2 * "Inventra" High-speed Dual-Role Controller (MUSB-HDRC), Mentor Graphics,
3 * USB2.0 OTG compliant core used in various chips.
5 * Copyright (C) 2008 Nokia Corporation
6 * Written by Andrzej Zaborowski <andrew@openedhand.com>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 or
11 * (at your option) version 3 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License along
19 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 * Only host-mode and non-DMA accesses are currently supported.
23 #include "qemu-common.h"
24 #include "qemu-timer.h"
28 /* Common USB registers */
29 #define MUSB_HDRC_FADDR 0x00 /* 8-bit */
30 #define MUSB_HDRC_POWER 0x01 /* 8-bit */
32 #define MUSB_HDRC_INTRTX 0x02 /* 16-bit */
33 #define MUSB_HDRC_INTRRX 0x04
34 #define MUSB_HDRC_INTRTXE 0x06
35 #define MUSB_HDRC_INTRRXE 0x08
36 #define MUSB_HDRC_INTRUSB 0x0a /* 8 bit */
37 #define MUSB_HDRC_INTRUSBE 0x0b /* 8 bit */
38 #define MUSB_HDRC_FRAME 0x0c /* 16-bit */
39 #define MUSB_HDRC_INDEX 0x0e /* 8 bit */
40 #define MUSB_HDRC_TESTMODE 0x0f /* 8 bit */
42 /* Per-EP registers in indexed mode */
43 #define MUSB_HDRC_EP_IDX 0x10 /* 8-bit */
46 #define MUSB_HDRC_FIFO 0x20
48 /* Additional Control Registers */
49 #define MUSB_HDRC_DEVCTL 0x60 /* 8 bit */
51 /* These are indexed */
52 #define MUSB_HDRC_TXFIFOSZ 0x62 /* 8 bit (see masks) */
53 #define MUSB_HDRC_RXFIFOSZ 0x63 /* 8 bit (see masks) */
54 #define MUSB_HDRC_TXFIFOADDR 0x64 /* 16 bit offset shifted right 3 */
55 #define MUSB_HDRC_RXFIFOADDR 0x66 /* 16 bit offset shifted right 3 */
57 /* Some more registers */
58 #define MUSB_HDRC_VCTRL 0x68 /* 8 bit */
59 #define MUSB_HDRC_HWVERS 0x6c /* 8 bit */
61 /* Added in HDRC 1.9(?) & MHDRC 1.4 */
62 /* ULPI pass-through */
63 #define MUSB_HDRC_ULPI_VBUSCTL 0x70
64 #define MUSB_HDRC_ULPI_REGDATA 0x74
65 #define MUSB_HDRC_ULPI_REGADDR 0x75
66 #define MUSB_HDRC_ULPI_REGCTL 0x76
68 /* Extended config & PHY control */
69 #define MUSB_HDRC_ENDCOUNT 0x78 /* 8 bit */
70 #define MUSB_HDRC_DMARAMCFG 0x79 /* 8 bit */
71 #define MUSB_HDRC_PHYWAIT 0x7a /* 8 bit */
72 #define MUSB_HDRC_PHYVPLEN 0x7b /* 8 bit */
73 #define MUSB_HDRC_HS_EOF1 0x7c /* 8 bit, units of 546.1 us */
74 #define MUSB_HDRC_FS_EOF1 0x7d /* 8 bit, units of 533.3 ns */
75 #define MUSB_HDRC_LS_EOF1 0x7e /* 8 bit, units of 1.067 us */
77 /* Per-EP BUSCTL registers */
78 #define MUSB_HDRC_BUSCTL 0x80
80 /* Per-EP registers in flat mode */
81 #define MUSB_HDRC_EP 0x100
83 /* offsets to registers in flat model */
84 #define MUSB_HDRC_TXMAXP 0x00 /* 16 bit apparently */
85 #define MUSB_HDRC_TXCSR 0x02 /* 16 bit apparently */
86 #define MUSB_HDRC_CSR0 MUSB_HDRC_TXCSR /* re-used for EP0 */
87 #define MUSB_HDRC_RXMAXP 0x04 /* 16 bit apparently */
88 #define MUSB_HDRC_RXCSR 0x06 /* 16 bit apparently */
89 #define MUSB_HDRC_RXCOUNT 0x08 /* 16 bit apparently */
90 #define MUSB_HDRC_COUNT0 MUSB_HDRC_RXCOUNT /* re-used for EP0 */
91 #define MUSB_HDRC_TXTYPE 0x0a /* 8 bit apparently */
92 #define MUSB_HDRC_TYPE0 MUSB_HDRC_TXTYPE /* re-used for EP0 */
93 #define MUSB_HDRC_TXINTERVAL 0x0b /* 8 bit apparently */
94 #define MUSB_HDRC_NAKLIMIT0 MUSB_HDRC_TXINTERVAL /* re-used for EP0 */
95 #define MUSB_HDRC_RXTYPE 0x0c /* 8 bit apparently */
96 #define MUSB_HDRC_RXINTERVAL 0x0d /* 8 bit apparently */
97 #define MUSB_HDRC_FIFOSIZE 0x0f /* 8 bit apparently */
98 #define MUSB_HDRC_CONFIGDATA MGC_O_HDRC_FIFOSIZE /* re-used for EP0 */
100 /* "Bus control" registers */
101 #define MUSB_HDRC_TXFUNCADDR 0x00
102 #define MUSB_HDRC_TXHUBADDR 0x02
103 #define MUSB_HDRC_TXHUBPORT 0x03
105 #define MUSB_HDRC_RXFUNCADDR 0x04
106 #define MUSB_HDRC_RXHUBADDR 0x06
107 #define MUSB_HDRC_RXHUBPORT 0x07
110 * MUSBHDRC Register bit masks
114 #define MGC_M_POWER_ISOUPDATE 0x80
115 #define MGC_M_POWER_SOFTCONN 0x40
116 #define MGC_M_POWER_HSENAB 0x20
117 #define MGC_M_POWER_HSMODE 0x10
118 #define MGC_M_POWER_RESET 0x08
119 #define MGC_M_POWER_RESUME 0x04
120 #define MGC_M_POWER_SUSPENDM 0x02
121 #define MGC_M_POWER_ENSUSPEND 0x01
124 #define MGC_M_INTR_SUSPEND 0x01
125 #define MGC_M_INTR_RESUME 0x02
126 #define MGC_M_INTR_RESET 0x04
127 #define MGC_M_INTR_BABBLE 0x04
128 #define MGC_M_INTR_SOF 0x08
129 #define MGC_M_INTR_CONNECT 0x10
130 #define MGC_M_INTR_DISCONNECT 0x20
131 #define MGC_M_INTR_SESSREQ 0x40
132 #define MGC_M_INTR_VBUSERROR 0x80 /* FOR SESSION END */
