621 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2622 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2623 size | MO_ALIGN | s->be_data);
2626 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2627 int rn, int size)
2629 TCGv_i64 s1 = cpu_reg(s, rs);
2630 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2631 TCGv_i64 t1 = cpu_reg(s, rt);
2632 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2633 TCGv_i64 clean_addr;
2634 int memidx = get_mem_index(s);
2636 if (rn == 31) {
2637 gen_check_sp_alignment(s);
2640 /* This is a single atomic access, despite the "pair". */
2641 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2643 if (size == 2) {
2644 TCGv_i64 cmp = tcg_temp_new_i64();
2645 TCGv_i64 val = tcg_temp_new_i64();
2647 if (s->be_data == MO_LE) {
2648 tcg_gen_concat32_i64(val, t1, t2);
2649 tcg_gen_concat32_i64(cmp, s1, s2);
2650 } else {
2651 tcg_gen_concat32_i64(val, t2, t1);
2652 tcg_gen_concat32_i64(cmp, s2, s1);
2655 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2656 MO_64 | MO_ALIGN | s->be_data);
2657 tcg_temp_free_i64(val);
2659 if (s->be_data == MO_LE) {
2660 tcg_gen_extr32_i64(s1, s2, cmp);
2661 } else {
2662 tcg_gen_extr32_i64(s2, s1, cmp);
2664 tcg_temp_free_i64(cmp);
2665 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2666 if (HAVE_CMPXCHG128) {
2667 TCGv_i32 tcg_rs = tcg_constant_i32(rs);
2668 if (s->be_data == MO_LE) {
2669 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2670 clean_addr, t1, t2);
2671 } else {
2672 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2673 clean_addr, t1, t2);
2675 } else {
2676 gen_helper_exit_atomic(cpu_env);
2677 s->base.is_jmp = DISAS_NORETURN;
2679 } else {
2680 TCGv_i64 d1 = tcg_temp_new_i64();
2681 TCGv_i64 d2 = tcg_temp_new_i64();
2682 TCGv_i64 a2 = tcg_temp_new_i64();
2683 TCGv_i64 c1 = tcg_temp_new_i64();
2684 TCGv_i64 c2 = tcg_temp_new_i64();
2685 TCGv_i64 zero = tcg_constant_i64(0);
2687 /* Load the two words, in memory order. */
2688 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2689 MO_64 | MO_ALIGN_16 | s->be_data);
2690 tcg_gen_addi_i64(a2, clean_addr, 8);
2691 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2693 /* Compare the two words, also in memory order. */
2694 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2695 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2696 tcg_gen_and_i64(c2, c2, c1);
2698 /* If compare equal, write back new data, else write back old data. */
2699 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2700 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2701 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2702 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2703 tcg_temp_free_i64(a2);
2704 tcg_temp_free_i64(c1);
2705 tcg_temp_free_i64(c2);
2707 /* Write back the data from memory to Rs. */
2708 tcg_gen_mov_i64(s1, d1);
2709 tcg_gen_mov_i64(s2, d2);
2710 tcg_temp_free_i64(d1);
2711 tcg_temp_free_i64(d2);
2715 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2716 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2718 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2720 int opc0 = extract32(opc, 0, 1);
2721 int regsize;
2723 if (is_signed) {
2724 regsize = opc0 ? 32 : 64;
2725 } else {
2726 regsize = size == 3 ? 64 : 32;
2728 return regsize == 64;
2731 /* Load/store exclusive
2733 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2734 * +-----+-------------+----+---+----+------+----+-------+------+------+
2735 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2736 * +-----+-------------+----+---+----+------+----+-------+------+------+
2738 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2739 * L: 0 -> store, 1 -> load
2740 * o2: 0 -> exclusive, 1 -> not
2741 * o1: 0 -> single register, 1 -> register pair
2742 * o0: 1 -> load-acquire/store-release, 0 -> not
2744 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2746 int rt = extract32(insn, 0, 5);
2747 int rn = extract32(insn, 5, 5);
2748 int rt2 = extract32(insn, 10, 5);
2749 int rs = extract32(insn, 16, 5);
2750 int is_lasr = extract32(insn, 15, 1);
2751 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2752 int size = extract32(insn, 30, 2);
2753 TCGv_i64 clean_addr;
2755 switch (o2_L_o1_o0) {
2756 case 0x0: /* STXR */
2757 case 0x1: /* STLXR */
2758 if (rn == 31) {
2759 gen_check_sp_alignment(s);
2761 if (is_lasr) {
2762 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2764 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2765 true, rn != 31, size);
2766 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2767 return;
2769 case 0x4: /* LDXR */
2770 case 0x5: /* LDAXR */
2771 if (rn == 31) {
2772 gen_check_sp_alignment(s);
2774 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2775 false, rn != 31, size);
2776 s->is_ldex = true;
2777 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2778 if (is_lasr) {
2779 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2781 return;
2783 case 0x8: /* STLLR */
2784 if (!dc_isar_feature(aa64_lor, s)) {
2785 break;
2787 /* StoreLORelease is the same as Store-Release for QEMU. */
2788 /* fall through */
2789 case 0x9: /* STLR */
2790 /* Generate ISS for non-exclusive accesses including LASR. */
2791 if (rn == 31) {
2792 gen_check_sp_alignment(s);
2794 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2795 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2796 true, rn != 31, size);
2797 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2798 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2799 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2800 return;
2802 case 0xc: /* LDLAR */
2803 if (!dc_isar_feature(aa64_lor, s)) {
2804 break;
2806 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2807 /* fall through */
2808 case 0xd: /* LDAR */
2809 /* Generate ISS for non-exclusive accesses including LASR. */
2810 if (rn == 31) {
2811 gen_check_sp_alignment(s);
2813 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2814 false, rn != 31, size);
2815 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2816 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2817 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2818 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2819 return;
2821 case 0x2: case 0x3: /* CASP / STXP */
2822 if (size & 2) { /* STXP / STLXP */
2823 if (rn == 31) {
2824 gen_check_sp_alignment(s);
2826 if (is_lasr) {
2827 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2829 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2830 true, rn != 31, size);
2831 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2832 return;
2834 if (rt2 == 31
2835 && ((rt | rs) & 1) == 0
2836 && dc_isar_feature(aa64_atomics, s)) {
2837 /* CASP / CASPL */
2838 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2839 return;
2841 break;
2843 case 0x6: case 0x7: /* CASPA / LDXP */
2844 if (size & 2) { /* LDXP / LDAXP */
2845 if (rn == 31) {
2846 gen_check_sp_alignment(s);
2848 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2849 false, rn != 31, size);
2850 s->is_ldex = true;
2851 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2852 if (is_lasr) {
2853 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2855 return;
2857 if (rt2 == 31
2858 && ((rt | rs) & 1) == 0
2859 && dc_isar_feature(aa64_atomics, s)) {
2860 /* CASPA / CASPAL */
2861 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2862 return;
2864 break;
2866 case 0xa: /* CAS */
2867 case 0xb: /* CASL */
2868 case 0xe: /* CASA */
2869 case 0xf: /* CASAL */
2870 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2871 gen_compare_and_swap(s, rs, rt, rn, size);
2872 return;
2874 break;
2876 unallocated_encoding(s);
2880 * Load register (literal)
2882 * 31 30 29 27 26 25 24 23 5 4 0
2883 * +-----+-------+---+-----+-------------------+-------+
2884 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2885 * +-----+-------+---+-----+-------------------+-------+
2887 * V: 1 -> vector (simd/fp)
2888 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2889 * 10-> 32 bit signed, 11 -> prefetch
2890 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2892 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2894 int rt = extract32(insn, 0, 5);
2895 int64_t imm = sextract32(insn, 5, 19) << 2;
2896 bool is_vector = extract32(insn, 26, 1);
2897 int opc = extract32(insn, 30, 2);
2898 bool is_signed = false;
2899 int size = 2;
2900 TCGv_i64 tcg_rt, clean_addr;
2902 if (is_vector) {
2903 if (opc == 3) {
2904 unallocated_encoding(s);
2905 return;
2907 size = 2 + opc;
2908 if (!fp_access_check(s)) {
2909 return;
2911 } else {
2912 if (opc == 3) {
2913 /* PRFM (literal) : prefetch */
2914 return;
2916 size = 2 + extract32(opc, 0, 1);
2917 is_signed = extract32(opc, 1, 1);
2920 tcg_rt = cpu_reg(s, rt);
2922 clean_addr = tcg_constant_i64(s->pc_curr + imm);
2923 if (is_vector) {
2924 do_fp_ld(s, rt, clean_addr, size);
2925 } else {
2926 /* Only unsigned 32bit loads target 32bit registers. */
2927 bool iss_sf = opc != 0;
2929 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2930 false, true, rt, iss_sf, false);
2935 * LDNP (Load Pair - non-temporal hint)
2936 * LDP (Load Pair - non vector)
2937 * LDPSW (Load Pair Signed Word - non vector)
2938 * STNP (Store Pair - non-temporal hint)
2939 * STP (Store Pair - non vector)
2940 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2941 * LDP (Load Pair of SIMD&FP)
2942 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2943 * STP (Store Pair of SIMD&FP)
2945 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2946 * +-----+-------+---+---+-------+---+-----------------------------+
2947 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2948 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2950 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2951 * LDPSW/STGP 01
2952 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2953 * V: 0 -> GPR, 1 -> Vector
2954 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2955 * 10 -> signed offset, 11 -> pre-index
2956 * L: 0 -> Store 1 -> Load
2958 * Rt, Rt2 = GPR or SIMD registers to be stored
2959 * Rn = general purpose register containing address
2960 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2962 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2964 int rt = extract32(insn, 0, 5);
2965 int rn = extract32(insn, 5, 5);
2966 int rt2 = extract32(insn, 10, 5);
2967 uint64_t offset = sextract64(insn, 15, 7);
2968 int index = extract32(insn, 23, 2);
2969 bool is_vector = extract32(insn, 26, 1);
2970 bool is_load = extract32(insn, 22, 1);
2971 int opc = extract32(insn, 30, 2);
2973 bool is_signed = false;
2974 bool postindex = false;
2975 bool wback = false;
2976 bool set_tag = false;
2978 TCGv_i64 clean_addr, dirty_addr;
2980 int size;
2982 if (opc == 3) {
2983 unallocated_encoding(s);
2984 return;
2987 if (is_vector) {
2988 size = 2 + opc;
2989 } else if (opc == 1 && !is_load) {
2990 /* STGP */
2991 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2992 unallocated_encoding(s);
2993 return;
2995 size = 3;
2996 set_tag = true;
2997 } else {
2998 size = 2 + extract32(opc, 1, 1);
2999 is_signed = extract32(opc, 0, 1);
3000 if (!is_load && is_signed) {
3001 unallocated_encoding(s);
3002 return;
3006 switch (index) {
3007 case 1: /* post-index */
3008 postindex = true;
3009 wback = true;
3010 break;
3011 case 0:
3012 /* signed offset with "non-temporal" hint. Since we don't emulate
3013 * caches we don't care about hints to the cache system about
3014 * data access patterns, and handle this identically to plain
3015 * signed offset.
3017 if (is_signed) {
3018 /* There is no non-temporal-hint version of LDPSW */
3019 unallocated_encoding(s);
3020 return;
3022 postindex = false;
3023 break;
3024 case 2: /* signed offset, rn not updated */
3025 postindex = false;
3026 break;
3027 case 3: /* pre-index */
3028 postindex = false;
3029 wback = true;
3030 break;
3033 if (is_vector && !fp_access_check(s)) {
3034 return;
3037 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
3039 if (rn == 31) {
3040 gen_check_sp_alignment(s);
3043 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3044 if (!postindex) {
3045 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3048 if (set_tag) {
3049 if (!s->ata) {
3051 * TODO: We could rely on the stores below, at least for
3052 * system mode, if we arrange to add MO_ALIGN_16.
3054 gen_helper_stg_stub(cpu_env, dirty_addr);
3055 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
3056 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
3057 } else {
3058 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
3062 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
3063 (wback || rn != 31) && !set_tag, 2 << size);
3065 if (is_vector) {
3066 if (is_load) {
3067 do_fp_ld(s, rt, clean_addr, size);
3068 } else {
3069 do_fp_st(s, rt, clean_addr, size);
3071 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3072 if (is_load) {
3073 do_fp_ld(s, rt2, clean_addr, size);
3074 } else {
3075 do_fp_st(s, rt2, clean_addr, size);
3077 } else {
3078 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3079 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
3081 if (is_load) {
3082 TCGv_i64 tmp = tcg_temp_new_i64();
3084 /* Do not modify tcg_rt before recognizing any exception
3085 * from the second load.
3087 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
3088 false, false, 0, false, false);
3089 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3090 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
3091 false, false, 0, false, false);
3093 tcg_gen_mov_i64(tcg_rt, tmp);
3094 tcg_temp_free_i64(tmp);
3095 } else {
3096 do_gpr_st(s, tcg_rt, clean_addr, size,
3097 false, 0, false, false);
3098 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3099 do_gpr_st(s, tcg_rt2, clean_addr, size,
3100 false, 0, false, false);
3104 if (wback) {
3105 if (postindex) {
3106 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3108 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3113 * Load/store (immediate post-indexed)
3114 * Load/store (immediate pre-indexed)
3115 * Load/store (unscaled immediate)
3117 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
3118 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3119 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
3120 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3122 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3123 10 -> unprivileged
3124 * V = 0 -> non-vector
3125 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3126 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3128 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3129 int opc,
3130 int size,
3131 int rt,
3132 bool is_vector)
3134 int rn = extract32(insn, 5, 5);
3135 int imm9 = sextract32(insn, 12, 9);
3136 int idx = extract32(insn, 10, 2);
3137 bool is_signed = false;
3138 bool is_store = false;
3139 bool is_extended = false;
3140 bool is_unpriv = (idx == 2);
3141 bool iss_valid;
3142 bool post_index;
3143 bool writeback;
3144 int memidx;
3146 TCGv_i64 clean_addr, dirty_addr;
3148 if (is_vector) {
3149 size |= (opc & 2) << 1;
3150 if (size > 4 || is_unpriv) {
3151 unallocated_encoding(s);
3152 return;
3154 is_store = ((opc & 1) == 0);
3155 if (!fp_access_check(s)) {
3156 return;
3158 } else {
3159 if (size == 3 && opc == 2) {
3160 /* PRFM - prefetch */
3161 if (idx != 0) {
3162 unallocated_encoding(s);
3163 return;
3165 return;
3167 if (opc == 3 && size > 1) {
3168 unallocated_encoding(s);
3169 return;
3171 is_store = (opc == 0);
3172 is_signed = extract32(opc, 1, 1);
3173 is_extended = (size < 3) && extract32(opc, 0, 1);
3176 switch (idx) {
3177 case 0:
3178 case 2:
3179 post_index = false;
3180 writeback = false;
3181 break;
3182 case 1:
3183 post_index = true;
3184 writeback = true;
3185 break;
3186 case 3:
3187 post_index = false;
3188 writeback = true;
3189 break;
3190 default:
3191 g_assert_not_reached();
3194 iss_valid = !is_vector && !writeback;
3196 if (rn == 31) {
3197 gen_check_sp_alignment(s);
3200 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3201 if (!post_index) {
3202 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3205 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3206 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3207 writeback || rn != 31,
3208 size, is_unpriv, memidx);
3210 if (is_vector) {
3211 if (is_store) {
3212 do_fp_st(s, rt, clean_addr, size);
3213 } else {
3214 do_fp_ld(s, rt, clean_addr, size);
3216 } else {
3217 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3218 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3220 if (is_store) {
3221 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3222 iss_valid, rt, iss_sf, false);
3223 } else {
3224 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3225 is_extended, memidx,
3226 iss_valid, rt, iss_sf, false);
3230 if (writeback) {
3231 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3232 if (post_index) {
3233 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3235 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3240 * Load/store (register offset)
3242 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3243 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3244 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3245 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3247 * For non-vector:
3248 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3249 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3250 * For vector:
3251 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3252 * opc<0>: 0 -> store, 1 -> load
3253 * V: 1 -> vector/simd
3254 * opt: extend encoding (see DecodeRegExtend)
3255 * S: if S=1 then scale (essentially index by sizeof(size))
3256 * Rt: register to transfer into/out of
3257 * Rn: address register or SP for base
3258 * Rm: offset register or ZR for offset
3260 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3261 int opc,
3262 int size,
3263 int rt,
3264 bool is_vector)
3266 int rn = extract32(insn, 5, 5);
3267 int shift = extract32(insn, 12, 1);
3268 int rm = extract32(insn, 16, 5);
3269 int opt = extract32(insn, 13, 3);
3270 bool is_signed = false;
3271 bool is_store = false;
3272 bool is_extended = false;
3274 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3276 if (extract32(opt, 1, 1) == 0) {
3277 unallocated_encoding(s);
3278 return;
3281 if (is_vector) {
3282 size |= (opc & 2) << 1;
3283 if (size > 4) {
3284 unallocated_encoding(s);
3285 return;
3287 is_store = !extract32(opc, 0, 1);
3288 if (!fp_access_check(s)) {
3289 return;
3291 } else {
3292 if (size == 3 && opc == 2) {
3293 /* PRFM - prefetch */
3294 return;
3296 if (opc == 3 && size > 1) {
3297 unallocated_encoding(s);
3298 return;
3300 is_store = (opc == 0);
3301 is_signed = extract32(opc, 1, 1);
3302 is_extended = (size < 3) && extract32(opc, 0, 1);
3305 if (rn == 31) {
3306 gen_check_sp_alignment(s);
3308 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3310 tcg_rm = read_cpu_reg(s, rm, 1);
3311 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3313 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3314 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3316 if (is_vector) {
3317 if (is_store) {
3318 do_fp_st(s, rt, clean_addr, size);
3319 } else {
3320 do_fp_ld(s, rt, clean_addr, size);
3322 } else {
3323 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3324 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3325 if (is_store) {
3326 do_gpr_st(s, tcg_rt, clean_addr, size,
3327 true, rt, iss_sf, false);
3328 } else {
3329 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3330 is_extended, true, rt, iss_sf, false);
3336 * Load/store (unsigned immediate)
3338 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3339 * +----+-------+---+-----+-----+------------+-------+------+
3340 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3341 * +----+-------+---+-----+-----+------------+-------+------+
3343 * For non-vector:
3344 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3345 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3346 * For vector:
3347 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3348 * opc<0>: 0 -> store, 1 -> load
3349 * Rn: base address register (inc SP)
3350 * Rt: target register
3352 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3353 int opc,
3354 int size,
3355 int rt,
3356 bool is_vector)
3358 int rn = extract32(insn, 5, 5);
3359 unsigned int imm12 = extract32(insn, 10, 12);
3360 unsigned int offset;
3362 TCGv_i64 clean_addr, dirty_addr;
3364 bool is_store;
3365 bool is_signed = false;
3366 bool is_extended = false;
3368 if (is_vector) {
3369 size |= (opc & 2) << 1;
3370 if (size > 4) {
3371 unallocated_encoding(s);
3372 return;
3374 is_store = !extract32(opc, 0, 1);
3375 if (!fp_access_check(s)) {
3376 return;
3378 } else {
3379 if (size == 3 && opc == 2) {
3380 /* PRFM - prefetch */
3381 return;
3383 if (opc == 3 && size > 1) {
3384 unallocated_encoding(s);
3385 return;
3387 is_store = (opc == 0);
3388 is_signed = extract32(opc, 1, 1);
3389 is_extended = (size < 3) && extract32(opc, 0, 1);
3392 if (rn == 31) {
3393 gen_check_sp_alignment(s);
3395 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3396 offset = imm12 << size;
3397 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3398 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3400 if (is_vector) {
3401 if (is_store) {
3402 do_fp_st(s, rt, clean_addr, size);
3403 } else {
3404 do_fp_ld(s, rt, clean_addr, size);
3406 } else {
3407 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3408 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3409 if (is_store) {
3410 do_gpr_st(s, tcg_rt, clean_addr, size,
3411 true, rt, iss_sf, false);
3412 } else {
3413 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3414 is_extended, true, rt, iss_sf, false);
3419 /* Atomic memory operations
3421 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3422 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3423 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3424 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3426 * Rt: the result register
3427 * Rn: base address or SP
3428 * Rs: the source register for the operation
3429 * V: vector flag (always 0 as of v8.3)
3430 * A: acquire flag
3431 * R: release flag
3433 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3434 int size, int rt, bool is_vector)
3436 int rs = extract32(insn, 16, 5);
3437 int rn = extract32(insn, 5, 5);
3438 int o3_opc = extract32(insn, 12, 4);
3439 bool r = extract32(insn, 22, 1);
3440 bool a = extract32(insn, 23, 1);
3441 TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3442 AtomicThreeOpFn *fn = NULL;
3443 MemOp mop = s->be_data | size | MO_ALIGN;
3445 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3446 unallocated_encoding(s);
3447 return;
3449 switch (o3_opc) {
3450 case 000: /* LDADD */
3451 fn = tcg_gen_atomic_fetch_add_i64;
3452 break;
3453 case 001: /* LDCLR */
3454 fn = tcg_gen_atomic_fetch_and_i64;
3455 break;
3456 case 002: /* LDEOR */
3457 fn = tcg_gen_atomic_fetch_xor_i64;
3458 break;
3459 case 003: /* LDSET */
3460 fn = tcg_gen_atomic_fetch_or_i64;
3461 break;
3462 case 004: /* LDSMAX */
3463 fn = tcg_gen_atomic_fetch_smax_i64;
3464 mop |= MO_SIGN;
3465 break;
3466 case 005: /* LDSMIN */
3467 fn = tcg_gen_atomic_fetch_smin_i64;
3468 mop |= MO_SIGN;
3469 break;
3470 case 006: /* LDUMAX */
3471 fn = tcg_gen_atomic_fetch_umax_i64;
3472 break;
3473 case 007: /* LDUMIN */
3474 fn = tcg_gen_atomic_fetch_umin_i64;
3475 break;
3476 case 010: /* SWP */
3477 fn = tcg_gen_atomic_xchg_i64;
3478 break;
3479 case 014: /* LDAPR, LDAPRH, LDAPRB */
3480 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3481 rs != 31 || a != 1 || r != 0) {
3482 unallocated_encoding(s);
3483 return;
3485 break;
3486 default:
3487 unallocated_encoding(s);
3488 return;
3491 if (rn == 31) {
3492 gen_check_sp_alignment(s);
3494 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3496 if (o3_opc == 014) {
3498 * LDAPR* are a special case because they are a simple load, not a
3499 * fetch-and-do-something op.
3500 * The architectural consistency requirements here are weaker than
3501 * full load-acquire (we only need "load-acquire processor consistent"),
3502 * but we choose to implement them as full LDAQ.
3504 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3505 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3506 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3507 return;
3510 tcg_rs = read_cpu_reg(s, rs, true);
3511 tcg_rt = cpu_reg(s, rt);
3513 if (o3_opc == 1) { /* LDCLR */
3514 tcg_gen_not_i64(tcg_rs, tcg_rs);
3517 /* The tcg atomic primitives are all full barriers. Therefore we
3518 * can ignore the Acquire and Release bits of this instruction.
3520 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3522 if ((mop & MO_SIGN) && size != MO_64) {
3523 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3528 * PAC memory operations
3530 * 31 30 27 26 24 22 21 12 11 10 5 0
3531 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3532 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3533 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3535 * Rt: the result register
3536 * Rn: base address or SP
3537 * V: vector flag (always 0 as of v8.3)
3538 * M: clear for key DA, set for key DB
3539 * W: pre-indexing flag
3540 * S: sign for imm9.
3542 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3543 int size, int rt, bool is_vector)
3545 int rn = extract32(insn, 5, 5);
3546 bool is_wback = extract32(insn, 11, 1);
3547 bool use_key_a = !extract32(insn, 23, 1);
3548 int offset;
3549 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3551 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3552 unallocated_encoding(s);
3553 return;
3556 if (rn == 31) {
3557 gen_check_sp_alignment(s);
3559 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3561 if (s->pauth_active) {
3562 if (use_key_a) {
3563 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3564 new_tmp_a64_zero(s));
3565 } else {
3566 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3567 new_tmp_a64_zero(s));
3571 /* Form the 10-bit signed, scaled offset. */
3572 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3573 offset = sextract32(offset << size, 0, 10 + size);
3574 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3576 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3577 clean_addr = gen_mte_check1(s, dirty_addr, false,
3578 is_wback || rn != 31, size);
3580 tcg_rt = cpu_reg(s, rt);
3581 do_gpr_ld(s, tcg_rt, clean_addr, size,
3582 /* extend */ false, /* iss_valid */ !is_wback,
3583 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3585 if (is_wback) {
3586 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3591 * LDAPR/STLR (unscaled immediate)
3593 * 31 30 24 22 21 12 10 5 0
3594 * +------+-------------+-----+---+--------+-----+----+-----+
3595 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3596 * +------+-------------+-----+---+--------+-----+----+-----+
3598 * Rt: source or destination register
3599 * Rn: base register
3600 * imm9: unscaled immediate offset
3601 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3602 * size: size of load/store
3604 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3606 int rt = extract32(insn, 0, 5);
3607 int rn = extract32(insn, 5, 5);
3608 int offset = sextract32(insn, 12, 9);
3609 int opc = extract32(insn, 22, 2);
3610 int size = extract32(insn, 30, 2);
3611 TCGv_i64 clean_addr, dirty_addr;
3612 bool is_store = false;
3613 bool extend = false;
3614 bool iss_sf;
3615 MemOp mop;
3617 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3618 unallocated_encoding(s);
3619 return;
3622 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3623 mop = size | MO_ALIGN;
3625 switch (opc) {
3626 case 0: /* STLURB */
3627 is_store = true;
3628 break;
3629 case 1: /* LDAPUR* */
3630 break;
3631 case 2: /* LDAPURS* 64-bit variant */
3632 if (size == 3) {
3633 unallocated_encoding(s);
3634 return;
3636 mop |= MO_SIGN;
3637 break;
3638 case 3: /* LDAPURS* 32-bit variant */
3639 if (size > 1) {
3640 unallocated_encoding(s);
3641 return;
3643 mop |= MO_SIGN;
3644 extend = true; /* zero-extend 32->64 after signed load */
3645 break;
3646 default:
3647 g_assert_not_reached();
3650 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3652 if (rn == 31) {
3653 gen_check_sp_alignment(s);
3656 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3657 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3658 clean_addr = clean_data_tbi(s, dirty_addr);
3660 if (is_store) {
3661 /* Store-Release semantics */
3662 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3663 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3664 } else {
3666 * Load-AcquirePC semantics; we implement as the slightly more
3667 * restrictive Load-Acquire.
3669 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3670 extend, true, rt, iss_sf, true);
3671 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3675 /* Load/store register (all forms) */
3676 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3678 int rt = extract32(insn, 0, 5);
3679 int opc = extract32(insn, 22, 2);
3680 bool is_vector = extract32(insn, 26, 1);
3681 int size = extract32(insn, 30, 2);
3683 switch (extract32(insn, 24, 2)) {
3684 case 0:
3685 if (extract32(insn, 21, 1) == 0) {
3686 /* Load/store register (unscaled immediate)
3687 * Load/store immediate pre/post-indexed
3688 * Load/store register unprivileged
3690 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3691 return;
3693 switch (extract32(insn, 10, 2)) {
3694 case 0:
3695 disas_ldst_atomic(s, insn, size, rt, is_vector);
3696 return;
3697 case 2:
3698 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3699 return;
3700 default:
3701 disas_ldst_pac(s, insn, size, rt, is_vector);
3702 return;
3704 break;
3705 case 1:
3706 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3707 return;
3709 unallocated_encoding(s);
3712 /* AdvSIMD load/store multiple structures
3714 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3715 * +---+---+---------------+---+-------------+--------+------+------+------+
3716 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3717 * +---+---+---------------+---+-------------+--------+------+------+------+
3719 * AdvSIMD load/store multiple structures (post-indexed)
3721 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3722 * +---+---+---------------+---+---+---------+--------+------+------+------+
3723 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3724 * +---+---+---------------+---+---+---------+--------+------+------+------+
3726 * Rt: first (or only) SIMD&FP register to be transferred
3727 * Rn: base address or SP
3728 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3730 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3732 int rt = extract32(insn, 0, 5);
3733 int rn = extract32(insn, 5, 5);
3734 int rm = extract32(insn, 16, 5);
3735 int size = extract32(insn, 10, 2);
3736 int opcode = extract32(insn, 12, 4);
3737 bool is_store = !extract32(insn, 22, 1);
3738 bool is_postidx = extract32(insn, 23, 1);
3739 bool is_q = extract32(insn, 30, 1);
3740 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3741 MemOp endian, align, mop;
3743 int total; /* total bytes */
3744 int elements; /* elements per vector */
3745 int rpt; /* num iterations */
3746 int selem; /* structure elements */
3747 int r;
3749 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3750 unallocated_encoding(s);
3751 return;
3754 if (!is_postidx && rm != 0) {
3755 unallocated_encoding(s);
3756 return;
3759 /* From the shared decode logic */
3760 switch (opcode) {
3761 case 0x0:
3762 rpt = 1;
3763 selem = 4;
3764 break;
3765 case 0x2:
3766 rpt = 4;
3767 selem = 1;
3768 break;
3769 case 0x4:
3770 rpt = 1;
3771 selem = 3;
3772 break;
3773 case 0x6:
3774 rpt = 3;
3775 selem = 1;
3776 break;
3777 case 0x7:
3778 rpt = 1;
3779 selem = 1;
3780 break;
3781 case 0x8:
3782 rpt = 1;
3783 selem = 2;
3784 break;
3785 case 0xa:
3786 rpt = 2;
3787 selem = 1;
3788 break;
3789 default:
3790 unallocated_encoding(s);
3791 return;
3794 if (size == 3 && !is_q && selem != 1) {
3795 /* reserved */
3796 unallocated_encoding(s);
3797 return;
3800 if (!fp_access_check(s)) {
3801 return;
3804 if (rn == 31) {
3805 gen_check_sp_alignment(s);
3808 /* For our purposes, bytes are always little-endian. */
3809 endian = s->be_data;
3810 if (size == 0) {
3811 endian = MO_LE;
3814 total = rpt * selem * (is_q ? 16 : 8);
3815 tcg_rn = cpu_reg_sp(s, rn);
3818 * Issue the MTE check vs the logical repeat count, before we
3819 * promote consecutive little-endian elements below.
3821 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3822 total);
3825 * Consecutive little-endian elements from a single register
3826 * can be promoted to a larger little-endian operation.
3828 align = MO_ALIGN;
3829 if (selem == 1 && endian == MO_LE) {
3830 align = pow2_align(size);
3831 size = 3;
3833 if (!s->align_mem) {
3834 align = 0;
3836 mop = endian | size | align;
3838 elements = (is_q ? 16 : 8) >> size;
3839 tcg_ebytes = tcg_constant_i64(1 << size);
3840 for (r = 0; r < rpt; r++) {
3841 int e;
3842 for (e = 0; e < elements; e++) {
3843 int xs;
3844 for (xs = 0; xs < selem; xs++) {
3845 int tt = (rt + r + xs) % 32;
3846 if (is_store) {
3847 do_vec_st(s, tt, e, clean_addr, mop);
3848 } else {
3849 do_vec_ld(s, tt, e, clean_addr, mop);
3851 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3856 if (!is_store) {
3857 /* For non-quad operations, setting a slice of the low
3858 * 64 bits of the register clears the high 64 bits (in
3859 * the ARM ARM pseudocode this is implicit in the fact
3860 * that 'rval' is a 64 bit wide variable).
3861 * For quad operations, we might still need to zero the
3862 * high bits of SVE.
3864 for (r = 0; r < rpt * selem; r++) {
3865 int tt = (rt + r) % 32;
3866 clear_vec_high(s, is_q, tt);
3870 if (is_postidx) {
3871 if (rm == 31) {
3872 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3873 } else {
3874 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3879 /* AdvSIMD load/store single structure
3881 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3882 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3883 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3884 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3886 * AdvSIMD load/store single structure (post-indexed)
3888 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3889 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3890 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3891 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3893 * Rt: first (or only) SIMD&FP register to be transferred
3894 * Rn: base address or SP
3895 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3896 * index = encoded in Q:S:size dependent on size
3898 * lane_size = encoded in R, opc
3899 * transfer width = encoded in opc, S, size
3901 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3903 int rt = extract32(insn, 0, 5);
3904 int rn = extract32(insn, 5, 5);
3905 int rm = extract32(insn, 16, 5);
3906 int size = extract32(insn, 10, 2);
3907 int S = extract32(insn, 12, 1);
3908 int opc = extract32(insn, 13, 3);
3909 int R = extract32(insn, 21, 1);
3910 int is_load = extract32(insn, 22, 1);
3911 int is_postidx = extract32(insn, 23, 1);
3912 int is_q = extract32(insn, 30, 1);
3914 int scale = extract32(opc, 1, 2);
3915 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3916 bool replicate = false;
3917 int index = is_q << 3 | S << 2 | size;
3918 int xs, total;
3919 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3920 MemOp mop;
3922 if (extract32(insn, 31, 1)) {
3923 unallocated_encoding(s);
3924 return;
3926 if (!is_postidx && rm != 0) {
3927 unallocated_encoding(s);
3928 return;
3931 switch (scale) {
3932 case 3:
3933 if (!is_load || S) {
3934 unallocated_encoding(s);
3935 return;
3937 scale = size;
3938 replicate = true;
3939 break;
3940 case 0:
3941 break;
3942 case 1:
3943 if (extract32(size, 0, 1)) {
3944 unallocated_encoding(s);
3945 return;
3947 index >>= 1;
3948 break;
3949 case 2:
3950 if (extract32(size, 1, 1)) {
3951 unallocated_encoding(s);
3952 return;
3954 if (!extract32(size, 0, 1)) {
3955 index >>= 2;
3956 } else {
3957 if (S) {
3958 unallocated_encoding(s);
3959 return;
3961 index >>= 3;
3962 scale = 3;
3964 break;
3965 default:
3966 g_assert_not_reached();
3969 if (!fp_access_check(s)) {
3970 return;
3973 if (rn == 31) {
3974 gen_check_sp_alignment(s);
3977 total = selem << scale;
3978 tcg_rn = cpu_reg_sp(s, rn);
3980 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3981 total);
3982 mop = finalize_memop(s, scale);
3984 tcg_ebytes = tcg_constant_i64(1 << scale);
3985 for (xs = 0; xs < selem; xs++) {
3986 if (replicate) {
3987 /* Load and replicate to all elements */
3988 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3990 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3991 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3992 (is_q + 1) * 8, vec_full_reg_size(s),
3993 tcg_tmp);
3994 tcg_temp_free_i64(tcg_tmp);
3995 } else {
3996 /* Load/store one element per register */
3997 if (is_load) {
3998 do_vec_ld(s, rt, index, clean_addr, mop);
3999 } else {
4000 do_vec_st(s, rt, index, clean_addr, mop);
4003 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
4004 rt = (rt + 1) % 32;
4007 if (is_postidx) {
4008 if (rm == 31) {
4009 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
4010 } else {
4011 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
4017 * Load/Store memory tags
4019 * 31 30 29 24 22 21 12 10 5 0
4020 * +-----+-------------+-----+---+------+-----+------+------+
4021 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
4022 * +-----+-------------+-----+---+------+-----+------+------+
4024 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
4026 int rt = extract32(insn, 0, 5);
4027 int rn = extract32(insn, 5, 5);
4028 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
4029 int op2 = extract32(insn, 10, 2);
4030 int op1 = extract32(insn, 22, 2);
4031 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
4032 int index = 0;
4033 TCGv_i64 addr, clean_addr, tcg_rt;
4035 /* We checked insn bits [29:24,21] in the caller. */
4036 if (extract32(insn, 30, 2) != 3) {
4037 goto do_unallocated;
4041 * @index is a tri-state variable which has 3 states:
4042 * < 0 : post-index, writeback
4043 * = 0 : signed offset
4044 * > 0 : pre-index, writeback
4046 switch (op1) {
4047 case 0:
4048 if (op2 != 0) {
4049 /* STG */
4050 index = op2 - 2;
4051 } else {
4052 /* STZGM */
4053 if (s->current_el == 0 || offset != 0) {
4054 goto do_unallocated;
4056 is_mult = is_zero = true;
4058 break;
4059 case 1:
4060 if (op2 != 0) {
4061 /* STZG */
4062 is_zero = true;
4063 index = op2 - 2;
4064 } else {
4065 /* LDG */
4066 is_load = true;
4068 break;
4069 case 2:
4070 if (op2 != 0) {
4071 /* ST2G */
4072 is_pair = true;
4073 index = op2 - 2;
4074 } else {
4075 /* STGM */
4076 if (s->current_el == 0 || offset != 0) {
4077 goto do_unallocated;
4079 is_mult = true;
4081 break;
4082 case 3:
4083 if (op2 != 0) {
4084 /* STZ2G */
4085 is_pair = is_zero = true;
4086 index = op2 - 2;
4087 } else {
4088 /* LDGM */
4089 if (s->current_el == 0 || offset != 0) {
4090 goto do_unallocated;
4092 is_mult = is_load = true;
4094 break;
4096 default:
4097 do_unallocated:
4098 unallocated_encoding(s);
4099 return;
4102 if (is_mult
4103 ? !dc_isar_feature(aa64_mte, s)
4104 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4105 goto do_unallocated;
4108 if (rn == 31) {
4109 gen_check_sp_alignment(s);
4112 addr = read_cpu_reg_sp(s, rn, true);
4113 if (index >= 0) {
4114 /* pre-index or signed offset */
4115 tcg_gen_addi_i64(addr, addr, offset);
4118 if (is_mult) {
4119 tcg_rt = cpu_reg(s, rt);
4121 if (is_zero) {
4122 int size = 4 << s->dcz_blocksize;
4124 if (s->ata) {
4125 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4128 * The non-tags portion of STZGM is mostly like DC_ZVA,
4129 * except the alignment happens before the access.
4131 clean_addr = clean_data_tbi(s, addr);
4132 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4133 gen_helper_dc_zva(cpu_env, clean_addr);
4134 } else if (s->ata) {
4135 if (is_load) {
4136 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4137 } else {
4138 gen_helper_stgm(cpu_env, addr, tcg_rt);
4140 } else {
4141 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4142 int size = 4 << GMID_EL1_BS;
4144 clean_addr = clean_data_tbi(s, addr);
4145 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4146 gen_probe_access(s, clean_addr, acc, size);
4148 if (is_load) {
4149 /* The result tags are zeros. */
4150 tcg_gen_movi_i64(tcg_rt, 0);
4153 return;
4156 if (is_load) {
4157 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4158 tcg_rt = cpu_reg(s, rt);
4159 if (s->ata) {
4160 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4161 } else {
4162 clean_addr = clean_data_tbi(s, addr);
4163 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4164 gen_address_with_allocation_tag0(tcg_rt, addr);
4166 } else {
4167 tcg_rt = cpu_reg_sp(s, rt);
4168 if (!s->ata) {
4170 * For STG and ST2G, we need to check alignment and probe memory.
4171 * TODO: For STZG and STZ2G, we could rely on the stores below,
4172 * at least for system mode; user-only won't enforce alignment.