133 #define MGC_M_INTR_EP0 0x01 /* FOR EP0 INTERRUPT */
136 #define MGC_M_DEVCTL_BDEVICE 0x80
137 #define MGC_M_DEVCTL_FSDEV 0x40
138 #define MGC_M_DEVCTL_LSDEV 0x20
139 #define MGC_M_DEVCTL_VBUS 0x18
140 #define MGC_S_DEVCTL_VBUS 3
141 #define MGC_M_DEVCTL_HM 0x04
142 #define MGC_M_DEVCTL_HR 0x02
143 #define MGC_M_DEVCTL_SESSION 0x01
146 #define MGC_M_TEST_FORCE_HOST 0x80
147 #define MGC_M_TEST_FIFO_ACCESS 0x40
148 #define MGC_M_TEST_FORCE_FS 0x20
149 #define MGC_M_TEST_FORCE_HS 0x10
150 #define MGC_M_TEST_PACKET 0x08
151 #define MGC_M_TEST_K 0x04
152 #define MGC_M_TEST_J 0x02
153 #define MGC_M_TEST_SE0_NAK 0x01
156 #define MGC_M_CSR0_FLUSHFIFO 0x0100
157 #define MGC_M_CSR0_TXPKTRDY 0x0002
158 #define MGC_M_CSR0_RXPKTRDY 0x0001
160 /* CSR0 in Peripheral mode */
161 #define MGC_M_CSR0_P_SVDSETUPEND 0x0080
162 #define MGC_M_CSR0_P_SVDRXPKTRDY 0x0040
163 #define MGC_M_CSR0_P_SENDSTALL 0x0020
164 #define MGC_M_CSR0_P_SETUPEND 0x0010
165 #define MGC_M_CSR0_P_DATAEND 0x0008
166 #define MGC_M_CSR0_P_SENTSTALL 0x0004
168 /* CSR0 in Host mode */
169 #define MGC_M_CSR0_H_NO_PING 0x0800
170 #define MGC_M_CSR0_H_WR_DATATOGGLE 0x0400 /* set to allow setting: */
171 #define MGC_M_CSR0_H_DATATOGGLE 0x0200 /* data toggle control */
172 #define MGC_M_CSR0_H_NAKTIMEOUT 0x0080
173 #define MGC_M_CSR0_H_STATUSPKT 0x0040
174 #define MGC_M_CSR0_H_REQPKT 0x0020
175 #define MGC_M_CSR0_H_ERROR 0x0010
176 #define MGC_M_CSR0_H_SETUPPKT 0x0008
177 #define MGC_M_CSR0_H_RXSTALL 0x0004
180 #define MGC_M_CONFIGDATA_MPRXE 0x80 /* auto bulk pkt combining */
181 #define MGC_M_CONFIGDATA_MPTXE 0x40 /* auto bulk pkt splitting */
182 #define MGC_M_CONFIGDATA_BIGENDIAN 0x20
183 #define MGC_M_CONFIGDATA_HBRXE 0x10 /* HB-ISO for RX */
184 #define MGC_M_CONFIGDATA_HBTXE 0x08 /* HB-ISO for TX */
185 #define MGC_M_CONFIGDATA_DYNFIFO 0x04 /* dynamic FIFO sizing */
186 #define MGC_M_CONFIGDATA_SOFTCONE 0x02 /* SoftConnect */
187 #define MGC_M_CONFIGDATA_UTMIDW 0x01 /* Width, 0 => 8b, 1 => 16b */
189 /* TXCSR in Peripheral and Host mode */
190 #define MGC_M_TXCSR_AUTOSET 0x8000
191 #define MGC_M_TXCSR_ISO 0x4000
192 #define MGC_M_TXCSR_MODE 0x2000
193 #define MGC_M_TXCSR_DMAENAB 0x1000
194 #define MGC_M_TXCSR_FRCDATATOG 0x0800
195 #define MGC_M_TXCSR_DMAMODE 0x0400
196 #define MGC_M_TXCSR_CLRDATATOG 0x0040
197 #define MGC_M_TXCSR_FLUSHFIFO 0x0008
198 #define MGC_M_TXCSR_FIFONOTEMPTY 0x0002
199 #define MGC_M_TXCSR_TXPKTRDY 0x0001
201 /* TXCSR in Peripheral mode */
202 #define MGC_M_TXCSR_P_INCOMPTX 0x0080
203 #define MGC_M_TXCSR_P_SENTSTALL 0x0020
204 #define MGC_M_TXCSR_P_SENDSTALL 0x0010
205 #define MGC_M_TXCSR_P_UNDERRUN 0x0004
207 /* TXCSR in Host mode */
208 #define MGC_M_TXCSR_H_WR_DATATOGGLE 0x0200
209 #define MGC_M_TXCSR_H_DATATOGGLE 0x0100
210 #define MGC_M_TXCSR_H_NAKTIMEOUT 0x0080
211 #define MGC_M_TXCSR_H_RXSTALL 0x0020
212 #define MGC_M_TXCSR_H_ERROR 0x0004
214 /* RXCSR in Peripheral and Host mode */
215 #define MGC_M_RXCSR_AUTOCLEAR 0x8000
216 #define MGC_M_RXCSR_DMAENAB 0x2000
217 #define MGC_M_RXCSR_DISNYET 0x1000
218 #define MGC_M_RXCSR_DMAMODE 0x0800
219 #define MGC_M_RXCSR_INCOMPRX 0x0100
220 #define MGC_M_RXCSR_CLRDATATOG 0x0080
221 #define MGC_M_RXCSR_FLUSHFIFO 0x0010
222 #define MGC_M_RXCSR_DATAERROR 0x0008
223 #define MGC_M_RXCSR_FIFOFULL 0x0002
224 #define MGC_M_RXCSR_RXPKTRDY 0x0001
226 /* RXCSR in Peripheral mode */
227 #define MGC_M_RXCSR_P_ISO 0x4000
228 #define MGC_M_RXCSR_P_SENTSTALL 0x0040
229 #define MGC_M_RXCSR_P_SENDSTALL 0x0020
230 #define MGC_M_RXCSR_P_OVERRUN 0x0004
232 /* RXCSR in Host mode */
233 #define MGC_M_RXCSR_H_AUTOREQ 0x4000
234 #define MGC_M_RXCSR_H_WR_DATATOGGLE 0x0400
235 #define MGC_M_RXCSR_H_DATATOGGLE 0x0200
236 #define MGC_M_RXCSR_H_RXSTALL 0x0040
237 #define MGC_M_RXCSR_H_REQPKT 0x0020
238 #define MGC_M_RXCSR_H_ERROR 0x0004
241 #define MGC_M_HUBADDR_MULTI_TT 0x80
243 /* ULPI: Added in HDRC 1.9(?) & MHDRC 1.4 */
244 #define MGC_M_ULPI_VBCTL_USEEXTVBUSIND 0x02
245 #define MGC_M_ULPI_VBCTL_USEEXTVBUS 0x01
246 #define MGC_M_ULPI_REGCTL_INT_ENABLE 0x08
247 #define MGC_M_ULPI_REGCTL_READNOTWRITE 0x04
248 #define MGC_M_ULPI_REGCTL_COMPLETE 0x02
249 #define MGC_M_ULPI_REGCTL_REG 0x01
251 static void musb_attach(USBPort
*port
, USBDevice
*dev
);
264 int timeout
[2]; /* Always in microframes */
274 /* For callbacks' use */
278 USBCallback
*delayed_cb
[2];
279 QEMUTimer
*intv_timer
[2];
302 uint32_t buf
[0x2000];
304 /* Duplicating the world since 2008!... probably we should have 32
305 * logical, single endpoints instead. */
307 } *musb_init(qemu_irq
*irqs
)
309 MUSBState
*s
= qemu_mallocz(sizeof(*s
));
315 s
->power
= MGC_M_POWER_HSENAB
;
325 s
->ep
[0].config
= MGC_M_CONFIGDATA_SOFTCONE
| MGC_M_CONFIGDATA_DYNFIFO
;
326 for (i
= 0; i
< 16; i
++) {
327 s
->ep
[i
].fifosize
= 64;
328 s
->ep
[i
].maxp
[0] = 0x40;
329 s
->ep
[i
].maxp
[1] = 0x40;
334 usb_bus_new(&s
->bus
, NULL
/* FIXME */);
335 usb_register_port(&s
->bus
, &s
->port
, s
, 0, musb_attach
);
340 static void musb_vbus_set(MUSBState
*s
, int level
)
343 s
->devctl
|= 3 << MGC_S_DEVCTL_VBUS
;
345 s
->devctl
&= ~MGC_M_DEVCTL_VBUS
;
347 qemu_set_irq(s
->irqs
[musb_set_vbus
], level
);
350 static void musb_intr_set(MUSBState
*s
, int line
, int level
)
353 s
->intr
&= ~(1 << line
);
354 qemu_irq_lower(s
->irqs
[line
]);
355 } else if (s
->mask
& (1 << line
)) {
356 s
->intr
|= 1 << line
;
357 qemu_irq_raise(s
->irqs
[line
]);
361 static void musb_tx_intr_set(MUSBState
*s
, int line
, int level
)
364 s
->tx_intr
&= ~(1 << line
);
366 qemu_irq_lower(s
->irqs
[musb_irq_tx
]);
367 } else if (s
->tx_mask
& (1 << line
)) {
368 s
->tx_intr
|= 1 << line
;
369 qemu_irq_raise(s
->irqs
[musb_irq_tx
]);
373 static void musb_rx_intr_set(MUSBState
*s
, int line
, int level
)
377 s
->rx_intr
&= ~(1 << line
);
379 qemu_irq_lower(s
->irqs
[musb_irq_rx
]);
380 } else if (s
->rx_mask
& (1 << line
)) {
381 s
->rx_intr
|= 1 << line
;
382 qemu_irq_raise(s
->irqs
[musb_irq_rx
]);
385 musb_tx_intr_set(s
, line
, level
);
388 uint32_t musb_core_intr_get(MUSBState
*s
)
390 return (s
->rx_intr
<< 15) | s
->tx_intr
;
393 void musb_core_intr_clear(MUSBState
*s
, uint32_t mask
)
396 s
->rx_intr
&= mask
>> 15;
398 qemu_irq_lower(s
->irqs
[musb_irq_rx
]);
402 s
->tx_intr
&= mask
& 0xffff;
404 qemu_irq_lower(s
->irqs
[musb_irq_tx
]);
408 void musb_set_size(MUSBState
*s
, int epnum
, int size
, int is_tx
)
410 s
->ep
[epnum
].ext_size
[!is_tx
] = size
;
411 s
->ep
[epnum
].fifostart
[0] = 0;
412 s
->ep
[epnum
].fifostart
[1] = 0;
413 s
->ep
[epnum
].fifolen
[0] = 0;
414 s
->ep
[epnum
].fifolen
[1] = 0;
417 static void musb_session_update(MUSBState
*s
, int prev_dev
, int prev_sess
)
419 int detect_prev
= prev_dev
&& prev_sess
;
420 int detect
= !!s
->port
.dev
&& s
->session
;
422 if (detect
&& !detect_prev
) {
423 /* Let's skip the ID pin sense and VBUS sense formalities and
424 * and signal a successful SRP directly. This should work at least
425 * for the Linux driver stack. */
426 musb_intr_set(s
, musb_irq_connect
, 1);
428 if (s
->port
.dev
->speed
== USB_SPEED_LOW
) {
429 s
->devctl
&= ~MGC_M_DEVCTL_FSDEV
;
430 s
->devctl
|= MGC_M_DEVCTL_LSDEV
;
432 s
->devctl
|= MGC_M_DEVCTL_FSDEV
;
433 s
->devctl
&= ~MGC_M_DEVCTL_LSDEV
;
437 s
->devctl
&= ~MGC_M_DEVCTL_BDEVICE
;
440 s
->devctl
|= MGC_M_DEVCTL_HM
;
444 } else if (!detect
&& detect_prev
) {
451 /* Attach or detach a device on our only port. */
452 static void musb_attach(USBPort
*port
, USBDevice
*dev
)
454 MUSBState
*s
= (MUSBState
*) port
->opaque
;
462 usb_attach(port
, NULL
);
463 /* TODO: signal some interrupts */
466 musb_intr_set(s
, musb_irq_vbus_request
, 1);
468 /* Send the attach message to device */
469 usb_send_msg(dev
, USB_MSG_ATTACH
);
471 /* Send the detach message */
472 usb_send_msg(curr
, USB_MSG_DETACH
);
474 musb_intr_set(s
, musb_irq_disconnect
, 1);
479 musb_session_update(s
, !!curr
, s
->session
);
482 static inline void musb_cb_tick0(void *opaque
)
484 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
486 ep
->delayed_cb
[0](&ep
->packey
[0], opaque
);
489 static inline void musb_cb_tick1(void *opaque
)
491 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
493 ep
->delayed_cb
[1](&ep
->packey
[1], opaque
);
496 #define musb_cb_tick (dir ? musb_cb_tick1 : musb_cb_tick0)
498 static inline void musb_schedule_cb(USBPacket
*packey
, void *opaque
, int dir
)
500 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
503 if (ep
->status
[dir
] == USB_RET_NAK
)
504 timeout
= ep
->timeout
[dir
];
505 else if (ep
->interrupt
[dir
])
508 return musb_cb_tick(opaque
);
510 if (!ep
->intv_timer
[dir
])
511 ep
->intv_timer
[dir
] = qemu_new_timer(vm_clock
, musb_cb_tick
, opaque
);
513 qemu_mod_timer(ep