4174 if (is_pair) {
4175 gen_helper_st2g_stub(cpu_env, addr);
4176 } else {
4177 gen_helper_stg_stub(cpu_env, addr);
4179 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4180 if (is_pair) {
4181 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4182 } else {
4183 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4185 } else {
4186 if (is_pair) {
4187 gen_helper_st2g(cpu_env, addr, tcg_rt);
4188 } else {
4189 gen_helper_stg(cpu_env, addr, tcg_rt);
4194 if (is_zero) {
4195 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4196 TCGv_i64 tcg_zero = tcg_constant_i64(0);
4197 int mem_index = get_mem_index(s);
4198 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4200 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4201 MO_UQ | MO_ALIGN_16);
4202 for (i = 8; i < n; i += 8) {
4203 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4204 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4208 if (index != 0) {
4209 /* pre-index or post-index */
4210 if (index < 0) {
4211 /* post-index */
4212 tcg_gen_addi_i64(addr, addr, offset);
4214 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4218 /* Loads and stores */
4219 static void disas_ldst(DisasContext *s, uint32_t insn)
4221 switch (extract32(insn, 24, 6)) {
4222 case 0x08: /* Load/store exclusive */
4223 disas_ldst_excl(s, insn);
4224 break;
4225 case 0x18: case 0x1c: /* Load register (literal) */
4226 disas_ld_lit(s, insn);
4227 break;
4228 case 0x28: case 0x29:
4229 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4230 disas_ldst_pair(s, insn);
4231 break;
4232 case 0x38: case 0x39:
4233 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4234 disas_ldst_reg(s, insn);
4235 break;
4236 case 0x0c: /* AdvSIMD load/store multiple structures */
4237 disas_ldst_multiple_struct(s, insn);
4238 break;
4239 case 0x0d: /* AdvSIMD load/store single structure */
4240 disas_ldst_single_struct(s, insn);
4241 break;
4242 case 0x19:
4243 if (extract32(insn, 21, 1) != 0) {
4244 disas_ldst_tag(s, insn);
4245 } else if (extract32(insn, 10, 2) == 0) {
4246 disas_ldst_ldapr_stlr(s, insn);
4247 } else {
4248 unallocated_encoding(s);
4250 break;
4251 default:
4252 unallocated_encoding(s);
4253 break;
4257 /* PC-rel. addressing
4258 * 31 30 29 28 24 23 5 4 0
4259 * +----+-------+-----------+-------------------+------+
4260 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4261 * +----+-------+-----------+-------------------+------+
4263 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4265 unsigned int page, rd;
4266 uint64_t base;
4267 uint64_t offset;
4269 page = extract32(insn, 31, 1);
4270 /* SignExtend(immhi:immlo) -> offset */
4271 offset = sextract64(insn, 5, 19);
4272 offset = offset << 2 | extract32(insn, 29, 2);
4273 rd = extract32(insn, 0, 5);
4274 base = s->pc_curr;
4276 if (page) {
4277 /* ADRP (page based) */
4278 base &= ~0xfff;
4279 offset <<= 12;
4282 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
4286 * Add/subtract (immediate)
4288 * 31 30 29 28 23 22 21 10 9 5 4 0
4289 * +--+--+--+-------------+--+-------------+-----+-----+
4290 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4291 * +--+--+--+-------------+--+-------------+-----+-----+
4293 * sf: 0 -> 32bit, 1 -> 64bit
4294 * op: 0 -> add , 1 -> sub
4295 * S: 1 -> set flags
4296 * sh: 1 -> LSL imm by 12
4298 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4300 int rd = extract32(insn, 0, 5);
4301 int rn = extract32(insn, 5, 5);
4302 uint64_t imm = extract32(insn, 10, 12);
4303 bool shift = extract32(insn, 22, 1);
4304 bool setflags = extract32(insn, 29, 1);
4305 bool sub_op = extract32(insn, 30, 1);
4306 bool is_64bit = extract32(insn, 31, 1);
4308 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4309 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4310 TCGv_i64 tcg_result;
4312 if (shift) {
4313 imm <<= 12;
4316 tcg_result = tcg_temp_new_i64();
4317 if (!setflags) {
4318 if (sub_op) {
4319 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4320 } else {
4321 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4323 } else {
4324 TCGv_i64 tcg_imm = tcg_constant_i64(imm);
4325 if (sub_op) {
4326 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4327 } else {
4328 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4332 if (is_64bit) {
4333 tcg_gen_mov_i64(tcg_rd, tcg_result);
4334 } else {
4335 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4338 tcg_temp_free_i64(tcg_result);
4342 * Add/subtract (immediate, with tags)
4344 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4345 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4346 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4347 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4349 * op: 0 -> add, 1 -> sub
4351 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4353 int rd = extract32(insn, 0, 5);
4354 int rn = extract32(insn, 5, 5);
4355 int uimm4 = extract32(insn, 10, 4);
4356 int uimm6 = extract32(insn, 16, 6);
4357 bool sub_op = extract32(insn, 30, 1);
4358 TCGv_i64 tcg_rn, tcg_rd;
4359 int imm;
4361 /* Test all of sf=1, S=0, o2=0, o3=0. */
4362 if ((insn & 0xa040c000u) != 0x80000000u ||
4363 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4364 unallocated_encoding(s);
4365 return;
4368 imm = uimm6 << LOG2_TAG_GRANULE;
4369 if (sub_op) {
4370 imm = -imm;
4373 tcg_rn = cpu_reg_sp(s, rn);
4374 tcg_rd = cpu_reg_sp(s, rd);
4376 if (s->ata) {
4377 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn,
4378 tcg_constant_i32(imm),
4379 tcg_constant_i32(uimm4));
4380 } else {
4381 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4382 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4386 /* The input should be a value in the bottom e bits (with higher
4387 * bits zero); returns that value replicated into every element
4388 * of size e in a 64 bit integer.
4390 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4392 assert(e != 0);
4393 while (e < 64) {
4394 mask |= mask << e;
4395 e *= 2;
4397 return mask;
4400 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4401 static inline uint64_t bitmask64(unsigned int length)
4403 assert(length > 0 && length <= 64);
4404 return ~0ULL >> (64 - length);
4407 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4408 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4409 * value (ie should cause a guest UNDEF exception), and true if they are
4410 * valid, in which case the decoded bit pattern is written to result.
4412 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4413 unsigned int imms, unsigned int immr)
4415 uint64_t mask;
4416 unsigned e, levels, s, r;
4417 int len;
4419 assert(immn < 2 && imms < 64 && immr < 64);
4421 /* The bit patterns we create here are 64 bit patterns which
4422 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4423 * 64 bits each. Each element contains the same value: a run
4424 * of between 1 and e-1 non-zero bits, rotated within the
4425 * element by between 0 and e-1 bits.
4427 * The element size and run length are encoded into immn (1 bit)
4428 * and imms (6 bits) as follows:
4429 * 64 bit elements: immn = 1, imms = <length of run - 1>
4430 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4431 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4432 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4433 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4434 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4435 * Notice that immn = 0, imms = 11111x is the only combination
4436 * not covered by one of the above options; this is reserved.
4437 * Further, <length of run - 1> all-ones is a reserved pattern.
4439 * In all cases the rotation is by immr % e (and immr is 6 bits).
4442 /* First determine the element size */
4443 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4444 if (len < 1) {
4445 /* This is the immn == 0, imms == 0x11111x case */
4446 return false;
4448 e = 1 << len;
4450 levels = e - 1;
4451 s = imms & levels;
4452 r = immr & levels;
4454 if (s == levels) {
4455 /* <length of run - 1> mustn't be all-ones. */
4456 return false;
4459 /* Create the value of one element: s+1 set bits rotated
4460 * by r within the element (which is e bits wide)...
4462 mask = bitmask64(s + 1);
4463 if (r) {
4464 mask = (mask >> r) | (mask << (e - r));
4465 mask &= bitmask64(e);
4467 /* ...then replicate the element over the whole 64 bit value */
4468 mask = bitfield_replicate(mask, e);
4469 *result = mask;
4470 return true;
4473 /* Logical (immediate)
4474 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4475 * +----+-----+-------------+---+------+------+------+------+
4476 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4477 * +----+-----+-------------+---+------+------+------+------+
4479 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4481 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4482 TCGv_i64 tcg_rd, tcg_rn;
4483 uint64_t wmask;
4484 bool is_and = false;
4486 sf = extract32(insn, 31, 1);
4487 opc = extract32(insn, 29, 2);
4488 is_n = extract32(insn, 22, 1);
4489 immr = extract32(insn, 16, 6);
4490 imms = extract32(insn, 10, 6);
4491 rn = extract32(insn, 5, 5);
4492 rd = extract32(insn, 0, 5);
4494 if (!sf && is_n) {
4495 unallocated_encoding(s);
4496 return;
4499 if (opc == 0x3) { /* ANDS */
4500 tcg_rd = cpu_reg(s, rd);
4501 } else {
4502 tcg_rd = cpu_reg_sp(s, rd);
4504 tcg_rn = cpu_reg(s, rn);
4506 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4507 /* some immediate field values are reserved */
4508 unallocated_encoding(s);
4509 return;
4512 if (!sf) {
4513 wmask &= 0xffffffff;
4516 switch (opc) {
4517 case 0x3: /* ANDS */
4518 case 0x0: /* AND */
4519 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4520 is_and = true;
4521 break;
4522 case 0x1: /* ORR */
4523 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4524 break;
4525 case 0x2: /* EOR */
4526 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4527 break;
4528 default:
4529 assert(FALSE); /* must handle all above */
4530 break;
4533 if (!sf && !is_and) {
4534 /* zero extend final result; we know we can skip this for AND
4535 * since the immediate had the high 32 bits clear.
4537 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4540 if (opc == 3) { /* ANDS */
4541 gen_logic_CC(sf, tcg_rd);
4546 * Move wide (immediate)
4548 * 31 30 29 28 23 22 21 20 5 4 0
4549 * +--+-----+-------------+-----+----------------+------+
4550 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4551 * +--+-----+-------------+-----+----------------+------+
4553 * sf: 0 -> 32 bit, 1 -> 64 bit
4554 * opc: 00 -> N, 10 -> Z, 11 -> K
4555 * hw: shift/16 (0,16, and sf only 32, 48)
4557 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4559 int rd = extract32(insn, 0, 5);
4560 uint64_t imm = extract32(insn, 5, 16);
4561 int sf = extract32(insn, 31, 1);
4562 int opc = extract32(insn, 29, 2);
4563 int pos = extract32(insn, 21, 2) << 4;
4564 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4566 if (!sf && (pos >= 32)) {
4567 unallocated_encoding(s);
4568 return;
4571 switch (opc) {
4572 case 0: /* MOVN */
4573 case 2: /* MOVZ */
4574 imm <<= pos;
4575 if (opc == 0) {
4576 imm = ~imm;
4578 if (!sf) {
4579 imm &= 0xffffffffu;
4581 tcg_gen_movi_i64(tcg_rd, imm);
4582 break;
4583 case 3: /* MOVK */
4584 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_constant_i64(imm), pos, 16);
4585 if (!sf) {
4586 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4588 break;
4589 default:
4590 unallocated_encoding(s);
4591 break;
4595 /* Bitfield
4596 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4597 * +----+-----+-------------+---+------+------+------+------+
4598 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4599 * +----+-----+-------------+---+------+------+------+------+
4601 static void disas_bitfield(DisasContext *s, uint32_t insn)
4603 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4604 TCGv_i64 tcg_rd, tcg_tmp;
4606 sf = extract32(insn, 31, 1);
4607 opc = extract32(insn, 29, 2);
4608 n = extract32(insn, 22, 1);
4609 ri = extract32(insn, 16, 6);
4610 si = extract32(insn, 10, 6);
4611 rn = extract32(insn, 5, 5);
4612 rd = extract32(insn, 0, 5);
4613 bitsize = sf ? 64 : 32;
4615 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4616 unallocated_encoding(s);
4617 return;
4620 tcg_rd = cpu_reg(s, rd);
4622 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4623 to be smaller than bitsize, we'll never reference data outside the
4624 low 32-bits anyway. */
4625 tcg_tmp = read_cpu_reg(s, rn, 1);
4627 /* Recognize simple(r) extractions. */
4628 if (si >= ri) {
4629 /* Wd<s-r:0> = Wn<s:r> */
4630 len = (si - ri) + 1;
4631 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4632 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4633 goto done;
4634 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4635 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4636 return;
4638 /* opc == 1, BFXIL fall through to deposit */
4639 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4640 pos = 0;
4641 } else {
4642 /* Handle the ri > si case with a deposit
4643 * Wd<32+s-r,32-r> = Wn<s:0>
4645 len = si + 1;
4646 pos = (bitsize - ri) & (bitsize - 1);
4649 if (opc == 0 && len < ri) {
4650 /* SBFM: sign extend the destination field from len to fill
4651 the balance of the word. Let the deposit below insert all
4652 of those sign bits. */
4653 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4654 len = ri;
4657 if (opc == 1) { /* BFM, BFXIL */
4658 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4659 } else {
4660 /* SBFM or UBFM: We start with zero, and we haven't modified
4661 any bits outside bitsize, therefore the zero-extension
4662 below is unneeded. */
4663 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4664 return;
4667 done:
4668 if (!sf) { /* zero extend final result */
4669 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4673 /* Extract
4674 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4675 * +----+------+-------------+---+----+------+--------+------+------+
4676 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4677 * +----+------+-------------+---+----+------+--------+------+------+
4679 static void disas_extract(DisasContext *s, uint32_t insn)
4681 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4683 sf = extract32(insn, 31, 1);
4684 n = extract32(insn, 22, 1);
4685 rm = extract32(insn, 16, 5);
4686 imm = extract32(insn, 10, 6);
4687 rn = extract32(insn, 5, 5);
4688 rd = extract32(insn, 0, 5);
4689 op21 = extract32(insn, 29, 2);
4690 op0 = extract32(insn, 21, 1);
4691 bitsize = sf ? 64 : 32;
4693 if (sf != n || op21 || op0 || imm >= bitsize) {
4694 unallocated_encoding(s);
4695 } else {
4696 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4698 tcg_rd = cpu_reg(s, rd);
4700 if (unlikely(imm == 0)) {
4701 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4702 * so an extract from bit 0 is a special case.
4704 if (sf) {
4705 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4706 } else {
4707 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4709 } else {
4710 tcg_rm = cpu_reg(s, rm);
4711 tcg_rn = cpu_reg(s, rn);
4713 if (sf) {
4714 /* Specialization to ROR happens in EXTRACT2. */
4715 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4716 } else {
4717 TCGv_i32 t0 = tcg_temp_new_i32();
4719 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4720 if (rm == rn) {
4721 tcg_gen_rotri_i32(t0, t0, imm);
4722 } else {
4723 TCGv_i32 t1 = tcg_temp_new_i32();
4724 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4725 tcg_gen_extract2_i32(t0, t0, t1, imm);
4726 tcg_temp_free_i32(t1);
4728 tcg_gen_extu_i32_i64(tcg_rd, t0);
4729 tcg_temp_free_i32(t0);
4735 /* Data processing - immediate */
4736 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4738 switch (extract32(insn, 23, 6)) {
4739 case 0x20: case 0x21: /* PC-rel. addressing */
4740 disas_pc_rel_adr(s, insn);
4741 break;
4742 case 0x22: /* Add/subtract (immediate) */
4743 disas_add_sub_imm(s, insn);
4744 break;
4745 case 0x23: /* Add/subtract (immediate, with tags) */
4746 disas_add_sub_imm_with_tags(s, insn);
4747 break;
4748 case 0x24: /* Logical (immediate) */
4749 disas_logic_imm(s, insn);
4750 break;
4751 case 0x25: /* Move wide (immediate) */
4752 disas_movw_imm(s, insn);
4753 break;
4754 case 0x26: /* Bitfield */
4755 disas_bitfield(s, insn);
4756 break;
4757 case 0x27: /* Extract */
4758 disas_extract(s, insn);
4759 break;
4760 default:
4761 unallocated_encoding(s);
4762 break;
4766 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4767 * Note that it is the caller's responsibility to ensure that the
4768 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4769 * mandated semantics for out of range shifts.
4771 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4772 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4774 switch (shift_type) {
4775 case A64_SHIFT_TYPE_LSL:
4776 tcg_gen_shl_i64(dst, src, shift_amount);
4777 break;
4778 case A64_SHIFT_TYPE_LSR:
4779 tcg_gen_shr_i64(dst, src, shift_amount);
4780 break;
4781 case A64_SHIFT_TYPE_ASR:
4782 if (!sf) {
4783 tcg_gen_ext32s_i64(dst, src);
4785 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4786 break;
4787 case A64_SHIFT_TYPE_ROR:
4788 if (sf) {
4789 tcg_gen_rotr_i64(dst, src, shift_amount);
4790 } else {
4791 TCGv_i32 t0, t1;
4792 t0 = tcg_temp_new_i32();
4793 t1 = tcg_temp_new_i32();
4794 tcg_gen_extrl_i64_i32(t0, src);
4795 tcg_gen_extrl_i64_i32(t1, shift_amount);
4796 tcg_gen_rotr_i32(t0, t0, t1);
4797 tcg_gen_extu_i32_i64(dst, t0);
4798 tcg_temp_free_i32(t0);
4799 tcg_temp_free_i32(t1);
4801 break;
4802 default:
4803 assert(FALSE); /* all shift types should be handled */
4804 break;
4807 if (!sf) { /* zero extend final result */
4808 tcg_gen_ext32u_i64(dst, dst);
4812 /* Shift a TCGv src by immediate, put result in dst.
4813 * The shift amount must be in range (this should always be true as the
4814 * relevant instructions will UNDEF on bad shift immediates).
4816 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4817 enum a64_shift_type shift_type, unsigned int shift_i)
4819 assert(shift_i < (sf ? 64 : 32));
4821 if (shift_i == 0) {
4822 tcg_gen_mov_i64(dst, src);
4823 } else {
4824 shift_reg(dst, src, sf, shift_type, tcg_constant_i64(shift_i));
4828 /* Logical (shifted register)
4829 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4830 * +----+-----+-----------+-------+---+------+--------+------+------+
4831 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4832 * +----+-----+-----------+-------+---+------+--------+------+------+
4834 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4836 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4837 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4839 sf = extract32(insn, 31, 1);
4840 opc = extract32(insn, 29, 2);
4841 shift_type = extract32(insn, 22, 2);
4842 invert = extract32(insn, 21, 1);
4843 rm = extract32(insn, 16, 5);
4844 shift_amount = extract32(insn, 10, 6);
4845 rn = extract32(insn, 5, 5);
4846 rd = extract32(insn, 0, 5);
4848 if (!sf && (shift_amount & (1 << 5))) {
4849 unallocated_encoding(s);
4850 return;
4853 tcg_rd = cpu_reg(s, rd);
4855 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4856 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4857 * register-register MOV and MVN, so it is worth special casing.
4859 tcg_rm = cpu_reg(s, rm);
4860 if (invert) {
4861 tcg_gen_not_i64(tcg_rd, tcg_rm);
4862 if (!sf) {
4863 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4865 } else {
4866 if (sf) {
4867 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4868 } else {
4869 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4872 return;
4875 tcg_rm = read_cpu_reg(s, rm, sf);
4877 if (shift_amount) {
4878 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4881 tcg_rn = cpu_reg(s, rn);
4883 switch (opc | (invert << 2)) {
4884 case 0: /* AND */
4885 case 3: /* ANDS */
4886 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4887 break;
4888 case 1: /* ORR */
4889 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4890 break;
4891 case 2: /* EOR */
4892 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4893 break;
4894 case 4: /* BIC */
4895 case 7: /* BICS */
4896 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4897 break;
4898 case 5: /* ORN */
4899 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4900 break;
4901 case 6: /* EON */
4902 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4903 break;
4904 default:
4905 assert(FALSE);
4906 break;
4909 if (!sf) {
4910 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4913 if (opc == 3) {
4914 gen_logic_CC(sf, tcg_rd);
4919 * Add/subtract (extended register)
4921 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4922 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4923 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4924 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4926 * sf: 0 -> 32bit, 1 -> 64bit
4927 * op: 0 -> add , 1 -> sub
4928 * S: 1 -> set flags
4929 * opt: 00
4930 * option: extension type (see DecodeRegExtend)
4931 * imm3: optional shift to Rm
4933 * Rd = Rn + LSL(extend(Rm), amount)
4935 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4937 int rd = extract32(insn, 0, 5);
4938 int rn = extract32(insn, 5, 5);
4939 int imm3 = extract32(insn, 10, 3);
4940 int option = extract32(insn, 13, 3);
4941 int rm = extract32(insn, 16, 5);
4942 int opt = extract32(insn, 22, 2);
4943 bool setflags = extract32(insn, 29, 1);
4944 bool sub_op = extract32(insn, 30, 1);
4945 bool sf = extract32(insn, 31, 1);
4947 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4948 TCGv_i64 tcg_rd;
4949 TCGv_i64 tcg_result;
4951 if (imm3 > 4 || opt != 0) {
4952 unallocated_encoding(s);
4953 return;
4956 /* non-flag setting ops may use SP */
4957 if (!setflags) {
4958 tcg_rd = cpu_reg_sp(s, rd);
4959 } else {
4960 tcg_rd = cpu_reg(s, rd);
4962 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4964 tcg_rm = read_cpu_reg(s, rm, sf);
4965 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4967 tcg_result = tcg_temp_new_i64();
4969 if (!setflags) {
4970 if (sub_op) {
4971 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4972 } else {
4973 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4975 } else {
4976 if (sub_op) {
4977 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4978 } else {
4979 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4983 if (sf) {
4984 tcg_gen_mov_i64(tcg_rd, tcg_result);
4985 } else {
4986 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4989 tcg_temp_free_i64(tcg_result);
4993 * Add/subtract (shifted register)
4995 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4996 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4997 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4998 * +--+--+--+-----------+-----+--+-------+---------+------+------+
5000 * sf: 0 -> 32bit, 1 -> 64bit
5001 * op: 0 -> add , 1 -> sub
5002 * S: 1 -> set flags
5003 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
5004 * imm6: Shift amount to apply to Rm before the add/sub
5006 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
5008 int rd = extract32(insn, 0, 5);
5009 int rn = extract32(insn, 5, 5);
5010 int imm6 = extract32(insn, 10, 6);
5011 int rm = extract32(insn, 16, 5);
5012 int shift_type = extract32(insn, 22, 2);
5013 bool setflags = extract32(insn, 29, 1);
5014 bool sub_op = extract32(insn, 30, 1);
5015 bool sf = extract32(insn, 31, 1);
5017 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5018 TCGv_i64 tcg_rn, tcg_rm;
5019 TCGv_i64 tcg_result;
5021 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
5022 unallocated_encoding(s);
5023 return;
5026 tcg_rn = read_cpu_reg(s, rn, sf);
5027 tcg_rm = read_cpu_reg(s, rm, sf);
5029 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
5031 tcg_result = tcg_temp_new_i64();
5033 if (!setflags) {
5034 if (sub_op) {
5035 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
5036 } else {
5037 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
5039 } else {
5040 if (sub_op) {
5041 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
5042 } else {
5043 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
5047 if (sf) {
5048 tcg_gen_mov_i64(tcg_rd, tcg_result);
5049 } else {
5050 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
5053 tcg_temp_free_i64(tcg_result);
5056 /* Data-processing (3 source)
5058 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
5059 * +--+------+-----------+------+------+----+------+------+------+
5060 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
5061 * +--+------+-----------+------+------+----+------+------+------+
5063 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
5065 int rd = extract32(insn, 0, 5);
5066 int rn = extract32(insn, 5, 5);
5067 int ra = extract32(insn, 10, 5);
5068 int rm = extract32(insn, 16, 5);
5069 int op_id = (extract32(insn, 29, 3) << 4) |
5070 (extract32(insn, 21, 3) << 1) |
5071 extract32(insn, 15, 1);
5072 bool sf = extract32(insn, 31, 1);
5073 bool is_sub = extract32(op_id, 0, 1);
5074 bool is_high = extract32(op_id, 2, 1);
5075 bool is_signed = false;
5076 TCGv_i64 tcg_op1;
5077 TCGv_i64 tcg_op2;
5078 TCGv_i64 tcg_tmp;
5080 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
5081 switch (op_id) {
5082 case 0x42: /* SMADDL */
5083 case 0x43: /* SMSUBL */
5084 case 0x44: /* SMULH */
5085 is_signed = true;
5086 break;
5087 case 0x0: /* MADD (32bit) */
5088 case 0x1: /* MSUB (32bit) */
5089 case 0x40: /* MADD (64bit) */
5090 case 0x41: /* MSUB (64bit) */
5091 case 0x4a: /* UMADDL */
5092 case 0x4b: /* UMSUBL */
5093 case 0x4c: /* UMULH */
5094 break;
5095 default:
5096 unallocated_encoding(s);
5097 return;
5100 if (is_high) {
5101 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5102 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5103 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5104 TCGv_i64 tcg_rm = cpu_reg(s, rm);
5106 if (is_signed) {
5107 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5108 } else {
5109 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5112 tcg_temp_free_i64(low_bits);
5113 return;
5116 tcg_op1 = tcg_temp_new_i64();
5117 tcg_op2 = tcg_temp_new_i64();
5118 tcg_tmp = tcg_temp_new_i64();
5120 if (op_id < 0x42) {
5121 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5122 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5123 } else {
5124 if (is_signed) {
5125 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5126 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5127 } else {
5128 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5129 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5133 if (ra == 31 && !is_sub) {
5134 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5135 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5136 } else {
5137 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5138 if (is_sub) {
5139 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5140 } else {
5141 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5145 if (!sf) {
5146 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5149 tcg_temp_free_i64(tcg_op1);
5150 tcg_temp_free_i64(tcg_op2);
5151 tcg_temp_free_i64(tcg_tmp);
5154 /* Add/subtract (with carry)
5155 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5156 * +--+--+--+------------------------+------+-------------+------+-----+
5157 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5158 * +--+--+--+------------------------+------+-------------+------+-----+
5161 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5163 unsigned int sf, op, setflags, rm, rn, rd;
5164 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5166 sf = extract32(insn, 31, 1);
5167 op = extract32(insn, 30, 1);
5168 setflags = extract32(insn, 29, 1);
5169 rm = extract32(insn, 16, 5);
5170 rn = extract32(insn, 5, 5);
5171 rd = extract32(insn, 0, 5);
5173 tcg_rd = cpu_reg(s, rd);
5174 tcg_rn = cpu_reg(s, rn);
5176 if (op) {
5177 tcg_y = new_tmp_a64(s);
5178 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5179 } else {
5180 tcg_y = cpu_reg(s, rm);
5183 if (setflags) {
5184 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5185 } else {
5186 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5191 * Rotate right into flags
5192 * 31 30 29 21 15 10 5 4 0
5193 * +--+--+--+-----------------+--------+-----------+------+--+------+
5194 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5195 * +--+--+--+-----------------+--------+-----------+------+--+------+
5197 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5199 int mask = extract32(insn, 0, 4);
5200 int o2 = extract32(insn, 4, 1);
5201 int rn = extract32(insn, 5, 5);
5202 int imm6 = extract32(insn, 15, 6);
5203 int sf_op_s = extract32(insn, 29, 3);
5204 TCGv_i64 tcg_rn;
5205 TCGv_i32 nzcv;
5207 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5208 unallocated_encoding(s);
5209 return;
5212 tcg_rn = read_cpu_reg(s, rn, 1);
5213 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5215 nzcv = tcg_temp_new_i32();
5216 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5218 if (mask & 8) { /* N */
5219 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5221 if (mask & 4) { /* Z */
5222 tcg_gen_not_i32(cpu_ZF, nzcv);
5223 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5225 if (mask & 2) { /* C */
5226 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5228 if (mask & 1) { /* V */
5229 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5232 tcg_temp_free_i32(nzcv);
5236 * Evaluate into flags
5237 * 31 30 29 21 15 14 10 5 4 0
5238 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5239 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5240 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5242 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5244 int o3_mask = extract32(insn, 0, 5);
5245 int rn = extract32(insn, 5, 5);
5246 int o2 = extract32(insn, 15, 6);
5247 int sz = extract32(insn, 14, 1);
5248 int sf_op_s = extract32(insn, 29, 3);
5249 TCGv_i32 tmp;
5250 int shift;
5252 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5253 !dc_isar_feature(aa64_condm_4, s)) {
5254 unallocated_encoding(s);
5255 return;
5257 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5259 tmp = tcg_temp_new_i32();
5260 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5261 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5262 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5263 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5264 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5265 tcg_temp_free_i32(tmp);
5268 /* Conditional compare (immediate / register)
5269 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5270 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5271 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5272 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5273 * [1] y [0] [0]
5275 static void disas_cc(DisasContext *s, uint32_t insn)
5277 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5278 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5279 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5280 DisasCompare c;
5282 if (!extract32(insn, 29, 1)) {
5283 unallocated_encoding(s);
5284 return;
5286 if (insn & (1 << 10 | 1 << 4)) {
5287 unallocated_encoding(s);
5288 return;
5290 sf = extract32(insn, 31, 1);
5291 op = extract32(insn, 30, 1);
5292 is_imm = extract32(insn, 11, 1);
5293 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5294 cond = extract32(insn, 12, 4);
5295 rn = extract32(insn, 5, 5);
5296 nzcv = extract32(insn, 0, 4);
5298 /* Set T0 = !COND. */
5299 tcg_t0 = tcg_temp_new_i32();
5300 arm_test_cc(&c, cond);
5301 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5302 arm_free_cc(&c);
5304 /* Load the arguments for the new comparison. */
5305 if (is_imm) {
5306 tcg_y = new_tmp_a64(s);
5307 tcg_gen_movi_i64(tcg_y, y);
5308 } else {
5309 tcg_y = cpu_reg(s, y);
5311 tcg_rn = cpu_reg(s, rn);
5313 /* Set the flags for the new comparison. */
5314 tcg_tmp = tcg_temp_new_i64();
5315 if (op) {
5316 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5317 } else {
5318 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5320 tcg_temp_free_i64(tcg_tmp);
5322 /* If COND was false, force the flags to #nzcv. Compute two masks
5323 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5324 * For tcg hosts that support ANDC, we can make do with just T1.
5325 * In either case, allow the tcg optimizer to delete any unused mask.