->intv_timer
[dir
], qemu_get_clock(vm_clock
) +
514 muldiv64(timeout
, get_ticks_per_sec(), 8000));
517 static void musb_schedule0_cb(USBPacket
*packey
, void *opaque
)
519 return musb_schedule_cb(packey
, opaque
, 0);
522 static void musb_schedule1_cb(USBPacket
*packey
, void *opaque
)
524 return musb_schedule_cb(packey
, opaque
, 1);
527 static int musb_timeout(int ttype
, int speed
, int val
)
534 case USB_ENDPOINT_XFER_CONTROL
:
537 else if (speed
== USB_SPEED_HIGH
)
538 return 1 << (val
- 1);
540 return 8 << (val
- 1);
542 case USB_ENDPOINT_XFER_INT
:
543 if (speed
== USB_SPEED_HIGH
)
547 return 1 << (val
- 1);
551 case USB_ENDPOINT_XFER_BULK
:
552 case USB_ENDPOINT_XFER_ISOC
:
555 else if (speed
== USB_SPEED_HIGH
)
556 return 1 << (val
- 1);
558 return 8 << (val
- 1);
559 /* TODO: what with low-speed Bulk and Isochronous? */
562 hw_error("bad interval\n");
565 static inline void musb_packet(MUSBState
*s
, MUSBEndPoint
*ep
,
566 int epnum
, int pid
, int len
, USBCallback cb
, int dir
)
569 int idx
= epnum
&& dir
;
572 /* ep->type[0,1] contains:
573 * in bits 7:6 the speed (0 - invalid, 1 - high, 2 - full, 3 - slow)
574 * in bits 5:4 the transfer type (BULK / INT)
575 * in bits 3:0 the EP num
577 ttype
= epnum
? (ep
->type
[idx
] >> 4) & 3 : 0;
579 ep
->timeout
[dir
] = musb_timeout(ttype
,
580 ep
->type
[idx
] >> 6, ep
->interval
[idx
]);
581 ep
->interrupt
[dir
] = ttype
== USB_ENDPOINT_XFER_INT
;
582 ep
->delayed_cb
[dir
] = cb
;
583 cb
= dir
? musb_schedule1_cb
: musb_schedule0_cb
;
585 ep
->packey
[dir
].pid
= pid
;
586 /* A wild guess on the FADDR semantics... */
587 ep
->packey
[dir
].devaddr
= ep
->faddr
[idx
];
588 ep
->packey
[dir
].devep
= ep
->type
[idx
] & 0xf;
589 ep
->packey
[dir
].data
= (void *) ep
->buf
[idx
];
590 ep
->packey
[dir
].len
= len
;
591 ep
->packey
[dir
].complete_cb
= cb
;
592 ep
->packey
[dir
].complete_opaque
= ep
;
595 ret
= s
->port
.dev
->info
->handle_packet(s
->port
.dev
, &ep
->packey
[dir
]);
599 if (ret
== USB_RET_ASYNC
) {
600 ep
->status
[dir
] = len
;
604 ep
->status
[dir
] = ret
;
605 usb_packet_complete(&ep
->packey
[dir
]);
608 static void musb_tx_packet_complete(USBPacket
*packey
, void *opaque
)
610 /* Unfortunately we can't use packey->devep because that's the remote
611 * endpoint number and may be different than our local. */
612 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
613 int epnum
= ep
->epnum
;
614 MUSBState
*s
= ep
->musb
;
616 ep
->fifostart
[0] = 0;
619 if (ep
->status
[0] != USB_RET_NAK
) {
622 ep
->csr
[0] &= ~(MGC_M_TXCSR_FIFONOTEMPTY
| MGC_M_TXCSR_TXPKTRDY
);
624 ep
->csr
[0] &= ~MGC_M_CSR0_TXPKTRDY
;
629 /* Clear all of the error bits first */
631 ep
->csr
[0] &= ~(MGC_M_TXCSR_H_ERROR
| MGC_M_TXCSR_H_RXSTALL
|
632 MGC_M_TXCSR_H_NAKTIMEOUT
);
634 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
635 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
637 if (ep
->status
[0] == USB_RET_STALL
) {
638 /* Command not supported by target! */
642 ep
->csr
[0] |= MGC_M_TXCSR_H_RXSTALL
;
644 ep
->csr
[0] |= MGC_M_CSR0_H_RXSTALL
;
647 if (ep
->status
[0] == USB_RET_NAK
) {
650 /* NAK timeouts are only generated in Bulk transfers and
651 * Data-errors in Isochronous. */
652 if (ep
->interrupt
[0]) {
657 ep
->csr
[0] |= MGC_M_TXCSR_H_NAKTIMEOUT
;
659 ep
->csr
[0] |= MGC_M_CSR0_H_NAKTIMEOUT
;
662 if (ep
->status
[0] < 0) {
663 if (ep
->status
[0] == USB_RET_BABBLE
)
664 musb_intr_set(s
, musb_irq_rst_babble
, 1);
666 /* Pretend we've tried three times already and failed (in
667 * case of USB_TOKEN_SETUP). */
669 ep
->csr
[0] |= MGC_M_TXCSR_H_ERROR
;
671 ep
->csr
[0] |= MGC_M_CSR0_H_ERROR
;
673 musb_tx_intr_set(s
, epnum
, 1);
676 /* TODO: check len for over/underruns of an OUT packet? */
679 if (!epnum
&& ep
->packey
[0].pid
== USB_TOKEN_SETUP
)
680 s
->setup_len
= ep
->packey
[0].data
[6];
683 /* In DMA mode: if no error, assert DMA request for this EP,
684 * and skip the interrupt. */
685 musb_tx_intr_set(s
, epnum
, 1);
688 static void musb_rx_packet_complete(USBPacket
*packey
, void *opaque
)
690 /* Unfortunately we can't use packey->devep because that's the remote
691 * endpoint number and may be different than our local. */
692 MUSBEndPoint
*ep
= (MUSBEndPoint
*) opaque
;
693 int epnum
= ep
->epnum
;
694 MUSBState
*s
= ep
->musb
;
696 ep
->fifostart
[1] = 0;
700 if (ep
->status
[1] != USB_RET_NAK
) {
702 ep
->csr
[1] &= ~MGC_M_RXCSR_H_REQPKT
;
704 ep
->csr
[0] &= ~MGC_M_CSR0_H_REQPKT
;
709 /* Clear all of the imaginable error bits first */
710 ep
->csr
[1] &= ~(MGC_M_RXCSR_H_ERROR
| MGC_M_RXCSR_H_RXSTALL
|
711 MGC_M_RXCSR_DATAERROR
);
713 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
714 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
716 if (ep
->status
[1] == USB_RET_STALL
) {
720 ep
->csr
[1] |= MGC_M_RXCSR_H_RXSTALL
;
722 ep
->csr
[0] |= MGC_M_CSR0_H_RXSTALL
;
725 if (ep
->status
[1] == USB_RET_NAK
) {
728 /* NAK timeouts are only generated in Bulk transfers and
729 * Data-errors in Isochronous. */
730 if (ep
->interrupt
[1])
731 return musb_packet(s
, ep
, epnum
, USB_TOKEN_IN
,
732 packey
->len
, musb_rx_packet_complete
, 1);
734 ep
->csr
[1] |= MGC_M_RXCSR_DATAERROR
;
736 ep
->csr
[0] |= MGC_M_CSR0_H_NAKTIMEOUT
;
739 if (ep
->status
[1] < 0) {
740 if (ep
->status
[1] == USB_RET_BABBLE
) {
741 musb_intr_set(s
, musb_irq_rst_babble
, 1);
745 /* Pretend we've tried three times already and failed (in
746 * case of a control transfer). */
747 ep
->csr
[1] |= MGC_M_RXCSR_H_ERROR
;
749 ep
->csr
[0] |= MGC_M_CSR0_H_ERROR
;
751 musb_rx_intr_set(s
, epnum
, 1);
754 /* TODO: check len for over/underruns of an OUT packet? */
755 /* TODO: perhaps make use of e->ext_size[1] here. */
757 packey
->len
= ep
->status
[1];
759 if (!(ep
->csr
[1] & (MGC_M_RXCSR_H_RXSTALL
| MGC_M_RXCSR_DATAERROR
))) {
760 ep
->csr
[1] |= MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
;
762 ep
->csr
[0] |= MGC_M_CSR0_RXPKTRDY
;
764 ep
->rxcount
= packey
->len
; /* XXX: MIN(packey->len, ep->maxp[1]); */
765 /* In DMA mode: assert DMA request for this EP */
768 /* Only if DMA has not been asserted */
769 musb_rx_intr_set(s
, epnum
, 1);
772 static void musb_tx_rdy(MUSBState
*s
, int epnum
)
774 MUSBEndPoint
*ep
= s
->ep
+ epnum
;
776 int total
, valid
= 0;
778 ep
->fifostart
[0] += ep
->fifolen
[0];
781 /* XXX: how's the total size of the packet retrieved exactly in
782 * the generic case? */
783 total
= ep
->maxp
[0] & 0x3ff;
785 if (ep
->ext_size
[0]) {
786 total
= ep
->ext_size
[0];
791 /* If the packet is not fully ready yet, wait for a next segment. */
792 if (epnum
&& (ep
->fifostart
[0] << 2) < total
)
796 total
= ep
->fifostart
[0] << 2;
799 if (!epnum
&& (ep
->csr
[0] & MGC_M_CSR0_H_SETUPPKT
)) {
800 pid
= USB_TOKEN_SETUP
;
802 printf("%s: illegal SETUPPKT length of %i bytes\n",
803 __FUNCTION__
, total
);
804 /* Controller should retry SETUP packets three times on errors
805 * but it doesn't make sense for us to do that. */
808 return musb_packet(s
, ep
, epnum
, pid
,
809 total
, musb_tx_packet_complete
, 0);
812 static void musb_rx_req(MUSBState
*s
, int epnum
)
814 MUSBEndPoint
*ep
= s
->ep
+ epnum
;
817 /* If we already have a packet, which didn't fit into the
818 * 64 bytes of the FIFO, only move the FIFO start and return. (Obsolete) */
819 if (ep
->packey
[1].pid
== USB_TOKEN_IN
&& ep
->status
[1] >= 0 &&
820 (ep
->fifostart
[1] << 2) + ep
->rxcount
<
822 ep
->fifostart
[1] += ep
->rxcount
>> 2;
825 ep
->rxcount
= MIN(ep
->packey
[0].len
- (ep
->fifostart
[1] << 2),
828 ep
->csr
[1] &= ~MGC_M_RXCSR_H_REQPKT
;
830 ep
->csr
[0] &= ~MGC_M_CSR0_H_REQPKT
;
832 /* Clear all of the error bits first */
833 ep
->csr
[1] &= ~(MGC_M_RXCSR_H_ERROR
| MGC_M_RXCSR_H_RXSTALL
|
834 MGC_M_RXCSR_DATAERROR
);
836 ep
->csr
[0] &= ~(MGC_M_CSR0_H_ERROR
| MGC_M_CSR0_H_RXSTALL
|
837 MGC_M_CSR0_H_NAKTIMEOUT
| MGC_M_CSR0_H_NO_PING
);
839 ep
->csr
[1] |= MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
;
841 ep
->csr
[0] |= MGC_M_CSR0_RXPKTRDY
;
842 musb_rx_intr_set(s
, epnum
, 1);
846 /* The driver sets maxp[1] to 64 or less because it knows the hardware
847 * FIFO is this deep. Bigger packets get split in
848 * usb_generic_handle_packet but we can also do the splitting locally
849 * for performance. It turns out we can also have a bigger FIFO and
850 * ignore the limit set in ep->maxp[1]. The Linux MUSB driver deals
851 * OK with single packets of even 32KB and we avoid splitting, however
852 * usb_msd.c sometimes sends a packet bigger than what Linux expects
853 * (e.g. 8192 bytes instead of 4096) and we get an OVERRUN. Splitting
854 * hides this overrun from Linux. Up to 4096 everything is fine
855 * though. Currently this is disabled.