5327 tcg_t1 = tcg_temp_new_i32();
5328 tcg_t2 = tcg_temp_new_i32();
5329 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5330 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5332 if (nzcv & 8) { /* N */
5333 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5334 } else {
5335 if (TCG_TARGET_HAS_andc_i32) {
5336 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5337 } else {
5338 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5341 if (nzcv & 4) { /* Z */
5342 if (TCG_TARGET_HAS_andc_i32) {
5343 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5344 } else {
5345 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5347 } else {
5348 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5350 if (nzcv & 2) { /* C */
5351 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5352 } else {
5353 if (TCG_TARGET_HAS_andc_i32) {
5354 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5355 } else {
5356 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5359 if (nzcv & 1) { /* V */
5360 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5361 } else {
5362 if (TCG_TARGET_HAS_andc_i32) {
5363 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5364 } else {
5365 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5368 tcg_temp_free_i32(tcg_t0);
5369 tcg_temp_free_i32(tcg_t1);
5370 tcg_temp_free_i32(tcg_t2);
5373 /* Conditional select
5374 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5375 * +----+----+---+-----------------+------+------+-----+------+------+
5376 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5377 * +----+----+---+-----------------+------+------+-----+------+------+
5379 static void disas_cond_select(DisasContext *s, uint32_t insn)
5381 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5382 TCGv_i64 tcg_rd, zero;
5383 DisasCompare64 c;
5385 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5386 /* S == 1 or op2<1> == 1 */
5387 unallocated_encoding(s);
5388 return;
5390 sf = extract32(insn, 31, 1);
5391 else_inv = extract32(insn, 30, 1);
5392 rm = extract32(insn, 16, 5);
5393 cond = extract32(insn, 12, 4);
5394 else_inc = extract32(insn, 10, 1);
5395 rn = extract32(insn, 5, 5);
5396 rd = extract32(insn, 0, 5);
5398 tcg_rd = cpu_reg(s, rd);
5400 a64_test_cc(&c, cond);
5401 zero = tcg_constant_i64(0);
5403 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5404 /* CSET & CSETM. */
5405 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5406 if (else_inv) {
5407 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5409 } else {
5410 TCGv_i64 t_true = cpu_reg(s, rn);
5411 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5412 if (else_inv && else_inc) {
5413 tcg_gen_neg_i64(t_false, t_false);
5414 } else if (else_inv) {
5415 tcg_gen_not_i64(t_false, t_false);
5416 } else if (else_inc) {
5417 tcg_gen_addi_i64(t_false, t_false, 1);
5419 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5422 a64_free_cc(&c);
5424 if (!sf) {
5425 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5429 static void handle_clz(DisasContext *s, unsigned int sf,
5430 unsigned int rn, unsigned int rd)
5432 TCGv_i64 tcg_rd, tcg_rn;
5433 tcg_rd = cpu_reg(s, rd);
5434 tcg_rn = cpu_reg(s, rn);
5436 if (sf) {
5437 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5438 } else {
5439 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5440 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5441 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5442 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5443 tcg_temp_free_i32(tcg_tmp32);
5447 static void handle_cls(DisasContext *s, unsigned int sf,
5448 unsigned int rn, unsigned int rd)
5450 TCGv_i64 tcg_rd, tcg_rn;
5451 tcg_rd = cpu_reg(s, rd);
5452 tcg_rn = cpu_reg(s, rn);
5454 if (sf) {
5455 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5456 } else {
5457 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5458 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5459 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5460 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5461 tcg_temp_free_i32(tcg_tmp32);
5465 static void handle_rbit(DisasContext *s, unsigned int sf,
5466 unsigned int rn, unsigned int rd)
5468 TCGv_i64 tcg_rd, tcg_rn;
5469 tcg_rd = cpu_reg(s, rd);
5470 tcg_rn = cpu_reg(s, rn);
5472 if (sf) {
5473 gen_helper_rbit64(tcg_rd, tcg_rn);
5474 } else {
5475 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5476 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5477 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5478 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5479 tcg_temp_free_i32(tcg_tmp32);
5483 /* REV with sf==1, opcode==3 ("REV64") */
5484 static void handle_rev64(DisasContext *s, unsigned int sf,
5485 unsigned int rn, unsigned int rd)
5487 if (!sf) {
5488 unallocated_encoding(s);
5489 return;
5491 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5494 /* REV with sf==0, opcode==2
5495 * REV32 (sf==1, opcode==2)
5497 static void handle_rev32(DisasContext *s, unsigned int sf,
5498 unsigned int rn, unsigned int rd)
5500 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5501 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5503 if (sf) {
5504 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5505 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5506 } else {
5507 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5511 /* REV16 (opcode==1) */
5512 static void handle_rev16(DisasContext *s, unsigned int sf,
5513 unsigned int rn, unsigned int rd)
5515 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5516 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5517 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5518 TCGv_i64 mask = tcg_constant_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5520 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5521 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5522 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5523 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5524 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5526 tcg_temp_free_i64(tcg_tmp);
5529 /* Data-processing (1 source)
5530 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5531 * +----+---+---+-----------------+---------+--------+------+------+
5532 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5533 * +----+---+---+-----------------+---------+--------+------+------+
5535 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5537 unsigned int sf, opcode, opcode2, rn, rd;
5538 TCGv_i64 tcg_rd;
5540 if (extract32(insn, 29, 1)) {
5541 unallocated_encoding(s);
5542 return;
5545 sf = extract32(insn, 31, 1);
5546 opcode = extract32(insn, 10, 6);
5547 opcode2 = extract32(insn, 16, 5);
5548 rn = extract32(insn, 5, 5);
5549 rd = extract32(insn, 0, 5);
5551 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5553 switch (MAP(sf, opcode2, opcode)) {
5554 case MAP(0, 0x00, 0x00): /* RBIT */
5555 case MAP(1, 0x00, 0x00):
5556 handle_rbit(s, sf, rn, rd);
5557 break;
5558 case MAP(0, 0x00, 0x01): /* REV16 */
5559 case MAP(1, 0x00, 0x01):
5560 handle_rev16(s, sf, rn, rd);
5561 break;
5562 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5563 case MAP(1, 0x00, 0x02):
5564 handle_rev32(s, sf, rn, rd);
5565 break;
5566 case MAP(1, 0x00, 0x03): /* REV64 */
5567 handle_rev64(s, sf, rn, rd);
5568 break;
5569 case MAP(0, 0x00, 0x04): /* CLZ */
5570 case MAP(1, 0x00, 0x04):
5571 handle_clz(s, sf, rn, rd);
5572 break;
5573 case MAP(0, 0x00, 0x05): /* CLS */
5574 case MAP(1, 0x00, 0x05):
5575 handle_cls(s, sf, rn, rd);
5576 break;
5577 case MAP(1, 0x01, 0x00): /* PACIA */
5578 if (s->pauth_active) {
5579 tcg_rd = cpu_reg(s, rd);
5580 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5581 } else if (!dc_isar_feature(aa64_pauth, s)) {
5582 goto do_unallocated;
5584 break;
5585 case MAP(1, 0x01, 0x01): /* PACIB */
5586 if (s->pauth_active) {
5587 tcg_rd = cpu_reg(s, rd);
5588 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5589 } else if (!dc_isar_feature(aa64_pauth, s)) {
5590 goto do_unallocated;
5592 break;
5593 case MAP(1, 0x01, 0x02): /* PACDA */
5594 if (s->pauth_active) {
5595 tcg_rd = cpu_reg(s, rd);
5596 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5597 } else if (!dc_isar_feature(aa64_pauth, s)) {
5598 goto do_unallocated;
5600 break;
5601 case MAP(1, 0x01, 0x03): /* PACDB */
5602 if (s->pauth_active) {
5603 tcg_rd = cpu_reg(s, rd);
5604 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5605 } else if (!dc_isar_feature(aa64_pauth, s)) {
5606 goto do_unallocated;
5608 break;
5609 case MAP(1, 0x01, 0x04): /* AUTIA */
5610 if (s->pauth_active) {
5611 tcg_rd = cpu_reg(s, rd);
5612 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5613 } else if (!dc_isar_feature(aa64_pauth, s)) {
5614 goto do_unallocated;
5616 break;
5617 case MAP(1, 0x01, 0x05): /* AUTIB */
5618 if (s->pauth_active) {
5619 tcg_rd = cpu_reg(s, rd);
5620 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5621 } else if (!dc_isar_feature(aa64_pauth, s)) {
5622 goto do_unallocated;
5624 break;
5625 case MAP(1, 0x01, 0x06): /* AUTDA */
5626 if (s->pauth_active) {
5627 tcg_rd = cpu_reg(s, rd);
5628 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5629 } else if (!dc_isar_feature(aa64_pauth, s)) {
5630 goto do_unallocated;
5632 break;
5633 case MAP(1, 0x01, 0x07): /* AUTDB */
5634 if (s->pauth_active) {
5635 tcg_rd = cpu_reg(s, rd);
5636 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5637 } else if (!dc_isar_feature(aa64_pauth, s)) {
5638 goto do_unallocated;
5640 break;
5641 case MAP(1, 0x01, 0x08): /* PACIZA */
5642 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5643 goto do_unallocated;
5644 } else if (s->pauth_active) {
5645 tcg_rd = cpu_reg(s, rd);
5646 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5648 break;
5649 case MAP(1, 0x01, 0x09): /* PACIZB */
5650 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5651 goto do_unallocated;
5652 } else if (s->pauth_active) {
5653 tcg_rd = cpu_reg(s, rd);
5654 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5656 break;
5657 case MAP(1, 0x01, 0x0a): /* PACDZA */
5658 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5659 goto do_unallocated;
5660 } else if (s->pauth_active) {
5661 tcg_rd = cpu_reg(s, rd);
5662 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5664 break;
5665 case MAP(1, 0x01, 0x0b): /* PACDZB */
5666 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5667 goto do_unallocated;
5668 } else if (s->pauth_active) {
5669 tcg_rd = cpu_reg(s, rd);
5670 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5672 break;
5673 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5674 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5675 goto do_unallocated;
5676 } else if (s->pauth_active) {
5677 tcg_rd = cpu_reg(s, rd);
5678 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5680 break;
5681 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5682 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5683 goto do_unallocated;
5684 } else if (s->pauth_active) {
5685 tcg_rd = cpu_reg(s, rd);
5686 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5688 break;
5689 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5690 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5691 goto do_unallocated;
5692 } else if (s->pauth_active) {
5693 tcg_rd = cpu_reg(s, rd);
5694 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5696 break;
5697 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5698 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5699 goto do_unallocated;
5700 } else if (s->pauth_active) {
5701 tcg_rd = cpu_reg(s, rd);
5702 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5704 break;
5705 case MAP(1, 0x01, 0x10): /* XPACI */
5706 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5707 goto do_unallocated;
5708 } else if (s->pauth_active) {
5709 tcg_rd = cpu_reg(s, rd);
5710 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5712 break;
5713 case MAP(1, 0x01, 0x11): /* XPACD */
5714 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5715 goto do_unallocated;
5716 } else if (s->pauth_active) {
5717 tcg_rd = cpu_reg(s, rd);
5718 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5720 break;
5721 default:
5722 do_unallocated:
5723 unallocated_encoding(s);
5724 break;
5727 #undef MAP
5730 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5731 unsigned int rm, unsigned int rn, unsigned int rd)
5733 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5734 tcg_rd = cpu_reg(s, rd);
5736 if (!sf && is_signed) {
5737 tcg_n = new_tmp_a64(s);
5738 tcg_m = new_tmp_a64(s);
5739 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5740 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5741 } else {
5742 tcg_n = read_cpu_reg(s, rn, sf);
5743 tcg_m = read_cpu_reg(s, rm, sf);
5746 if (is_signed) {
5747 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5748 } else {
5749 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5752 if (!sf) { /* zero extend final result */
5753 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5757 /* LSLV, LSRV, ASRV, RORV */
5758 static void handle_shift_reg(DisasContext *s,
5759 enum a64_shift_type shift_type, unsigned int sf,
5760 unsigned int rm, unsigned int rn, unsigned int rd)
5762 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5763 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5764 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5766 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5767 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5768 tcg_temp_free_i64(tcg_shift);
5771 /* CRC32[BHWX], CRC32C[BHWX] */
5772 static void handle_crc32(DisasContext *s,
5773 unsigned int sf, unsigned int sz, bool crc32c,
5774 unsigned int rm, unsigned int rn, unsigned int rd)
5776 TCGv_i64 tcg_acc, tcg_val;
5777 TCGv_i32 tcg_bytes;
5779 if (!dc_isar_feature(aa64_crc32, s)
5780 || (sf == 1 && sz != 3)
5781 || (sf == 0 && sz == 3)) {
5782 unallocated_encoding(s);
5783 return;
5786 if (sz == 3) {
5787 tcg_val = cpu_reg(s, rm);
5788 } else {
5789 uint64_t mask;
5790 switch (sz) {
5791 case 0:
5792 mask = 0xFF;
5793 break;
5794 case 1:
5795 mask = 0xFFFF;
5796 break;
5797 case 2:
5798 mask = 0xFFFFFFFF;
5799 break;
5800 default:
5801 g_assert_not_reached();
5803 tcg_val = new_tmp_a64(s);
5804 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5807 tcg_acc = cpu_reg(s, rn);
5808 tcg_bytes = tcg_constant_i32(1 << sz);
5810 if (crc32c) {
5811 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5812 } else {
5813 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5817 /* Data-processing (2 source)
5818 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5819 * +----+---+---+-----------------+------+--------+------+------+
5820 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5821 * +----+---+---+-----------------+------+--------+------+------+
5823 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5825 unsigned int sf, rm, opcode, rn, rd, setflag;
5826 sf = extract32(insn, 31, 1);
5827 setflag = extract32(insn, 29, 1);
5828 rm = extract32(insn, 16, 5);
5829 opcode = extract32(insn, 10, 6);
5830 rn = extract32(insn, 5, 5);
5831 rd = extract32(insn, 0, 5);
5833 if (setflag && opcode != 0) {
5834 unallocated_encoding(s);
5835 return;
5838 switch (opcode) {
5839 case 0: /* SUBP(S) */
5840 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5841 goto do_unallocated;
5842 } else {
5843 TCGv_i64 tcg_n, tcg_m, tcg_d;
5845 tcg_n = read_cpu_reg_sp(s, rn, true);
5846 tcg_m = read_cpu_reg_sp(s, rm, true);
5847 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5848 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5849 tcg_d = cpu_reg(s, rd);
5851 if (setflag) {
5852 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5853 } else {
5854 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5857 break;
5858 case 2: /* UDIV */
5859 handle_div(s, false, sf, rm, rn, rd);
5860 break;
5861 case 3: /* SDIV */
5862 handle_div(s, true, sf, rm, rn, rd);
5863 break;
5864 case 4: /* IRG */
5865 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5866 goto do_unallocated;
5868 if (s->ata) {
5869 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5870 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5871 } else {
5872 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5873 cpu_reg_sp(s, rn));
5875 break;
5876 case 5: /* GMI */
5877 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5878 goto do_unallocated;
5879 } else {
5880 TCGv_i64 t = tcg_temp_new_i64();
5882 tcg_gen_extract_i64(t, cpu_reg_sp(s, rn), 56, 4);
5883 tcg_gen_shl_i64(t, tcg_constant_i64(1), t);
5884 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t);
5886 tcg_temp_free_i64(t);
5888 break;
5889 case 8: /* LSLV */
5890 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5891 break;
5892 case 9: /* LSRV */
5893 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5894 break;
5895 case 10: /* ASRV */
5896 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5897 break;
5898 case 11: /* RORV */
5899 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5900 break;
5901 case 12: /* PACGA */
5902 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5903 goto do_unallocated;
5905 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5906 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5907 break;
5908 case 16:
5909 case 17:
5910 case 18:
5911 case 19:
5912 case 20:
5913 case 21:
5914 case 22:
5915 case 23: /* CRC32 */
5917 int sz = extract32(opcode, 0, 2);
5918 bool crc32c = extract32(opcode, 2, 1);
5919 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5920 break;
5922 default:
5923 do_unallocated:
5924 unallocated_encoding(s);
5925 break;
5930 * Data processing - register
5931 * 31 30 29 28 25 21 20 16 10 0
5932 * +--+---+--+---+-------+-----+-------+-------+---------+
5933 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5934 * +--+---+--+---+-------+-----+-------+-------+---------+
5936 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5938 int op0 = extract32(insn, 30, 1);
5939 int op1 = extract32(insn, 28, 1);
5940 int op2 = extract32(insn, 21, 4);
5941 int op3 = extract32(insn, 10, 6);
5943 if (!op1) {
5944 if (op2 & 8) {
5945 if (op2 & 1) {
5946 /* Add/sub (extended register) */
5947 disas_add_sub_ext_reg(s, insn);
5948 } else {
5949 /* Add/sub (shifted register) */
5950 disas_add_sub_reg(s, insn);
5952 } else {
5953 /* Logical (shifted register) */
5954 disas_logic_reg(s, insn);
5956 return;
5959 switch (op2) {
5960 case 0x0:
5961 switch (op3) {
5962 case 0x00: /* Add/subtract (with carry) */
5963 disas_adc_sbc(s, insn);
5964 break;
5966 case 0x01: /* Rotate right into flags */
5967 case 0x21:
5968 disas_rotate_right_into_flags(s, insn);
5969 break;
5971 case 0x02: /* Evaluate into flags */
5972 case 0x12:
5973 case 0x22:
5974 case 0x32:
5975 disas_evaluate_into_flags(s, insn);
5976 break;
5978 default:
5979 goto do_unallocated;
5981 break;
5983 case 0x2: /* Conditional compare */
5984 disas_cc(s, insn); /* both imm and reg forms */
5985 break;
5987 case 0x4: /* Conditional select */
5988 disas_cond_select(s, insn);
5989 break;
5991 case 0x6: /* Data-processing */
5992 if (op0) { /* (1 source) */
5993 disas_data_proc_1src(s, insn);
5994 } else { /* (2 source) */
5995 disas_data_proc_2src(s, insn);
5997 break;
5998 case 0x8 ... 0xf: /* (3 source) */
5999 disas_data_proc_3src(s, insn);
6000 break;
6002 default:
6003 do_unallocated:
6004 unallocated_encoding(s);
6005 break;
6009 static void handle_fp_compare(DisasContext *s, int size,
6010 unsigned int rn, unsigned int rm,
6011 bool cmp_with_zero, bool signal_all_nans)
6013 TCGv_i64 tcg_flags = tcg_temp_new_i64();
6014 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
6016 if (size == MO_64) {
6017 TCGv_i64 tcg_vn, tcg_vm;
6019 tcg_vn = read_fp_dreg(s, rn);
6020 if (cmp_with_zero) {
6021 tcg_vm = tcg_constant_i64(0);
6022 } else {
6023 tcg_vm = read_fp_dreg(s, rm);
6025 if (signal_all_nans) {
6026 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6027 } else {
6028 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6030 tcg_temp_free_i64(tcg_vn);
6031 tcg_temp_free_i64(tcg_vm);
6032 } else {
6033 TCGv_i32 tcg_vn = tcg_temp_new_i32();
6034 TCGv_i32 tcg_vm = tcg_temp_new_i32();
6036 read_vec_element_i32(s, tcg_vn, rn, 0, size);
6037 if (cmp_with_zero) {
6038 tcg_gen_movi_i32(tcg_vm, 0);
6039 } else {
6040 read_vec_element_i32(s, tcg_vm, rm, 0, size);
6043 switch (size) {
6044 case MO_32:
6045 if (signal_all_nans) {
6046 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6047 } else {
6048 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6050 break;
6051 case MO_16:
6052 if (signal_all_nans) {
6053 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6054 } else {
6055 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
6057 break;
6058 default:
6059 g_assert_not_reached();
6062 tcg_temp_free_i32(tcg_vn);
6063 tcg_temp_free_i32(tcg_vm);
6066 tcg_temp_free_ptr(fpst);
6068 gen_set_nzcv(tcg_flags);
6070 tcg_temp_free_i64(tcg_flags);
6073 /* Floating point compare
6074 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
6075 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6076 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
6077 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
6079 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6081 unsigned int mos, type, rm, op, rn, opc, op2r;
6082 int size;
6084 mos = extract32(insn, 29, 3);
6085 type = extract32(insn, 22, 2);
6086 rm = extract32(insn, 16, 5);
6087 op = extract32(insn, 14, 2);
6088 rn = extract32(insn, 5, 5);
6089 opc = extract32(insn, 3, 2);
6090 op2r = extract32(insn, 0, 3);
6092 if (mos || op || op2r) {
6093 unallocated_encoding(s);
6094 return;
6097 switch (type) {
6098 case 0:
6099 size = MO_32;
6100 break;
6101 case 1:
6102 size = MO_64;
6103 break;
6104 case 3:
6105 size = MO_16;
6106 if (dc_isar_feature(aa64_fp16, s)) {
6107 break;
6109 /* fallthru */
6110 default:
6111 unallocated_encoding(s);
6112 return;
6115 if (!fp_access_check(s)) {
6116 return;
6119 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6122 /* Floating point conditional compare
6123 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6124 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6125 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6126 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6128 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6130 unsigned int mos, type, rm, cond, rn, op, nzcv;
6131 TCGLabel *label_continue = NULL;
6132 int size;
6134 mos = extract32(insn, 29, 3);
6135 type = extract32(insn, 22, 2);
6136 rm = extract32(insn, 16, 5);
6137 cond = extract32(insn, 12, 4);
6138 rn = extract32(insn, 5, 5);
6139 op = extract32(insn, 4, 1);
6140 nzcv = extract32(insn, 0, 4);
6142 if (mos) {
6143 unallocated_encoding(s);
6144 return;
6147 switch (type) {
6148 case 0:
6149 size = MO_32;
6150 break;
6151 case 1:
6152 size = MO_64;
6153 break;
6154 case 3:
6155 size = MO_16;
6156 if (dc_isar_feature(aa64_fp16, s)) {
6157 break;
6159 /* fallthru */
6160 default:
6161 unallocated_encoding(s);
6162 return;
6165 if (!fp_access_check(s)) {
6166 return;
6169 if (cond < 0x0e) { /* not always */
6170 TCGLabel *label_match = gen_new_label();
6171 label_continue = gen_new_label();
6172 arm_gen_test_cc(cond, label_match);
6173 /* nomatch: */
6174 gen_set_nzcv(tcg_constant_i64(nzcv << 28));
6175 tcg_gen_br(label_continue);
6176 gen_set_label(label_match);
6179 handle_fp_compare(s, size, rn, rm, false, op);
6181 if (cond < 0x0e) {
6182 gen_set_label(label_continue);
6186 /* Floating point conditional select
6187 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6188 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6189 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6190 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6192 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6194 unsigned int mos, type, rm, cond, rn, rd;
6195 TCGv_i64 t_true, t_false;
6196 DisasCompare64 c;
6197 MemOp sz;
6199 mos = extract32(insn, 29, 3);
6200 type = extract32(insn, 22, 2);
6201 rm = extract32(insn, 16, 5);
6202 cond = extract32(insn, 12, 4);
6203 rn = extract32(insn, 5, 5);
6204 rd = extract32(insn, 0, 5);
6206 if (mos) {
6207 unallocated_encoding(s);
6208 return;
6211 switch (type) {
6212 case 0:
6213 sz = MO_32;
6214 break;
6215 case 1:
6216 sz = MO_64;
6217 break;
6218 case 3:
6219 sz = MO_16;
6220 if (dc_isar_feature(aa64_fp16, s)) {
6221 break;
6223 /* fallthru */
6224 default:
6225 unallocated_encoding(s);
6226 return;
6229 if (!fp_access_check(s)) {
6230 return;
6233 /* Zero extend sreg & hreg inputs to 64 bits now. */
6234 t_true = tcg_temp_new_i64();
6235 t_false = tcg_temp_new_i64();
6236 read_vec_element(s, t_true, rn, 0, sz);
6237 read_vec_element(s, t_false, rm, 0, sz);
6239 a64_test_cc(&c, cond);
6240 tcg_gen_movcond_i64(c.cond, t_true, c.value, tcg_constant_i64(0),
6241 t_true, t_false);
6242 tcg_temp_free_i64(t_false);
6243 a64_free_cc(&c);
6245 /* Note that sregs & hregs write back zeros to the high bits,
6246 and we've already done the zero-extension. */
6247 write_fp_dreg(s, rd, t_true);
6248 tcg_temp_free_i64(t_true);
6251 /* Floating-point data-processing (1 source) - half precision */
6252 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6254 TCGv_ptr fpst = NULL;
6255 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6256 TCGv_i32 tcg_res = tcg_temp_new_i32();
6258 switch (opcode) {
6259 case 0x0: /* FMOV */
6260 tcg_gen_mov_i32(tcg_res, tcg_op);
6261 break;
6262 case 0x1: /* FABS */
6263 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6264 break;
6265 case 0x2: /* FNEG */
6266 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6267 break;
6268 case 0x3: /* FSQRT */
6269 fpst = fpstatus_ptr(FPST_FPCR_F16);
6270 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6271 break;
6272 case 0x8: /* FRINTN */
6273 case 0x9: /* FRINTP */
6274 case 0xa: /* FRINTM */
6275 case 0xb: /* FRINTZ */
6276 case 0xc: /* FRINTA */
6278 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6279 fpst = fpstatus_ptr(FPST_FPCR_F16);
6281 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6282 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6284 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6285 tcg_temp_free_i32(tcg_rmode);
6286 break;
6288 case 0xe: /* FRINTX */
6289 fpst = fpstatus_ptr(FPST_FPCR_F16);
6290 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6291 break;
6292 case 0xf: /* FRINTI */
6293 fpst = fpstatus_ptr(FPST_FPCR_F16);
6294 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6295 break;
6296 default:
6297 g_assert_not_reached();
6300 write_fp_sreg(s, rd, tcg_res);
6302 if (fpst) {
6303 tcg_temp_free_ptr(fpst);
6305 tcg_temp_free_i32(tcg_op);
6306 tcg_temp_free_i32(tcg_res);
6309 /* Floating-point data-processing (1 source) - single precision */
6310 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6312 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6313 TCGv_i32 tcg_op, tcg_res;
6314 TCGv_ptr fpst;
6315 int rmode = -1;
6317 tcg_op = read_fp_sreg(s, rn);
6318 tcg_res = tcg_temp_new_i32();
6320 switch (opcode) {
6321 case 0x0: /* FMOV */
6322 tcg_gen_mov_i32(tcg_res, tcg_op);
6323 goto done;
6324 case 0x1: /* FABS */
6325 gen_helper_vfp_abss(tcg_res, tcg_op);
6326 goto done;
6327 case 0x2: /* FNEG */
6328 gen_helper_vfp_negs(tcg_res, tcg_op);
6329 goto done;
6330 case 0x3: /* FSQRT */
6331 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6332 goto done;
6333 case 0x6: /* BFCVT */
6334 gen_fpst = gen_helper_bfcvt;
6335 break;
6336 case 0x8: /* FRINTN */
6337 case 0x9: /* FRINTP */
6338 case 0xa: /* FRINTM */
6339 case 0xb: /* FRINTZ */
6340 case 0xc: /* FRINTA */
6341 rmode = arm_rmode_to_sf(opcode & 7);
6342 gen_fpst = gen_helper_rints;
6343 break;
6344 case 0xe: /* FRINTX */
6345 gen_fpst = gen_helper_rints_exact;
6346 break;
6347 case 0xf: /* FRINTI */
6348 gen_fpst = gen_helper_rints;
6349 break;
6350 case 0x10: /* FRINT32Z */
6351 rmode = float_round_to_zero;
6352 gen_fpst = gen_helper_frint32_s;
6353 break;
6354 case 0x11: /* FRINT32X */
6355 gen_fpst = gen_helper_frint32_s;
6356 break;
6357 case 0x12: /* FRINT64Z */
6358 rmode = float_round_to_zero;
6359 gen_fpst = gen_helper_frint64_s;
6360 break;
6361 case 0x13: /* FRINT64X */
6362 gen_fpst = gen_helper_frint64_s;
6363 break;
6364 default:
6365 g_assert_not_reached();
6368 fpst = fpstatus_ptr(FPST_FPCR);
6369 if (rmode >= 0) {
6370 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6371 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6372 gen_fpst(tcg_res, tcg_op, fpst);
6373 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6374 tcg_temp_free_i32(tcg_rmode);
6375 } else {
6376 gen_fpst(tcg_res, tcg_op, fpst);
6378 tcg_temp_free_ptr(fpst);
6380 done:
6381 write_fp_sreg(s, rd, tcg_res);
6382 tcg_temp_free_i32(tcg_op);
6383 tcg_temp_free_i32(tcg_res);
6386 /* Floating-point data-processing (1 source) - double precision */
6387 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6389 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6390 TCGv_i64 tcg_op, tcg_res;
6391 TCGv_ptr fpst;
6392 int rmode = -1;
6394 switch (opcode) {
6395 case 0x0: /* FMOV */
6396 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6397 return;
6400 tcg_op = read_fp_dreg(s, rn);
6401 tcg_res = tcg_temp_new_i64();
6403 switch (opcode) {
6404 case 0x1: /* FABS */
6405 gen_helper_vfp_absd(tcg_res, tcg_op);
6406 goto done;
6407 case 0x2: /* FNEG */
6408 gen_helper_vfp_negd(tcg_res, tcg_op);
6409 goto done;
6410 case 0x3: /* FSQRT */
6411 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6412 goto done;
6413 case 0x8: /* FRINTN */
6414 case 0x9: /* FRINTP */
6415 case 0xa: /* FRINTM */
6416 case 0xb: /* FRINTZ */
6417 case 0xc: /* FRINTA */
6418 rmode = arm_rmode_to_sf(opcode & 7);
6419 gen_fpst = gen_helper_rintd;
6420 break;
6421 case 0xe: /* FRINTX */
6422 gen_fpst = gen_helper_rintd_exact;
6423 break;
6424 case 0xf: /* FRINTI */
6425 gen_fpst = gen_helper_rintd;
6426 break;
6427 case 0x10: /* FRINT32Z */
6428 rmode = float_round_to_zero;
6429 gen_fpst = gen_helper_frint32_d;
6430 break;
6431 case 0x11: /* FRINT32X */
6432 gen_fpst = gen_helper_frint32_d;
6433 break;
6434 case 0x12: /* FRINT64Z */
6435 rmode = float_round_to_zero;
6436 gen_fpst = gen_helper_frint64_d;
6437 break;
6438 case 0x13: /* FRINT64X */
6439 gen_fpst = gen_helper_frint64_d;
6440 break;
6441 default:
6442 g_assert_not_reached();
6445 fpst = fpstatus_ptr(FPST_FPCR);
6446 if (rmode >= 0) {
6447 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6448 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6449 gen_fpst(tcg_res, tcg_op, fpst);
6450 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6451 tcg_temp_free_i32(tcg_rmode);
6452 } else {
6453 gen_fpst(tcg_res, tcg_op, fpst);
6455 tcg_temp_free_ptr(fpst);
6457 done:
6458 write_fp_dreg(s, rd, tcg_res);
6459 tcg_temp_free_i64(tcg_op);
6460 tcg_temp_free_i64(tcg_res);
6463 static void handle_fp_fcvt(DisasContext *s, int opcode,
6464 int rd, int rn, int dtype, int ntype)
6466 switch (ntype) {
6467 case 0x0:
6469 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6470 if (dtype == 1) {
6471 /* Single to double */
6472 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6473 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6474 write_fp_dreg(s, rd, tcg_rd);
6475 tcg_temp_free_i64(tcg_rd);
6476 } else {
6477 /* Single to half */
6478 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6479 TCGv_i32 ahp = get_ahp_flag();
6480 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6482 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6483 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6484 write_fp_sreg(s, rd, tcg_rd);
6485 tcg_temp_free_i32(tcg_rd);
6486 tcg_temp_free_i32(ahp);
6487 tcg_temp_free_ptr(fpst);
6489 tcg_temp_free_i32(tcg_rn);
6490 break;
6492 case 0x1:
6494 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6495 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6496 if (dtype == 0) {
6497 /* Double to single */
6498 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6499 } else {
6500 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6501 TCGv_i32 ahp = get_ahp_flag();
6502 /* Double to half */
6503 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6504 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6505 tcg_temp_free_ptr(fpst);
6506 tcg_temp_free_i32(ahp);
6508 write_fp_sreg(s, rd, tcg_rd);
6509 tcg_temp_free_i32(tcg_rd);
6510 tcg_temp_free_i64(tcg_rn);
6511 break;
6513 case 0x3:
6515 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6516 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6517 TCGv_i32 tcg_ahp = get_ahp_flag();
6518 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6519 if (dtype == 0) {
6520 /* Half to single */
6521 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6522 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6523 write_fp_sreg(s, rd, tcg_rd);
6524 tcg_temp_free_i32(tcg_rd);
6525 } else {
6526 /* Half to double */
6527 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6528 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6529 write_fp_dreg(s, rd, tcg_rd);
6530 tcg_temp_free_i64(tcg_rd);
6532 tcg_temp_free_i32(tcg_rn);
6533 tcg_temp_free_ptr(tcg_fpst);
6534 tcg_temp_free_i32(tcg_ahp);
6535 break;
6537 default:
6538 g_assert_not_reached();
6542 /* Floating point data-processing (1 source)
6543 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6544 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6545 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6546 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6548 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6550 int mos = extract32(insn, 29, 3);
6551 int type = extract32(insn, 22, 2);
6552 int opcode = extract32(insn, 15, 6);
6553 int rn = extract32(insn, 5, 5);
6554 int rd = extract32(insn, 0, 5);
6556 if (mos) {
6557 goto do_unallocated;
6560 switch (opcode) {
6561 case 0x4: case 0x5: case 0x7:
6563 /* FCVT between half, single and double precision */
6564 int dtype = extract32(opcode, 0, 2);
6565 if (type == 2 || dtype == type) {
6566 goto do_unallocated;
6568 if (!fp_access_check(s)) {
6569 return;
6572 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6573 break;
6576 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6577 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6578 goto do_unallocated;
6580 /* fall through */
6581 case 0x0 ... 0x3:
6582 case 0x8 ... 0xc:
6583 case 0xe ... 0xf:
6584 /* 32-to-32 and 64-to-64 ops */
6585 switch (type) {
6586 case 0:
6587 if (!fp_access_check(s)) {
6588 return;
6590 handle_fp_1src_single(s, opcode, rd, rn);
6591 break;
6592 case 1:
6593 if (!fp_access_check(s)) {
6594 return;
6596 handle_fp_1src_double(s, opcode, rd, rn);
6597 break;
6598 case 3:
6599 if (!dc_isar_feature(aa64_fp16, s)) {
6600 goto do_unallocated;
6603 if (!fp_access_check(s)) {
6604 return;
6606 handle_fp_1src_half(s, opcode, rd, rn);
6607 break;
6608 default:
6609 goto do_unallocated;
6611 break;
6613 case 0x6:
6614 switch (type) {
6615 case 1: /* BFCVT */
6616 if (!dc_isar_feature(aa64_bf16, s)) {
6617 goto do_unallocated;
6619 if (!fp_access_check(s)) {
6620 return;
6622 handle_fp_1src_single(s, opcode, rd, rn);
6623 break;
6624 default:
6625 goto do_unallocated;
6627 break;
6629 default:
6630 do_unallocated:
6631 unallocated_encoding(s);
6632 break;
6636 /* Floating-point data-processing (2 source) - single precision */
6637 static void handle_fp_2src_single(DisasContext *s, int opcode,
6638 int rd, int rn, int rm)
6640 TCGv_i32 tcg_op1;
6641 TCGv_i32 tcg_op2;
6642 TCGv_i32 tcg_res;
6643 TCGv_ptr fpst;
6645 tcg_res = tcg_temp_new_i32();
6646 fpst = fpstatus_ptr(FPST_FPCR);
6647 tcg_op1 = read_fp_sreg(s, rn);
6648 tcg_op2 = read_fp_sreg(s, rm);
6650 switch (opcode) {
6651 case 0x0: /* FMUL */
6652 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6653 break;
6654 case 0x1: /* FDIV */
6655 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6656 break;
6657 case 0x2: /* FADD */
6658 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6659 break;
6660 case 0x3: /* FSUB */
6661 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6662 break;
6663 case 0x4: /* FMAX */
6664 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6665 break;
6666 case 0x5: /* FMIN */
6667 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6668 break;
6669 case 0x6: /* FMAXNM */
6670 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6671 break;
6672 case 0x7: /* FMINNM */
6673 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6674 break;
6675 case 0x8: /* FNMUL */
6676 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6677 gen_helper_vfp_negs(tcg_res, tcg_res);
6678 break;
6681 write_fp_sreg(s, rd, tcg_res);
6683 tcg_temp_free_ptr(fpst);
6684 tcg_temp_free_i32(tcg_op1);
6685 tcg_temp_free_i32(tcg_op2);
6686 tcg_temp_free_i32(tcg_res);
6689 /* Floating-point data-processing (2 source) - double precision */
6690 static void handle_fp_2src_double(DisasContext *s, int opcode,
6691 int rd, int rn, int rm)
6693 TCGv_i64 tcg_op1;
6694 TCGv_i64 tcg_op2;
6695 TCGv_i64 tcg_res;
6696 TCGv_ptr fpst;
6698 tcg_res = tcg_temp_new_i64();
6699 fpst = fpstatus_ptr(FPST_FPCR);
6700 tcg_op1 = read_fp_dreg(s, rn);
6701 tcg_op2 = read_fp_dreg(s, rm);
6703 switch (opcode) {
6704 case 0x0: /* FMUL */
6705 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6706 break;
6707 case 0x1: /* FDIV */
6708 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6709 break;
6710 case 0x2: /* FADD */
6711 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6712 break;
6713 case 0x3: /* FSUB */
6714 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6715 break;
6716 case 0x4: /* FMAX */
6717 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6718 break;
6719 case 0x5: /* FMIN */
6720 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6721 break;
6722 case 0x6: /* FMAXNM */
6723 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6724 break;
6725 case 0x7: /* FMINNM */
6726 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6727 break;
6728 case 0x8: /* FNMUL */
6729 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6730 gen_helper_vfp_negd(tcg_res, tcg_res);
6731 break;
6734 write_fp_dreg(s, rd, tcg_res);
6736 tcg_temp_free_ptr(fpst);
6737 tcg_temp_free_i64(tcg_op1);
6738 tcg_temp_free_i64(tcg_op2);
6739 tcg_temp_free_i64(tcg_res);
6742 /* Floating-point data-processing (2 source) - half precision */
6743 static void handle_fp_2src_half(DisasContext *s, int opcode,
6744 int rd, int rn, int rm)
6746 TCGv_i32 tcg_op1;
6747 TCGv_i32 tcg_op2;
6748 TCGv_i32 tcg_res;
6749 TCGv_ptr fpst;
6751 tcg_res = tcg_temp_new_i32();
6752 fpst = fpstatus_ptr(FPST_FPCR_F16);
6753 tcg_op1 = read_fp_hreg(s, rn);
6754 tcg_op2 = read_fp_hreg(s, rm);
6756 switch (opcode) {
6757 case 0x0: /* FMUL */
6758 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6759 break;
6760 case 0x1: /* FDIV */
6761 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6762 break;
6763 case 0x2: /* FADD */
6764 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6765 break;
6766 case 0x3: /* FSUB */
6767 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6768 break;
6769 case 0x4: /* FMAX */
6770 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6771 break;
6772 case 0x5: /* FMIN */
6773 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6774 break;
6775 case 0x6: /* FMAXNM */
6776 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6777 break;
6778 case 0x7: /* FMINNM */
6779 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6780 break;
6781 case 0x8: /* FNMUL */
6782 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6783 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6784 break;
6785 default:
6786 g_assert_not_reached();
6789 write_fp_sreg(s, rd, tcg_res);
6791 tcg_temp_free_ptr(fpst);
6792 tcg_temp_free_i32(tcg_op1);
6793 tcg_temp_free_i32(tcg_op2);
6794 tcg_temp_free_i32(tcg_res);
6797 /* Floating point data-processing (2 source)
6798 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6799 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6800 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6801 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6803 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6805 int mos = extract32(insn, 29, 3);
6806 int type = extract32(insn, 22, 2);
6807 int rd = extract32(insn, 0, 5);
6808 int rn = extract32(insn, 5, 5);
6809 int rm = extract32(insn, 16, 5);
6810 int opcode = extract32(insn, 12, 4);
6812 if (opcode > 8 || mos) {
6813 unallocated_encoding(s);
6814 return;
6817 switch (type) {
6818 case 0:
6819 if (!fp_access_check(s)) {
6820 return;
6822 handle_fp_2src_single(s, opcode, rd, rn, rm);
6823 break;
6824 case 1:
6825 if (!fp_access_check(s)) {
6826 return;
6828 handle_fp_2src_double(s, opcode, rd, rn, rm);
6829 break;
6830 case 3:
6831 if (!dc_isar_feature(aa64_fp16, s)) {
6832 unallocated_encoding(s);
6833 return;
6835 if (!fp_access_check(s)) {
6836 return;
6838 handle_fp_2src_half(s, opcode, rd, rn, rm);
6839 break;
6840 default:
6841 unallocated_encoding(s);
6845 /* Floating-point data-processing (3 source) - single precision */
6846 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6847 int rd, int rn, int rm, int ra)
6849 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6850 TCGv_i32 tcg_res = tcg_temp_new_i32();
6851 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6853 tcg_op1 = read_fp_sreg(s, rn);
6854 tcg_op2 = read_fp_sreg(s, rm);
6855 tcg_op3 = read_fp_sreg(s, ra);
6857 /* These are fused multiply-add, and must be done as one
6858 * floating point operation with no rounding between the
6859 * multiplication and addition steps.
6860 * NB that doing the negations here as separate steps is
6861 * correct : an input NaN should come out with its sign bit
6862 * flipped if it is a negated-input.
6864 if (o1 == true) {
6865 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6868 if (o0 != o1) {
6869 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6872 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6874 write_fp_sreg(s, rd, tcg_res);
6876 tcg_temp_free_ptr(fpst);
6877 tcg_temp_free_i32(tcg_op1);
6878 tcg_temp_free_i32(tcg_op2);
6879 tcg_temp_free_i32(tcg_op3);
6880 tcg_temp_free_i32(tcg_res);
6883 /* Floating-point data-processing (3 source) - double precision */
6884 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6885 int rd, int rn, int rm, int ra)
6887 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6888 TCGv_i64 tcg_res = tcg_temp_new_i64();
6889 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6891 tcg_op1 = read_fp_dreg(s, rn);
6892 tcg_op2 = read_fp_dreg(s, rm);
6893 tcg_op3 = read_fp_dreg(s, ra);
6895 /* These are fused multiply-add, and must be done as one
6896 * floating point operation with no rounding between the
6897 * multiplication and addition steps.
6898 * NB that doing the negations here as separate steps is
6899 * correct : an input NaN should come out with its sign bit
6900 * flipped if it is a negated-input.
6902 if (o1 == true) {
6903 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6906 if (o0 != o1) {
6907 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6910 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6912 write_fp_dreg(s, rd, tcg_res);
6914 tcg_temp_free_ptr(fpst);
6915 tcg_temp_free_i64(tcg_op1);
6916 tcg_temp_free_i64(tcg_op2);
6917 tcg_temp_free_i64(tcg_op3);
6918 tcg_temp_free_i64(tcg_res);
6921 /* Floating-point data-processing (3 source) - half precision */
6922 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6923 int rd, int rn, int rm, int ra)
6925 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6926 TCGv_i32 tcg_res = tcg_temp_new_i32();
6927 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6929 tcg_op1 = read_fp_hreg(s, rn);
6930 tcg_op2 = read_fp_hreg(s, rm);
6931 tcg_op3 = read_fp_hreg(s, ra);
6933 /* These are fused multiply-add, and must be done as one
6934 * floating point operation with no rounding between the
6935 * multiplication and addition steps.
6936 * NB that doing the negations here as separate steps is
6937 * correct : an input NaN should come out with its sign bit
6938 * flipped if it is a negated-input.
6940 if (o1 == true) {
6941 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6944 if (o0 != o1) {
6945 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6948 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6950 write_fp_sreg(s, rd, tcg_res);
6952 tcg_temp_free_ptr(fpst);
6953 tcg_temp_free_i32(tcg_op1);
6954 tcg_temp_free_i32(tcg_op2);
6955 tcg_temp_free_i32(tcg_op3);
6956 tcg_temp_free_i32(tcg_res);
6959 /* Floating point data-processing (3 source)
6960 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6961 * +---+---+---+-----------+------+----+------+----+------+------+------+
6962 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6963 * +---+---+---+-----------+------+----+------+----+------+------+------+
6965 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6967 int mos = extract32(insn, 29, 3);
6968 int type = extract32(insn, 22, 2);
6969 int rd = extract32(insn, 0, 5);
6970 int rn = extract32(insn, 5, 5);
6971 int ra = extract32(insn, 10, 5);
6972 int rm = extract32(insn, 16, 5);
6973 bool o0 = extract32(insn, 15, 1);
6974 bool o1 = extract32(insn, 21, 1);
6976 if (mos) {
6977 unallocated_encoding(s);
6978 return;
6981 switch (type) {
6982 case 0:
6983 if (!fp_access_check(s)) {
6984 return;
6986 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6987 break;
6988 case 1:
6989 if (!fp_access_check(s)) {
6990 return;
6992 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6993 break;
6994 case 3:
6995 if (!dc_isar_feature(aa64_fp16, s)) {
6996 unallocated_encoding(s);
6997 return;
6999 if (!fp_access_check(s)) {
7000 return;
7002 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
7003 break;
7004 default:
7005 unallocated_encoding(s);
7009 /* Floating point immediate
7010 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
7011 * +---+---+---+-----------+------+---+------------+-------+------+------+
7012 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
7013 * +---+---+---+-----------+------+---+------------+-------+------+------+
7015 static void disas_fp_imm(DisasContext *s, uint32_t insn)
7017 int rd = extract32(insn, 0, 5);
7018 int imm5 = extract32(insn, 5, 5);
7019 int imm8 = extract32(insn, 13, 8);
7020 int type = extract32(insn, 22, 2);
7021 int mos = extract32(insn, 29, 3);
7022 uint64_t imm;
7023 MemOp sz;
7025 if (mos || imm5) {
7026 unallocated_encoding(s);
7027 return;
7030 switch (type) {
7031 case 0:
7032 sz = MO_32;
7033 break;
7034 case 1:
7035 sz = MO_64;
7036 break;
7037 case 3:
7038 sz = MO_16;
7039 if (dc_isar_feature(aa64_fp16, s)) {
7040 break;
7042 /* fallthru */
7043 default:
7044 unallocated_encoding(s);
7045 return;
7048 if (!fp_access_check(s)) {
7049 return;
7052 imm = vfp_expand_imm(sz, imm8);
7053 write_fp_dreg(s, rd, tcg_constant_i64(imm));
7056 /* Handle floating point <=> fixed point conversions. Note that we can
7057 * also deal with fp <=> integer conversions as a special case (scale == 64)
7058 * OPTME: consider handling that special case specially or at least skipping
7059 * the call to scalbn in the helpers for zero shifts.
7061 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
7062 bool itof, int rmode, int scale, int sf, int type)
7064 bool is_signed = !(opcode & 1);
7065 TCGv_ptr tcg_fpstatus;
7066 TCGv_i32 tcg_shift, tcg_single;
7067 TCGv_i64 tcg_double;
7069 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
7071 tcg_shift = tcg_constant_i32(64 - scale);
7073 if (itof) {
7074 TCGv_i64 tcg_int = cpu_reg(s, rn);
7075 if (!sf) {
7076 TCGv_i64 tcg_extend = new_tmp_a64(s);
7078 if (is_signed) {
7079 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7080 } else {
7081 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7084 tcg_int = tcg_extend;
7087 switch (type) {
7088 case 1: /* float64 */
7089 tcg_double = tcg_temp_new_i64();
7090 if (is_signed) {
7091 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7092 tcg_shift, tcg_fpstatus);
7093 } else {
7094 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7095 tcg_shift, tcg_fpstatus);
7097 write_fp_dreg(s, rd, tcg_double);
7098 tcg_temp_free_i64(tcg_double);
7099 break;
7101 case 0: /* float32 */
7102 tcg_single = tcg_temp_new_i32();
7103 if (is_signed) {
7104 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7105 tcg_shift, tcg_fpstatus);
7106 } else {
7107 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7108 tcg_shift, tcg_fpstatus);
7110 write_fp_sreg(s, rd, tcg_single);
7111 tcg_temp_free_i32(tcg_single);
7112 break;
7114 case 3: /* float16 */
7115 tcg_single = tcg_temp_new_i32();
7116 if (is_signed) {
7117 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7118 tcg_shift, tcg_fpstatus);
7119 } else {
7120 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7121 tcg_shift, tcg_fpstatus);
7123 write_fp_sreg(s, rd, tcg_single);
7124 tcg_temp_free_i32(tcg_single);
7125 break;
7127 default:
7128 g_assert_not_reached();
7130 } else {
7131 TCGv_i64 tcg_int = cpu_reg(s, rd);
7132 TCGv_i32 tcg_rmode;
7134 if (extract32(opcode, 2, 1)) {
7135 /* There are too many rounding modes to all fit into rmode,
7136 * so FCVTA[US] is a special case.
7138 rmode = FPROUNDING_TIEAWAY;
7141 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7143 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7145 switch (type) {
7146 case 1: /* float64 */
7147 tcg_double = read_fp_dreg(s, rn);
7148 if (is_signed) {
7149 if (!sf) {
7150 gen_helper_vfp_tosld(tcg_int, tcg_double,
7151 tcg_shift, tcg_fpstatus);
7152 } else {
7153 gen_helper_vfp_tosqd(tcg_int, tcg_double,
7154 tcg_shift, tcg_fpstatus);
7156 } else {
7157 if (!sf) {
7158 gen_helper_vfp_tould(tcg_int, tcg_double,
7159 tcg_shift, tcg_fpstatus);
7160 } else {
7161 gen_helper_vfp_touqd(tcg_int, tcg_double,
7162 tcg_shift, tcg_fpstatus);
7165 if (!sf) {
7166 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7168 tcg_temp_free_i64(tcg_double);
7169 break;
7171 case 0: /* float32 */
7172 tcg_single = read_fp_sreg(s, rn);
7173 if (sf) {
7174 if (is_signed) {
7175 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7176 tcg_shift, tcg_fpstatus);
7177 } else {
7178 gen_helper_vfp_touqs(tcg_int, tcg_single,
7179 tcg_shift, tcg_fpstatus);
7181 } else {
7182 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7183 if (is_signed) {
7184 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7185 tcg_shift, tcg_fpstatus);
7186 } else {
7187 gen_helper_vfp_touls(tcg_dest, tcg_single,
7188 tcg_shift, tcg_fpstatus);
7190 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7191 tcg_temp_free_i32(tcg_dest);
7193 tcg_temp_free_i32(tcg_single);
7194 break;
7196 case 3: /* float16 */
7197 tcg_single = read_fp_sreg(s, rn);
7198 if (sf) {
7199 if (is_signed) {
7200 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7201 tcg_shift, tcg_fpstatus);
7202 } else {
7203 gen_helper_vfp_touqh(tcg_int, tcg_single,
7204 tcg_shift, tcg_fpstatus);
7206 } else {
7207 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7208 if (is_signed) {
7209 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7210 tcg_shift, tcg_fpstatus);
7211 } else {
7212 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7213 tcg_shift, tcg_fpstatus);
7215 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7216 tcg_temp_free_i32(tcg_dest);
7218 tcg_temp_free_i32(tcg_single);
7219 break;
7221 default:
7222 g_assert_not_reached();
7225 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7226 tcg_temp_free_i32(tcg_rmode);
7229 tcg_temp_free_ptr(tcg_fpstatus);
7232 /* Floating point <-> fixed point conversions
7233 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7234 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7235 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7236 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7238 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7240 int rd = extract32(insn, 0, 5);
7241 int rn = extract32(insn, 5, 5);
7242 int scale = extract32(insn, 10, 6);
7243 int opcode = extract32(insn, 16, 3);
7244 int rmode = extract32(insn, 19, 2);
7245 int type = extract32(insn, 22, 2);
7246 bool sbit = extract32(insn, 29, 1);
7247 bool sf = extract32(insn, 31, 1);
7248 bool itof;
7250 if (sbit || (!sf && scale < 32)) {
7251 unallocated_encoding(s);
7252 return;
7255 switch (type) {
7256 case 0: /* float32 */
7257 case 1: /* float64 */
7258 break;
7259 case 3: /* float16 */
7260 if (dc_isar_feature(aa64_fp16, s)) {
7261 break;
7263 /* fallthru */
7264 default:
7265 unallocated_encoding(s);
7266 return;
7269 switch ((rmode << 3) | opcode) {
7270 case 0x2: /* SCVTF */
7271 case 0x3: /* UCVTF */
7272 itof = true;
7273 break;
7274 case 0x18: /* FCVTZS */
7275 case 0x19: /* FCVTZU */
7276 itof = false;
7277 break;
7278 default:
7279 unallocated_encoding(s);
7280 return;
7283 if (!fp_access_check(s)) {
7284 return;
7287 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7290 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7292 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7293 * without conversion.