857 * XXX: mind ep->fifosize. */
858 total
= MIN(ep
->maxp
[1] & 0x3ff, sizeof(s
->buf
));
861 /* Why should *we* do that instead of Linux? */
863 if (ep
->packey
[0].devaddr
== 2)
864 total
= MIN(s
->setup_len
, 8);
866 total
= MIN(s
->setup_len
, 64);
867 s
->setup_len
-= total
;
871 return musb_packet(s
, ep
, epnum
, USB_TOKEN_IN
,
872 total
, musb_rx_packet_complete
, 1);
875 static void musb_ep_frame_cancel(MUSBEndPoint
*ep
, int dir
)
877 if (ep
->intv_timer
[dir
])
878 qemu_del_timer(ep
->intv_timer
[dir
]);
882 static uint8_t musb_busctl_readb(void *opaque
, int ep
, int addr
)
884 MUSBState
*s
= (MUSBState
*) opaque
;
887 /* For USB2.0 HS hubs only */
888 case MUSB_HDRC_TXHUBADDR
:
889 return s
->ep
[ep
].haddr
[0];
890 case MUSB_HDRC_TXHUBPORT
:
891 return s
->ep
[ep
].hport
[0];
892 case MUSB_HDRC_RXHUBADDR
:
893 return s
->ep
[ep
].haddr
[1];
894 case MUSB_HDRC_RXHUBPORT
:
895 return s
->ep
[ep
].hport
[1];
898 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
903 static void musb_busctl_writeb(void *opaque
, int ep
, int addr
, uint8_t value
)
905 MUSBState
*s
= (MUSBState
*) opaque
;
908 case MUSB_HDRC_TXHUBADDR
:
909 s
->ep
[ep
].haddr
[0] = value
;
911 case MUSB_HDRC_TXHUBPORT
:
912 s
->ep
[ep
].hport
[0] = value
;
914 case MUSB_HDRC_RXHUBADDR
:
915 s
->ep
[ep
].haddr
[1] = value
;
917 case MUSB_HDRC_RXHUBPORT
:
918 s
->ep
[ep
].hport
[1] = value
;
922 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
926 static uint16_t musb_busctl_readh(void *opaque
, int ep
, int addr
)
928 MUSBState
*s
= (MUSBState
*) opaque
;
931 case MUSB_HDRC_TXFUNCADDR
:
932 return s
->ep
[ep
].faddr
[0];
933 case MUSB_HDRC_RXFUNCADDR
:
934 return s
->ep
[ep
].faddr
[1];
937 return musb_busctl_readb(s
, ep
, addr
) |
938 (musb_busctl_readb(s
, ep
, addr
| 1) << 8);
942 static void musb_busctl_writeh(void *opaque
, int ep
, int addr
, uint16_t value
)
944 MUSBState
*s
= (MUSBState
*) opaque
;
947 case MUSB_HDRC_TXFUNCADDR
:
948 s
->ep
[ep
].faddr
[0] = value
;
950 case MUSB_HDRC_RXFUNCADDR
:
951 s
->ep
[ep
].faddr
[1] = value
;
955 musb_busctl_writeb(s
, ep
, addr
, value
& 0xff);
956 musb_busctl_writeb(s
, ep
, addr
| 1, value
>> 8);
960 /* Endpoint control */
961 static uint8_t musb_ep_readb(void *opaque
, int ep
, int addr
)
963 MUSBState
*s
= (MUSBState
*) opaque
;
966 case MUSB_HDRC_TXTYPE
:
967 return s
->ep
[ep
].type
[0];
968 case MUSB_HDRC_TXINTERVAL
:
969 return s
->ep
[ep
].interval
[0];
970 case MUSB_HDRC_RXTYPE
:
971 return s
->ep
[ep
].type
[1];
972 case MUSB_HDRC_RXINTERVAL
:
973 return s
->ep
[ep
].interval
[1];
974 case (MUSB_HDRC_FIFOSIZE
& ~1):
976 case MUSB_HDRC_FIFOSIZE
:
977 return ep
? s
->ep
[ep
].fifosize
: s
->ep
[ep
].config
;
980 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
985 static void musb_ep_writeb(void *opaque
, int ep
, int addr
, uint8_t value
)
987 MUSBState
*s
= (MUSBState
*) opaque
;
990 case MUSB_HDRC_TXTYPE
:
991 s
->ep
[ep
].type
[0] = value
;
993 case MUSB_HDRC_TXINTERVAL
:
994 s
->ep
[ep
].interval
[0] = value
;
995 musb_ep_frame_cancel(&s
->ep
[ep
], 0);
997 case MUSB_HDRC_RXTYPE
:
998 s
->ep
[ep
].type
[1] = value
;
1000 case MUSB_HDRC_RXINTERVAL
:
1001 s
->ep
[ep
].interval
[1] = value
;
1002 musb_ep_frame_cancel(&s
->ep
[ep
], 1);
1004 case (MUSB_HDRC_FIFOSIZE
& ~1):
1006 case MUSB_HDRC_FIFOSIZE
:
1007 printf("%s: somebody messes with fifosize (now %i bytes)\n",
1008 __FUNCTION__
, value
);
1009 s
->ep
[ep
].fifosize
= value
;
1013 printf("%s: unknown register at %02x\n", __FUNCTION__
, addr
);
1017 static uint16_t musb_ep_readh(void *opaque
, int ep
, int addr
)
1019 MUSBState
*s
= (MUSBState
*) opaque
;
1023 case MUSB_HDRC_TXMAXP
:
1024 return s
->ep
[ep
].maxp
[0];
1025 case MUSB_HDRC_TXCSR
:
1026 return s