7296 if (itof) {
7297 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7298 TCGv_i64 tmp;
7300 switch (type) {
7301 case 0:
7302 /* 32 bit */
7303 tmp = tcg_temp_new_i64();
7304 tcg_gen_ext32u_i64(tmp, tcg_rn);
7305 write_fp_dreg(s, rd, tmp);
7306 tcg_temp_free_i64(tmp);
7307 break;
7308 case 1:
7309 /* 64 bit */
7310 write_fp_dreg(s, rd, tcg_rn);
7311 break;
7312 case 2:
7313 /* 64 bit to top half. */
7314 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7315 clear_vec_high(s, true, rd);
7316 break;
7317 case 3:
7318 /* 16 bit */
7319 tmp = tcg_temp_new_i64();
7320 tcg_gen_ext16u_i64(tmp, tcg_rn);
7321 write_fp_dreg(s, rd, tmp);
7322 tcg_temp_free_i64(tmp);
7323 break;
7324 default:
7325 g_assert_not_reached();
7327 } else {
7328 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7330 switch (type) {
7331 case 0:
7332 /* 32 bit */
7333 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7334 break;
7335 case 1:
7336 /* 64 bit */
7337 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7338 break;
7339 case 2:
7340 /* 64 bits from top half */
7341 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7342 break;
7343 case 3:
7344 /* 16 bit */
7345 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7346 break;
7347 default:
7348 g_assert_not_reached();
7353 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7355 TCGv_i64 t = read_fp_dreg(s, rn);
7356 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7358 gen_helper_fjcvtzs(t, t, fpstatus);
7360 tcg_temp_free_ptr(fpstatus);
7362 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7363 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7364 tcg_gen_movi_i32(cpu_CF, 0);
7365 tcg_gen_movi_i32(cpu_NF, 0);
7366 tcg_gen_movi_i32(cpu_VF, 0);
7368 tcg_temp_free_i64(t);
7371 /* Floating point <-> integer conversions
7372 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7373 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7374 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7375 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7377 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7379 int rd = extract32(insn, 0, 5);
7380 int rn = extract32(insn, 5, 5);
7381 int opcode = extract32(insn, 16, 3);
7382 int rmode = extract32(insn, 19, 2);
7383 int type = extract32(insn, 22, 2);
7384 bool sbit = extract32(insn, 29, 1);
7385 bool sf = extract32(insn, 31, 1);
7386 bool itof = false;
7388 if (sbit) {
7389 goto do_unallocated;
7392 switch (opcode) {
7393 case 2: /* SCVTF */
7394 case 3: /* UCVTF */
7395 itof = true;
7396 /* fallthru */
7397 case 4: /* FCVTAS */
7398 case 5: /* FCVTAU */
7399 if (rmode != 0) {
7400 goto do_unallocated;
7402 /* fallthru */
7403 case 0: /* FCVT[NPMZ]S */
7404 case 1: /* FCVT[NPMZ]U */
7405 switch (type) {
7406 case 0: /* float32 */
7407 case 1: /* float64 */
7408 break;
7409 case 3: /* float16 */
7410 if (!dc_isar_feature(aa64_fp16, s)) {
7411 goto do_unallocated;
7413 break;
7414 default:
7415 goto do_unallocated;
7417 if (!fp_access_check(s)) {
7418 return;
7420 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7421 break;
7423 default:
7424 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7425 case 0b01100110: /* FMOV half <-> 32-bit int */
7426 case 0b01100111:
7427 case 0b11100110: /* FMOV half <-> 64-bit int */
7428 case 0b11100111:
7429 if (!dc_isar_feature(aa64_fp16, s)) {
7430 goto do_unallocated;
7432 /* fallthru */
7433 case 0b00000110: /* FMOV 32-bit */
7434 case 0b00000111:
7435 case 0b10100110: /* FMOV 64-bit */
7436 case 0b10100111:
7437 case 0b11001110: /* FMOV top half of 128-bit */
7438 case 0b11001111:
7439 if (!fp_access_check(s)) {
7440 return;
7442 itof = opcode & 1;
7443 handle_fmov(s, rd, rn, type, itof);
7444 break;
7446 case 0b00111110: /* FJCVTZS */
7447 if (!dc_isar_feature(aa64_jscvt, s)) {
7448 goto do_unallocated;
7449 } else if (fp_access_check(s)) {
7450 handle_fjcvtzs(s, rd, rn);
7452 break;
7454 default:
7455 do_unallocated:
7456 unallocated_encoding(s);
7457 return;
7459 break;
7463 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7464 * 31 30 29 28 25 24 0
7465 * +---+---+---+---------+-----------------------------+
7466 * | | 0 | | 1 1 1 1 | |
7467 * +---+---+---+---------+-----------------------------+
7469 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7471 if (extract32(insn, 24, 1)) {
7472 /* Floating point data-processing (3 source) */
7473 disas_fp_3src(s, insn);
7474 } else if (extract32(insn, 21, 1) == 0) {
7475 /* Floating point to fixed point conversions */
7476 disas_fp_fixed_conv(s, insn);
7477 } else {
7478 switch (extract32(insn, 10, 2)) {
7479 case 1:
7480 /* Floating point conditional compare */
7481 disas_fp_ccomp(s, insn);
7482 break;
7483 case 2:
7484 /* Floating point data-processing (2 source) */
7485 disas_fp_2src(s, insn);
7486 break;
7487 case 3:
7488 /* Floating point conditional select */
7489 disas_fp_csel(s, insn);
7490 break;
7491 case 0:
7492 switch (ctz32(extract32(insn, 12, 4))) {
7493 case 0: /* [15:12] == xxx1 */
7494 /* Floating point immediate */
7495 disas_fp_imm(s, insn);
7496 break;
7497 case 1: /* [15:12] == xx10 */
7498 /* Floating point compare */
7499 disas_fp_compare(s, insn);
7500 break;
7501 case 2: /* [15:12] == x100 */
7502 /* Floating point data-processing (1 source) */
7503 disas_fp_1src(s, insn);
7504 break;
7505 case 3: /* [15:12] == 1000 */
7506 unallocated_encoding(s);
7507 break;
7508 default: /* [15:12] == 0000 */
7509 /* Floating point <-> integer conversions */
7510 disas_fp_int_conv(s, insn);
7511 break;
7513 break;
7518 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7519 int pos)
7521 /* Extract 64 bits from the middle of two concatenated 64 bit
7522 * vector register slices left:right. The extracted bits start
7523 * at 'pos' bits into the right (least significant) side.
7524 * We return the result in tcg_right, and guarantee not to
7525 * trash tcg_left.
7527 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7528 assert(pos > 0 && pos < 64);
7530 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7531 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7532 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7534 tcg_temp_free_i64(tcg_tmp);
7537 /* EXT
7538 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7539 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7540 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7541 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7543 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7545 int is_q = extract32(insn, 30, 1);
7546 int op2 = extract32(insn, 22, 2);
7547 int imm4 = extract32(insn, 11, 4);
7548 int rm = extract32(insn, 16, 5);
7549 int rn = extract32(insn, 5, 5);
7550 int rd = extract32(insn, 0, 5);
7551 int pos = imm4 << 3;
7552 TCGv_i64 tcg_resl, tcg_resh;
7554 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7555 unallocated_encoding(s);
7556 return;
7559 if (!fp_access_check(s)) {
7560 return;
7563 tcg_resh = tcg_temp_new_i64();
7564 tcg_resl = tcg_temp_new_i64();
7566 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7567 * either extracting 128 bits from a 128:128 concatenation, or
7568 * extracting 64 bits from a 64:64 concatenation.
7570 if (!is_q) {
7571 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7572 if (pos != 0) {
7573 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7574 do_ext64(s, tcg_resh, tcg_resl, pos);
7576 } else {
7577 TCGv_i64 tcg_hh;
7578 typedef struct {
7579 int reg;
7580 int elt;
7581 } EltPosns;
7582 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7583 EltPosns *elt = eltposns;
7585 if (pos >= 64) {
7586 elt++;
7587 pos -= 64;
7590 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7591 elt++;
7592 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7593 elt++;
7594 if (pos != 0) {
7595 do_ext64(s, tcg_resh, tcg_resl, pos);
7596 tcg_hh = tcg_temp_new_i64();
7597 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7598 do_ext64(s, tcg_hh, tcg_resh, pos);
7599 tcg_temp_free_i64(tcg_hh);
7603 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7604 tcg_temp_free_i64(tcg_resl);
7605 if (is_q) {
7606 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7608 tcg_temp_free_i64(tcg_resh);
7609 clear_vec_high(s, is_q, rd);
7612 /* TBL/TBX
7613 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7614 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7615 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7616 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7618 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7620 int op2 = extract32(insn, 22, 2);
7621 int is_q = extract32(insn, 30, 1);
7622 int rm = extract32(insn, 16, 5);
7623 int rn = extract32(insn, 5, 5);
7624 int rd = extract32(insn, 0, 5);
7625 int is_tbx = extract32(insn, 12, 1);
7626 int len = (extract32(insn, 13, 2) + 1) * 16;
7628 if (op2 != 0) {
7629 unallocated_encoding(s);
7630 return;
7633 if (!fp_access_check(s)) {
7634 return;
7637 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7638 vec_full_reg_offset(s, rm), cpu_env,
7639 is_q ? 16 : 8, vec_full_reg_size(s),
7640 (len << 6) | (is_tbx << 5) | rn,
7641 gen_helper_simd_tblx);
7644 /* ZIP/UZP/TRN
7645 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7646 * +---+---+-------------+------+---+------+---+------------------+------+
7647 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7648 * +---+---+-------------+------+---+------+---+------------------+------+
7650 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7652 int rd = extract32(insn, 0, 5);
7653 int rn = extract32(insn, 5, 5);
7654 int rm = extract32(insn, 16, 5);
7655 int size = extract32(insn, 22, 2);
7656 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7657 * bit 2 indicates 1 vs 2 variant of the insn.
7659 int opcode = extract32(insn, 12, 2);
7660 bool part = extract32(insn, 14, 1);
7661 bool is_q = extract32(insn, 30, 1);
7662 int esize = 8 << size;
7663 int i, ofs;
7664 int datasize = is_q ? 128 : 64;
7665 int elements = datasize / esize;
7666 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7668 if (opcode == 0 || (size == 3 && !is_q)) {
7669 unallocated_encoding(s);
7670 return;
7673 if (!fp_access_check(s)) {
7674 return;
7677 tcg_resl = tcg_const_i64(0);
7678 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7679 tcg_res = tcg_temp_new_i64();
7681 for (i = 0; i < elements; i++) {
7682 switch (opcode) {
7683 case 1: /* UZP1/2 */
7685 int midpoint = elements / 2;
7686 if (i < midpoint) {
7687 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7688 } else {
7689 read_vec_element(s, tcg_res, rm,
7690 2 * (i - midpoint) + part, size);
7692 break;
7694 case 2: /* TRN1/2 */
7695 if (i & 1) {
7696 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7697 } else {
7698 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7700 break;
7701 case 3: /* ZIP1/2 */
7703 int base = part * elements / 2;
7704 if (i & 1) {
7705 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7706 } else {
7707 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7709 break;
7711 default:
7712 g_assert_not_reached();
7715 ofs = i * esize;
7716 if (ofs < 64) {
7717 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7718 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7719 } else {
7720 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7721 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7725 tcg_temp_free_i64(tcg_res);
7727 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7728 tcg_temp_free_i64(tcg_resl);
7730 if (is_q) {
7731 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7732 tcg_temp_free_i64(tcg_resh);
7734 clear_vec_high(s, is_q, rd);
7738 * do_reduction_op helper
7740 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7741 * important for correct NaN propagation that we do these
7742 * operations in exactly the order specified by the pseudocode.
7744 * This is a recursive function, TCG temps should be freed by the
7745 * calling function once it is done with the values.
7747 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7748 int esize, int size, int vmap, TCGv_ptr fpst)
7750 if (esize == size) {
7751 int element;
7752 MemOp msize = esize == 16 ? MO_16 : MO_32;
7753 TCGv_i32 tcg_elem;
7755 /* We should have one register left here */
7756 assert(ctpop8(vmap) == 1);
7757 element = ctz32(vmap);
7758 assert(element < 8);
7760 tcg_elem = tcg_temp_new_i32();
7761 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7762 return tcg_elem;
7763 } else {
7764 int bits = size / 2;
7765 int shift = ctpop8(vmap) / 2;
7766 int vmap_lo = (vmap >> shift) & vmap;
7767 int vmap_hi = (vmap & ~vmap_lo);
7768 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7770 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7771 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7772 tcg_res = tcg_temp_new_i32();
7774 switch (fpopcode) {
7775 case 0x0c: /* fmaxnmv half-precision */
7776 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7777 break;
7778 case 0x0f: /* fmaxv half-precision */
7779 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7780 break;
7781 case 0x1c: /* fminnmv half-precision */
7782 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7783 break;
7784 case 0x1f: /* fminv half-precision */
7785 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7786 break;
7787 case 0x2c: /* fmaxnmv */
7788 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7789 break;
7790 case 0x2f: /* fmaxv */
7791 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7792 break;
7793 case 0x3c: /* fminnmv */
7794 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7795 break;
7796 case 0x3f: /* fminv */
7797 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7798 break;
7799 default:
7800 g_assert_not_reached();
7803 tcg_temp_free_i32(tcg_hi);
7804 tcg_temp_free_i32(tcg_lo);
7805 return tcg_res;
7809 /* AdvSIMD across lanes
7810 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7811 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7812 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7813 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7815 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7817 int rd = extract32(insn, 0, 5);
7818 int rn = extract32(insn, 5, 5);
7819 int size = extract32(insn, 22, 2);
7820 int opcode = extract32(insn, 12, 5);
7821 bool is_q = extract32(insn, 30, 1);
7822 bool is_u = extract32(insn, 29, 1);
7823 bool is_fp = false;
7824 bool is_min = false;
7825 int esize;
7826 int elements;
7827 int i;
7828 TCGv_i64 tcg_res, tcg_elt;
7830 switch (opcode) {
7831 case 0x1b: /* ADDV */
7832 if (is_u) {
7833 unallocated_encoding(s);
7834 return;
7836 /* fall through */
7837 case 0x3: /* SADDLV, UADDLV */
7838 case 0xa: /* SMAXV, UMAXV */
7839 case 0x1a: /* SMINV, UMINV */
7840 if (size == 3 || (size == 2 && !is_q)) {
7841 unallocated_encoding(s);
7842 return;
7844 break;
7845 case 0xc: /* FMAXNMV, FMINNMV */
7846 case 0xf: /* FMAXV, FMINV */
7847 /* Bit 1 of size field encodes min vs max and the actual size
7848 * depends on the encoding of the U bit. If not set (and FP16
7849 * enabled) then we do half-precision float instead of single
7850 * precision.
7852 is_min = extract32(size, 1, 1);
7853 is_fp = true;
7854 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7855 size = 1;
7856 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7857 unallocated_encoding(s);
7858 return;
7859 } else {
7860 size = 2;
7862 break;
7863 default:
7864 unallocated_encoding(s);
7865 return;
7868 if (!fp_access_check(s)) {
7869 return;
7872 esize = 8 << size;
7873 elements = (is_q ? 128 : 64) / esize;
7875 tcg_res = tcg_temp_new_i64();
7876 tcg_elt = tcg_temp_new_i64();
7878 /* These instructions operate across all lanes of a vector
7879 * to produce a single result. We can guarantee that a 64
7880 * bit intermediate is sufficient:
7881 * + for [US]ADDLV the maximum element size is 32 bits, and
7882 * the result type is 64 bits
7883 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7884 * same as the element size, which is 32 bits at most
7885 * For the integer operations we can choose to work at 64
7886 * or 32 bits and truncate at the end; for simplicity
7887 * we use 64 bits always. The floating point
7888 * ops do require 32 bit intermediates, though.
7890 if (!is_fp) {
7891 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7893 for (i = 1; i < elements; i++) {
7894 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7896 switch (opcode) {
7897 case 0x03: /* SADDLV / UADDLV */
7898 case 0x1b: /* ADDV */
7899 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7900 break;
7901 case 0x0a: /* SMAXV / UMAXV */
7902 if (is_u) {
7903 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7904 } else {
7905 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7907 break;
7908 case 0x1a: /* SMINV / UMINV */
7909 if (is_u) {
7910 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7911 } else {
7912 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7914 break;
7915 default:
7916 g_assert_not_reached();
7920 } else {
7921 /* Floating point vector reduction ops which work across 32
7922 * bit (single) or 16 bit (half-precision) intermediates.
7923 * Note that correct NaN propagation requires that we do these
7924 * operations in exactly the order specified by the pseudocode.
7926 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7927 int fpopcode = opcode | is_min << 4 | is_u << 5;
7928 int vmap = (1 << elements) - 1;
7929 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7930 (is_q ? 128 : 64), vmap, fpst);
7931 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7932 tcg_temp_free_i32(tcg_res32);
7933 tcg_temp_free_ptr(fpst);
7936 tcg_temp_free_i64(tcg_elt);
7938 /* Now truncate the result to the width required for the final output */
7939 if (opcode == 0x03) {
7940 /* SADDLV, UADDLV: result is 2*esize */
7941 size++;
7944 switch (size) {
7945 case 0:
7946 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7947 break;
7948 case 1:
7949 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7950 break;
7951 case 2:
7952 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7953 break;
7954 case 3:
7955 break;
7956 default:
7957 g_assert_not_reached();
7960 write_fp_dreg(s, rd, tcg_res);
7961 tcg_temp_free_i64(tcg_res);
7964 /* DUP (Element, Vector)
7966 * 31 30 29 21 20 16 15 10 9 5 4 0
7967 * +---+---+-------------------+--------+-------------+------+------+
7968 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7969 * +---+---+-------------------+--------+-------------+------+------+
7971 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7973 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7974 int imm5)
7976 int size = ctz32(imm5);
7977 int index;
7979 if (size > 3 || (size == 3 && !is_q)) {
7980 unallocated_encoding(s);
7981 return;
7984 if (!fp_access_check(s)) {
7985 return;
7988 index = imm5 >> (size + 1);
7989 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7990 vec_reg_offset(s, rn, index, size),
7991 is_q ? 16 : 8, vec_full_reg_size(s));
7994 /* DUP (element, scalar)
7995 * 31 21 20 16 15 10 9 5 4 0
7996 * +-----------------------+--------+-------------+------+------+
7997 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7998 * +-----------------------+--------+-------------+------+------+
8000 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
8001 int imm5)
8003 int size = ctz32(imm5);
8004 int index;
8005 TCGv_i64 tmp;
8007 if (size > 3) {
8008 unallocated_encoding(s);
8009 return;
8012 if (!fp_access_check(s)) {
8013 return;
8016 index = imm5 >> (size + 1);
8018 /* This instruction just extracts the specified element and
8019 * zero-extends it into the bottom of the destination register.
8021 tmp = tcg_temp_new_i64();
8022 read_vec_element(s, tmp, rn, index, size);
8023 write_fp_dreg(s, rd, tmp);
8024 tcg_temp_free_i64(tmp);
8027 /* DUP (General)
8029 * 31 30 29 21 20 16 15 10 9 5 4 0
8030 * +---+---+-------------------+--------+-------------+------+------+
8031 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
8032 * +---+---+-------------------+--------+-------------+------+------+
8034 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8036 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
8037 int imm5)
8039 int size = ctz32(imm5);
8040 uint32_t dofs, oprsz, maxsz;
8042 if (size > 3 || ((size == 3) && !is_q)) {
8043 unallocated_encoding(s);
8044 return;
8047 if (!fp_access_check(s)) {
8048 return;
8051 dofs = vec_full_reg_offset(s, rd);
8052 oprsz = is_q ? 16 : 8;
8053 maxsz = vec_full_reg_size(s);
8055 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
8058 /* INS (Element)
8060 * 31 21 20 16 15 14 11 10 9 5 4 0
8061 * +-----------------------+--------+------------+---+------+------+
8062 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8063 * +-----------------------+--------+------------+---+------+------+
8065 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8066 * index: encoded in imm5<4:size+1>
8068 static void handle_simd_inse(DisasContext *s, int rd, int rn,
8069 int imm4, int imm5)
8071 int size = ctz32(imm5);
8072 int src_index, dst_index;
8073 TCGv_i64 tmp;
8075 if (size > 3) {
8076 unallocated_encoding(s);
8077 return;
8080 if (!fp_access_check(s)) {
8081 return;
8084 dst_index = extract32(imm5, 1+size, 5);
8085 src_index = extract32(imm4, size, 4);
8087 tmp = tcg_temp_new_i64();
8089 read_vec_element(s, tmp, rn, src_index, size);
8090 write_vec_element(s, tmp, rd, dst_index, size);
8092 tcg_temp_free_i64(tmp);
8094 /* INS is considered a 128-bit write for SVE. */
8095 clear_vec_high(s, true, rd);
8099 /* INS (General)
8101 * 31 21 20 16 15 10 9 5 4 0
8102 * +-----------------------+--------+-------------+------+------+
8103 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
8104 * +-----------------------+--------+-------------+------+------+
8106 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8107 * index: encoded in imm5<4:size+1>
8109 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8111 int size = ctz32(imm5);
8112 int idx;
8114 if (size > 3) {
8115 unallocated_encoding(s);
8116 return;
8119 if (!fp_access_check(s)) {
8120 return;
8123 idx = extract32(imm5, 1 + size, 4 - size);
8124 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8126 /* INS is considered a 128-bit write for SVE. */
8127 clear_vec_high(s, true, rd);
8131 * UMOV (General)
8132 * SMOV (General)
8134 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8135 * +---+---+-------------------+--------+-------------+------+------+
8136 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8137 * +---+---+-------------------+--------+-------------+------+------+
8139 * U: unsigned when set
8140 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8142 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8143 int rn, int rd, int imm5)
8145 int size = ctz32(imm5);
8146 int element;
8147 TCGv_i64 tcg_rd;
8149 /* Check for UnallocatedEncodings */
8150 if (is_signed) {
8151 if (size > 2 || (size == 2 && !is_q)) {
8152 unallocated_encoding(s);
8153 return;
8155 } else {
8156 if (size > 3
8157 || (size < 3 && is_q)
8158 || (size == 3 && !is_q)) {
8159 unallocated_encoding(s);
8160 return;
8164 if (!fp_access_check(s)) {
8165 return;
8168 element = extract32(imm5, 1+size, 4);
8170 tcg_rd = cpu_reg(s, rd);
8171 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8172 if (is_signed && !is_q) {
8173 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8177 /* AdvSIMD copy
8178 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8179 * +---+---+----+-----------------+------+---+------+---+------+------+
8180 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8181 * +---+---+----+-----------------+------+---+------+---+------+------+
8183 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8185 int rd = extract32(insn, 0, 5);
8186 int rn = extract32(insn, 5, 5);
8187 int imm4 = extract32(insn, 11, 4);
8188 int op = extract32(insn, 29, 1);
8189 int is_q = extract32(insn, 30, 1);
8190 int imm5 = extract32(insn, 16, 5);
8192 if (op) {
8193 if (is_q) {
8194 /* INS (element) */
8195 handle_simd_inse(s, rd, rn, imm4, imm5);
8196 } else {
8197 unallocated_encoding(s);
8199 } else {
8200 switch (imm4) {
8201 case 0:
8202 /* DUP (element - vector) */
8203 handle_simd_dupe(s, is_q, rd, rn, imm5);
8204 break;
8205 case 1:
8206 /* DUP (general) */
8207 handle_simd_dupg(s, is_q, rd, rn, imm5);
8208 break;
8209 case 3:
8210 if (is_q) {
8211 /* INS (general) */
8212 handle_simd_insg(s, rd, rn, imm5);
8213 } else {
8214 unallocated_encoding(s);
8216 break;
8217 case 5:
8218 case 7:
8219 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8220 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8221 break;
8222 default:
8223 unallocated_encoding(s);
8224 break;
8229 /* AdvSIMD modified immediate
8230 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8231 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8232 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8233 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8235 * There are a number of operations that can be carried out here:
8236 * MOVI - move (shifted) imm into register
8237 * MVNI - move inverted (shifted) imm into register
8238 * ORR - bitwise OR of (shifted) imm with register
8239 * BIC - bitwise clear of (shifted) imm with register
8240 * With ARMv8.2 we also have:
8241 * FMOV half-precision
8243 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8245 int rd = extract32(insn, 0, 5);
8246 int cmode = extract32(insn, 12, 4);
8247 int o2 = extract32(insn, 11, 1);
8248 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8249 bool is_neg = extract32(insn, 29, 1);
8250 bool is_q = extract32(insn, 30, 1);
8251 uint64_t imm = 0;
8253 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8254 /* Check for FMOV (vector, immediate) - half-precision */
8255 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8256 unallocated_encoding(s);
8257 return;
8261 if (!fp_access_check(s)) {
8262 return;
8265 if (cmode == 15 && o2 && !is_neg) {
8266 /* FMOV (vector, immediate) - half-precision */
8267 imm = vfp_expand_imm(MO_16, abcdefgh);
8268 /* now duplicate across the lanes */
8269 imm = dup_const(MO_16, imm);
8270 } else {
8271 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8274 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8275 /* MOVI or MVNI, with MVNI negation handled above. */
8276 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8277 vec_full_reg_size(s), imm);
8278 } else {
8279 /* ORR or BIC, with BIC negation to AND handled above. */
8280 if (is_neg) {
8281 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8282 } else {
8283 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8288 /* AdvSIMD scalar copy
8289 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8290 * +-----+----+-----------------+------+---+------+---+------+------+
8291 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8292 * +-----+----+-----------------+------+---+------+---+------+------+
8294 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8296 int rd = extract32(insn, 0, 5);
8297 int rn = extract32(insn, 5, 5);
8298 int imm4 = extract32(insn, 11, 4);
8299 int imm5 = extract32(insn, 16, 5);
8300 int op = extract32(insn, 29, 1);
8302 if (op != 0 || imm4 != 0) {
8303 unallocated_encoding(s);
8304 return;
8307 /* DUP (element, scalar) */
8308 handle_simd_dupes(s, rd, rn, imm5);
8311 /* AdvSIMD scalar pairwise
8312 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8313 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8314 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8315 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8317 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8319 int u = extract32(insn, 29, 1);
8320 int size = extract32(insn, 22, 2);
8321 int opcode = extract32(insn, 12, 5);
8322 int rn = extract32(insn, 5, 5);
8323 int rd = extract32(insn, 0, 5);
8324 TCGv_ptr fpst;
8326 /* For some ops (the FP ones), size[1] is part of the encoding.
8327 * For ADDP strictly it is not but size[1] is always 1 for valid
8328 * encodings.
8330 opcode |= (extract32(size, 1, 1) << 5);
8332 switch (opcode) {
8333 case 0x3b: /* ADDP */
8334 if (u || size != 3) {
8335 unallocated_encoding(s);
8336 return;
8338 if (!fp_access_check(s)) {
8339 return;
8342 fpst = NULL;
8343 break;
8344 case 0xc: /* FMAXNMP */
8345 case 0xd: /* FADDP */
8346 case 0xf: /* FMAXP */
8347 case 0x2c: /* FMINNMP */
8348 case 0x2f: /* FMINP */
8349 /* FP op, size[0] is 32 or 64 bit*/
8350 if (!u) {
8351 if (!dc_isar_feature(aa64_fp16, s)) {
8352 unallocated_encoding(s);
8353 return;
8354 } else {
8355 size = MO_16;
8357 } else {
8358 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8361 if (!fp_access_check(s)) {
8362 return;
8365 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8366 break;
8367 default:
8368 unallocated_encoding(s);
8369 return;
8372 if (size == MO_64) {
8373 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8374 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8375 TCGv_i64 tcg_res = tcg_temp_new_i64();
8377 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8378 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8380 switch (opcode) {
8381 case 0x3b: /* ADDP */
8382 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8383 break;
8384 case 0xc: /* FMAXNMP */
8385 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8386 break;
8387 case 0xd: /* FADDP */
8388 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8389 break;
8390 case 0xf: /* FMAXP */
8391 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8392 break;
8393 case 0x2c: /* FMINNMP */
8394 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8395 break;
8396 case 0x2f: /* FMINP */
8397 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8398 break;
8399 default:
8400 g_assert_not_reached();
8403 write_fp_dreg(s, rd, tcg_res);
8405 tcg_temp_free_i64(tcg_op1);
8406 tcg_temp_free_i64(tcg_op2);
8407 tcg_temp_free_i64(tcg_res);
8408 } else {
8409 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8410 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8411 TCGv_i32 tcg_res = tcg_temp_new_i32();
8413 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8414 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8416 if (size == MO_16) {
8417 switch (opcode) {
8418 case 0xc: /* FMAXNMP */
8419 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8420 break;
8421 case 0xd: /* FADDP */
8422 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8423 break;
8424 case 0xf: /* FMAXP */
8425 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8426 break;
8427 case 0x2c: /* FMINNMP */
8428 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8429 break;
8430 case 0x2f: /* FMINP */
8431 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8432 break;
8433 default:
8434 g_assert_not_reached();
8436 } else {
8437 switch (opcode) {
8438 case 0xc: /* FMAXNMP */
8439 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8440 break;
8441 case 0xd: /* FADDP */
8442 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8443 break;
8444 case 0xf: /* FMAXP */
8445 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8446 break;
8447 case 0x2c: /* FMINNMP */
8448 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8449 break;
8450 case 0x2f: /* FMINP */
8451 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8452 break;
8453 default:
8454 g_assert_not_reached();
8458 write_fp_sreg(s, rd, tcg_res);
8460 tcg_temp_free_i32(tcg_op1);
8461 tcg_temp_free_i32(tcg_op2);
8462 tcg_temp_free_i32(tcg_res);
8465 if (fpst) {
8466 tcg_temp_free_ptr(fpst);
8471 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8473 * This code is handles the common shifting code and is used by both
8474 * the vector and scalar code.
8476 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8477 TCGv_i64 tcg_rnd, bool accumulate,
8478 bool is_u, int size, int shift)
8480 bool extended_result = false;
8481 bool round = tcg_rnd != NULL;
8482 int ext_lshift = 0;
8483 TCGv_i64 tcg_src_hi;
8485 if (round && size == 3) {
8486 extended_result = true;
8487 ext_lshift = 64 - shift;
8488 tcg_src_hi = tcg_temp_new_i64();
8489 } else if (shift == 64) {
8490 if (!accumulate && is_u) {
8491 /* result is zero */
8492 tcg_gen_movi_i64(tcg_res, 0);
8493 return;
8497 /* Deal with the rounding step */
8498 if (round) {
8499 if (extended_result) {
8500 TCGv_i64 tcg_zero = tcg_constant_i64(0);
8501 if (!is_u) {
8502 /* take care of sign extending tcg_res */
8503 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8504 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8505 tcg_src, tcg_src_hi,
8506 tcg_rnd, tcg_zero);
8507 } else {
8508 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8509 tcg_src, tcg_zero,
8510 tcg_rnd, tcg_zero);
8512 } else {
8513 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8517 /* Now do the shift right */
8518 if (round && extended_result) {
8519 /* extended case, >64 bit precision required */
8520 if (ext_lshift == 0) {
8521 /* special case, only high bits matter */
8522 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8523 } else {
8524 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8525 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8526 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8528 } else {
8529 if (is_u) {
8530 if (shift == 64) {
8531 /* essentially shifting in 64 zeros */
8532 tcg_gen_movi_i64(tcg_src, 0);
8533 } else {
8534 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8536 } else {
8537 if (shift == 64) {
8538 /* effectively extending the sign-bit */
8539 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8540 } else {
8541 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8546 if (accumulate) {
8547 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8548 } else {
8549 tcg_gen_mov_i64(tcg_res, tcg_src);
8552 if (extended_result) {
8553 tcg_temp_free_i64(tcg_src_hi);
8557 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8558 static void handle_scalar_simd_shri(DisasContext *s,
8559 bool is_u, int immh, int immb,
8560 int opcode, int rn, int rd)
8562 const int size = 3;
8563 int immhb = immh << 3 | immb;
8564 int shift = 2 * (8 << size) - immhb;
8565 bool accumulate = false;
8566 bool round = false;
8567 bool insert = false;
8568 TCGv_i64 tcg_rn;
8569 TCGv_i64 tcg_rd;
8570 TCGv_i64 tcg_round;
8572 if (!extract32(immh, 3, 1)) {
8573 unallocated_encoding(s);
8574 return;
8577 if (!fp_access_check(s)) {
8578 return;
8581 switch (opcode) {
8582 case 0x02: /* SSRA / USRA (accumulate) */
8583 accumulate = true;
8584 break;
8585 case 0x04: /* SRSHR / URSHR (rounding) */
8586 round = true;
8587 break;
8588 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8589 accumulate = round = true;
8590 break;
8591 case 0x08: /* SRI */
8592 insert = true;
8593 break;
8596 if (round) {
8597 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8598 } else {
8599 tcg_round = NULL;
8602 tcg_rn = read_fp_dreg(s, rn);
8603 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8605 if (insert) {
8606 /* shift count same as element size is valid but does nothing;
8607 * special case to avoid potential shift by 64.
8609 int esize = 8 << size;
8610 if (shift != esize) {
8611 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8612 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8614 } else {
8615 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8616 accumulate, is_u, size, shift);
8619 write_fp_dreg(s, rd, tcg_rd);
8621 tcg_temp_free_i64(tcg_rn);
8622 tcg_temp_free_i64(tcg_rd);
8625 /* SHL/SLI - Scalar shift left */
8626 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8627 int immh, int immb, int opcode,
8628 int rn, int rd)
8630 int size = 32 - clz32(immh) - 1;
8631 int immhb = immh << 3 | immb;
8632 int shift = immhb - (8 << size);
8633 TCGv_i64 tcg_rn;
8634 TCGv_i64 tcg_rd;
8636 if (!extract32(immh, 3, 1)) {
8637 unallocated_encoding(s);
8638 return;
8641 if (!fp_access_check(s)) {
8642 return;
8645 tcg_rn = read_fp_dreg(s, rn);
8646 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8648 if (insert) {
8649 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8650 } else {
8651 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8654 write_fp_dreg(s, rd, tcg_rd);
8656 tcg_temp_free_i64(tcg_rn);
8657 tcg_temp_free_i64(tcg_rd);
8660 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8661 * (signed/unsigned) narrowing */
8662 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8663 bool is_u_shift, bool is_u_narrow,
8664 int immh, int immb, int opcode,
8665 int rn, int rd)
8667 int immhb = immh << 3 | immb;
8668 int size = 32 - clz32(immh) - 1;
8669 int esize = 8 << size;
8670 int shift = (2 * esize) - immhb;
8671 int elements = is_scalar ? 1 : (64 / esize);
8672 bool round = extract32(opcode, 0, 1);
8673 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8674 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8675 TCGv_i32 tcg_rd_narrowed;
8676 TCGv_i64 tcg_final;
8678 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8679 { gen_helper_neon_narrow_sat_s8,
8680 gen_helper_neon_unarrow_sat8 },
8681 { gen_helper_neon_narrow_sat_s16,
8682 gen_helper_neon_unarrow_sat16 },
8683 { gen_helper_neon_narrow_sat_s32,
8684 gen_helper_neon_unarrow_sat32 },
8685 { NULL, NULL },
8687 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8688 gen_helper_neon_narrow_sat_u8,
8689 gen_helper_neon_narrow_sat_u16,
8690 gen_helper_neon_narrow_sat_u32,
8691 NULL
8693 NeonGenNarrowEnvFn *narrowfn;
8695 int i;
8697 assert(size < 4);
8699 if (extract32(immh, 3, 1)) {
8700 unallocated_encoding(s);
8701 return;
8704 if (!fp_access_check(s)) {
8705 return;
8708 if (is_u_shift) {
8709 narrowfn = unsigned_narrow_fns[size];
8710 } else {
8711 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8714 tcg_rn = tcg_temp_new_i64();
8715 tcg_rd = tcg_temp_new_i64();
8716 tcg_rd_narrowed = tcg_temp_new_i32();
8717 tcg_final = tcg_const_i64(0);
8719 if (round) {
8720 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
8721 } else {
8722 tcg_round = NULL;
8725 for (i = 0; i < elements; i++) {
8726 read_vec_element(s, tcg_rn, rn, i, ldop);
8727 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8728 false, is_u_shift, size+1, shift);
8729 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8730 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8731 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8734 if (!is_q) {
8735 write_vec_element(s, tcg_final, rd, 0, MO_64);
8736 } else {
8737 write_vec_element(s, tcg_final, rd, 1, MO_64);
8740 tcg_temp_free_i64(tcg_rn);
8741 tcg_temp_free_i64(tcg_rd);
8742 tcg_temp_free_i32(tcg_rd_narrowed);
8743 tcg_temp_free_i64(tcg_final);
8745 clear_vec_high(s, is_q, rd);
8748 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8749 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8750 bool src_unsigned, bool dst_unsigned,
8751 int immh, int immb, int rn, int rd)
8753 int immhb = immh << 3 | immb;
8754 int size = 32 - clz32(immh) - 1;
8755 int shift = immhb - (8 << size);
8756 int pass;
8758 assert(immh != 0);
8759 assert(!(scalar && is_q));
8761 if (!scalar) {
8762 if (!is_q && extract32(immh, 3, 1)) {
8763 unallocated_encoding(s);
8764 return;
8767 /* Since we use the variable-shift helpers we must
8768 * replicate the shift count into each element of
8769 * the tcg_shift value.
8771 switch (size) {
8772 case 0:
8773 shift |= shift << 8;
8774 /* fall through */
8775 case 1:
8776 shift |= shift << 16;
8777 break;
8778 case 2:
8779 case 3:
8780 break;
8781 default:
8782 g_assert_not_reached();
8786 if (!fp_access_check(s)) {
8787 return;
8790 if (size == 3) {
8791 TCGv_i64 tcg_shift = tcg_constant_i64(shift);
8792 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8793 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8794 { NULL, gen_helper_neon_qshl_u64 },
8796 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8797 int maxpass = is_q ? 2 : 1;
8799 for (pass = 0; pass < maxpass; pass++) {
8800 TCGv_i64 tcg_op = tcg_temp_new_i64();
8802 read_vec_element(s, tcg_op, rn, pass, MO_64);
8803 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8804 write_vec_element(s, tcg_op, rd, pass, MO_64);
8806 tcg_temp_free_i64(tcg_op);
8808 clear_vec_high(s, is_q, rd);
8809 } else {
8810 TCGv_i32 tcg_shift = tcg_constant_i32(shift);
8811 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8813 { gen_helper_neon_qshl_s8,
8814 gen_helper_neon_qshl_s16,
8815 gen_helper_neon_qshl_s32 },
8816 { gen_helper_neon_qshlu_s8,
8817 gen_helper_neon_qshlu_s16,
8818 gen_helper_neon_qshlu_s32 }
8819 }, {
8820 { NULL, NULL, NULL },
8821 { gen_helper_neon_qshl_u8,
8822 gen_helper_neon_qshl_u16,
8823 gen_helper_neon_qshl_u32 }
8826 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8827 MemOp memop = scalar ? size : MO_32;
8828 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8830 for (pass = 0; pass < maxpass; pass++) {
8831 TCGv_i32 tcg_op = tcg_temp_new_i32();
8833 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8834 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8835 if (scalar) {
8836 switch (size) {
8837 case 0:
8838 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8839 break;
8840 case 1:
8841 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8842 break;
8843 case 2:
8844 break;
8845 default:
8846 g_assert_not_reached();
8848 write_fp_sreg(s, rd, tcg_op);
8849 } else {
8850 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8853 tcg_temp_free_i32(tcg_op);
8856 if (!scalar) {
8857 clear_vec_high(s, is_q, rd);
8862 /* Common vector code for handling integer to FP conversion */
8863 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8864 int elements, int is_signed,
8865 int fracbits, int size)
8867 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8868 TCGv_i32 tcg_shift = NULL;
8870 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8871 int pass;
8873 if (fracbits || size == MO_64) {
8874 tcg_shift = tcg_constant_i32(fracbits);
8877 if (size == MO_64) {
8878 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8879 TCGv_i64 tcg_double = tcg_temp_new_i64();
8881 for (pass = 0; pass < elements; pass++) {
8882 read_vec_element(s, tcg_int64, rn, pass, mop);
8884 if (is_signed) {
8885 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8886 tcg_shift, tcg_fpst);
8887 } else {
8888 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8889 tcg_shift, tcg_fpst);
8891 if (elements == 1) {
8892 write_fp_dreg(s, rd, tcg_double);
8893 } else {
8894 write_vec_element(s, tcg_double, rd, pass, MO_64);
8898 tcg_temp_free_i64(tcg_int64);
8899 tcg_temp_free_i64(tcg_double);
8901 } else {
8902 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8903 TCGv_i32 tcg_float = tcg_temp_new_i32();
8905 for (pass = 0; pass < elements; pass++) {
8906 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8908 switch (size) {
8909 case MO_32:
8910 if (fracbits) {
8911 if (is_signed) {
8912 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8913 tcg_shift, tcg_fpst);
8914 } else {
8915 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8916 tcg_shift, tcg_fpst);
8918 } else {
8919 if (is_signed) {
8920 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8921 } else {
8922 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8925 break;
8926 case MO_16:
8927 if (fracbits) {
8928 if (is_signed) {
8929 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8930 tcg_shift, tcg_fpst);
8931 } else {
8932 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8933 tcg_shift, tcg_fpst);
8935 } else {
8936 if (is_signed) {
8937 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8938 } else {
8939 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8942 break;
8943 default:
8944 g_assert_not_reached();
8947 if (elements == 1) {
8948 write_fp_sreg(s, rd, tcg_float);
8949 } else {
8950 write_vec_element_i32(s, tcg_float, rd, pass, size);
8954 tcg_temp_free_i32(tcg_int32);
8955 tcg_temp_free_i32(tcg_float);
8958 tcg_temp_free_ptr(tcg_fpst);
8960 clear_vec_high(s, elements << size == 16, rd);
8963 /* UCVTF/SCVTF - Integer to FP conversion */
8964 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8965 bool is_q, bool is_u,
8966 int immh, int immb, int opcode,
8967 int rn, int rd)
8969 int size, elements, fracbits;
8970 int immhb = immh << 3 | immb;
8972 if (immh & 8) {
8973 size = MO_64;
8974 if (!is_scalar && !is_q) {
8975 unallocated_encoding(s);
8976 return;
8978 } else if (immh & 4) {
8979 size = MO_32;
8980 } else if (immh & 2) {
8981 size = MO_16;
8982 if (!dc_isar_feature(aa64_fp16, s)) {
8983 unallocated_encoding(s);
8984 return;
8986 } else {
8987 /* immh == 0 would be a failure of the decode logic */
8988 g_assert(immh == 1);
8989 unallocated_encoding(s);
8990 return;
8993 if (is_scalar) {
8994 elements = 1;
8995 } else {
8996 elements = (8 << is_q) >> size;
8998 fracbits = (16 << size) - immhb;
9000 if (!fp_access_check(s)) {
9001 return;
9004 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
9007 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
9008 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
9009 bool is_q, bool is_u,
9010 int immh, int immb, int rn, int rd)
9012 int immhb = immh << 3 | immb;
9013 int pass, size, fracbits;
9014 TCGv_ptr tcg_fpstatus;
9015 TCGv_i32 tcg_rmode, tcg_shift;
9017 if (immh & 0x8) {
9018 size = MO_64;
9019 if (!is_scalar && !is_q) {
9020 unallocated_encoding(s);
9021 return;
9023 } else if (immh & 0x4) {
9024 size = MO_32;
9025 } else if (immh & 0x2) {
9026 size = MO_16;
9027 if (!dc_isar_feature(aa64_fp16, s)) {
9028 unallocated_encoding(s);
9029 return;
9031 } else {
9032 /* Should have split out AdvSIMD modified immediate earlier. */
9033 assert(immh == 1);
9034 unallocated_encoding(s);
9035 return;
9038 if (!fp_access_check(s)) {
9039 return;
9042 assert(!(is_scalar && is_q));
9044 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
9045 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9046 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9047 fracbits = (16 << size) - immhb;
9048 tcg_shift = tcg_constant_i32(fracbits);
9050 if (size == MO_64) {
9051 int maxpass = is_scalar ? 1 : 2;
9053 for (pass = 0; pass < maxpass; pass++) {
9054 TCGv_i64 tcg_op = tcg_temp_new_i64();
9056 read_vec_element(s, tcg_op, rn, pass, MO_64);
9057 if (is_u) {
9058 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9059 } else {
9060 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9062 write_vec_element(s, tcg_op, rd, pass, MO_64);
9063 tcg_temp_free_i64(tcg_op);
9065 clear_vec_high(s, is_q, rd);
9066 } else {
9067 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9068 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9070 switch (size) {
9071 case MO_16:
9072 if (is_u) {
9073 fn = gen_helper_vfp_touhh;
9074 } else {
9075 fn = gen_helper_vfp_toshh;
9077 break;
9078 case MO_32:
9079 if (is_u) {
9080 fn = gen_helper_vfp_touls;
9081 } else {
9082 fn = gen_helper_vfp_tosls;
9084 break;
9085 default:
9086 g_assert_not_reached();
9089 for (pass = 0; pass < maxpass; pass++) {
9090 TCGv_i32 tcg_op = tcg_temp_new_i32();
9092 read_vec_element_i32(s, tcg_op, rn, pass, size);
9093 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9094 if (is_scalar) {
9095 write_fp_sreg(s, rd, tcg_op);
9096 } else {
9097 write_vec_element_i32(s, tcg_op, rd, pass, size);
9099 tcg_temp_free_i32(tcg_op);
9101 if (!is_scalar) {
9102 clear_vec_high(s, is_q, rd);
9106 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9107 tcg_temp_free_ptr(tcg_fpstatus);
9108 tcg_temp_free_i32(tcg_rmode);
9111 /* AdvSIMD scalar shift by immediate
9112 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9113 * +-----+---+-------------+------+------+--------+---+------+------+
9114 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9115 * +-----+---+-------------+------+------+--------+---+------+------+
9117 * This is the scalar version so it works on a fixed sized registers
9119 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9121 int rd = extract32(insn, 0, 5);
9122 int rn = extract32(insn, 5, 5);
9123 int opcode = extract32(insn, 11, 5);
9124 int immb = extract32(insn, 16, 3);
9125 int immh = extract32(insn, 19, 4);
9126 bool is_u = extract32(insn, 29, 1);
9128 if (immh == 0) {
9129 unallocated_encoding(s);
9130 return;
9133 switch (opcode) {
9134 case 0x08: /* SRI */
9135 if (!is_u) {
9136 unallocated_encoding(s);
9137 return;
9139 /* fall through */
9140 case 0x00: /* SSHR / USHR */
9141 case 0x02: /* SSRA / USRA */
9142 case 0x04: /* SRSHR / URSHR */
9143 case 0x06: /* SRSRA / URSRA */
9144 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9145 break;
9146 case 0x0a: /* SHL / SLI */
9147 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9148 break;
9149 case 0x1c: /* SCVTF, UCVTF */
9150 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9151 opcode, rn, rd);
9152 break;
9153 case 0x10: /* SQSHRUN, SQSHRUN2 */
9154 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9155 if (!is_u) {
9156 unallocated_encoding(s);
9157 return;
9159 handle_vec_simd_sqshrn(s, true, false, false, true,
9160 immh, immb, opcode, rn, rd);
9161 break;
9162 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9163 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9164 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9165 immh, immb, opcode, rn, rd);
9166 break;
9167 case 0xc: /* SQSHLU */
9168 if (!is_u) {
9169 unallocated_encoding(s);
9170 return;
9172 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9173 break;
9174 case 0xe: /* SQSHL, UQSHL */
9175 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9176 break;
9177 case 0x1f: /* FCVTZS, FCVTZU */
9178 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9179 break;
9180 default:
9181 unallocated_encoding(s);
9182 break;
9186 /* AdvSIMD scalar three different
9187 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9188 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9189 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9190 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9192 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9194 bool is_u = extract32(insn, 29, 1);
9195 int size = extract32(insn, 22, 2);
9196 int opcode = extract32(insn, 12, 4);
9197 int rm = extract32(insn, 16, 5);
9198 int rn = extract32(insn, 5, 5);
9199 int rd = extract32(insn, 0, 5);
9201 if (is_u) {
9202 unallocated_encoding(s);
9203 return;
9206 switch (opcode) {
9207 case 0x9: /* SQDMLAL, SQDMLAL2 */
9208 case 0xb: /* SQDMLSL, SQDMLSL2 */
9209 case 0xd: /* SQDMULL, SQDMULL2 */
9210 if (size == 0 || size == 3) {
9211 unallocated_encoding(s);
9212 return;
9214 break;
9215 default:
9216 unallocated_encoding(s);
9217 return;
9220 if (!fp_access_check(s)) {
9221 return;
9224 if (size == 2) {
9225 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9226 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9227 TCGv_i64 tcg_res = tcg_temp_new_i64();
9229 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9230 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9232 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9233 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9235 switch (opcode) {
9236 case 0xd: /* SQDMULL, SQDMULL2 */
9237 break;
9238 case 0xb: /* SQDMLSL, SQDMLSL2 */
9239 tcg_gen_neg_i64(tcg_res, tcg_res);
9240 /* fall through */
9241 case 0x9: /* SQDMLAL, SQDMLAL2 */
9242 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9243 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9244 tcg_res, tcg_op1);
9245 break;
9246 default:
9247 g_assert_not_reached();
9250 write_fp_dreg(s, rd, tcg_res);
9252 tcg_temp_free_i64(tcg_op1);
9253 tcg_temp_free_i64(tcg_op2);
9254 tcg_temp_free_i64(tcg_res);
9255 } else {
9256 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9257 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9258 TCGv_i64 tcg_res = tcg_temp_new_i64();
9260 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9261 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9263 switch (opcode) {
9264 case 0xd: /* SQDMULL, SQDMULL2 */
9265 break;
9266 case 0xb: /* SQDMLSL, SQDMLSL2 */
9267 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9268 /* fall through */
9269 case 0x9: /* SQDMLAL, SQDMLAL2 */
9271 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9272 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9273 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9274 tcg_res, tcg_op3);
9275 tcg_temp_free_i64(tcg_op3);
9276 break;
9278 default:
9279 g_assert_not_reached();
9282 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9283 write_fp_dreg(s, rd, tcg_res);
9285 tcg_temp_free_i32(tcg_op1);
9286 tcg_temp_free_i32(tcg_op2);
9287 tcg_temp_free_i64(tcg_res);
9291 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9292 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9294 /* Handle 64x64->64 opcodes which are shared between the scalar
9295 * and vector 3-same groups. We cover every opcode where size == 3
9296 * is valid in either the three-reg-same (integer, not pairwise)
9297 * or scalar-three-reg-same groups.
9299 TCGCond cond;
9301 switch (opcode) {
9302 case 0x1: /* SQADD */
9303 if (u) {
9304 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9305 } else {
9306 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9308 break;
9309 case 0x5: /* SQSUB */
9310 if (u) {
9311 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9312 } else {
9313 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9315 break;
9316 case 0x6: /* CMGT, CMHI */
9317 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9318 * We implement this using setcond (test) and then negating.
9320 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9321 do_cmop:
9322 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9323 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9324 break;
9325 case 0x7: /* CMGE, CMHS */
9326 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9327 goto do_cmop;
9328 case 0x11: /* CMTST, CMEQ */
9329 if (u) {
9330 cond = TCG_COND_EQ;
9331 goto do_cmop;
9333 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9334 break;
9335 case 0x8: /* SSHL, USHL */
9336 if (u) {
9337 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9338 } else {
9339 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9341 break;
9342 case 0x9: /* SQSHL, UQSHL */
9343 if (u) {
9344 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9345 } else {
9346 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9348 break;
9349 case 0xa: /* SRSHL, URSHL */
9350 if (u) {
9351 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9352 } else {
9353 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9355 break;
9356 case 0xb: /* SQRSHL, UQRSHL */
9357 if (u) {
9358 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9359 } else {
9360 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9362 break;
9363 case 0x10: /* ADD, SUB */
9364 if (u) {
9365 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9366 } else {
9367 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9369 break;
9370 default:
9371 g_assert_not_reached();
9375 /* Handle the 3-same-operands float operations; shared by the scalar
9376 * and vector encodings. The caller must filter out any encodings
9377 * not allocated for the encoding it is dealing with.
9379 static void handle_3same_float(DisasContext *s, int size, int elements,
9380 int fpopcode, int rd, int rn, int rm)
9382 int pass;
9383 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9385 for (pass = 0; pass < elements; pass++) {
9386 if (size) {
9387 /* Double */
9388 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9389 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9390 TCGv_i64 tcg_res = tcg_temp_new_i64();
9392 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9393 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9395 switch (fpopcode) {
9396 case 0x39: /* FMLS */
9397 /* As usual for ARM, separate negation for fused multiply-add */
9398 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9399 /* fall through */
9400 case 0x19: /* FMLA */
9401 read_vec_element(s, tcg_res, rd, pass, MO_64);
9402 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9403 tcg_res, fpst);
9404 break;
9405 case 0x18: /* FMAXNM */
9406 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9407 break;
9408 case 0x1a: /* FADD */
9409 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9410 break;
9411 case 0x1b: /* FMULX */
9412 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9413 break;
9414 case 0x1c: /* FCMEQ */
9415 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9416 break;
9417 case 0x1e: /* FMAX */
9418 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9419 break;
9420 case 0x1f: /* FRECPS */
9421 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9422 break;
9423 case 0x38: /* FMINNM */
9424 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9425 break;
9426 case 0x3a: /* FSUB */
9427 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9428 break;
9429 case 0x3e: /* FMIN */
9430 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9431 break;
9432 case 0x3f: /* FRSQRTS */
9433 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9434 break;
9435 case 0x5b: /* FMUL */
9436 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9437 break;
9438 case 0x5c: /* FCMGE */
9439 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9440 break;
9441 case 0x5d: /* FACGE */
9442 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9443 break;
9444 case 0x5f: /* FDIV */
9445 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9446 break;
9447 case 0x7a: /* FABD */
9448 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9449 gen_helper_vfp_absd(tcg_res, tcg_res);
9450 break;
9451 case 0x7c: /* FCMGT */
9452 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9453 break;
9454 case 0x7d: /* FACGT */
9455 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9456 break;
9457 default:
9458 g_assert_not_reached();
9461 write_vec_element(s, tcg_res, rd, pass, MO_64);
9463 tcg_temp_free_i64(tcg_res);
9464 tcg_temp_free_i64(tcg_op1);
9465 tcg_temp_free_i64(tcg_op2);
9466 } else {
9467 /* Single */
9468 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9469 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9470 TCGv_i32 tcg_res = tcg_temp_new_i32();
9472 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9473 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9475 switch (fpopcode) {
9476 case 0x39: /* FMLS */
9477 /* As usual for ARM, separate negation for fused multiply-add */
9478 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9479 /* fall through */
9480 case 0x19: /* FMLA */
9481 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9482 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9483 tcg_res, fpst);
9484 break;
9485 case 0x1a: /* FADD */
9486 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9487 break;
9488 case 0x1b: /* FMULX */
9489 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9490 break;
9491 case 0x1c: /* FCMEQ */
9492 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9493 break;
9494 case 0x1e: /* FMAX */
9495 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9496 break;
9497 case 0x1f: /* FRECPS */
9498 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9499 break;
9500 case 0x18: /* FMAXNM */
9501 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9502 break;
9503 case 0x38: /* FMINNM */
9504 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9505 break;
9506 case 0x3a: /* FSUB */
9507 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9508 break;
9509 case 0x3e: /* FMIN */
9510 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9511 break;
9512 case 0x3f: /* FRSQRTS */
9513 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9514 break;
9515 case 0x5b: /* FMUL */
9516 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9517 break;
9518 case 0x5c: /* FCMGE */
9519 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9520 break;
9521 case 0x5d: /* FACGE */
9522 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9523 break;
9524 case 0x5f: /* FDIV */
9525 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9526 break;
9527 case 0x7a: /* FABD */
9528 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9529 gen_helper_vfp_abss(tcg_res, tcg_res);
9530 break;
9531 case 0x7c: /* FCMGT */
9532 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9533 break;
9534 case 0x7d: /* FACGT */
9535 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9536 break;
9537 default:
9538 g_assert_not_reached();
9541 if (elements == 1) {
9542 /* scalar single so clear high part */
9543 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9545 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9546 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9547 tcg_temp_free_i64(tcg_tmp);
9548 } else {
9549 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9552 tcg_temp_free_i32(tcg_res);
9553 tcg_temp_free_i32(tcg_op1);
9554 tcg_temp_free_i32(tcg_op2);
9558 tcg_temp_free_ptr(fpst);
9560 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9563 /* AdvSIMD scalar three same
9564 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9565 * +-----+---+-----------+------+---+------+--------+---+------+------+
9566 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9567 * +-----+---+-----------+------+---+------+--------+---+------+------+
9569 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9571 int rd = extract32(insn, 0, 5);
9572 int rn = extract32(insn, 5, 5);
9573 int opcode = extract32(insn, 11, 5);
9574 int rm = extract32(insn, 16, 5);
9575 int size = extract32(insn, 22, 2);
9576 bool u = extract32(insn, 29, 1);
9577 TCGv_i64 tcg_rd;
9579 if (opcode >= 0x18) {
9580 /* Floating point: U, size[1] and opcode indicate operation */
9581 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9582 switch (fpopcode) {
9583 case 0x1b: /* FMULX */
9584 case 0x1f: /* FRECPS */
9585 case 0x3f: /* FRSQRTS */
9586 case 0x5d: /* FACGE */
9587 case 0x7d: /* FACGT */
9588 case 0x1c: /* FCMEQ */
9589 case 0x5c: /* FCMGE */
9590 case 0x7c: /* FCMGT */
9591 case 0x7a: /* FABD */
9592 break;
9593 default:
9594 unallocated_encoding(s);
9595 return;
9598 if (!fp_access_check(s)) {
9599 return;
9602 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9603 return;
9606 switch (opcode) {
9607 case 0x1: /* SQADD, UQADD */
9608 case 0x5: /* SQSUB, UQSUB */
9609 case 0x9: /* SQSHL, UQSHL */
9610 case 0xb: /* SQRSHL, UQRSHL */
9611 break;
9612 case 0x8: /* SSHL, USHL */
9613 case 0xa: /* SRSHL, URSHL */
9614 case 0x6: /* CMGT, CMHI */
9615 case 0x7: /* CMGE, CMHS */
9616 case 0x11: /* CMTST, CMEQ */
9617 case 0x10: /* ADD, SUB (vector) */
9618 if (size != 3) {
9619 unallocated_encoding(s);
9620 return;
9622 break;
9623 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9624 if (size != 1 && size != 2) {
9625 unallocated_encoding(s);
9626 return;
9628 break;
9629 default:
9630 unallocated_encoding(s);
9631 return;
9634 if (!fp_access_check(s)) {
9635 return;
9638 tcg_rd = tcg_temp_new_i64();
9640 if (size == 3) {
9641 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9642 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9644 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9645 tcg_temp_free_i64(tcg_rn);
9646 tcg_temp_free_i64(tcg_rm);
9647 } else {
9648 /* Do a single operation on the lowest element in the vector.
9649 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9650 * no side effects for all these operations.
9651 * OPTME: special-purpose helpers would avoid doing some
9652 * unnecessary work in the helper for the 8 and 16 bit cases.
9654 NeonGenTwoOpEnvFn *genenvfn;
9655 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9656 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9657 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9659 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9660 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9662 switch (opcode) {
9663 case 0x1: /* SQADD, UQADD */
9665 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9666 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9667 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9668 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9670 genenvfn = fns[size][u];
9671 break;
9673 case 0x5: /* SQSUB, UQSUB */
9675 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9676 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9677 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9678 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9680 genenvfn = fns[size][u];
9681 break;
9683 case 0x9: /* SQSHL, UQSHL */
9685 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9686 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9687 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9688 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9690 genenvfn = fns[size][u];
9691 break;
9693 case 0xb: /* SQRSHL, UQRSHL */
9695 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9696 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9697 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9698 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9700 genenvfn = fns[size][u];
9701 break;
9703 case 0x16: /* SQDMULH, SQRDMULH */
9705 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9706 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9707 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9709 assert(size == 1 || size == 2);
9710 genenvfn = fns[size - 1][u];
9711 break;
9713 default:
9714 g_assert_not_reached();
9717 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9718 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9719 tcg_temp_free_i32(tcg_rd32);
9720 tcg_temp_free_i32(tcg_rn);
9721 tcg_temp_free_i32(tcg_rm);
9724 write_fp_dreg(s, rd, tcg_rd);
9726 tcg_temp_free_i64(tcg_rd);
9729 /* AdvSIMD scalar three same FP16
9730 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9731 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9732 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9733 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9734 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9735 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9737 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9738 uint32_t insn)
9740 int rd = extract32(insn, 0, 5);
9741 int rn = extract32(insn, 5, 5);
9742 int opcode = extract32(insn, 11, 3);
9743 int rm = extract32(insn, 16, 5);
9744 bool u = extract32(insn, 29, 1);
9745 bool a = extract32(insn, 23, 1);
9746 int fpopcode = opcode | (a << 3) | (u << 4);
9747 TCGv_ptr fpst;
9748 TCGv_i32 tcg_op1;
9749 TCGv_i32 tcg_op2;
9750 TCGv_i32 tcg_res;
9752 switch (fpopcode) {
9753 case 0x03: /* FMULX */
9754 case 0x04: /* FCMEQ (reg) */
9755 case 0x07: /* FRECPS */
9756 case 0x0f: /* FRSQRTS */
9757 case 0x14: /* FCMGE (reg) */
9758 case 0x15: /* FACGE */
9759 case 0x1a: /* FABD */
9760 case 0x1c: /* FCMGT (reg) */
9761 case 0x1d: /* FACGT */
9762 break;
9763 default:
9764 unallocated_encoding(s);
9765 return;
9768 if (!dc_isar_feature(aa64_fp16, s)) {
9769 unallocated_encoding(s);
9772 if (!fp_access_check(s)) {
9773 return;
9776 fpst = fpstatus_ptr(FPST_FPCR_F16);
9778 tcg_op1 = read_fp_hreg(s, rn);
9779 tcg_op2 = read_fp_hreg(s, rm);
9780 tcg_res = tcg_temp_new_i32();
9782 switch (fpopcode) {
9783 case 0x03: /* FMULX */
9784 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9785 break;
9786 case 0x04: /* FCMEQ (reg) */
9787 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9788 break;
9789 case 0x07: /* FRECPS */
9790 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9791 break;
9792 case 0x0f: /* FRSQRTS */
9793 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9794 break;
9795 case 0x14: /* FCMGE (reg) */
9796 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9797 break;
9798 case 0x15: /* FACGE */
9799 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9800 break;
9801 case 0x1a: /* FABD */
9802 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9803 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9804 break;
9805 case 0x1c: /* FCMGT (reg) */
9806 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9807 break;
9808 case 0x1d: /* FACGT */
9809 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9810 break;
9811 default:
9812 g_assert_not_reached();
9815 write_fp_sreg(s, rd, tcg_res);
9818 tcg_temp_free_i32(tcg_res);
9819 tcg_temp_free_i32(tcg_op1);
9820 tcg_temp_free_i32(tcg_op2);
9821 tcg_temp_free_ptr(fpst);
9824 /* AdvSIMD scalar three same extra
9825 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9826 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9827 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9828 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9830 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9831 uint32_t insn)
9833 int rd = extract32(insn, 0, 5);
9834 int rn = extract32(insn, 5, 5);
9835 int opcode = extract32(insn, 11, 4);
9836 int rm = extract32(insn, 16, 5);
9837 int size = extract32(insn, 22, 2);
9838 bool u = extract32(insn, 29, 1);
9839 TCGv_i32 ele1, ele2, ele3;
9840 TCGv_i64 res;
9841 bool feature;
9843 switch (u * 16 + opcode) {
9844 case 0x10: /* SQRDMLAH (vector) */
9845 case 0x11: /* SQRDMLSH (vector) */
9846 if (size != 1 && size != 2) {
9847 unallocated_encoding(s);
9848 return;
9850 feature = dc_isar_feature(aa64_rdm, s);
9851 break;
9852 default:
9853 unallocated_encoding(s);
9854 return;
9856 if (!feature) {
9857 unallocated_encoding(s);
9858 return;
9860 if (!fp_access_check(s)) {
9861 return;
9864 /* Do a single operation on the lowest element in the vector.
9865 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9866 * with no side effects for all these operations.
9867 * OPTME: special-purpose helpers would avoid doing some
9868 * unnecessary work in the helper for the 16 bit cases.
9870 ele1 = tcg_temp_new_i32();
9871 ele2 = tcg_temp_new_i32();
9872 ele3 = tcg_temp_new_i32();
9874 read_vec_element_i32(s, ele1, rn, 0, size);
9875 read_vec_element_i32(s, ele2, rm, 0, size);
9876 read_vec_element_i32(s, ele3, rd, 0, size);
9878 switch (opcode) {
9879 case 0x0: /* SQRDMLAH */
9880 if (size == 1) {
9881 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9882 } else {
9883 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9885 break;
9886 case 0x1: /* SQRDMLSH */
9887 if (size == 1) {
9888 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9889 } else {
9890 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9892 break;
9893 default:
9894 g_assert_not_reached();
9896 tcg_temp_free_i32(ele1);
9897 tcg_temp_free_i32(ele2);
9899 res = tcg_temp_new_i64();
9900 tcg_gen_extu_i32_i64(res, ele3);
9901 tcg_temp_free_i32(ele3);
9903 write_fp_dreg(s, rd, res);
9904 tcg_temp_free_i64(res);
9907 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9908 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9909 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9911 /* Handle 64->64 opcodes which are shared between the scalar and
9912 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9913 * is valid in either group and also the double-precision fp ops.
9914 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9915 * requires them.
9917 TCGCond cond;
9919 switch (opcode) {
9920 case 0x4: /* CLS, CLZ */
9921 if (u) {
9922 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9923 } else {
9924 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9926 break;
9927 case 0x5: /* NOT */
9928 /* This opcode is shared with CNT and RBIT but we have earlier
9929 * enforced that size == 3 if and only if this is the NOT insn.
9931 tcg_gen_not_i64(tcg_rd, tcg_rn);
9932 break;
9933 case 0x7: /* SQABS, SQNEG */
9934 if (u) {
9935 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9936 } else {
9937 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9939 break;
9940 case 0xa: /* CMLT */
9941 /* 64 bit integer comparison against zero, result is
9942 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9943 * subtracting 1.
9945 cond = TCG_COND_LT;
9946 do_cmop:
9947 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9948 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9949 break;
9950 case 0x8: /* CMGT, CMGE */
9951 cond = u ? TCG_COND_GE : TCG_COND_GT;
9952 goto do_cmop;
9953 case 0x9: /* CMEQ, CMLE */
9954 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9955 goto do_cmop;
9956 case 0xb: /* ABS, NEG */
9957 if (u) {
9958 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9959 } else {
9960 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9962 break;
9963 case 0x2f: /* FABS */
9964 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9965 break;
9966 case 0x6f: /* FNEG */
9967 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9968 break;
9969 case 0x7f: /* FSQRT */
9970 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9971 break;
9972 case 0x1a: /* FCVTNS */
9973 case 0x1b: /* FCVTMS */
9974 case 0x1c: /* FCVTAS */
9975 case 0x3a: /* FCVTPS */
9976 case 0x3b: /* FCVTZS */
9977 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9978 break;
9979 case 0x5a: /* FCVTNU */
9980 case 0x5b: /* FCVTMU */
9981 case 0x5c: /* FCVTAU */
9982 case 0x7a: /* FCVTPU */
9983 case 0x7b: /* FCVTZU */
9984 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_constant_i32(0), tcg_fpstatus);
9985 break;
9986 case 0x18: /* FRINTN */
9987 case 0x19: /* FRINTM */
9988 case 0x38: /* FRINTP */
9989 case 0x39: /* FRINTZ */
9990 case 0x58: /* FRINTA */
9991 case 0x79: /* FRINTI */
9992 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9993 break;
9994 case 0x59: /* FRINTX */
9995 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9996 break;
9997 case 0x1e: /* FRINT32Z */
9998 case 0x5e: /* FRINT32X */
9999 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
10000 break;
10001 case 0x1f: /* FRINT64Z */
10002 case 0x5f: /* FRINT64X */
10003 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
10004 break;
10005 default:
10006 g_assert_not_reached();
10010 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
10011 bool is_scalar, bool is_u, bool is_q,
10012 int size, int rn, int rd)
10014 bool is_double = (size == MO_64);
10015 TCGv_ptr fpst;
10017 if (!fp_access_check(s)) {
10018 return;
10021 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
10023 if (is_double) {
10024 TCGv_i64 tcg_op = tcg_temp_new_i64();
10025 TCGv_i64 tcg_zero = tcg_constant_i64(0);
10026 TCGv_i64 tcg_res = tcg_temp_new_i64();
10027 NeonGenTwoDoubleOpFn *genfn;
10028 bool swap = false;
10029 int pass;
10031 switch (opcode) {
10032 case 0x2e: /* FCMLT (zero) */
10033 swap = true;
10034 /* fallthrough */
10035 case 0x2c: /* FCMGT (zero) */
10036 genfn = gen_helper_neon_cgt_f64;
10037 break;
10038 case 0x2d: /* FCMEQ (zero) */
10039 genfn = gen_helper_neon_ceq_f64;
10040 break;
10041 case 0x6d: /* FCMLE (zero) */
10042 swap = true;
10043 /* fall through */
10044 case 0x6c: /* FCMGE (zero) */
10045 genfn = gen_helper_neon_cge_f64;
10046 break;
10047 default:
10048 g_assert_not_reached();
10051 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10052 read_vec_element(s, tcg_op, rn, pass, MO_64);
10053 if (swap) {
10054 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10055 } else {
10056 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10058 write_vec_element(s, tcg_res, rd, pass, MO_64);
10060 tcg_temp_free_i64(tcg_res);
10061 tcg_temp_free_i64(tcg_op);
10063 clear_vec_high(s, !is_scalar, rd);
10064 } else {
10065 TCGv_i32 tcg_op = tcg_temp_new_i32();
10066 TCGv_i32 tcg_zero = tcg_constant_i32(0);
10067 TCGv_i32 tcg_res = tcg_temp_new_i32();
10068 NeonGenTwoSingleOpFn *genfn;
10069 bool swap = false;
10070 int pass, maxpasses;
10072 if (size == MO_16) {
10073 switch (opcode) {
10074 case 0x2e: /* FCMLT (zero) */
10075 swap = true;
10076 /* fall through */
10077 case 0x2c: /* FCMGT (zero) */
10078 genfn = gen_helper_advsimd_cgt_f16;
10079 break;
10080 case 0x2d: /* FCMEQ (zero) */
10081 genfn = gen_helper_advsimd_ceq_f16;
10082 break;
10083 case 0x6d: /* FCMLE (zero) */
10084 swap = true;
10085 /* fall through */
10086 case 0x6c: /* FCMGE (zero) */
10087 genfn = gen_helper_advsimd_cge_f16;
10088 break;
10089 default:
10090 g_assert_not_reached();
10092 } else {
10093 switch (opcode) {
10094 case 0x2e: /* FCMLT (zero) */
10095 swap = true;
10096 /* fall through */
10097 case 0x2c: /* FCMGT (zero) */
10098 genfn = gen_helper_neon_cgt_f32;
10099 break;
10100 case 0x2d: /* FCMEQ (zero) */
10101 genfn = gen_helper_neon_ceq_f32;
10102 break;
10103 case 0x6d: /* FCMLE (zero) */
10104 swap = true;
10105 /* fall through */
10106 case 0x6c: /* FCMGE (zero) */
10107 genfn = gen_helper_neon_cge_f32;
10108 break;
10109 default:
10110 g_assert_not_reached();
10114 if (is_scalar) {
10115 maxpasses = 1;
10116 } else {
10117 int vector_size = 8 << is_q;
10118 maxpasses = vector_size >> size;
10121 for (pass = 0; pass < maxpasses; pass++) {
10122 read_vec_element_i32(s, tcg_op, rn, pass, size);
10123 if (swap) {
10124 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10125 } else {
10126 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10128 if (is_scalar) {
10129 write_fp_sreg(s, rd, tcg_res);
10130 } else {
10131 write_vec_element_i32(s, tcg_res, rd, pass, size);
10134 tcg_temp_free_i32(tcg_res);
10135 tcg_temp_free_i32(tcg_op);
10136 if (!is_scalar) {
10137 clear_vec_high(s, is_q, rd);
10141 tcg_temp_free_ptr(fpst);
10144 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10145 bool is_scalar, bool is_u, bool is_q,
10146 int size, int rn, int rd)
10148 bool is_double = (size == 3);
10149 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10151 if (is_double) {
10152 TCGv_i64 tcg_op = tcg_temp_new_i64();
10153 TCGv_i64 tcg_res = tcg_temp_new_i64();
10154 int pass;
10156 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10157 read_vec_element(s, tcg_op, rn, pass, MO_64);
10158 switch (opcode) {
10159 case 0x3d: /* FRECPE */
10160 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10161 break;
10162 case 0x3f: /* FRECPX */
10163 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10164 break;
10165 case 0x7d: /* FRSQRTE */
10166 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10167 break;
10168 default:
10169 g_assert_not_reached();
10171 write_vec_element(s, tcg_res, rd, pass, MO_64);
10173 tcg_temp_free_i64(tcg_res);
10174 tcg_temp_free_i64(tcg_op);
10175 clear_vec_high(s, !is_scalar, rd);
10176 } else {
10177 TCGv_i32 tcg_op = tcg_temp_new_i32();
10178 TCGv_i32 tcg_res = tcg_temp_new_i32();
10179 int pass, maxpasses;
10181 if (is_scalar) {
10182 maxpasses = 1;
10183 } else {
10184 maxpasses = is_q ? 4 : 2;
10187 for (pass = 0; pass < maxpasses; pass++) {
10188 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10190 switch (opcode) {
10191 case 0x3c: /* URECPE */
10192 gen_helper_recpe_u32(tcg_res, tcg_op);
10193 break;
10194 case 0x3d: /* FRECPE */
10195 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10196 break;
10197 case 0x3f: /* FRECPX */
10198 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10199 break;
10200 case 0x7d: /* FRSQRTE */
10201 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10202 break;
10203 default:
10204 g_assert_not_reached();
10207 if (is_scalar) {
10208 write_fp_sreg(s, rd, tcg_res);
10209 } else {
10210 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10213 tcg_temp_free_i32(tcg_res);
10214 tcg_temp_free_i32(tcg_op);
10215 if (!is_scalar) {
10216 clear_vec_high(s, is_q, rd);
10219 tcg_temp_free_ptr(fpst);
10222 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10223 int opcode, bool u, bool is_q,
10224 int size, int rn, int rd)
10226 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10227 * in the source becomes a size element in the destination).
10229 int pass;
10230 TCGv_i32 tcg_res[2];
10231 int destelt = is_q ? 2 : 0;
10232 int passes = scalar ? 1 : 2;
10234 if (scalar) {
10235 tcg_res[1] = tcg_constant_i32(0);
10238 for (pass = 0; pass < passes; pass++) {
10239 TCGv_i64 tcg_op = tcg_temp_new_i64();
10240 NeonGenNarrowFn *genfn = NULL;
10241 NeonGenNarrowEnvFn *genenvfn = NULL;
10243 if (scalar) {
10244 read_vec_element(s, tcg_op, rn, pass, size + 1);
10245 } else {
10246 read_vec_element(s, tcg_op, rn, pass, MO_64);
10248 tcg_res[pass] = tcg_temp_new_i32();
10250 switch (opcode) {
10251 case 0x12: /* XTN, SQXTUN */
10253 static NeonGenNarrowFn * const xtnfns[3] = {
10254 gen_helper_neon_narrow_u8,
10255 gen_helper_neon_narrow_u16,
10256 tcg_gen_extrl_i64_i32,
10258 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10259 gen_helper_neon_unarrow_sat8,
10260 gen_helper_neon_unarrow_sat16,
10261 gen_helper_neon_unarrow_sat32,
10263 if (u) {
10264 genenvfn = sqxtunfns[size];
10265 } else {
10266 genfn = xtnfns[size];
10268 break;
10270 case 0x14: /* SQXTN, UQXTN */
10272 static NeonGenNarrowEnvFn * const fns[3][2] = {
10273 { gen_helper_neon_narrow_sat_s8,
10274 gen_helper_neon_narrow_sat_u8 },
10275 { gen_helper_neon_narrow_sat_s16,
10276 gen_helper_neon_narrow_sat_u16 },
10277 { gen_helper_neon_narrow_sat_s32,
10278 gen_helper_neon_narrow_sat_u32 },
10280 genenvfn = fns[size][u];
10281 break;
10283 case 0x16: /* FCVTN, FCVTN2 */
10284 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10285 if (size == 2) {
10286 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10287 } else {
10288 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10289 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10290 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10291 TCGv_i32 ahp = get_ahp_flag();
10293 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10294 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10295 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10296 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10297 tcg_temp_free_i32(tcg_lo);
10298 tcg_temp_free_i32(tcg_hi);
10299 tcg_temp_free_ptr(fpst);
10300 tcg_temp_free_i32(ahp);
10302 break;
10303 case 0x36: /* BFCVTN, BFCVTN2 */
10305 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10306 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10307 tcg_temp_free_ptr(fpst);
10309 break;
10310 case 0x56: /* FCVTXN, FCVTXN2 */
10311 /* 64 bit to 32 bit float conversion
10312 * with von Neumann rounding (round to odd)
10314 assert(size == 2);
10315 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10316 break;
10317 default:
10318 g_assert_not_reached();
10321 if (genfn) {
10322 genfn(tcg_res[pass], tcg_op);
10323 } else if (genenvfn) {
10324 genenvfn(tcg_res[pass], cpu_env, tcg_op);
10327 tcg_temp_free_i64(tcg_op);
10330 for (pass = 0; pass < 2; pass++) {
10331 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10332 tcg_temp_free_i32(tcg_res[pass]);
10334 clear_vec_high(s, is_q, rd);
10337 /* Remaining saturating accumulating ops */
10338 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10339 bool is_q, int size, int rn, int rd)
10341 bool is_double = (size == 3);
10343 if (is_double) {
10344 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10345 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10346 int pass;
10348 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10349 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10350 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10352 if (is_u) { /* USQADD */
10353 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10354 } else { /* SUQADD */
10355 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10357 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10359 tcg_temp_free_i64(tcg_rd);
10360 tcg_temp_free_i64(tcg_rn);
10361 clear_vec_high(s, !is_scalar, rd);
10362 } else {
10363 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10364 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10365 int pass, maxpasses;
10367 if (is_scalar) {
10368 maxpasses = 1;
10369 } else {
10370 maxpasses = is_q ? 4 : 2;
10373 for (pass = 0; pass < maxpasses; pass++) {
10374 if (is_scalar) {
10375 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10376 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10377 } else {
10378 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10379 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10382 if (is_u) { /* USQADD */
10383 switch (size) {
10384 case 0:
10385 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10386 break;
10387 case 1:
10388 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10389 break;
10390 case 2:
10391 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10392 break;
10393 default:
10394 g_assert_not_reached();
10396 } else { /* SUQADD */
10397 switch (size) {
10398 case 0:
10399 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10400 break;
10401 case 1:
10402 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10403 break;
10404 case 2:
10405 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10406 break;
10407 default:
10408 g_assert_not_reached();
10412 if (is_scalar) {
10413 write_vec_element(s, tcg_constant_i64(0), rd, 0, MO_64);
10415 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10417 tcg_temp_free_i32(tcg_rd);
10418 tcg_temp_free_i32(tcg_rn);
10419 clear_vec_high(s, is_q, rd);
10423 /* AdvSIMD scalar two reg misc
10424 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10425 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10426 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10427 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10429 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10431 int rd = extract32(insn, 0, 5);
10432 int rn = extract32(insn, 5, 5);
10433 int opcode = extract32(insn, 12, 5);
10434 int size = extract32(insn, 22, 2);
10435 bool u = extract32(insn, 29, 1);
10436 bool is_fcvt = false;
10437 int rmode;
10438 TCGv_i32 tcg_rmode;
10439 TCGv_ptr tcg_fpstatus;
10441 switch (opcode) {
10442 case 0x3: /* USQADD / SUQADD*/
10443 if (!fp_access_check(s)) {
10444 return;
10446 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10447 return;
10448 case 0x7: /* SQABS / SQNEG */
10449 break;
10450 case 0xa: /* CMLT */
10451 if (u) {
10452 unallocated_encoding(s);
10453 return;
10455 /* fall through */
10456 case 0x8: /* CMGT, CMGE */
10457 case 0x9: /* CMEQ, CMLE */
10458 case 0xb: /* ABS, NEG */
10459 if (size != 3) {
10460 unallocated_encoding(s);
10461 return;
10463 break;
10464 case 0x12: /* SQXTUN */
10465 if (!u) {
10466 unallocated_encoding(s);
10467 return;
10469 /* fall through */
10470 case 0x14: /* SQXTN, UQXTN */
10471 if (size == 3) {
10472 unallocated_encoding(s);
10473 return;
10475 if (!fp_access_check(s)) {
10476 return;
10478 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10479 return;
10480 case 0xc ... 0xf:
10481 case 0x16 ... 0x1d:
10482 case 0x1f:
10483 /* Floating point: U, size[1] and opcode indicate operation;
10484 * size[0] indicates single or double precision.