->ep
[ep
].csr
[0];
1027 case MUSB_HDRC_RXMAXP
:
1028 return s
->ep
[ep
].maxp
[1];
1029 case MUSB_HDRC_RXCSR
:
1030 ret
= s
->ep
[ep
].csr
[1];
1032 /* TODO: This and other bits probably depend on
1033 * ep->csr[1] & MGC_M_RXCSR_AUTOCLEAR. */
1034 if (s
->ep
[ep
].csr
[1] & MGC_M_RXCSR_AUTOCLEAR
)
1035 s
->ep
[ep
].csr
[1] &= ~MGC_M_RXCSR_RXPKTRDY
;
1038 case MUSB_HDRC_RXCOUNT
:
1039 return s
->ep
[ep
].rxcount
;
1042 return musb_ep_readb(s
, ep
, addr
) |
1043 (musb_ep_readb(s
, ep
, addr
| 1) << 8);
1047 static void musb_ep_writeh(void *opaque
, int ep
, int addr
, uint16_t value
)
1049 MUSBState
*s
= (MUSBState
*) opaque
;
1052 case MUSB_HDRC_TXMAXP
:
1053 s
->ep
[ep
].maxp
[0] = value
;
1055 case MUSB_HDRC_TXCSR
:
1057 s
->ep
[ep
].csr
[0] &= value
& 0xa6;
1058 s
->ep
[ep
].csr
[0] |= value
& 0xff59;
1060 s
->ep
[ep
].csr
[0] &= value
& 0x85;
1061 s
->ep
[ep
].csr
[0] |= value
& 0xf7a;
1064 musb_ep_frame_cancel(&s
->ep
[ep
], 0);
1066 if ((ep
&& (value
& MGC_M_TXCSR_FLUSHFIFO
)) ||
1067 (!ep
&& (value
& MGC_M_CSR0_FLUSHFIFO
))) {
1068 s
->ep
[ep
].fifolen
[0] = 0;
1069 s
->ep
[ep
].fifostart
[0] = 0;
1072 ~(MGC_M_TXCSR_FIFONOTEMPTY
| MGC_M_TXCSR_TXPKTRDY
);
1075 ~(MGC_M_CSR0_TXPKTRDY
| MGC_M_CSR0_RXPKTRDY
);
1080 (value
& MGC_M_TXCSR_TXPKTRDY
) &&
1081 !(value
& MGC_M_TXCSR_H_NAKTIMEOUT
)) ||
1083 (value
& MGC_M_TXCSR_TXPKTRDY
)) ||
1087 (value
& MGC_M_CSR0_TXPKTRDY
) &&
1088 !(value
& MGC_M_CSR0_H_NAKTIMEOUT
)))
1090 (value
& MGC_M_CSR0_TXPKTRDY
)))
1094 (value
& MGC_M_CSR0_H_REQPKT
) &&
1096 !(value
& (MGC_M_CSR0_H_NAKTIMEOUT
|
1097 MGC_M_CSR0_RXPKTRDY
)))
1099 !(value
& MGC_M_CSR0_RXPKTRDY
))
1104 case MUSB_HDRC_RXMAXP
:
1105 s
->ep
[ep
].maxp
[1] = value
;
1107 case MUSB_HDRC_RXCSR
:
1108 /* (DMA mode only) */
1110 (value
& MGC_M_RXCSR_H_AUTOREQ
) &&
1111 !(value
& MGC_M_RXCSR_RXPKTRDY
) &&
1112 (s
->ep
[ep
].csr
[1] & MGC_M_RXCSR_RXPKTRDY
))
1113 value
|= MGC_M_RXCSR_H_REQPKT
;
1115 s
->ep
[ep
].csr
[1] &= 0x102 | (value
& 0x4d);
1116 s
->ep
[ep
].csr
[1] |= value
& 0xfeb0;
1118 musb_ep_frame_cancel(&s
->ep
[ep
], 1);
1120 if (value
& MGC_M_RXCSR_FLUSHFIFO
) {
1121 s
->ep
[ep
].fifolen
[1] = 0;
1122 s
->ep
[ep
].fifostart
[1] = 0;
1123 s
->ep
[ep
].csr
[1] &= ~(MGC_M_RXCSR_FIFOFULL
| MGC_M_RXCSR_RXPKTRDY
);
1124 /* If double buffering and we have two packets ready, flush
1125 * only the first one and set up the fifo at the second packet. */
1128 if ((value
& MGC_M_RXCSR_H_REQPKT
) && !(value
& MGC_M_RXCSR_DATAERROR
))
1130 if (value
& MGC_M_RXCSR_H_REQPKT
)
1134 case MUSB_HDRC_RXCOUNT
:
1135 s
->ep
[ep
].rxcount
= value
;
1139 musb_ep_writeb(s
, ep
, addr
, value
& 0xff);
1140 musb_ep_writeb(s
, ep
, addr
| 1, value
>> 8);
1144 /* Generic control */
1145 static uint32_t musb_readb(void *opaque
, target_phys_addr_t addr
)
1147 MUSBState
*s
= (MUSBState
*) opaque
;
1152 case MUSB_HDRC_FADDR
:
1154 case MUSB_HDRC_POWER
:
1156 case MUSB_HDRC_INTRUSB
:
1158 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1160 musb_intr_set(s
, i
, 0);
1162 case MUSB_HDRC_INTRUSBE
:
1164 case MUSB_HDRC_INDEX
:
1166 case MUSB_HDRC_TESTMODE
:
1169 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1170 return musb_ep_readb(s
, s
->idx
, addr
& 0xf);
1172 case MUSB_HDRC_DEVCTL
:
1175 case MUSB_HDRC_TXFIFOSZ
:
1176 case MUSB_HDRC_RXFIFOSZ
:
1177 case MUSB_HDRC_VCTRL
:
1181 case MUSB_HDRC_HWVERS
:
1182 return (1 << 10) | 400;
1184 case (MUSB_HDRC_VCTRL
| 1):
1185 case (MUSB_HDRC_HWVERS
| 1):
1186 case (MUSB_HDRC_DEVCTL
| 1):
1189 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1190 ep
= (addr
>> 3) & 0xf;
1191 return musb_busctl_readb(s
, ep
, addr
& 0x7);
1193 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1194 ep
= (addr
>> 4) & 0xf;
1195 return musb_ep_readb(s