10486 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10487 size = extract32(size, 0, 1) ? 3 : 2;
10488 switch (opcode) {
10489 case 0x2c: /* FCMGT (zero) */
10490 case 0x2d: /* FCMEQ (zero) */
10491 case 0x2e: /* FCMLT (zero) */
10492 case 0x6c: /* FCMGE (zero) */
10493 case 0x6d: /* FCMLE (zero) */
10494 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10495 return;
10496 case 0x1d: /* SCVTF */
10497 case 0x5d: /* UCVTF */
10499 bool is_signed = (opcode == 0x1d);
10500 if (!fp_access_check(s)) {
10501 return;
10503 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10504 return;
10506 case 0x3d: /* FRECPE */
10507 case 0x3f: /* FRECPX */
10508 case 0x7d: /* FRSQRTE */
10509 if (!fp_access_check(s)) {
10510 return;
10512 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10513 return;
10514 case 0x1a: /* FCVTNS */
10515 case 0x1b: /* FCVTMS */
10516 case 0x3a: /* FCVTPS */
10517 case 0x3b: /* FCVTZS */
10518 case 0x5a: /* FCVTNU */
10519 case 0x5b: /* FCVTMU */
10520 case 0x7a: /* FCVTPU */
10521 case 0x7b: /* FCVTZU */
10522 is_fcvt = true;
10523 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10524 break;
10525 case 0x1c: /* FCVTAS */
10526 case 0x5c: /* FCVTAU */
10527 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10528 is_fcvt = true;
10529 rmode = FPROUNDING_TIEAWAY;
10530 break;
10531 case 0x56: /* FCVTXN, FCVTXN2 */
10532 if (size == 2) {
10533 unallocated_encoding(s);
10534 return;
10536 if (!fp_access_check(s)) {
10537 return;
10539 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10540 return;
10541 default:
10542 unallocated_encoding(s);
10543 return;
10545 break;
10546 default:
10547 unallocated_encoding(s);
10548 return;
10551 if (!fp_access_check(s)) {
10552 return;
10555 if (is_fcvt) {
10556 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10557 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10558 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10559 } else {
10560 tcg_rmode = NULL;
10561 tcg_fpstatus = NULL;
10564 if (size == 3) {
10565 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10566 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10568 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10569 write_fp_dreg(s, rd, tcg_rd);
10570 tcg_temp_free_i64(tcg_rd);
10571 tcg_temp_free_i64(tcg_rn);
10572 } else {
10573 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10574 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10576 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10578 switch (opcode) {
10579 case 0x7: /* SQABS, SQNEG */
10581 NeonGenOneOpEnvFn *genfn;
10582 static NeonGenOneOpEnvFn * const fns[3][2] = {
10583 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10584 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10585 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10587 genfn = fns[size][u];
10588 genfn(tcg_rd, cpu_env, tcg_rn);
10589 break;
10591 case 0x1a: /* FCVTNS */
10592 case 0x1b: /* FCVTMS */
10593 case 0x1c: /* FCVTAS */
10594 case 0x3a: /* FCVTPS */
10595 case 0x3b: /* FCVTZS */
10596 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10597 tcg_fpstatus);
10598 break;
10599 case 0x5a: /* FCVTNU */
10600 case 0x5b: /* FCVTMU */
10601 case 0x5c: /* FCVTAU */
10602 case 0x7a: /* FCVTPU */
10603 case 0x7b: /* FCVTZU */
10604 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_constant_i32(0),
10605 tcg_fpstatus);
10606 break;
10607 default:
10608 g_assert_not_reached();
10611 write_fp_sreg(s, rd, tcg_rd);
10612 tcg_temp_free_i32(tcg_rd);
10613 tcg_temp_free_i32(tcg_rn);
10616 if (is_fcvt) {
10617 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10618 tcg_temp_free_i32(tcg_rmode);
10619 tcg_temp_free_ptr(tcg_fpstatus);
10623 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10624 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10625 int immh, int immb, int opcode, int rn, int rd)
10627 int size = 32 - clz32(immh) - 1;
10628 int immhb = immh << 3 | immb;
10629 int shift = 2 * (8 << size) - immhb;
10630 GVecGen2iFn *gvec_fn;
10632 if (extract32(immh, 3, 1) && !is_q) {
10633 unallocated_encoding(s);
10634 return;
10636 tcg_debug_assert(size <= 3);
10638 if (!fp_access_check(s)) {
10639 return;
10642 switch (opcode) {
10643 case 0x02: /* SSRA / USRA (accumulate) */
10644 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10645 break;
10647 case 0x08: /* SRI */
10648 gvec_fn = gen_gvec_sri;
10649 break;
10651 case 0x00: /* SSHR / USHR */
10652 if (is_u) {
10653 if (shift == 8 << size) {
10654 /* Shift count the same size as element size produces zero. */
10655 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10656 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10657 return;
10659 gvec_fn = tcg_gen_gvec_shri;
10660 } else {
10661 /* Shift count the same size as element size produces all sign. */
10662 if (shift == 8 << size) {
10663 shift -= 1;
10665 gvec_fn = tcg_gen_gvec_sari;
10667 break;
10669 case 0x04: /* SRSHR / URSHR (rounding) */
10670 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10671 break;
10673 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10674 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10675 break;
10677 default:
10678 g_assert_not_reached();
10681 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10684 /* SHL/SLI - Vector shift left */
10685 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10686 int immh, int immb, int opcode, int rn, int rd)
10688 int size = 32 - clz32(immh) - 1;
10689 int immhb = immh << 3 | immb;
10690 int shift = immhb - (8 << size);
10692 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10693 assert(size >= 0 && size <= 3);
10695 if (extract32(immh, 3, 1) && !is_q) {
10696 unallocated_encoding(s);
10697 return;
10700 if (!fp_access_check(s)) {
10701 return;
10704 if (insert) {
10705 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10706 } else {
10707 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10711 /* USHLL/SHLL - Vector shift left with widening */
10712 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10713 int immh, int immb, int opcode, int rn, int rd)
10715 int size = 32 - clz32(immh) - 1;
10716 int immhb = immh << 3 | immb;
10717 int shift = immhb - (8 << size);
10718 int dsize = 64;
10719 int esize = 8 << size;
10720 int elements = dsize/esize;
10721 TCGv_i64 tcg_rn = new_tmp_a64(s);
10722 TCGv_i64 tcg_rd = new_tmp_a64(s);
10723 int i;
10725 if (size >= 3) {
10726 unallocated_encoding(s);
10727 return;
10730 if (!fp_access_check(s)) {
10731 return;
10734 /* For the LL variants the store is larger than the load,
10735 * so if rd == rn we would overwrite parts of our input.
10736 * So load everything right now and use shifts in the main loop.
10738 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10740 for (i = 0; i < elements; i++) {
10741 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10742 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10743 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10744 write_vec_element(s, tcg_rd, rd, i, size + 1);
10748 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10749 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10750 int immh, int immb, int opcode, int rn, int rd)
10752 int immhb = immh << 3 | immb;
10753 int size = 32 - clz32(immh) - 1;
10754 int dsize = 64;
10755 int esize = 8 << size;
10756 int elements = dsize/esize;
10757 int shift = (2 * esize) - immhb;
10758 bool round = extract32(opcode, 0, 1);
10759 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10760 TCGv_i64 tcg_round;
10761 int i;
10763 if (extract32(immh, 3, 1)) {
10764 unallocated_encoding(s);
10765 return;
10768 if (!fp_access_check(s)) {
10769 return;
10772 tcg_rn = tcg_temp_new_i64();
10773 tcg_rd = tcg_temp_new_i64();
10774 tcg_final = tcg_temp_new_i64();
10775 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10777 if (round) {
10778 tcg_round = tcg_constant_i64(1ULL << (shift - 1));
10779 } else {
10780 tcg_round = NULL;
10783 for (i = 0; i < elements; i++) {
10784 read_vec_element(s, tcg_rn, rn, i, size+1);
10785 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10786 false, true, size+1, shift);
10788 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10791 if (!is_q) {
10792 write_vec_element(s, tcg_final, rd, 0, MO_64);
10793 } else {
10794 write_vec_element(s, tcg_final, rd, 1, MO_64);
10796 tcg_temp_free_i64(tcg_rn);
10797 tcg_temp_free_i64(tcg_rd);
10798 tcg_temp_free_i64(tcg_final);
10800 clear_vec_high(s, is_q, rd);
10804 /* AdvSIMD shift by immediate
10805 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10806 * +---+---+---+-------------+------+------+--------+---+------+------+
10807 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10808 * +---+---+---+-------------+------+------+--------+---+------+------+
10810 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10812 int rd = extract32(insn, 0, 5);
10813 int rn = extract32(insn, 5, 5);
10814 int opcode = extract32(insn, 11, 5);
10815 int immb = extract32(insn, 16, 3);
10816 int immh = extract32(insn, 19, 4);
10817 bool is_u = extract32(insn, 29, 1);
10818 bool is_q = extract32(insn, 30, 1);
10820 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10821 assert(immh != 0);
10823 switch (opcode) {
10824 case 0x08: /* SRI */
10825 if (!is_u) {
10826 unallocated_encoding(s);
10827 return;
10829 /* fall through */
10830 case 0x00: /* SSHR / USHR */
10831 case 0x02: /* SSRA / USRA (accumulate) */
10832 case 0x04: /* SRSHR / URSHR (rounding) */
10833 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10834 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10835 break;
10836 case 0x0a: /* SHL / SLI */
10837 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10838 break;
10839 case 0x10: /* SHRN */
10840 case 0x11: /* RSHRN / SQRSHRUN */
10841 if (is_u) {
10842 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10843 opcode, rn, rd);
10844 } else {
10845 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10847 break;
10848 case 0x12: /* SQSHRN / UQSHRN */
10849 case 0x13: /* SQRSHRN / UQRSHRN */
10850 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10851 opcode, rn, rd);
10852 break;
10853 case 0x14: /* SSHLL / USHLL */
10854 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10855 break;
10856 case 0x1c: /* SCVTF / UCVTF */
10857 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10858 opcode, rn, rd);
10859 break;
10860 case 0xc: /* SQSHLU */
10861 if (!is_u) {
10862 unallocated_encoding(s);
10863 return;
10865 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10866 break;
10867 case 0xe: /* SQSHL, UQSHL */
10868 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10869 break;
10870 case 0x1f: /* FCVTZS/ FCVTZU */
10871 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10872 return;
10873 default:
10874 unallocated_encoding(s);
10875 return;
10879 /* Generate code to do a "long" addition or subtraction, ie one done in
10880 * TCGv_i64 on vector lanes twice the width specified by size.
10882 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10883 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10885 static NeonGenTwo64OpFn * const fns[3][2] = {
10886 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10887 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10888 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10890 NeonGenTwo64OpFn *genfn;
10891 assert(size < 3);
10893 genfn = fns[size][is_sub];
10894 genfn(tcg_res, tcg_op1, tcg_op2);
10897 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10898 int opcode, int rd, int rn, int rm)
10900 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10901 TCGv_i64 tcg_res[2];
10902 int pass, accop;
10904 tcg_res[0] = tcg_temp_new_i64();
10905 tcg_res[1] = tcg_temp_new_i64();
10907 /* Does this op do an adding accumulate, a subtracting accumulate,
10908 * or no accumulate at all?
10910 switch (opcode) {
10911 case 5:
10912 case 8:
10913 case 9:
10914 accop = 1;
10915 break;
10916 case 10:
10917 case 11:
10918 accop = -1;
10919 break;
10920 default:
10921 accop = 0;
10922 break;
10925 if (accop != 0) {
10926 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10927 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10930 /* size == 2 means two 32x32->64 operations; this is worth special
10931 * casing because we can generally handle it inline.
10933 if (size == 2) {
10934 for (pass = 0; pass < 2; pass++) {
10935 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10936 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10937 TCGv_i64 tcg_passres;
10938 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10940 int elt = pass + is_q * 2;
10942 read_vec_element(s, tcg_op1, rn, elt, memop);
10943 read_vec_element(s, tcg_op2, rm, elt, memop);
10945 if (accop == 0) {
10946 tcg_passres = tcg_res[pass];
10947 } else {
10948 tcg_passres = tcg_temp_new_i64();
10951 switch (opcode) {
10952 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10953 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10954 break;
10955 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10956 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10957 break;
10958 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10959 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10961 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10962 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10964 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10965 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10966 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10967 tcg_passres,
10968 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10969 tcg_temp_free_i64(tcg_tmp1);
10970 tcg_temp_free_i64(tcg_tmp2);
10971 break;
10973 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10974 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10975 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10976 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10977 break;
10978 case 9: /* SQDMLAL, SQDMLAL2 */
10979 case 11: /* SQDMLSL, SQDMLSL2 */
10980 case 13: /* SQDMULL, SQDMULL2 */
10981 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10982 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10983 tcg_passres, tcg_passres);
10984 break;
10985 default:
10986 g_assert_not_reached();
10989 if (opcode == 9 || opcode == 11) {
10990 /* saturating accumulate ops */
10991 if (accop < 0) {
10992 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10994 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10995 tcg_res[pass], tcg_passres);
10996 } else if (accop > 0) {
10997 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10998 } else if (accop < 0) {
10999 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
11002 if (accop != 0) {
11003 tcg_temp_free_i64(tcg_passres);
11006 tcg_temp_free_i64(tcg_op1);
11007 tcg_temp_free_i64(tcg_op2);
11009 } else {
11010 /* size 0 or 1, generally helper functions */
11011 for (pass = 0; pass < 2; pass++) {
11012 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11013 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11014 TCGv_i64 tcg_passres;
11015 int elt = pass + is_q * 2;
11017 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
11018 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
11020 if (accop == 0) {
11021 tcg_passres = tcg_res[pass];
11022 } else {
11023 tcg_passres = tcg_temp_new_i64();
11026 switch (opcode) {
11027 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11028 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11030 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
11031 static NeonGenWidenFn * const widenfns[2][2] = {
11032 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11033 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11035 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11037 widenfn(tcg_op2_64, tcg_op2);
11038 widenfn(tcg_passres, tcg_op1);
11039 gen_neon_addl(size, (opcode == 2), tcg_passres,
11040 tcg_passres, tcg_op2_64);
11041 tcg_temp_free_i64(tcg_op2_64);
11042 break;
11044 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11045 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11046 if (size == 0) {
11047 if (is_u) {
11048 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11049 } else {
11050 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11052 } else {
11053 if (is_u) {
11054 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11055 } else {
11056 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11059 break;
11060 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11061 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11062 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11063 if (size == 0) {
11064 if (is_u) {
11065 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11066 } else {
11067 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11069 } else {
11070 if (is_u) {
11071 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11072 } else {
11073 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11076 break;
11077 case 9: /* SQDMLAL, SQDMLAL2 */
11078 case 11: /* SQDMLSL, SQDMLSL2 */
11079 case 13: /* SQDMULL, SQDMULL2 */
11080 assert(size == 1);
11081 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11082 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11083 tcg_passres, tcg_passres);
11084 break;
11085 default:
11086 g_assert_not_reached();
11088 tcg_temp_free_i32(tcg_op1);
11089 tcg_temp_free_i32(tcg_op2);
11091 if (accop != 0) {
11092 if (opcode == 9 || opcode == 11) {
11093 /* saturating accumulate ops */
11094 if (accop < 0) {
11095 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11097 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11098 tcg_res[pass],
11099 tcg_passres);
11100 } else {
11101 gen_neon_addl(size, (accop < 0), tcg_res[pass],
11102 tcg_res[pass], tcg_passres);
11104 tcg_temp_free_i64(tcg_passres);
11109 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11110 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11111 tcg_temp_free_i64(tcg_res[0]);
11112 tcg_temp_free_i64(tcg_res[1]);
11115 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11116 int opcode, int rd, int rn, int rm)
11118 TCGv_i64 tcg_res[2];
11119 int part = is_q ? 2 : 0;
11120 int pass;
11122 for (pass = 0; pass < 2; pass++) {
11123 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11124 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11125 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11126 static NeonGenWidenFn * const widenfns[3][2] = {
11127 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11128 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11129 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11131 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11133 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11134 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11135 widenfn(tcg_op2_wide, tcg_op2);
11136 tcg_temp_free_i32(tcg_op2);
11137 tcg_res[pass] = tcg_temp_new_i64();
11138 gen_neon_addl(size, (opcode == 3),
11139 tcg_res[pass], tcg_op1, tcg_op2_wide);
11140 tcg_temp_free_i64(tcg_op1);
11141 tcg_temp_free_i64(tcg_op2_wide);
11144 for (pass = 0; pass < 2; pass++) {
11145 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11146 tcg_temp_free_i64(tcg_res[pass]);
11150 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11152 tcg_gen_addi_i64(in, in, 1U << 31);
11153 tcg_gen_extrh_i64_i32(res, in);
11156 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11157 int opcode, int rd, int rn, int rm)
11159 TCGv_i32 tcg_res[2];
11160 int part = is_q ? 2 : 0;
11161 int pass;
11163 for (pass = 0; pass < 2; pass++) {
11164 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11165 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11166 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11167 static NeonGenNarrowFn * const narrowfns[3][2] = {
11168 { gen_helper_neon_narrow_high_u8,
11169 gen_helper_neon_narrow_round_high_u8 },
11170 { gen_helper_neon_narrow_high_u16,
11171 gen_helper_neon_narrow_round_high_u16 },
11172 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11174 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11176 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11177 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11179 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11181 tcg_temp_free_i64(tcg_op1);
11182 tcg_temp_free_i64(tcg_op2);
11184 tcg_res[pass] = tcg_temp_new_i32();
11185 gennarrow(tcg_res[pass], tcg_wideres);
11186 tcg_temp_free_i64(tcg_wideres);
11189 for (pass = 0; pass < 2; pass++) {
11190 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11191 tcg_temp_free_i32(tcg_res[pass]);
11193 clear_vec_high(s, is_q, rd);
11196 /* AdvSIMD three different
11197 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11198 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11199 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11200 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11202 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11204 /* Instructions in this group fall into three basic classes
11205 * (in each case with the operation working on each element in
11206 * the input vectors):
11207 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11208 * 128 bit input)
11209 * (2) wide 64 x 128 -> 128
11210 * (3) narrowing 128 x 128 -> 64
11211 * Here we do initial decode, catch unallocated cases and
11212 * dispatch to separate functions for each class.
11214 int is_q = extract32(insn, 30, 1);
11215 int is_u = extract32(insn, 29, 1);
11216 int size = extract32(insn, 22, 2);
11217 int opcode = extract32(insn, 12, 4);
11218 int rm = extract32(insn, 16, 5);
11219 int rn = extract32(insn, 5, 5);
11220 int rd = extract32(insn, 0, 5);
11222 switch (opcode) {
11223 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11224 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11225 /* 64 x 128 -> 128 */
11226 if (size == 3) {
11227 unallocated_encoding(s);
11228 return;
11230 if (!fp_access_check(s)) {
11231 return;
11233 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11234 break;
11235 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11236 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11237 /* 128 x 128 -> 64 */
11238 if (size == 3) {
11239 unallocated_encoding(s);
11240 return;
11242 if (!fp_access_check(s)) {
11243 return;
11245 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11246 break;
11247 case 14: /* PMULL, PMULL2 */
11248 if (is_u) {
11249 unallocated_encoding(s);
11250 return;
11252 switch (size) {
11253 case 0: /* PMULL.P8 */
11254 if (!fp_access_check(s)) {
11255 return;
11257 /* The Q field specifies lo/hi half input for this insn. */
11258 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11259 gen_helper_neon_pmull_h);
11260 break;
11262 case 3: /* PMULL.P64 */
11263 if (!dc_isar_feature(aa64_pmull, s)) {
11264 unallocated_encoding(s);
11265 return;
11267 if (!fp_access_check(s)) {
11268 return;
11270 /* The Q field specifies lo/hi half input for this insn. */
11271 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11272 gen_helper_gvec_pmull_q);
11273 break;
11275 default:
11276 unallocated_encoding(s);
11277 break;
11279 return;
11280 case 9: /* SQDMLAL, SQDMLAL2 */
11281 case 11: /* SQDMLSL, SQDMLSL2 */
11282 case 13: /* SQDMULL, SQDMULL2 */
11283 if (is_u || size == 0) {
11284 unallocated_encoding(s);
11285 return;
11287 /* fall through */
11288 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11289 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11290 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11291 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11292 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11293 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11294 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11295 /* 64 x 64 -> 128 */
11296 if (size == 3) {
11297 unallocated_encoding(s);
11298 return;
11300 if (!fp_access_check(s)) {
11301 return;
11304 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11305 break;
11306 default:
11307 /* opcode 15 not allocated */
11308 unallocated_encoding(s);
11309 break;
11313 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11314 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11316 int rd = extract32(insn, 0, 5);
11317 int rn = extract32(insn, 5, 5);
11318 int rm = extract32(insn, 16, 5);
11319 int size = extract32(insn, 22, 2);
11320 bool is_u = extract32(insn, 29, 1);
11321 bool is_q = extract32(insn, 30, 1);
11323 if (!fp_access_check(s)) {
11324 return;
11327 switch (size + 4 * is_u) {
11328 case 0: /* AND */
11329 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11330 return;
11331 case 1: /* BIC */
11332 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11333 return;
11334 case 2: /* ORR */
11335 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11336 return;
11337 case 3: /* ORN */
11338 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11339 return;
11340 case 4: /* EOR */
11341 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11342 return;
11344 case 5: /* BSL bitwise select */
11345 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11346 return;
11347 case 6: /* BIT, bitwise insert if true */
11348 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11349 return;
11350 case 7: /* BIF, bitwise insert if false */
11351 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11352 return;
11354 default:
11355 g_assert_not_reached();
11359 /* Pairwise op subgroup of C3.6.16.
11361 * This is called directly or via the handle_3same_float for float pairwise
11362 * operations where the opcode and size are calculated differently.
11364 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11365 int size, int rn, int rm, int rd)
11367 TCGv_ptr fpst;
11368 int pass;
11370 /* Floating point operations need fpst */
11371 if (opcode >= 0x58) {
11372 fpst = fpstatus_ptr(FPST_FPCR);
11373 } else {
11374 fpst = NULL;
11377 if (!fp_access_check(s)) {
11378 return;
11381 /* These operations work on the concatenated rm:rn, with each pair of
11382 * adjacent elements being operated on to produce an element in the result.
11384 if (size == 3) {
11385 TCGv_i64 tcg_res[2];
11387 for (pass = 0; pass < 2; pass++) {
11388 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11389 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11390 int passreg = (pass == 0) ? rn : rm;
11392 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11393 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11394 tcg_res[pass] = tcg_temp_new_i64();
11396 switch (opcode) {
11397 case 0x17: /* ADDP */
11398 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11399 break;
11400 case 0x58: /* FMAXNMP */
11401 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11402 break;
11403 case 0x5a: /* FADDP */
11404 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11405 break;
11406 case 0x5e: /* FMAXP */
11407 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11408 break;
11409 case 0x78: /* FMINNMP */
11410 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11411 break;
11412 case 0x7e: /* FMINP */
11413 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11414 break;
11415 default:
11416 g_assert_not_reached();
11419 tcg_temp_free_i64(tcg_op1);
11420 tcg_temp_free_i64(tcg_op2);
11423 for (pass = 0; pass < 2; pass++) {
11424 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11425 tcg_temp_free_i64(tcg_res[pass]);
11427 } else {
11428 int maxpass = is_q ? 4 : 2;
11429 TCGv_i32 tcg_res[4];
11431 for (pass = 0; pass < maxpass; pass++) {
11432 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11433 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11434 NeonGenTwoOpFn *genfn = NULL;
11435 int passreg = pass < (maxpass / 2) ? rn : rm;
11436 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11438 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11439 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11440 tcg_res[pass] = tcg_temp_new_i32();
11442 switch (opcode) {
11443 case 0x17: /* ADDP */
11445 static NeonGenTwoOpFn * const fns[3] = {
11446 gen_helper_neon_padd_u8,
11447 gen_helper_neon_padd_u16,
11448 tcg_gen_add_i32,
11450 genfn = fns[size];
11451 break;
11453 case 0x14: /* SMAXP, UMAXP */
11455 static NeonGenTwoOpFn * const fns[3][2] = {
11456 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11457 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11458 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11460 genfn = fns[size][u];
11461 break;
11463 case 0x15: /* SMINP, UMINP */
11465 static NeonGenTwoOpFn * const fns[3][2] = {
11466 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11467 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11468 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11470 genfn = fns[size][u];
11471 break;
11473 /* The FP operations are all on single floats (32 bit) */
11474 case 0x58: /* FMAXNMP */
11475 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11476 break;
11477 case 0x5a: /* FADDP */
11478 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11479 break;
11480 case 0x5e: /* FMAXP */
11481 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11482 break;
11483 case 0x78: /* FMINNMP */
11484 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11485 break;
11486 case 0x7e: /* FMINP */
11487 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11488 break;
11489 default:
11490 g_assert_not_reached();
11493 /* FP ops called directly, otherwise call now */
11494 if (genfn) {
11495 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11498 tcg_temp_free_i32(tcg_op1);
11499 tcg_temp_free_i32(tcg_op2);
11502 for (pass = 0; pass < maxpass; pass++) {
11503 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11504 tcg_temp_free_i32(tcg_res[pass]);
11506 clear_vec_high(s, is_q, rd);
11509 if (fpst) {
11510 tcg_temp_free_ptr(fpst);
11514 /* Floating point op subgroup of C3.6.16. */
11515 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11517 /* For floating point ops, the U, size[1] and opcode bits
11518 * together indicate the operation. size[0] indicates single
11519 * or double.
11521 int fpopcode = extract32(insn, 11, 5)
11522 | (extract32(insn, 23, 1) << 5)
11523 | (extract32(insn, 29, 1) << 6);
11524 int is_q = extract32(insn, 30, 1);
11525 int size = extract32(insn, 22, 1);
11526 int rm = extract32(insn, 16, 5);
11527 int rn = extract32(insn, 5, 5);
11528 int rd = extract32(insn, 0, 5);
11530 int datasize = is_q ? 128 : 64;
11531 int esize = 32 << size;
11532 int elements = datasize / esize;
11534 if (size == 1 && !is_q) {
11535 unallocated_encoding(s);
11536 return;
11539 switch (fpopcode) {
11540 case 0x58: /* FMAXNMP */
11541 case 0x5a: /* FADDP */
11542 case 0x5e: /* FMAXP */
11543 case 0x78: /* FMINNMP */
11544 case 0x7e: /* FMINP */
11545 if (size && !is_q) {
11546 unallocated_encoding(s);
11547 return;
11549 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11550 rn, rm, rd);
11551 return;
11552 case 0x1b: /* FMULX */
11553 case 0x1f: /* FRECPS */
11554 case 0x3f: /* FRSQRTS */
11555 case 0x5d: /* FACGE */
11556 case 0x7d: /* FACGT */
11557 case 0x19: /* FMLA */
11558 case 0x39: /* FMLS */
11559 case 0x18: /* FMAXNM */
11560 case 0x1a: /* FADD */
11561 case 0x1c: /* FCMEQ */
11562 case 0x1e: /* FMAX */
11563 case 0x38: /* FMINNM */
11564 case 0x3a: /* FSUB */
11565 case 0x3e: /* FMIN */
11566 case 0x5b: /* FMUL */
11567 case 0x5c: /* FCMGE */
11568 case 0x5f: /* FDIV */
11569 case 0x7a: /* FABD */
11570 case 0x7c: /* FCMGT */
11571 if (!fp_access_check(s)) {
11572 return;
11574 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11575 return;
11577 case 0x1d: /* FMLAL */
11578 case 0x3d: /* FMLSL */
11579 case 0x59: /* FMLAL2 */
11580 case 0x79: /* FMLSL2 */
11581 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11582 unallocated_encoding(s);
11583 return;
11585 if (fp_access_check(s)) {
11586 int is_s = extract32(insn, 23, 1);
11587 int is_2 = extract32(insn, 29, 1);
11588 int data = (is_2 << 1) | is_s;
11589 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11590 vec_full_reg_offset(s, rn),
11591 vec_full_reg_offset(s, rm), cpu_env,
11592 is_q ? 16 : 8, vec_full_reg_size(s),
11593 data, gen_helper_gvec_fmlal_a64);
11595 return;
11597 default:
11598 unallocated_encoding(s);
11599 return;
11603 /* Integer op subgroup of C3.6.16. */
11604 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11606 int is_q = extract32(insn, 30, 1);
11607 int u = extract32(insn, 29, 1);
11608 int size = extract32(insn, 22, 2);
11609 int opcode = extract32(insn, 11, 5);
11610 int rm = extract32(insn, 16, 5);
11611 int rn = extract32(insn, 5, 5);
11612 int rd = extract32(insn, 0, 5);
11613 int pass;
11614 TCGCond cond;
11616 switch (opcode) {
11617 case 0x13: /* MUL, PMUL */
11618 if (u && size != 0) {
11619 unallocated_encoding(s);
11620 return;
11622 /* fall through */
11623 case 0x0: /* SHADD, UHADD */
11624 case 0x2: /* SRHADD, URHADD */
11625 case 0x4: /* SHSUB, UHSUB */
11626 case 0xc: /* SMAX, UMAX */
11627 case 0xd: /* SMIN, UMIN */
11628 case 0xe: /* SABD, UABD */
11629 case 0xf: /* SABA, UABA */
11630 case 0x12: /* MLA, MLS */
11631 if (size == 3) {
11632 unallocated_encoding(s);
11633 return;
11635 break;
11636 case 0x16: /* SQDMULH, SQRDMULH */
11637 if (size == 0 || size == 3) {
11638 unallocated_encoding(s);
11639 return;
11641 break;
11642 default:
11643 if (size == 3 && !is_q) {
11644 unallocated_encoding(s);
11645 return;
11647 break;
11650 if (!fp_access_check(s)) {
11651 return;
11654 switch (opcode) {
11655 case 0x01: /* SQADD, UQADD */
11656 if (u) {
11657 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11658 } else {
11659 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11661 return;
11662 case 0x05: /* SQSUB, UQSUB */
11663 if (u) {
11664 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11665 } else {
11666 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11668 return;
11669 case 0x08: /* SSHL, USHL */
11670 if (u) {
11671 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11672 } else {
11673 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11675 return;
11676 case 0x0c: /* SMAX, UMAX */
11677 if (u) {
11678 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11679 } else {
11680 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11682 return;
11683 case 0x0d: /* SMIN, UMIN */
11684 if (u) {
11685 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11686 } else {
11687 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11689 return;
11690 case 0xe: /* SABD, UABD */
11691 if (u) {
11692 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11693 } else {
11694 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11696 return;
11697 case 0xf: /* SABA, UABA */
11698 if (u) {
11699 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11700 } else {
11701 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11703 return;
11704 case 0x10: /* ADD, SUB */
11705 if (u) {
11706 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11707 } else {
11708 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11710 return;
11711 case 0x13: /* MUL, PMUL */
11712 if (!u) { /* MUL */
11713 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11714 } else { /* PMUL */
11715 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11717 return;
11718 case 0x12: /* MLA, MLS */
11719 if (u) {
11720 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11721 } else {
11722 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11724 return;
11725 case 0x16: /* SQDMULH, SQRDMULH */
11727 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11728 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11729 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11731 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11733 return;
11734 case 0x11:
11735 if (!u) { /* CMTST */
11736 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11737 return;
11739 /* else CMEQ */
11740 cond = TCG_COND_EQ;
11741 goto do_gvec_cmp;
11742 case 0x06: /* CMGT, CMHI */
11743 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11744 goto do_gvec_cmp;
11745 case 0x07: /* CMGE, CMHS */
11746 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11747 do_gvec_cmp:
11748 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11749 vec_full_reg_offset(s, rn),
11750 vec_full_reg_offset(s, rm),
11751 is_q ? 16 : 8, vec_full_reg_size(s));
11752 return;
11755 if (size == 3) {
11756 assert(is_q);
11757 for (pass = 0; pass < 2; pass++) {
11758 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11759 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11760 TCGv_i64 tcg_res = tcg_temp_new_i64();
11762 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11763 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11765 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11767 write_vec_element(s, tcg_res, rd, pass, MO_64);
11769 tcg_temp_free_i64(tcg_res);
11770 tcg_temp_free_i64(tcg_op1);
11771 tcg_temp_free_i64(tcg_op2);
11773 } else {
11774 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11775 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11776 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11777 TCGv_i32 tcg_res = tcg_temp_new_i32();
11778 NeonGenTwoOpFn *genfn = NULL;
11779 NeonGenTwoOpEnvFn *genenvfn = NULL;
11781 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11782 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11784 switch (opcode) {
11785 case 0x0: /* SHADD, UHADD */
11787 static NeonGenTwoOpFn * const fns[3][2] = {
11788 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11789 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11790 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11792 genfn = fns[size][u];
11793 break;
11795 case 0x2: /* SRHADD, URHADD */
11797 static NeonGenTwoOpFn * const fns[3][2] = {
11798 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11799 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11800 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11802 genfn = fns[size][u];
11803 break;
11805 case 0x4: /* SHSUB, UHSUB */
11807 static NeonGenTwoOpFn * const fns[3][2] = {
11808 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11809 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11810 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11812 genfn = fns[size][u];
11813 break;
11815 case 0x9: /* SQSHL, UQSHL */
11817 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11818 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11819 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11820 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11822 genenvfn = fns[size][u];
11823 break;
11825 case 0xa: /* SRSHL, URSHL */
11827 static NeonGenTwoOpFn * const fns[3][2] = {
11828 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11829 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11830 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11832 genfn = fns[size][u];
11833 break;
11835 case 0xb: /* SQRSHL, UQRSHL */
11837 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11838 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11839 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11840 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11842 genenvfn = fns[size][u];
11843 break;
11845 default:
11846 g_assert_not_reached();
11849 if (genenvfn) {
11850 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11851 } else {
11852 genfn(tcg_res, tcg_op1, tcg_op2);
11855 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11857 tcg_temp_free_i32(tcg_res);
11858 tcg_temp_free_i32(tcg_op1);
11859 tcg_temp_free_i32(tcg_op2);
11862 clear_vec_high(s, is_q, rd);
11865 /* AdvSIMD three same
11866 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11867 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11868 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11869 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11871 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11873 int opcode = extract32(insn, 11, 5);
11875 switch (opcode) {
11876 case 0x3: /* logic ops */
11877 disas_simd_3same_logic(s, insn);
11878 break;
11879 case 0x17: /* ADDP */
11880 case 0x14: /* SMAXP, UMAXP */
11881 case 0x15: /* SMINP, UMINP */
11883 /* Pairwise operations */
11884 int is_q = extract32(insn, 30, 1);
11885 int u = extract32(insn, 29, 1);
11886 int size = extract32(insn, 22, 2);
11887 int rm = extract32(insn, 16, 5);
11888 int rn = extract32(insn, 5, 5);
11889 int rd = extract32(insn, 0, 5);
11890 if (opcode == 0x17) {
11891 if (u || (size == 3 && !is_q)) {
11892 unallocated_encoding(s);
11893 return;
11895 } else {
11896 if (size == 3) {
11897 unallocated_encoding(s);
11898 return;
11901 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11902 break;
11904 case 0x18 ... 0x31:
11905 /* floating point ops, sz[1] and U are part of opcode */
11906 disas_simd_3same_float(s, insn);
11907 break;
11908 default:
11909 disas_simd_3same_int(s, insn);
11910 break;
11915 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11917 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11918 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11919 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11920 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11922 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11923 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11926 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11928 int opcode = extract32(insn, 11, 3);
11929 int u = extract32(insn, 29, 1);
11930 int a = extract32(insn, 23, 1);
11931 int is_q = extract32(insn, 30, 1);
11932 int rm = extract32(insn, 16, 5);
11933 int rn = extract32(insn, 5, 5);
11934 int rd = extract32(insn, 0, 5);
11936 * For these floating point ops, the U, a and opcode bits
11937 * together indicate the operation.
11939 int fpopcode = opcode | (a << 3) | (u << 4);
11940 int datasize = is_q ? 128 : 64;
11941 int elements = datasize / 16;
11942 bool pairwise;
11943 TCGv_ptr fpst;
11944 int pass;
11946 switch (fpopcode) {
11947 case 0x0: /* FMAXNM */
11948 case 0x1: /* FMLA */
11949 case 0x2: /* FADD */
11950 case 0x3: /* FMULX */
11951 case 0x4: /* FCMEQ */
11952 case 0x6: /* FMAX */
11953 case 0x7: /* FRECPS */
11954 case 0x8: /* FMINNM */
11955 case 0x9: /* FMLS */
11956 case 0xa: /* FSUB */
11957 case 0xe: /* FMIN */
11958 case 0xf: /* FRSQRTS */
11959 case 0x13: /* FMUL */
11960 case 0x14: /* FCMGE */
11961 case 0x15: /* FACGE */
11962 case 0x17: /* FDIV */
11963 case 0x1a: /* FABD */
11964 case 0x1c: /* FCMGT */
11965 case 0x1d: /* FACGT */
11966 pairwise = false;
11967 break;
11968 case 0x10: /* FMAXNMP */
11969 case 0x12: /* FADDP */
11970 case 0x16: /* FMAXP */
11971 case 0x18: /* FMINNMP */
11972 case 0x1e: /* FMINP */
11973 pairwise = true;
11974 break;
11975 default:
11976 unallocated_encoding(s);
11977 return;
11980 if (!dc_isar_feature(aa64_fp16, s)) {
11981 unallocated_encoding(s);
11982 return;
11985 if (!fp_access_check(s)) {
11986 return;
11989 fpst = fpstatus_ptr(FPST_FPCR_F16);
11991 if (pairwise) {
11992 int maxpass = is_q ? 8 : 4;
11993 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11994 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11995 TCGv_i32 tcg_res[8];
11997 for (pass = 0; pass < maxpass; pass++) {
11998 int passreg = pass < (maxpass / 2) ? rn : rm;
11999 int passelt = (pass << 1) & (maxpass - 1);
12001 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
12002 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
12003 tcg_res[pass] = tcg_temp_new_i32();
12005 switch (fpopcode) {
12006 case 0x10: /* FMAXNMP */
12007 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
12008 fpst);
12009 break;
12010 case 0x12: /* FADDP */
12011 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12012 break;
12013 case 0x16: /* FMAXP */
12014 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12015 break;
12016 case 0x18: /* FMINNMP */
12017 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
12018 fpst);
12019 break;
12020 case 0x1e: /* FMINP */
12021 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
12022 break;
12023 default:
12024 g_assert_not_reached();
12028 for (pass = 0; pass < maxpass; pass++) {
12029 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
12030 tcg_temp_free_i32(tcg_res[pass]);
12033 tcg_temp_free_i32(tcg_op1);
12034 tcg_temp_free_i32(tcg_op2);
12036 } else {
12037 for (pass = 0; pass < elements; pass++) {
12038 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12039 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12040 TCGv_i32 tcg_res = tcg_temp_new_i32();
12042 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12043 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12045 switch (fpopcode) {
12046 case 0x0: /* FMAXNM */
12047 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12048 break;
12049 case 0x1: /* FMLA */
12050 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12051 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12052 fpst);
12053 break;
12054 case 0x2: /* FADD */
12055 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12056 break;
12057 case 0x3: /* FMULX */
12058 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12059 break;
12060 case 0x4: /* FCMEQ */
12061 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12062 break;
12063 case 0x6: /* FMAX */
12064 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12065 break;
12066 case 0x7: /* FRECPS */
12067 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12068 break;
12069 case 0x8: /* FMINNM */
12070 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12071 break;
12072 case 0x9: /* FMLS */
12073 /* As usual for ARM, separate negation for fused multiply-add */
12074 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12075 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12076 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12077 fpst);
12078 break;
12079 case 0xa: /* FSUB */
12080 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12081 break;
12082 case 0xe: /* FMIN */
12083 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12084 break;
12085 case 0xf: /* FRSQRTS */
12086 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12087 break;
12088 case 0x13: /* FMUL */
12089 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12090 break;
12091 case 0x14: /* FCMGE */
12092 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12093 break;
12094 case 0x15: /* FACGE */
12095 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12096 break;
12097 case 0x17: /* FDIV */
12098 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12099 break;
12100 case 0x1a: /* FABD */
12101 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12102 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12103 break;
12104 case 0x1c: /* FCMGT */
12105 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12106 break;
12107 case 0x1d: /* FACGT */
12108 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12109 break;
12110 default:
12111 g_assert_not_reached();
12114 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12115 tcg_temp_free_i32(tcg_res);
12116 tcg_temp_free_i32(tcg_op1);
12117 tcg_temp_free_i32(tcg_op2);
12121 tcg_temp_free_ptr(fpst);
12123 clear_vec_high(s, is_q, rd);
12126 /* AdvSIMD three same extra
12127 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12128 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12129 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12130 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12132 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12134 int rd = extract32(insn, 0, 5);
12135 int rn = extract32(insn, 5, 5);
12136 int opcode = extract32(insn, 11, 4);
12137 int rm = extract32(insn, 16, 5);
12138 int size = extract32(insn, 22, 2);
12139 bool u = extract32(insn, 29, 1);
12140 bool is_q = extract32(insn, 30, 1);
12141 bool feature;
12142 int rot;
12144 switch (u * 16 + opcode) {
12145 case 0x10: /* SQRDMLAH (vector) */
12146 case 0x11: /* SQRDMLSH (vector) */
12147 if (size != 1 && size != 2) {
12148 unallocated_encoding(s);
12149 return;
12151 feature = dc_isar_feature(aa64_rdm, s);
12152 break;
12153 case 0x02: /* SDOT (vector) */
12154 case 0x12: /* UDOT (vector) */
12155 if (size != MO_32) {
12156 unallocated_encoding(s);
12157 return;
12159 feature = dc_isar_feature(aa64_dp, s);
12160 break;
12161 case 0x03: /* USDOT */
12162 if (size != MO_32) {
12163 unallocated_encoding(s);
12164 return;
12166 feature = dc_isar_feature(aa64_i8mm, s);
12167 break;
12168 case 0x04: /* SMMLA */
12169 case 0x14: /* UMMLA */
12170 case 0x05: /* USMMLA */
12171 if (!is_q || size != MO_32) {
12172 unallocated_encoding(s);
12173 return;
12175 feature = dc_isar_feature(aa64_i8mm, s);
12176 break;
12177 case 0x18: /* FCMLA, #0 */
12178 case 0x19: /* FCMLA, #90 */
12179 case 0x1a: /* FCMLA, #180 */
12180 case 0x1b: /* FCMLA, #270 */
12181 case 0x1c: /* FCADD, #90 */
12182 case 0x1e: /* FCADD, #270 */
12183 if (size == 0
12184 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12185 || (size == 3 && !is_q)) {
12186 unallocated_encoding(s);
12187 return;
12189 feature = dc_isar_feature(aa64_fcma, s);
12190 break;
12191 case 0x1d: /* BFMMLA */
12192 if (size != MO_16 || !is_q) {
12193 unallocated_encoding(s);
12194 return;
12196 feature = dc_isar_feature(aa64_bf16, s);
12197 break;
12198 case 0x1f:
12199 switch (size) {
12200 case 1: /* BFDOT */
12201 case 3: /* BFMLAL{B,T} */
12202 feature = dc_isar_feature(aa64_bf16, s);
12203 break;
12204 default:
12205 unallocated_encoding(s);
12206 return;
12208 break;
12209 default:
12210 unallocated_encoding(s);
12211 return;
12213 if (!feature) {
12214 unallocated_encoding(s);
12215 return;
12217 if (!fp_access_check(s)) {
12218 return;
12221 switch (opcode) {
12222 case 0x0: /* SQRDMLAH (vector) */
12223 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12224 return;
12226 case 0x1: /* SQRDMLSH (vector) */
12227 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12228 return;
12230 case 0x2: /* SDOT / UDOT */
12231 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
12232 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12233 return;
12235 case 0x3: /* USDOT */
12236 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
12237 return;
12239 case 0x04: /* SMMLA, UMMLA */
12240 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
12241 u ? gen_helper_gvec_ummla_b
12242 : gen_helper_gvec_smmla_b);
12243 return;
12244 case 0x05: /* USMMLA */
12245 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
12246 return;
12248 case 0x8: /* FCMLA, #0 */
12249 case 0x9: /* FCMLA, #90 */
12250 case 0xa: /* FCMLA, #180 */
12251 case 0xb: /* FCMLA, #270 */
12252 rot = extract32(opcode, 0, 2);
12253 switch (size) {
12254 case 1:
12255 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
12256 gen_helper_gvec_fcmlah);
12257 break;
12258 case 2:
12259 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12260 gen_helper_gvec_fcmlas);
12261 break;
12262 case 3:
12263 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12264 gen_helper_gvec_fcmlad);
12265 break;
12266 default:
12267 g_assert_not_reached();
12269 return;
12271 case 0xc: /* FCADD, #90 */
12272 case 0xe: /* FCADD, #270 */
12273 rot = extract32(opcode, 1, 1);
12274 switch (size) {
12275 case 1:
12276 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12277 gen_helper_gvec_fcaddh);
12278 break;
12279 case 2:
12280 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12281 gen_helper_gvec_fcadds);
12282 break;
12283 case 3:
12284 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12285 gen_helper_gvec_fcaddd);
12286 break;
12287 default:
12288 g_assert_not_reached();
12290 return;
12292 case 0xd: /* BFMMLA */
12293 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
12294 return;
12295 case 0xf:
12296 switch (size) {
12297 case 1: /* BFDOT */
12298 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
12299 break;
12300 case 3: /* BFMLAL{B,T} */
12301 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
12302 gen_helper_gvec_bfmlal);
12303 break;
12304 default:
12305 g_assert_not_reached();
12307 return;
12309 default:
12310 g_assert_not_reached();
12314 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12315 int size, int rn, int rd)
12317 /* Handle 2-reg-misc ops which are widening (so each size element
12318 * in the source becomes a 2*size element in the destination.
12319 * The only instruction like this is FCVTL.
12321 int pass;
12323 if (size == 3) {
12324 /* 32 -> 64 bit fp conversion */
12325 TCGv_i64 tcg_res[2];
12326 int srcelt = is_q ? 2 : 0;
12328 for (pass = 0; pass < 2; pass++) {
12329 TCGv_i32 tcg_op = tcg_temp_new_i32();
12330 tcg_res[pass] = tcg_temp_new_i64();
12332 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12333 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12334 tcg_temp_free_i32(tcg_op);
12336 for (pass = 0; pass < 2; pass++) {
12337 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12338 tcg_temp_free_i64(tcg_res[pass]);
12340 } else {
12341 /* 16 -> 32 bit fp conversion */
12342 int srcelt = is_q ? 4 : 0;
12343 TCGv_i32 tcg_res[4];
12344 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12345 TCGv_i32 ahp = get_ahp_flag();
12347 for (pass = 0; pass < 4; pass++) {
12348 tcg_res[pass] = tcg_temp_new_i32();
12350 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12351 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12352 fpst, ahp);
12354 for (pass = 0; pass < 4; pass++) {
12355 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12356 tcg_temp_free_i32(tcg_res[pass]);
12359 tcg_temp_free_ptr(fpst);
12360 tcg_temp_free_i32(ahp);
12364 static void handle_rev(DisasContext *s, int opcode, bool u,
12365 bool is_q, int size, int rn, int rd)
12367 int op = (opcode << 1) | u;
12368 int opsz = op + size;
12369 int grp_size = 3 - opsz;
12370 int dsize = is_q ? 128 : 64;
12371 int i;
12373 if (opsz >= 3) {
12374 unallocated_encoding(s);
12375 return;
12378 if (!fp_access_check(s)) {
12379 return;
12382 if (size == 0) {
12383 /* Special case bytes, use bswap op on each group of elements */
12384 int groups = dsize / (8 << grp_size);
12386 for (i = 0; i < groups; i++) {
12387 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12389 read_vec_element(s, tcg_tmp, rn, i, grp_size);
12390 switch (grp_size) {
12391 case MO_16:
12392 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12393 break;
12394 case MO_32:
12395 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12396 break;
12397 case MO_64:
12398 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12399 break;
12400 default:
12401 g_assert_not_reached();
12403 write_vec_element(s, tcg_tmp, rd, i, grp_size);
12404 tcg_temp_free_i64(tcg_tmp);
12406 clear_vec_high(s, is_q, rd);
12407 } else {
12408 int revmask = (1 << grp_size) - 1;
12409 int esize = 8 << size;
12410 int elements = dsize / esize;
12411 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12412 TCGv_i64 tcg_rd = tcg_const_i64(0);
12413 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12415 for (i = 0; i < elements; i++) {
12416 int e_rev = (i & 0xf) ^ revmask;
12417 int off = e_rev * esize;
12418 read_vec_element(s, tcg_rn, rn, i, size);
12419 if (off >= 64) {
12420 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12421 tcg_rn, off - 64, esize);
12422 } else {
12423 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12426 write_vec_element(s, tcg_rd, rd, 0, MO_64);
12427 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12429 tcg_temp_free_i64(tcg_rd_hi);
12430 tcg_temp_free_i64(tcg_rd);
12431 tcg_temp_free_i64(tcg_rn);
12435 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12436 bool is_q, int size, int rn, int rd)
12438 /* Implement the pairwise operations from 2-misc:
12439 * SADDLP, UADDLP, SADALP, UADALP.
12440 * These all add pairs of elements in the input to produce a
12441 * double-width result element in the output (possibly accumulating).
12443 bool accum = (opcode == 0x6);
12444 int maxpass = is_q ? 2 : 1;
12445 int pass;
12446 TCGv_i64 tcg_res[2];
12448 if (size == 2) {
12449 /* 32 + 32 -> 64 op */
12450 MemOp memop = size + (u ? 0 : MO_SIGN);
12452 for (pass = 0; pass < maxpass; pass++) {
12453 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12454 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12456 tcg_res[pass] = tcg_temp_new_i64();
12458 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12459 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12460 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12461 if (accum) {
12462 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12463 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12466 tcg_temp_free_i64(tcg_op1);
12467 tcg_temp_free_i64(tcg_op2);
12469 } else {
12470 for (pass = 0; pass < maxpass; pass++) {
12471 TCGv_i64 tcg_op = tcg_temp_new_i64();
12472 NeonGenOne64OpFn *genfn;
12473 static NeonGenOne64OpFn * const fns[2][2] = {
12474 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12475 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12478 genfn = fns[size][u];
12480 tcg_res[pass] = tcg_temp_new_i64();
12482 read_vec_element(s, tcg_op, rn, pass, MO_64);
12483 genfn(tcg_res[pass], tcg_op);
12485 if (accum) {
12486 read_vec_element(s, tcg_op, rd, pass, MO_64);
12487 if (size == 0) {
12488 gen_helper_neon_addl_u16(tcg_res[pass],
12489 tcg_res[pass], tcg_op);
12490 } else {
12491 gen_helper_neon_addl_u32(tcg_res[pass],
12492 tcg_res[pass], tcg_op);
12495 tcg_temp_free_i64(tcg_op);
12498 if (!is_q) {
12499 tcg_res[1] = tcg_constant_i64(0);
12501 for (pass = 0; pass < 2; pass++) {
12502 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12503 tcg_temp_free_i64(tcg_res[pass]);
12507 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12509 /* Implement SHLL and SHLL2 */
12510 int pass;
12511 int part = is_q ? 2 : 0;
12512 TCGv_i64 tcg_res[2];
12514 for (pass = 0; pass < 2; pass++) {
12515 static NeonGenWidenFn * const widenfns[3] = {
12516 gen_helper_neon_widen_u8,
12517 gen_helper_neon_widen_u16,
12518 tcg_gen_extu_i32_i64,
12520 NeonGenWidenFn *widenfn = widenfns[size];
12521 TCGv_i32 tcg_op = tcg_temp_new_i32();
12523 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12524 tcg_res[pass] = tcg_temp_new_i64();
12525 widenfn(tcg_res[pass], tcg_op);
12526 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12528 tcg_temp_free_i32(tcg_op);
12531 for (pass = 0; pass < 2; pass++) {
12532 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12533 tcg_temp_free_i64(tcg_res[pass]);
12537 /* AdvSIMD two reg misc
12538 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12539 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12540 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12541 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12543 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12545 int size = extract32(insn, 22, 2);
12546 int opcode = extract32(insn, 12, 5);
12547 bool u = extract32(insn, 29, 1);
12548 bool is_q = extract32(insn, 30, 1);
12549 int rn = extract32(insn, 5, 5);
12550 int rd = extract32(insn, 0, 5);
12551 bool need_fpstatus = false;
12552 bool need_rmode = false;
12553 int rmode = -1;
12554 TCGv_i32 tcg_rmode;
12555 TCGv_ptr tcg_fpstatus;
12557 switch (opcode) {
12558 case 0x0: /* REV64, REV32 */
12559 case 0x1: /* REV16 */
12560 handle_rev(s, opcode, u, is_q, size, rn, rd);
12561 return;
12562 case 0x5: /* CNT, NOT, RBIT */
12563 if (u && size == 0) {
12564 /* NOT */
12565 break;
12566 } else if (u && size == 1) {
12567 /* RBIT */
12568 break;
12569 } else if (!u && size == 0) {
12570 /* CNT */
12571 break;
12573 unallocated_encoding(s);
12574 return;
12575 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12576 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12577 if (size == 3) {
12578 unallocated_encoding(s);
12579 return;
12581 if (!fp_access_check(s)) {
12582 return;
12585 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12586 return;
12587 case 0x4: /* CLS, CLZ */
12588 if (size == 3) {
12589 unallocated_encoding(s);
12590 return;
12592 break;
12593 case 0x2: /* SADDLP, UADDLP */
12594 case 0x6: /* SADALP, UADALP */
12595 if (size == 3) {
12596 unallocated_encoding(s);
12597 return;
12599 if (!fp_access_check(s)) {
12600 return;
12602 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12603 return;
12604 case 0x13: /* SHLL, SHLL2 */
12605 if (u == 0 || size == 3) {
12606 unallocated_encoding(s);
12607 return;
12609 if (!fp_access_check(s)) {
12610 return;
12612 handle_shll(s, is_q, size, rn, rd);
12613 return;
12614 case 0xa: /* CMLT */
12615 if (u == 1) {
12616 unallocated_encoding(s);
12617 return;
12619 /* fall through */
12620 case 0x8: /* CMGT, CMGE */
12621 case 0x9: /* CMEQ, CMLE */
12622 case 0xb: /* ABS, NEG */
12623 if (size == 3 && !is_q) {
12624 unallocated_encoding(s);
12625 return;
12627 break;
12628 case 0x3: /* SUQADD, USQADD */
12629 if (size == 3 && !is_q) {
12630 unallocated_encoding(s);
12631 return;
12633 if (!fp_access_check(s)) {
12634 return;
12636 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12637 return;
12638 case 0x7: /* SQABS, SQNEG */
12639 if (size == 3 && !is_q) {
12640 unallocated_encoding(s);
12641 return;
12643 break;
12644 case 0xc ... 0xf:
12645 case 0x16 ... 0x1f:
12647 /* Floating point: U, size[1] and opcode indicate operation;
12648 * size[0] indicates single or double precision.
12650 int is_double = extract32(size, 0, 1);
12651 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12652 size = is_double ? 3 : 2;
12653 switch (opcode) {
12654 case 0x2f: /* FABS */
12655 case 0x6f: /* FNEG */
12656 if (size == 3 && !is_q) {
12657 unallocated_encoding(s);
12658 return;
12660 break;
12661 case 0x1d: /* SCVTF */
12662 case 0x5d: /* UCVTF */
12664 bool is_signed = (opcode == 0x1d) ? true : false;
12665 int elements = is_double ? 2 : is_q ? 4 : 2;
12666 if (is_double && !is_q) {
12667 unallocated_encoding(s);
12668 return;
12670 if (!fp_access_check(s)) {
12671 return;
12673 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12674 return;
12676 case 0x2c: /* FCMGT (zero) */
12677 case 0x2d: /* FCMEQ (zero) */
12678 case 0x2e: /* FCMLT (zero) */
12679 case 0x6c: /* FCMGE (zero) */
12680 case 0x6d: /* FCMLE (zero) */
12681 if (size == 3 && !is_q) {
12682 unallocated_encoding(s);
12683 return;
12685 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12686 return;
12687 case 0x7f: /* FSQRT */
12688 if (size == 3 && !is_q) {
12689 unallocated_encoding(s);
12690 return;
12692 break;
12693 case 0x1a: /* FCVTNS */
12694 case 0x1b: /* FCVTMS */
12695 case 0x3a: /* FCVTPS */
12696 case 0x3b: /* FCVTZS */
12697 case 0x5a: /* FCVTNU */
12698 case 0x5b: /* FCVTMU */
12699 case 0x7a: /* FCVTPU */
12700 case 0x7b: /* FCVTZU */
12701 need_fpstatus = true;
12702 need_rmode = true;
12703 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12704 if (size == 3 && !is_q) {
12705 unallocated_encoding(s);
12706 return;
12708 break;
12709 case 0x5c: /* FCVTAU */
12710 case 0x1c: /* FCVTAS */
12711 need_fpstatus = true;
12712 need_rmode = true;
12713 rmode = FPROUNDING_TIEAWAY;
12714 if (size == 3 && !is_q) {
12715 unallocated_encoding(s);
12716 return;
12718 break;
12719 case 0x3c: /* URECPE */
12720 if (size == 3) {
12721 unallocated_encoding(s);
12722 return;
12724 /* fall through */
12725 case 0x3d: /* FRECPE */
12726 case 0x7d: /* FRSQRTE */
12727 if (size == 3 && !is_q) {
12728 unallocated_encoding(s);
12729 return;
12731 if (!fp_access_check(s)) {
12732 return;
12734 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12735 return;
12736 case 0x56: /* FCVTXN, FCVTXN2 */
12737 if (size == 2) {
12738 unallocated_encoding(s);
12739 return;
12741 /* fall through */
12742 case 0x16: /* FCVTN, FCVTN2 */
12743 /* handle_2misc_narrow does a 2*size -> size operation, but these
12744 * instructions encode the source size rather than dest size.
12746 if (!fp_access_check(s)) {
12747 return;
12749 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12750 return;
12751 case 0x36: /* BFCVTN, BFCVTN2 */
12752 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12753 unallocated_encoding(s);
12754 return;
12756 if (!fp_access_check(s)) {
12757 return;
12759 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12760 return;
12761 case 0x17: /* FCVTL, FCVTL2 */
12762 if (!fp_access_check(s)) {
12763 return;
12765 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12766 return;
12767 case 0x18: /* FRINTN */
12768 case 0x19: /* FRINTM */
12769 case 0x38: /* FRINTP */
12770 case 0x39: /* FRINTZ */
12771 need_rmode = true;
12772 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12773 /* fall through */
12774 case 0x59: /* FRINTX */
12775 case 0x79: /* FRINTI */
12776 need_fpstatus = true;
12777 if (size == 3 && !is_q) {
12778 unallocated_encoding(s);
12779 return;
12781 break;
12782 case 0x58: /* FRINTA */
12783 need_rmode = true;
12784 rmode = FPROUNDING_TIEAWAY;
12785 need_fpstatus = true;
12786 if (size == 3 && !is_q) {
12787 unallocated_encoding(s);
12788 return;
12790 break;
12791 case 0x7c: /* URSQRTE */
12792 if (size == 3) {
12793 unallocated_encoding(s);
12794 return;
12796 break;
12797 case 0x1e: /* FRINT32Z */
12798 case 0x1f: /* FRINT64Z */
12799 need_rmode = true;
12800 rmode = FPROUNDING_ZERO;
12801 /* fall through */
12802 case 0x5e: /* FRINT32X */
12803 case 0x5f: /* FRINT64X */
12804 need_fpstatus = true;
12805 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12806 unallocated_encoding(s);
12807 return;
12809 break;
12810 default:
12811 unallocated_encoding(s);
12812 return;
12814 break;
12816 default:
12817 unallocated_encoding(s);
12818 return;
12821 if (!fp_access_check(s)) {
12822 return;
12825 if (need_fpstatus || need_rmode) {
12826 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12827 } else {
12828 tcg_fpstatus = NULL;
12830 if (need_rmode) {
12831 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12832 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12833 } else {
12834 tcg_rmode = NULL;
12837 switch (opcode) {
12838 case 0x5:
12839 if (u && size == 0) { /* NOT */
12840 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12841 return;
12843 break;
12844 case 0x8: /* CMGT, CMGE */
12845 if (u) {
12846 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12847 } else {
12848 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12850 return;
12851 case 0x9: /* CMEQ, CMLE */
12852 if (u) {
12853 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12854 } else {
12855 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12857 return;
12858 case 0xa: /* CMLT */
12859 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12860 return;
12861 case 0xb:
12862 if (u) { /* ABS, NEG */
12863 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12864 } else {
12865 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12867 return;
12870 if (size == 3) {
12871 /* All 64-bit element operations can be shared with scalar 2misc */
12872 int pass;
12874 /* Coverity claims (size == 3 && !is_q) has been eliminated
12875 * from all paths leading to here.
12877 tcg_debug_assert(is_q);
12878 for (pass = 0; pass < 2; pass++) {
12879 TCGv_i64 tcg_op = tcg_temp_new_i64();
12880 TCGv_i64 tcg_res = tcg_temp_new_i64();
12882 read_vec_element(s, tcg_op, rn, pass, MO_64);
12884 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12885 tcg_rmode, tcg_fpstatus);
12887 write_vec_element(s, tcg_res, rd, pass, MO_64);
12889 tcg_temp_free_i64(tcg_res);
12890 tcg_temp_free_i64(tcg_op);
12892 } else {
12893 int pass;
12895 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12896 TCGv_i32 tcg_op = tcg_temp_new_i32();
12897 TCGv_i32 tcg_res = tcg_temp_new_i32();
12899 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12901 if (size == 2) {
12902 /* Special cases for 32 bit elements */
12903 switch (opcode) {
12904 case 0x4: /* CLS */
12905 if (u) {
12906 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12907 } else {
12908 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12910 break;
12911 case 0x7: /* SQABS, SQNEG */
12912 if (u) {
12913 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12914 } else {
12915 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12917 break;
12918 case 0x2f: /* FABS */
12919 gen_helper_vfp_abss(tcg_res, tcg_op);
12920 break;
12921 case 0x6f: /* FNEG */
12922 gen_helper_vfp_negs(tcg_res, tcg_op);
12923 break;
12924 case 0x7f: /* FSQRT */
12925 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12926 break;
12927 case 0x1a: /* FCVTNS */
12928 case 0x1b: /* FCVTMS */
12929 case 0x1c: /* FCVTAS */
12930 case 0x3a: /* FCVTPS */
12931 case 0x3b: /* FCVTZS */
12932 gen_helper_vfp_tosls(tcg_res, tcg_op,
12933 tcg_constant_i32(0), tcg_fpstatus);
12934 break;
12935 case 0x5a: /* FCVTNU */
12936 case 0x5b: /* FCVTMU */
12937 case 0x5c: /* FCVTAU */
12938 case 0x7a: /* FCVTPU */
12939 case 0x7b: /* FCVTZU */
12940 gen_helper_vfp_touls(tcg_res, tcg_op,
12941 tcg_constant_i32(0), tcg_fpstatus);
12942 break;
12943 case 0x18: /* FRINTN */
12944 case 0x19: /* FRINTM */
12945 case 0x38: /* FRINTP */
12946 case 0x39: /* FRINTZ */
12947 case 0x58: /* FRINTA */
12948 case 0x79: /* FRINTI */
12949 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12950 break;
12951 case 0x59: /* FRINTX */
12952 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12953 break;
12954 case 0x7c: /* URSQRTE */
12955 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12956 break;
12957 case 0x1e: /* FRINT32Z */
12958 case 0x5e: /* FRINT32X */
12959 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12960 break;
12961 case 0x1f: /* FRINT64Z */
12962 case 0x5f: /* FRINT64X */
12963 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12964 break;
12965 default:
12966 g_assert_not_reached();
12968 } else {
12969 /* Use helpers for 8 and 16 bit elements */
12970 switch (opcode) {
12971 case 0x5: /* CNT, RBIT */
12972 /* For these two insns size is part of the opcode specifier
12973 * (handled earlier); they always operate on byte elements.
12975 if (u) {
12976 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12977 } else {
12978 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12980 break;
12981 case 0x7: /* SQABS, SQNEG */
12983 NeonGenOneOpEnvFn *genfn;
12984 static NeonGenOneOpEnvFn * const fns[2][2] = {
12985 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12986 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12988 genfn = fns[size][u];
12989 genfn(tcg_res, cpu_env, tcg_op);
12990 break;
12992 case 0x4: /* CLS, CLZ */
12993 if (u) {
12994 if (size == 0) {
12995 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12996 } else {
12997 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12999 } else {
13000 if (size == 0) {
13001 gen_helper_neon_cls_s8(tcg_res, tcg_op);
13002 } else {
13003 gen_helper_neon_cls_s16(tcg_res, tcg_op);
13006 break;
13007 default:
13008 g_assert_not_reached();
13012 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13014 tcg_temp_free_i32(tcg_res);
13015 tcg_temp_free_i32(tcg_op);
13018 clear_vec_high(s, is_q, rd);
13020 if (need_rmode) {
13021 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13022 tcg_temp_free_i32(tcg_rmode);
13024 if (need_fpstatus) {
13025 tcg_temp_free_ptr(tcg_fpstatus);
13029 /* AdvSIMD [scalar] two register miscellaneous (FP16)
13031 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
13032 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13033 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
13034 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13035 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
13036 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
13038 * This actually covers two groups where scalar access is governed by
13039 * bit 28. A bunch of the instructions (float to integral) only exist
13040 * in the vector form and are un-allocated for the scalar decode. Also
13041 * in the scalar decode Q is always 1.
13043 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
13045 int fpop, opcode, a, u;
13046 int rn, rd;
13047 bool is_q;
13048 bool is_scalar;
13049 bool only_in_vector = false;
13051 int pass;
13052 TCGv_i32 tcg_rmode = NULL;
13053 TCGv_ptr tcg_fpstatus = NULL;
13054 bool need_rmode = false;
13055 bool need_fpst = true;
13056 int rmode;
13058 if (!dc_isar_feature(aa64_fp16, s)) {
13059 unallocated_encoding(s);
13060 return;
13063 rd = extract32(insn, 0, 5);
13064 rn = extract32(insn, 5, 5);
13066 a = extract32(insn, 23, 1);
13067 u = extract32(insn, 29, 1);
13068 is_scalar = extract32(insn, 28, 1);
13069 is_q = extract32(insn, 30, 1);
13071 opcode = extract32(insn, 12, 5);
13072 fpop = deposit32(opcode, 5, 1, a);
13073 fpop = deposit32(fpop, 6, 1, u);
13075 switch (fpop) {
13076 case 0x1d: /* SCVTF */
13077 case 0x5d: /* UCVTF */
13079 int elements;
13081 if (is_scalar) {
13082 elements = 1;
13083 } else {
13084 elements = (is_q ? 8 : 4);
13087 if (!fp_access_check(s)) {
13088 return;
13090 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13091 return;
13093 break;
13094 case 0x2c: /* FCMGT (zero) */
13095 case 0x2d: /* FCMEQ (zero) */
13096 case 0x2e: /* FCMLT (zero) */
13097 case 0x6c: /* FCMGE (zero) */
13098 case 0x6d: /* FCMLE (zero) */
13099 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13100 return;
13101 case 0x3d: /* FRECPE */
13102 case 0x3f: /* FRECPX */
13103 break;
13104 case 0x18: /* FRINTN */
13105 need_rmode = true;
13106 only_in_vector = true;
13107 rmode = FPROUNDING_TIEEVEN;
13108 break;
13109 case 0x19: /* FRINTM */
13110 need_rmode = true;
13111 only_in_vector = true;
13112 rmode = FPROUNDING_NEGINF;
13113 break;
13114 case 0x38: /* FRINTP */
13115 need_rmode = true;
13116 only_in_vector = true;
13117 rmode = FPROUNDING_POSINF;
13118 break;
13119 case 0x39: /* FRINTZ */
13120 need_rmode = true;
13121 only_in_vector = true;
13122 rmode = FPROUNDING_ZERO;
13123 break;
13124 case 0x58: /* FRINTA */
13125 need_rmode = true;
13126 only_in_vector = true;
13127 rmode = FPROUNDING_TIEAWAY;
13128 break;
13129 case 0x59: /* FRINTX */
13130 case 0x79: /* FRINTI */
13131 only_in_vector = true;
13132 /* current rounding mode */
13133 break;
13134 case 0x1a: /* FCVTNS */
13135 need_rmode = true;
13136 rmode = FPROUNDING_TIEEVEN;
13137 break;
13138 case 0x1b: /* FCVTMS */
13139 need_rmode = true;
13140 rmode = FPROUNDING_NEGINF;
13141 break;
13142 case 0x1c: /* FCVTAS */
13143 need_rmode = true;
13144 rmode = FPROUNDING_TIEAWAY;
13145 break;
13146 case 0x3a: /* FCVTPS */
13147 need_rmode = true;
13148 rmode = FPROUNDING_POSINF;
13149 break;
13150 case 0x3b: /* FCVTZS */
13151 need_rmode = true;
13152 rmode = FPROUNDING_ZERO;
13153 break;
13154 case 0x5a: /* FCVTNU */
13155 need_rmode = true;
13156 rmode = FPROUNDING_TIEEVEN;
13157 break;
13158 case 0x5b: /* FCVTMU */
13159 need_rmode = true;
13160 rmode = FPROUNDING_NEGINF;
13161 break;
13162 case 0x5c: /* FCVTAU */
13163 need_rmode = true;
13164 rmode = FPROUNDING_TIEAWAY;
13165 break;
13166 case 0x7a: /* FCVTPU */
13167 need_rmode = true;
13168 rmode = FPROUNDING_POSINF;
13169 break;
13170 case 0x7b: /* FCVTZU */
13171 need_rmode = true;
13172 rmode = FPROUNDING_ZERO;
13173 break;
13174 case 0x2f: /* FABS */
13175 case 0x6f: /* FNEG */
13176 need_fpst = false;
13177 break;
13178 case 0x7d: /* FRSQRTE */
13179 case 0x7f: /* FSQRT (vector) */
13180 break;
13181 default:
13182 unallocated_encoding(s);
13183 return;
13187 /* Check additional constraints for the scalar encoding */
13188 if (is_scalar) {
13189 if (!is_q) {
13190 unallocated_encoding(s);
13191 return;
13193 /* FRINTxx is only in the vector form */
13194 if (only_in_vector) {
13195 unallocated_encoding(s);
13196 return;
13200 if (!fp_access_check(s)) {
13201 return;
13204 if (need_rmode || need_fpst) {
13205 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
13208 if (need_rmode) {
13209 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13210 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13213 if (is_scalar) {
13214 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13215 TCGv_i32 tcg_res = tcg_temp_new_i32();
13217 switch (fpop) {
13218 case 0x1a: /* FCVTNS */
13219 case 0x1b: /* FCVTMS */
13220 case 0x1c: /* FCVTAS */
13221 case 0x3a: /* FCVTPS */
13222 case 0x3b: /* FCVTZS */
13223 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13224 break;
13225 case 0x3d: /* FRECPE */
13226 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13227 break;
13228 case 0x3f: /* FRECPX */
13229 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13230 break;
13231 case 0x5a: /* FCVTNU */
13232 case 0x5b: /* FCVTMU */
13233 case 0x5c: /* FCVTAU */
13234 case 0x7a: /* FCVTPU */
13235 case 0x7b: /* FCVTZU */
13236 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13237 break;
13238 case 0x6f: /* FNEG */
13239 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13240 break;
13241 case 0x7d: /* FRSQRTE */
13242 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13243 break;
13244 default:
13245 g_assert_not_reached();
13248 /* limit any sign extension going on */
13249 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13250 write_fp_sreg(s, rd, tcg_res);
13252 tcg_temp_free_i32(tcg_res);
13253 tcg_temp_free_i32(tcg_op);
13254 } else {
13255 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13256 TCGv_i32 tcg_op = tcg_temp_new_i32();
13257 TCGv_i32 tcg_res = tcg_temp_new_i32();
13259 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13261 switch (fpop) {
13262 case 0x1a: /* FCVTNS */
13263 case 0x1b: /* FCVTMS */
13264 case 0x1c: /* FCVTAS */
13265 case 0x3a: /* FCVTPS */
13266 case 0x3b: /* FCVTZS */
13267 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13268 break;
13269 case 0x3d: /* FRECPE */
13270 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13271 break;
13272 case 0x5a: /* FCVTNU */
13273 case 0x5b: /* FCVTMU */
13274 case 0x5c: /* FCVTAU */
13275 case 0x7a: /* FCVTPU */
13276 case 0x7b: /* FCVTZU */
13277 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13278 break;
13279 case 0x18: /* FRINTN */
13280 case 0x19: /* FRINTM */
13281 case 0x38: /* FRINTP */
13282 case 0x39: /* FRINTZ */
13283 case 0x58: /* FRINTA */
13284 case 0x79: /* FRINTI */
13285 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13286 break;
13287 case 0x59: /* FRINTX */
13288 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13289 break;
13290 case 0x2f: /* FABS */
13291 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13292 break;
13293 case 0x6f: /* FNEG */
13294 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13295 break;
13296 case 0x7d: /* FRSQRTE */
13297 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13298 break;
13299 case 0x7f: /* FSQRT */
13300 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13301 break;
13302 default:
13303 g_assert_not_reached();
13306 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13308 tcg_temp_free_i32(tcg_res);
13309 tcg_temp_free_i32(tcg_op);
13312 clear_vec_high(s, is_q, rd);
13315 if (tcg_rmode) {
13316 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13317 tcg_temp_free_i32(tcg_rmode);
13320 if (tcg_fpstatus) {
13321 tcg_temp_free_ptr(tcg_fpstatus);
13325 /* AdvSIMD scalar x indexed element
13326 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13327 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13328 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13329 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13330 * AdvSIMD vector x indexed element
13331 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13332 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13333 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13334 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13336 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13338 /* This encoding has two kinds of instruction:
13339 * normal, where we perform elt x idxelt => elt for each
13340 * element in the vector
13341 * long, where we perform elt x idxelt and generate a result of
13342 * double the width of the input element
13343 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13345 bool is_scalar = extract32(insn, 28, 1);
13346 bool is_q = extract32(insn, 30, 1);
13347 bool u = extract32(insn, 29, 1);
13348 int size = extract32(insn, 22, 2);
13349 int l = extract32(insn, 21, 1);
13350 int m = extract32(insn, 20, 1);
13351 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13352 int rm = extract32(insn, 16, 4);
13353 int opcode = extract32(insn, 12, 4);
13354 int h = extract32(insn, 11, 1);
13355 int rn = extract32(insn, 5, 5);
13356 int rd = extract32(insn, 0, 5);
13357 bool is_long = false;
13358 int is_fp = 0;
13359 bool is_fp16 = false;
13360 int index;
13361 TCGv_ptr fpst;
13363 switch (16 * u + opcode) {
13364 case 0x08: /* MUL */
13365 case 0x10: /* MLA */
13366 case 0x14: /* MLS */
13367 if (is_scalar) {
13368 unallocated_encoding(s);
13369 return;
13371 break;
13372 case 0x02: /* SMLAL, SMLAL2 */
13373 case 0x12: /* UMLAL, UMLAL2 */
13374 case 0x06: /* SMLSL, SMLSL2 */
13375 case 0x16: /* UMLSL, UMLSL2 */
13376 case 0x0a: /* SMULL, SMULL2 */
13377 case 0x1a: /* UMULL, UMULL2 */
13378 if (is_scalar) {
13379 unallocated_encoding(s);
13380 return;
13382 is_long = true;
13383 break;
13384 case 0x03: /* SQDMLAL, SQDMLAL2 */
13385 case 0x07: /* SQDMLSL, SQDMLSL2 */
13386 case 0x0b: /* SQDMULL, SQDMULL2 */
13387 is_long = true;
13388 break;
13389 case 0x0c: /* SQDMULH */
13390 case 0x0d: /* SQRDMULH */
13391 break;
13392 case 0x01: /* FMLA */
13393 case 0x05: /* FMLS */
13394 case 0x09: /* FMUL */
13395 case 0x19: /* FMULX */
13396 is_fp = 1;
13397 break;
13398 case 0x1d: /* SQRDMLAH */
13399 case 0x1f: /* SQRDMLSH */
13400 if (!dc_isar_feature(aa64_rdm, s)) {
13401 unallocated_encoding(s);
13402 return;
13404 break;
13405 case 0x0e: /* SDOT */
13406 case 0x1e: /* UDOT */
13407 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13408 unallocated_encoding(s);
13409 return;
13411 break;
13412 case 0x0f:
13413 switch (size) {
13414 case 0: /* SUDOT */
13415 case 2: /* USDOT */
13416 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13417 unallocated_encoding(s);
13418 return;
13420 size = MO_32;
13421 break;
13422 case 1: /* BFDOT */
13423 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13424 unallocated_encoding(s);
13425 return;
13427 size = MO_32;
13428 break;
13429 case 3: /* BFMLAL{B,T} */
13430 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13431 unallocated_encoding(s);
13432 return;
13434 /* can't set is_fp without other incorrect size checks */
13435 size = MO_16;
13436 break;
13437 default:
13438 unallocated_encoding(s);
13439 return;
13441 break;
13442 case 0x11: /* FCMLA #0 */
13443 case 0x13: /* FCMLA #90 */
13444 case 0x15: /* FCMLA #180 */
13445 case 0x17: /* FCMLA #270 */
13446 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13447 unallocated_encoding(s);
13448 return;
13450 is_fp = 2;
13451 break;
13452 case 0x00: /* FMLAL */
13453 case 0x04: /* FMLSL */
13454 case 0x18: /* FMLAL2 */
13455 case 0x1c: /* FMLSL2 */
13456 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13457 unallocated_encoding(s);
13458 return;
13460 size = MO_16;
13461 /* is_fp, but we pass cpu_env not fp_status. */
13462 break;
13463 default:
13464 unallocated_encoding(s);
13465 return;
13468 switch (is_fp) {
13469 case 1: /* normal fp */
13470 /* convert insn encoded size to MemOp size */
13471 switch (size) {
13472 case 0: /* half-precision */
13473 size = MO_16;
13474 is_fp16 = true;
13475 break;
13476 case MO_32: /* single precision */
13477 case MO_64: /* double precision */
13478 break;
13479 default:
13480 unallocated_encoding(s);
13481 return;
13483 break;
13485 case 2: /* complex fp */
13486 /* Each indexable element is a complex pair. */
13487 size += 1;
13488 switch (size) {
13489 case MO_32:
13490 if (h && !is_q) {
13491 unallocated_encoding(s);
13492 return;
13494 is_fp16 = true;
13495 break;
13496 case MO_64:
13497 break;
13498 default:
13499 unallocated_encoding(s);
13500 return;
13502 break;
13504 default: /* integer */
13505 switch (size) {
13506 case MO_8:
13507 case MO_64:
13508 unallocated_encoding(s);
13509 return;
13511 break;
13513 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13514 unallocated_encoding(s);
13515 return;
13518 /* Given MemOp size, adjust register and indexing. */
13519 switch (size) {
13520 case MO_16:
13521 index = h << 2 | l << 1 | m;
13522 break;
13523 case MO_32:
13524 index = h << 1 | l;
13525 rm |= m << 4;
13526 break;
13527 case MO_64:
13528 if (l || !is_q) {
13529 unallocated_encoding(s);
13530 return;
13532 index = h;
13533 rm |= m << 4;
13534 break;
13535 default:
13536 g_assert_not_reached();
13539 if (!fp_access_check(s)) {
13540 return;
13543 if (is_fp) {
13544 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13545 } else {
13546 fpst = NULL;
13549 switch (16 * u + opcode) {
13550 case 0x0e: /* SDOT */
13551 case 0x1e: /* UDOT */
13552 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13553 u ? gen_helper_gvec_udot_idx_b
13554 : gen_helper_gvec_sdot_idx_b);
13555 return;
13556 case 0x0f:
13557 switch (extract32(insn, 22, 2)) {
13558 case 0: /* SUDOT */
13559 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13560 gen_helper_gvec_sudot_idx_b);
13561 return;
13562 case 1: /* BFDOT */
13563 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13564 gen_helper_gvec_bfdot_idx);
13565 return;
13566 case 2: /* USDOT */
13567 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13568 gen_helper_gvec_usdot_idx_b);
13569 return;
13570 case 3: /* BFMLAL{B,T} */
13571 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13572 gen_helper_gvec_bfmlal_idx);
13573 return;
13575 g_assert_not_reached();
13576 case 0x11: /* FCMLA #0 */
13577 case 0x13: /* FCMLA #90 */
13578 case 0x15: /* FCMLA #180 */
13579 case 0x17: /* FCMLA #270 */
13581 int rot = extract32(insn, 13, 2);
13582 int data = (index << 2) | rot;
13583 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13584 vec_full_reg_offset(s, rn),
13585 vec_full_reg_offset(s, rm),
13586 vec_full_reg_offset(s, rd), fpst,
13587 is_q ? 16 : 8, vec_full_reg_size(s), data,
13588 size == MO_64
13589 ? gen_helper_gvec_fcmlas_idx
13590 : gen_helper_gvec_fcmlah_idx);
13591 tcg_temp_free_ptr(fpst);
13593 return;
13595 case 0x00: /* FMLAL */
13596 case 0x04: /* FMLSL */
13597 case 0x18: /* FMLAL2 */
13598 case 0x1c: /* FMLSL2 */
13600 int is_s = extract32(opcode, 2, 1);
13601 int is_2 = u;
13602 int data = (index << 2) | (is_2 << 1) | is_s;
13603 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13604 vec_full_reg_offset(s, rn),
13605 vec_full_reg_offset(s, rm), cpu_env,
13606 is_q ? 16 : 8, vec_full_reg_size(s),
13607 data, gen_helper_gvec_fmlal_idx_a64);
13609 return;
13611 case 0x08: /* MUL */
13612 if (!is_long && !is_scalar) {
13613 static gen_helper_gvec_3 * const fns[3] = {
13614 gen_helper_gvec_mul_idx_h,
13615 gen_helper_gvec_mul_idx_s,
13616 gen_helper_gvec_mul_idx_d,
13618 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13619 vec_full_reg_offset(s, rn),
13620 vec_full_reg_offset(s, rm),
13621 is_q ? 16 : 8, vec_full_reg_size(s),
13622 index, fns[size - 1]);
13623 return;
13625 break;
13627 case 0x10: /* MLA */
13628 if (!is_long && !is_scalar) {
13629 static gen_helper_gvec_4 * const fns[3] = {
13630 gen_helper_gvec_mla_idx_h,
13631 gen_helper_gvec_mla_idx_s,
13632 gen_helper_gvec_mla_idx_d,
13634 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13635 vec_full_reg_offset(s, rn),
13636 vec_full_reg_offset(s, rm),
13637 vec_full_reg_offset(s, rd),
13638 is_q ? 16 : 8, vec_full_reg_size(s),
13639 index, fns[size - 1]);
13640 return;
13642 break;
13644 case 0x14: /* MLS */
13645 if (!is_long && !is_scalar) {
13646 static gen_helper_gvec_4 * const fns[3] = {
13647 gen_helper_gvec_mls_idx_h,
13648 gen_helper_gvec_mls_idx_s,
13649 gen_helper_gvec_mls_idx_d,
13651 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13652 vec_full_reg_offset(s, rn),
13653 vec_full_reg_offset(s, rm),
13654 vec_full_reg_offset(s, rd),
13655 is_q ? 16 : 8, vec_full_reg_size(s),
13656 index, fns[size - 1]);
13657 return;
13659 break;
13662 if (size == 3) {
13663 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13664 int pass;
13666 assert(is_fp && is_q && !is_long);
13668 read_vec_element(s, tcg_idx, rm, index, MO_64);
13670 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13671 TCGv_i64 tcg_op = tcg_temp_new_i64();
13672 TCGv_i64 tcg_res = tcg_temp_new_i64();
13674 read_vec_element(s, tcg_op, rn, pass, MO_64);
13676 switch (16 * u + opcode) {
13677 case 0x05: /* FMLS */
13678 /* As usual for ARM, separate negation for fused multiply-add */
13679 gen_helper_vfp_negd(tcg_op, tcg_op);
13680 /* fall through */
13681 case 0x01: /* FMLA */
13682 read_vec_element(s, tcg_res, rd, pass, MO_64);
13683 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13684 break;
13685 case 0x09: /* FMUL */
13686 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13687 break;
13688 case 0x19: /* FMULX */
13689 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13690 break;
13691 default:
13692 g_assert_not_reached();
13695 write_vec_element(s, tcg_res, rd, pass, MO_64);
13696 tcg_temp_free_i64(tcg_op);
13697 tcg_temp_free_i64(tcg_res);
13700 tcg_temp_free_i64(tcg_idx);
13701 clear_vec_high(s, !is_scalar, rd);
13702 } else if (!is_long) {
13703 /* 32 bit floating point, or 16 or 32 bit integer.
13704 * For the 16 bit scalar case we use the usual Neon helpers and
13705 * rely on the fact that 0 op 0 == 0 with no side effects.
13707 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13708 int pass, maxpasses;
13710 if (is_scalar) {
13711 maxpasses = 1;
13712 } else {
13713 maxpasses = is_q ? 4 : 2;
13716 read_vec_element_i32(s, tcg_idx, rm, index, size);
13718 if (size == 1 && !is_scalar) {
13719 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13720 * the index into both halves of the 32 bit tcg_idx and then use
13721 * the usual Neon helpers.
13723 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13726 for (pass = 0; pass < maxpasses; pass++) {
13727 TCGv_i32 tcg_op = tcg_temp_new_i32();
13728 TCGv_i32 tcg_res = tcg_temp_new_i32();
13730 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13732 switch (16 * u + opcode) {
13733 case 0x08: /* MUL */
13734 case 0x10: /* MLA */
13735 case 0x14: /* MLS */
13737 static NeonGenTwoOpFn * const fns[2][2] = {
13738 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13739 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13741 NeonGenTwoOpFn *genfn;
13742 bool is_sub = opcode == 0x4;
13744 if (size == 1) {
13745 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13746 } else {
13747 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13749 if (opcode == 0x8) {
13750 break;
13752 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13753 genfn = fns[size - 1][is_sub];
13754 genfn(tcg_res, tcg_op, tcg_res);
13755 break;
13757 case 0x05: /* FMLS */
13758 case 0x01: /* FMLA */
13759 read_vec_element_i32(s, tcg_res, rd, pass,
13760 is_scalar ? size : MO_32);
13761 switch (size) {
13762 case 1:
13763 if (opcode == 0x5) {
13764 /* As usual for ARM, separate negation for fused
13765 * multiply-add */
13766 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13768 if (is_scalar) {
13769 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13770 tcg_res, fpst);
13771 } else {
13772 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13773 tcg_res, fpst);
13775 break;
13776 case 2:
13777 if (opcode == 0x5) {
13778 /* As usual for ARM, separate negation for
13779 * fused multiply-add */
13780 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13782 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13783 tcg_res, fpst);
13784 break;
13785 default:
13786 g_assert_not_reached();
13788 break;
13789 case 0x09: /* FMUL */
13790 switch (size) {
13791 case 1:
13792 if (is_scalar) {
13793 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13794 tcg_idx, fpst);
13795 } else {
13796 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13797 tcg_idx, fpst);
13799 break;
13800 case 2:
13801 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13802 break;
13803 default:
13804 g_assert_not_reached();
13806 break;
13807 case 0x19: /* FMULX */
13808 switch (size) {
13809 case 1:
13810 if (is_scalar) {
13811 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13812 tcg_idx, fpst);
13813 } else {
13814 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13815 tcg_idx, fpst);
13817 break;
13818 case 2:
13819 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13820 break;
13821 default:
13822 g_assert_not_reached();
13824 break;
13825 case 0x0c: /* SQDMULH */
13826 if (size == 1) {
13827 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13828 tcg_op, tcg_idx);
13829 } else {
13830 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13831 tcg_op, tcg_idx);
13833 break;
13834 case 0x0d: /* SQRDMULH */
13835 if (size == 1) {
13836 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13837 tcg_op, tcg_idx);
13838 } else {
13839 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13840 tcg_op, tcg_idx);
13842 break;
13843 case 0x1d: /* SQRDMLAH */
13844 read_vec_element_i32(s, tcg_res, rd, pass,
13845 is_scalar ? size : MO_32);
13846 if (size == 1) {
13847 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13848 tcg_op, tcg_idx, tcg_res);
13849 } else {
13850 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13851 tcg_op, tcg_idx, tcg_res);
13853 break;
13854 case 0x1f: /* SQRDMLSH */
13855 read_vec_element_i32(s, tcg_res, rd, pass,
13856 is_scalar ? size : MO_32);
13857 if (size == 1) {
13858 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13859 tcg_op, tcg_idx, tcg_res);
13860 } else {
13861 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13862 tcg_op, tcg_idx, tcg_res);
13864 break;
13865 default:
13866 g_assert_not_reached();
13869 if (is_scalar) {
13870 write_fp_sreg(s, rd, tcg_res);
13871 } else {
13872 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13875 tcg_temp_free_i32(tcg_op);
13876 tcg_temp_free_i32(tcg_res);
13879 tcg_temp_free_i32(tcg_idx);
13880 clear_vec_high(s, is_q, rd);
13881 } else {
13882 /* long ops: 16x16->32 or 32x32->64 */
13883 TCGv_i64 tcg_res[2];
13884 int pass;
13885 bool satop = extract32(opcode, 0, 1);
13886 MemOp memop = MO_32;
13888 if (satop || !u) {
13889 memop |= MO_SIGN;
13892 if (size == 2) {
13893 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13895 read_vec_element(s, tcg_idx, rm, index, memop);
13897 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13898 TCGv_i64 tcg_op = tcg_temp_new_i64();
13899 TCGv_i64 tcg_passres;
13900 int passelt;
13902 if (is_scalar) {
13903 passelt = 0;
13904 } else {
13905 passelt = pass + (is_q * 2);
13908 read_vec_element(s, tcg_op, rn, passelt, memop);
13910 tcg_res[pass] = tcg_temp_new_i64();
13912 if (opcode == 0xa || opcode == 0xb) {
13913 /* Non-accumulating ops */
13914 tcg_passres = tcg_res[pass];
13915 } else {
13916 tcg_passres = tcg_temp_new_i64();
13919 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13920 tcg_temp_free_i64(tcg_op);
13922 if (satop) {
13923 /* saturating, doubling */
13924 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13925 tcg_passres, tcg_passres);
13928 if (opcode == 0xa || opcode == 0xb) {
13929 continue;
13932 /* Accumulating op: handle accumulate step */
13933 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13935 switch (opcode) {
13936 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13937 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13938 break;
13939 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13940 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13941 break;
13942 case 0x7: /* SQDMLSL, SQDMLSL2 */
13943 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13944 /* fall through */
13945 case 0x3: /* SQDMLAL, SQDMLAL2 */
13946 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13947 tcg_res[pass],
13948 tcg_passres);
13949 break;
13950 default:
13951 g_assert_not_reached();
13953 tcg_temp_free_i64(tcg_passres);
13955 tcg_temp_free_i64(tcg_idx);
13957 clear_vec_high(s, !is_scalar, rd);
13958 } else {
13959 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13961 assert(size == 1);
13962 read_vec_element_i32(s, tcg_idx, rm, index, size);
13964 if (!is_scalar) {
13965 /* The simplest way to handle the 16x16 indexed ops is to
13966 * duplicate the index into both halves of the 32 bit tcg_idx
13967 * and then use the usual Neon helpers.
13969 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13972 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13973 TCGv_i32 tcg_op = tcg_temp_new_i32();
13974 TCGv_i64 tcg_passres;
13976 if (is_scalar) {
13977 read_vec_element_i32(s, tcg_op, rn, pass, size);
13978 } else {
13979 read_vec_element_i32(s, tcg_op, rn,
13980 pass + (is_q * 2), MO_32);
13983 tcg_res[pass] = tcg_temp_new_i64();
13985 if (opcode == 0xa || opcode == 0xb) {
13986 /* Non-accumulating ops */
13987 tcg_passres = tcg_res[pass];
13988 } else {
13989 tcg_passres = tcg_temp_new_i64();
13992 if (memop & MO_SIGN) {
13993 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13994 } else {
13995 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13997 if (satop) {
13998 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13999 tcg_passres, tcg_passres);
14001 tcg_temp_free_i32(tcg_op);
14003 if (opcode == 0xa || opcode == 0xb) {
14004 continue;
14007 /* Accumulating op: handle accumulate step */
14008 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14010 switch (opcode) {
14011 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
14012 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
14013 tcg_passres);
14014 break;
14015 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
14016 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
14017 tcg_passres);
14018 break;
14019 case 0x7: /* SQDMLSL, SQDMLSL2 */
14020 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
14021 /* fall through */
14022 case 0x3: /* SQDMLAL, SQDMLAL2 */
14023 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
14024 tcg_res[pass],
14025 tcg_passres);
14026 break;
14027 default:
14028 g_assert_not_reached();
14030 tcg_temp_free_i64(tcg_passres);
14032 tcg_temp_free_i32(tcg_idx);
14034 if (is_scalar) {
14035 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
14039 if (is_scalar) {
14040 tcg_res[1] = tcg_constant_i64(0);
14043 for (pass = 0; pass < 2; pass++) {
14044 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14045 tcg_temp_free_i64(tcg_res[pass]);
14049 if (fpst) {
14050 tcg_temp_free_ptr(fpst);
14054 /* Crypto AES
14055 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14056 * +-----------------+------+-----------+--------+-----+------+------+
14057 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14058 * +-----------------+------+-----------+--------+-----+------+------+
14060 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
14062 int size = extract32(insn, 22, 2);
14063 int opcode = extract32(insn, 12, 5);
14064 int rn = extract32(insn, 5, 5);
14065 int rd = extract32(insn, 0, 5);
14066 int decrypt;
14067 gen_helper_gvec_2 *genfn2 = NULL;
14068 gen_helper_gvec_3 *genfn3 = NULL;
14070 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
14071 unallocated_encoding(s);
14072 return;
14075 switch (opcode) {
14076 case 0x4: /* AESE */
14077 decrypt = 0;
14078 genfn3 = gen_helper_crypto_aese;
14079 break;
14080 case 0x6: /* AESMC */
14081 decrypt = 0;
14082 genfn2 = gen_helper_crypto_aesmc;
14083 break;
14084 case 0x5: /* AESD */
14085 decrypt = 1;
14086 genfn3 = gen_helper_crypto_aese;
14087 break;
14088 case 0x7: /* AESIMC */
14089 decrypt = 1;
14090 genfn2 = gen_helper_crypto_aesmc;
14091 break;
14092 default:
14093 unallocated_encoding(s);
14094 return;
14097 if (!fp_access_check(s)) {
14098 return;
14100 if (genfn2) {
14101 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
14102 } else {
14103 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
14107 /* Crypto three-reg SHA
14108 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
14109 * +-----------------+------+---+------+---+--------+-----+------+------+
14110 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
14111 * +-----------------+------+---+------+---+--------+-----+------+------+
14113 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
14115 int size = extract32(insn, 22, 2);
14116 int opcode = extract32(insn, 12, 3);
14117 int rm = extract32(insn, 16, 5);
14118 int rn = extract32(insn, 5, 5);
14119 int rd = extract32(insn, 0, 5);
14120 gen_helper_gvec_3 *genfn;
14121 bool feature;
14123 if (size != 0) {
14124 unallocated_encoding(s);
14125 return;
14128 switch (opcode) {
14129 case 0: /* SHA1C */
14130 genfn = gen_helper_crypto_sha1c;
14131 feature = dc_isar_feature(aa64_sha1, s);
14132 break;
14133 case 1: /* SHA1P */
14134 genfn = gen_helper_crypto_sha1p;
14135 feature = dc_isar_feature(aa64_sha1, s);
14136 break;
14137 case 2: /* SHA1M */
14138 genfn = gen_helper_crypto_sha1m;
14139 feature = dc_isar_feature(aa64_sha1, s);
14140 break;
14141 case 3: /* SHA1SU0 */
14142 genfn = gen_helper_crypto_sha1su0;
14143 feature = dc_isar_feature(aa64_sha1, s);
14144 break;
14145 case 4: /* SHA256H */
14146 genfn = gen_helper_crypto_sha256h;
14147 feature = dc_isar_feature(aa64_sha256, s);
14148 break;
14149 case 5: /* SHA256H2 */
14150 genfn = gen_helper_crypto_sha256h2;
14151 feature = dc_isar_feature(aa64_sha256, s);
14152 break;
14153 case 6: /* SHA256SU1 */
14154 genfn = gen_helper_crypto_sha256su1;
14155 feature = dc_isar_feature(aa64_sha256, s);
14156 break;
14157 default:
14158 unallocated_encoding(s);
14159 return;
14162 if (!feature) {
14163 unallocated_encoding(s);
14164 return;
14167 if (!fp_access_check(s)) {
14168 return;
14170 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14173 /* Crypto two-reg SHA
14174 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14175 * +-----------------+------+-----------+--------+-----+------+------+
14176 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14177 * +-----------------+------+-----------+--------+-----+------+------+
14179 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14181 int size = extract32(insn, 22, 2);
14182 int opcode = extract32(insn, 12, 5);
14183 int rn = extract32(insn, 5, 5);
14184 int rd = extract32(insn, 0, 5);
14185 gen_helper_gvec_2 *genfn;
14186 bool feature;
14188 if (size != 0) {
14189 unallocated_encoding(s);
14190 return;
14193 switch (opcode) {
14194 case 0: /* SHA1H */
14195 feature = dc_isar_feature(aa64_sha1, s);
14196 genfn = gen_helper_crypto_sha1h;
14197 break;
14198 case 1: /* SHA1SU1 */
14199 feature = dc_isar_feature(aa64_sha1, s);
14200 genfn = gen_helper_crypto_sha1su1;
14201 break;
14202 case 2: /* SHA256SU0 */
14203 feature = dc_isar_feature(aa64_sha256, s);
14204 genfn = gen_helper_crypto_sha256su0;
14205 break;
14206 default:
14207 unallocated_encoding(s);
14208 return;
14211 if (!feature) {
14212 unallocated_encoding(s);
14213 return;
14216 if (!fp_access_check(s)) {
14217 return;
14219 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14222 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14224 tcg_gen_rotli_i64(d, m, 1);
14225 tcg_gen_xor_i64(d, d, n);
14228 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14230 tcg_gen_rotli_vec(vece, d, m, 1);
14231 tcg_gen_xor_vec(vece, d, d, n);
14234 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14235 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14237 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14238 static const GVecGen3 op = {
14239 .fni8 = gen_rax1_i64,
14240 .fniv = gen_rax1_vec,
14241 .opt_opc = vecop_list,
14242 .fno = gen_helper_crypto_rax1,
14243 .vece = MO_64,
14245 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14248 /* Crypto three-reg SHA512
14249 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14250 * +-----------------------+------+---+---+-----+--------+------+------+
14251 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14252 * +-----------------------+------+---+---+-----+--------+------+------+
14254 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14256 int opcode = extract32(insn, 10, 2);
14257 int o = extract32(insn, 14, 1);
14258 int rm = extract32(insn, 16, 5);
14259 int rn = extract32(insn, 5, 5);
14260 int rd = extract32(insn, 0, 5);
14261 bool feature;
14262 gen_helper_gvec_3 *oolfn = NULL;
14263 GVecGen3Fn *gvecfn = NULL;
14265 if (o == 0) {
14266 switch (opcode) {
14267 case 0: /* SHA512H */
14268 feature = dc_isar_feature(aa64_sha512, s);
14269 oolfn = gen_helper_crypto_sha512h;
14270 break;
14271 case 1: /* SHA512H2 */
14272 feature = dc_isar_feature(aa64_sha512, s);
14273 oolfn = gen_helper_crypto_sha512h2;
14274 break;
14275 case 2: /* SHA512SU1 */
14276 feature = dc_isar_feature(aa64_sha512, s);
14277 oolfn = gen_helper_crypto_sha512su1;
14278 break;
14279 case 3: /* RAX1 */
14280 feature = dc_isar_feature(aa64_sha3, s);
14281 gvecfn = gen_gvec_rax1;
14282 break;
14283 default:
14284 g_assert_not_reached();
14286 } else {
14287 switch (opcode) {
14288 case 0: /* SM3PARTW1 */
14289 feature = dc_isar_feature(aa64_sm3, s);
14290 oolfn = gen_helper_crypto_sm3partw1;
14291 break;
14292 case 1: /* SM3PARTW2 */
14293 feature = dc_isar_feature(aa64_sm3, s);
14294 oolfn = gen_helper_crypto_sm3partw2;
14295 break;
14296 case 2: /* SM4EKEY */
14297 feature = dc_isar_feature(aa64_sm4, s);
14298 oolfn = gen_helper_crypto_sm4ekey;
14299 break;
14300 default:
14301 unallocated_encoding(s);
14302 return;
14306 if (!feature) {
14307 unallocated_encoding(s);
14308 return;
14311 if (!fp_access_check(s)) {
14312 return;
14315 if (oolfn) {
14316 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14317 } else {
14318 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14322 /* Crypto two-reg SHA512
14323 * 31 12 11 10 9 5 4 0
14324 * +-----------------------------------------+--------+------+------+
14325 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14326 * +-----------------------------------------+--------+------+------+
14328 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14330 int opcode = extract32(insn, 10, 2);
14331 int rn = extract32(insn, 5, 5);
14332 int rd = extract32(insn, 0, 5);
14333 bool feature;
14335 switch (opcode) {
14336 case 0: /* SHA512SU0 */
14337 feature = dc_isar_feature(aa64_sha512, s);
14338 break;
14339 case 1: /* SM4E */
14340 feature = dc_isar_feature(aa64_sm4, s);
14341 break;
14342 default:
14343 unallocated_encoding(s);
14344 return;
14347 if (!feature) {
14348 unallocated_encoding(s);
14349 return;
14352 if (!fp_access_check(s)) {
14353 return;
14356 switch (opcode) {
14357 case 0: /* SHA512SU0 */
14358 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14359 break;
14360 case 1: /* SM4E */
14361 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14362 break;
14363 default:
14364 g_assert_not_reached();
14368 /* Crypto four-register
14369 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14370 * +-------------------+-----+------+---+------+------+------+
14371 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14372 * +-------------------+-----+------+---+------+------+------+
14374 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14376 int op0 = extract32(insn, 21, 2);
14377 int rm = extract32(insn, 16, 5);
14378 int ra = extract32(insn, 10, 5);
14379 int rn = extract32(insn, 5, 5);
14380 int rd = extract32(insn, 0, 5);
14381 bool feature;
14383 switch (op0) {
14384 case 0: /* EOR3 */
14385 case 1: /* BCAX */
14386 feature = dc_isar_feature(aa64_sha3, s);
14387 break;
14388 case 2: /* SM3SS1 */
14389 feature = dc_isar_feature(aa64_sm3, s);
14390 break;
14391 default:
14392 unallocated_encoding(s);
14393 return;
14396 if (!feature) {
14397 unallocated_encoding(s);
14398 return;
14401 if (!fp_access_check(s)) {
14402 return;
14405 if (op0 < 2) {
14406 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14407 int pass;
14409 tcg_op1 = tcg_temp_new_i64();
14410 tcg_op2 = tcg_temp_new_i64();
14411 tcg_op3 = tcg_temp_new_i64();
14412 tcg_res[0] = tcg_temp_new_i64();
14413 tcg_res[1] = tcg_temp_new_i64();
14415 for (pass = 0; pass < 2; pass++) {
14416 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14417 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14418 read_vec_element(s, tcg_op3, ra, pass, MO_64);
14420 if (op0 == 0) {
14421 /* EOR3 */
14422 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14423 } else {
14424 /* BCAX */
14425 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14427 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14429 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14430 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14432 tcg_temp_free_i64(tcg_op1);
14433 tcg_temp_free_i64(tcg_op2);
14434 tcg_temp_free_i64(tcg_op3);
14435 tcg_temp_free_i64(tcg_res[0]);
14436 tcg_temp_free_i64(tcg_res[1]);
14437 } else {
14438 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14440 tcg_op1 = tcg_temp_new_i32();
14441 tcg_op2 = tcg_temp_new_i32();
14442 tcg_op3 = tcg_temp_new_i32();
14443 tcg_res = tcg_temp_new_i32();
14444 tcg_zero = tcg_constant_i32(0);
14446 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14447 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14448 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14450 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14451 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14452 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14453 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14455 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14456 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14457 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14458 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14460 tcg_temp_free_i32(tcg_op1);
14461 tcg_temp_free_i32(tcg_op2);
14462 tcg_temp_free_i32(tcg_op3);
14463 tcg_temp_free_i32(tcg_res);
14467 /* Crypto XAR
14468 * 31 21 20 16 15 10 9 5 4 0
14469 * +-----------------------+------+--------+------+------+
14470 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14471 * +-----------------------+------+--------+------+------+
14473 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14475 int rm = extract32(insn, 16, 5);
14476 int imm6 = extract32(insn, 10, 6);
14477 int rn = extract32(insn, 5, 5);
14478 int rd = extract32(insn, 0, 5);
14480 if (!dc_isar_feature(aa64_sha3, s)) {
14481 unallocated_encoding(s);
14482 return;
14485 if (!fp_access_check(s)) {
14486 return;
14489 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14490 vec_full_reg_offset(s, rn),
14491 vec_full_reg_offset(s, rm), imm6, 16,
14492 vec_full_reg_size(s));
14495 /* Crypto three-reg imm2
14496 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14497 * +-----------------------+------+-----+------+--------+------+------+
14498 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14499 * +-----------------------+------+-----+------+--------+------+------+
14501 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14503 static gen_helper_gvec_3 * const fns[4] = {
14504 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14505 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14507 int opcode = extract32(insn, 10, 2);
14508 int imm2 = extract32(insn, 12, 2);
14509 int rm = extract32(insn, 16, 5);
14510 int rn = extract32(insn, 5, 5);
14511 int rd = extract32(insn, 0, 5);
14513 if (!dc_isar_feature(aa64_sm3, s)) {
14514 unallocated_encoding(s);
14515 return;
14518 if (!fp_access_check(s)) {
14519 return;
14522 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14525 /* C3.6 Data processing - SIMD, inc Crypto
14527 * As the decode gets a little complex we are using a table based
14528 * approach for this part of the decode.
14530 static const AArch64DecodeTable data_proc_simd[] = {
14531 /* pattern , mask , fn */
14532 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14533 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14534 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14535 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14536 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14537 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14538 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14539 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14540 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14541 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14542 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14543 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14544 { 0x2e000000, 0xbf208400, disas_simd_ext },
14545 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14546 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14547 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14548 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14549 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14550 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14551 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14552 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14553 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14554 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14555 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14556 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14557 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14558 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14559 { 0xce800000, 0xffe00000, disas_crypto_xar },
14560 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14561 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14562 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14563 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14564 { 0x00000000, 0x00000000, NULL }
14567 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14569 /* Note that this is called with all non-FP cases from
14570 * table C3-6 so it must UNDEF for entries not specifically
14571 * allocated to instructions in that table.
14573 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14574 if (fn) {
14575 fn(s, insn);
14576 } else {
14577 unallocated_encoding(s);
14581 /* C3.6 Data processing - SIMD and floating point */
14582 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14584 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14585 disas_data_proc_fp(s, insn);
14586 } else {
14587 /* SIMD, including crypto */
14588 disas_data_proc_simd(s, insn);
14593 * Include the generated SME FA64 decoder.
14596 #include "decode-sme-fa64.c.inc"
14598 static bool trans_OK(DisasContext *s, arg_OK *a)
14600 return true;
14603 static bool trans_FAIL(DisasContext *s, arg_OK *a)
14605 s->is_nonstreaming = true;
14606 return true;
14610 * is_guarded_page:
14611 * @env: The cpu environment
14612 * @s: The DisasContext
14614 * Return true if the page is guarded.
14616 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14618 uint64_t addr = s->base.pc_first;
14619 #ifdef CONFIG_USER_ONLY
14620 return page_get_flags(addr) & PAGE_BTI;
14621 #else
14622 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14623 unsigned int index = tlb_index(env, mmu_idx, addr);
14624 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14627 * We test this immediately after reading an insn, which means
14628 * that any normal page must be in the TLB. The only exception
14629 * would be for executing from flash or device memory, which
14630 * does not retain the TLB entry.
14632 * FIXME: Assume false for those, for now. We could use
14633 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14634 * table entry even for that case.
14636 return (tlb_hit(entry->addr_code, addr) &&
14637 arm_tlb_bti_gp(&env_tlb(env)->d[mmu_idx].iotlb[index].attrs));
14638 #endif
14642 * btype_destination_ok:
14643 * @insn: The instruction at the branch destination
14644 * @bt: SCTLR_ELx.BT
14645 * @btype: PSTATE.BTYPE, and is non-zero
14647 * On a guarded page, there are a limited number of insns
14648 * that may be present at the branch target:
14649 * - branch target identifiers,
14650 * - paciasp, pacibsp,
14651 * - BRK insn
14652 * - HLT insn
14653 * Anything else causes a Branch Target Exception.
14655 * Return true if the branch is compatible, false to raise BTITRAP.
14657 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14659 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14660 /* HINT space */
14661 switch (extract32(insn, 5, 7)) {
14662 case 0b011001: /* PACIASP */
14663 case 0b011011: /* PACIBSP */
14665 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14666 * with btype == 3. Otherwise all btype are ok.
14668 return !bt || btype != 3;
14669 case 0b100000: /* BTI */
14670 /* Not compatible with any btype. */
14671 return false;
14672 case 0b100010: /* BTI c */
14673 /* Not compatible with btype == 3 */
14674 return btype != 3;
14675 case 0b100100: /* BTI j */
14676 /* Not compatible with btype == 2 */
14677 return btype != 2;
14678 case 0b100110: /* BTI jc */
14679 /* Compatible with any btype. */
14680 return true;
14682 } else {
14683 switch (insn & 0xffe0001fu) {
14684 case 0xd4200000u: /* BRK */
14685 case 0xd4400000u: /* HLT */
14686 /* Give priority to the breakpoint exception. */
14687 return true;
14690 return false;
14693 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14694 CPUState *cpu)
14696 DisasContext *dc = container_of(dcbase, DisasContext, base);
14697 CPUARMState *env = cpu->env_ptr;
14698 ARMCPU *arm_cpu = env_archcpu(env);
14699 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14700 int bound, core_mmu_idx;
14702 dc->isar = &arm_cpu->isar;
14703 dc->condjmp = 0;
14705 dc->aarch64 = true;
14706 dc->thumb = false;
14707 dc->sctlr_b = 0;
14708 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14709 dc->condexec_mask = 0;
14710 dc->condexec_cond = 0;
14711 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14712 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14713 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14714 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14715 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14716 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14717 #if !defined(CONFIG_USER_ONLY)
14718 dc->user = (dc->current_el == 0);
14719 #endif
14720 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14721 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14722 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14723 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14724 dc->sme_excp_el = EX_TBFLAG_A64(tb_flags, SMEEXC_EL);
14725 dc->vl = (EX_TBFLAG_A64(tb_flags, VL) + 1) * 16;
14726 dc->svl = (EX_TBFLAG_A64(tb_flags, SVL) + 1) * 16;
14727 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14728 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14729 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14730 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14731 dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14732 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14733 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14734 dc->pstate_sm = EX_TBFLAG_A64(tb_flags, PSTATE_SM);
14735 dc->pstate_za = EX_TBFLAG_A64(tb_flags, PSTATE_ZA);
14736 dc->sme_trap_nonstreaming = EX_TBFLAG_A64(tb_flags, SME_TRAP_NONSTREAMING);
14737 dc->vec_len = 0;
14738 dc->vec_stride = 0;
14739 dc->cp_regs = arm_cpu->cp_regs;
14740 dc->features = env->features;
14741 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14743 #ifdef CONFIG_USER_ONLY
14744 /* In sve_probe_page, we assume TBI is enabled. */
14745 tcg_debug_assert(dc->tbid & 1);
14746 #endif
14748 /* Single step state. The code-generation logic here is:
14749 * SS_ACTIVE == 0:
14750 * generate code with no special handling for single-stepping (except
14751 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14752 * this happens anyway because those changes are all system register or
14753 * PSTATE writes).
14754 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14755 * emit code for one insn
14756 * emit code to clear PSTATE.SS
14757 * emit code to generate software step exception for completed step
14758 * end TB (as usual for having generated an exception)
14759 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14760 * emit code to generate a software step exception
14761 * end the TB
14763 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14764 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14765 dc->is_ldex = false;
14767 /* Bound the number of insns to execute to those left on the page. */
14768 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14770 /* If architectural single step active, limit to 1. */
14771 if (dc->ss_active) {
14772 bound = 1;
14774 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14776 init_tmp_a64_array(dc);
14779 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14783 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14785 DisasContext *dc = container_of(dcbase, DisasContext, base);
14787 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14788 dc->insn_start = tcg_last_op();
14791 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14793 DisasContext *s = container_of(dcbase, DisasContext, base);
14794 CPUARMState *env = cpu->env_ptr;
14795 uint64_t pc = s->base.pc_next;
14796 uint32_t insn;
14798 /* Singlestep exceptions have the highest priority. */
14799 if (s->ss_active && !s->pstate_ss) {
14800 /* Singlestep state is Active-pending.
14801 * If we're in this state at the start of a TB then either
14802 * a) we just took an exception to an EL which is being debugged
14803 * and this is the first insn in the exception handler
14804 * b) debug exceptions were masked and we just unmasked them
14805 * without changing EL (eg by clearing PSTATE.D)
14806 * In either case we're going to take a swstep exception in the
14807 * "did not step an insn" case, and so the syndrome ISV and EX
14808 * bits should be zero.
14810 assert(s->base.num_insns == 1);
14811 gen_swstep_exception(s, 0, 0);
14812 s->base.is_jmp = DISAS_NORETURN;
14813 s->base.pc_next = pc + 4;
14814 return;
14817 if (pc & 3) {
14819 * PC alignment fault. This has priority over the instruction abort
14820 * that we would receive from a translation fault via arm_ldl_code.
14821 * This should only be possible after an indirect branch, at the
14822 * start of the TB.
14824 assert(s->base.num_insns == 1);
14825 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14826 s->base.is_jmp = DISAS_NORETURN;
14827 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14828 return;
14831 s->pc_curr = pc;
14832 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14833 s->insn = insn;
14834 s->base.pc_next = pc + 4;
14836 s->fp_access_checked = false;
14837 s->sve_access_checked = false;
14839 if (s->pstate_il) {
14841 * Illegal execution state. This has priority over BTI
14842 * exceptions, but comes after instruction abort exceptions.
14844 gen_exception_insn(s, s->pc_curr, EXCP_UDEF, syn_illegalstate());
14845 return;
14848 if (dc_isar_feature(aa64_bti, s)) {
14849 if (s->base.num_insns == 1) {
14851 * At the first insn of the TB, compute s->guarded_page.
14852 * We delayed computing this until successfully reading
14853 * the first insn of the TB, above. This (mostly) ensures
14854 * that the softmmu tlb entry has been populated, and the
14855 * page table GP bit is available.
14857 * Note that we need to compute this even if btype == 0,
14858 * because this value is used for BR instructions later
14859 * where ENV is not available.
14861 s->guarded_page = is_guarded_page(env, s);
14863 /* First insn can have btype set to non-zero. */
14864 tcg_debug_assert(s->btype >= 0);
14867 * Note that the Branch Target Exception has fairly high
14868 * priority -- below debugging exceptions but above most
14869 * everything else. This allows us to handle this now
14870 * instead of waiting until the insn is otherwise decoded.
14872 if (s->btype != 0
14873 && s->guarded_page
14874 && !btype_destination_ok(insn, s->bt, s->btype)) {
14875 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14876 syn_btitrap(s->btype));
14877 return;
14879 } else {
14880 /* Not the first insn: btype must be 0. */
14881 tcg_debug_assert(s->btype == 0);
14885 s->is_nonstreaming = false;
14886 if (s->sme_trap_nonstreaming) {
14887 disas_sme_fa64(s, insn);
14890 switch (extract32(insn, 25, 4)) {
14891 case 0x0:
14892 if (!extract32(insn, 31, 1) || !disas_sme(s, insn)) {
14893 unallocated_encoding(s);
14895 break;
14896 case 0x1: case 0x3: /* UNALLOCATED */
14897 unallocated_encoding(s);
14898 break;
14899 case 0x2:
14900 if (!disas_sve(s, insn)) {
14901 unallocated_encoding(s);
14903 break;
14904 case 0x8: case 0x9: /* Data processing - immediate */
14905 disas_data_proc_imm(s, insn);
14906 break;
14907 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14908 disas_b_exc_sys(s, insn);
14909 break;
14910 case 0x4:
14911 case 0x6:
14912 case 0xc:
14913 case 0xe: /* Loads and stores */
14914 disas_ldst(s, insn);
14915 break;
14916 case 0x5:
14917 case 0xd: /* Data processing - register */
14918 disas_data_proc_reg(s, insn);
14919 break;
14920 case 0x7:
14921 case 0xf: /* Data processing - SIMD and floating point */
14922 disas_data_proc_simd_fp(s, insn);
14923 break;
14924 default:
14925 assert(FALSE); /* all 15 cases should be handled above */
14926 break;
14929 /* if we allocated any temporaries, free them here */
14930 free_tmp_a64(s);
14933 * After execution of most insns, btype is reset to 0.
14934 * Note that we set btype == -1 when the insn sets btype.
14936 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14937 reset_btype(s);
14940 translator_loop_temp_check(&s->base);
14943 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14945 DisasContext *dc = container_of(dcbase, DisasContext, base);
14947 if (unlikely(dc->ss_active)) {
14948 /* Note that this means single stepping WFI doesn't halt the CPU.
14949 * For conditional branch insns this is harmless unreachable code as
14950 * gen_goto_tb() has already handled emitting the debug exception
14951 * (and thus a tb-jump is not possible when singlestepping).
14953 switch (dc->base.is_jmp) {
14954 default:
14955 gen_a64_set_pc_im(dc->base.pc_next);
14956 /* fall through */
14957 case DISAS_EXIT:
14958 case DISAS_JUMP:
14959 gen_step_complete_exception(dc);
14960 break;
14961 case DISAS_NORETURN:
14962 break;
14964 } else {
14965 switch (dc->base.is_jmp) {
14966 case DISAS_NEXT:
14967 case DISAS_TOO_MANY:
14968 gen_goto_tb(dc, 1, dc->base.pc_next);
14969 break;
14970 default:
14971 case DISAS_UPDATE_EXIT:
14972 gen_a64_set_pc_im(dc->base.pc_next);
14973 /* fall through */
14974 case DISAS_EXIT:
14975 tcg_gen_exit_tb(NULL, 0);
14976 break;
14977 case DISAS_UPDATE_NOCHAIN:
14978 gen_a64_set_pc_im(dc->base.pc_next);
14979 /* fall through */
14980 case DISAS_JUMP:
14981 tcg_gen_lookup_and_goto_ptr();
14982 break;
14983 case DISAS_NORETURN:
14984 case DISAS_SWI:
14985 break;
14986 case DISAS_WFE:
14987 gen_a64_set_pc_im(dc->base.pc_next);
14988 gen_helper_wfe(cpu_env);
14989 break;
14990 case DISAS_YIELD:
14991 gen_a64_set_pc_im(dc->base.pc_next);
14992 gen_helper_yield(cpu_env);
14993 break;
14994 case DISAS_WFI:
14996 * This is a special case because we don't want to just halt
14997 * the CPU if trying to debug across a WFI.
14999 gen_a64_set_pc_im(dc->base.pc_next);
15000 gen_helper_wfi(cpu_env, tcg_constant_i32(4));
15002 * The helper doesn't necessarily throw an exception, but we
15003 * must go back to the main loop to check for interrupts anyway.
15005 tcg_gen_exit_tb(NULL, 0);
15006 break;
15011 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
15012 CPUState *cpu, FILE *logfile)
15014 DisasContext *dc = container_of(dcbase, DisasContext, base);
15016 fprintf(logfile, "IN: %s\n", lookup_symbol(dc->base.pc_first));
15017 target_disas(logfile, cpu, dc->base.pc_first, dc->base.tb->size);
15020 const TranslatorOps aarch64_translator_ops = {
15021 .init_disas_context = aarch64_tr_init_disas_context,
15022 .tb_start = aarch64_tr_tb_start,
15023 .insn_start = aarch64_tr_insn_start,
15024 .translate_insn = aarch64_tr_translate_insn,
15025 .tb_stop = aarch64_tr_tb_stop,
15026 .disas_log = aarch64_tr_disas_log,