, ep
, addr
& 0xf);
1198 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1203 static void musb_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1205 MUSBState
*s
= (MUSBState
*) opaque
;
1209 case MUSB_HDRC_FADDR
:
1210 s
->faddr
= value
& 0x7f;
1212 case MUSB_HDRC_POWER
:
1213 s
->power
= (value
& 0xef) | (s
->power
& 0x10);
1214 /* MGC_M_POWER_RESET is also read-only in Peripheral Mode */
1215 if ((value
& MGC_M_POWER_RESET
) && s
->port
.dev
) {
1216 usb_send_msg(s
->port
.dev
, USB_MSG_RESET
);
1217 /* Negotiate high-speed operation if MGC_M_POWER_HSENAB is set. */
1218 if ((value
& MGC_M_POWER_HSENAB
) &&
1219 s
->port
.dev
->speed
== USB_SPEED_HIGH
)
1220 s
->power
|= MGC_M_POWER_HSMODE
; /* Success */
1221 /* Restart frame counting. */
1223 if (value
& MGC_M_POWER_SUSPENDM
) {
1224 /* When all transfers finish, suspend and if MGC_M_POWER_ENSUSPEND
1225 * is set, also go into low power mode. Frame counting stops. */
1226 /* XXX: Cleared when the interrupt register is read */
1228 if (value
& MGC_M_POWER_RESUME
) {
1229 /* Wait 20ms and signal resuming on the bus. Frame counting
1233 case MUSB_HDRC_INTRUSB
:
1235 case MUSB_HDRC_INTRUSBE
:
1236 s
->mask
= value
& 0xff;
1238 case MUSB_HDRC_INDEX
:
1239 s
->idx
= value
& 0xf;
1241 case MUSB_HDRC_TESTMODE
:
1244 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1245 musb_ep_writeb(s
, s
->idx
, addr
& 0xf, value
);
1248 case MUSB_HDRC_DEVCTL
:
1249 s
->session
= !!(value
& MGC_M_DEVCTL_SESSION
);
1250 musb_session_update(s
,
1252 !!(s
->devctl
& MGC_M_DEVCTL_SESSION
));
1254 /* It seems this is the only R/W bit in this register? */
1255 s
->devctl
&= ~MGC_M_DEVCTL_SESSION
;
1256 s
->devctl
|= value
& MGC_M_DEVCTL_SESSION
;
1259 case MUSB_HDRC_TXFIFOSZ
:
1260 case MUSB_HDRC_RXFIFOSZ
:
1261 case MUSB_HDRC_VCTRL
:
1265 case (MUSB_HDRC_VCTRL
| 1):
1266 case (MUSB_HDRC_DEVCTL
| 1):
1269 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1270 ep
= (addr
>> 3) & 0xf;
1271 musb_busctl_writeb(s
, ep
, addr
& 0x7, value
);
1274 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1275 ep
= (addr
>> 4) & 0xf;
1276 musb_ep_writeb(s
, ep
, addr
& 0xf, value
);
1280 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1284 static uint32_t musb_readh(void *opaque
, target_phys_addr_t addr
)
1286 MUSBState
*s
= (MUSBState
*) opaque
;
1291 case MUSB_HDRC_INTRTX
:
1294 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1296 musb_tx_intr_set(s
, i
, 0);
1298 case MUSB_HDRC_INTRRX
:
1301 for (i
= 0; i
< sizeof(ret
) * 8; i
++)
1303 musb_rx_intr_set(s
, i
, 0);
1305 case MUSB_HDRC_INTRTXE
:
1307 case MUSB_HDRC_INTRRXE
:
1310 case MUSB_HDRC_FRAME
:
1313 case MUSB_HDRC_TXFIFOADDR
:
1314 return s
->ep
[s
->idx
].fifoaddr
[0];
1315 case MUSB_HDRC_RXFIFOADDR
:
1316 return s
->ep
[s
->idx
].fifoaddr
[1];
1318 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1319 return musb_ep_readh(s
, s
->idx
, addr
& 0xf);
1321 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1322 ep
= (addr
>> 3) & 0xf;
1323 return musb_busctl_readh(s
, ep
, addr
& 0x7);
1325 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1326 ep
= (addr
>> 4) & 0xf;
1327 return musb_ep_readh(s
, ep
, addr
& 0xf);
1330 return musb_readb(s
, addr
) | (musb_readb(s
, addr
| 1) << 8);
1334 static void musb_writeh(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1336 MUSBState
*s
= (MUSBState
*) opaque
;
1340 case MUSB_HDRC_INTRTXE
:
1342 /* XXX: the masks seem to apply on the raising edge like with
1343 * edge-triggered interrupts, thus no need to update. I may be
1346 case MUSB_HDRC_INTRRXE
:
1350 case MUSB_HDRC_FRAME
:
1353 case MUSB_HDRC_TXFIFOADDR
:
1354 s
->ep
[s
->idx
].fifoaddr
[0] = value
;
1355 s
->ep
[s
->idx
].buf
[0] =
1356 s
->buf
+ ((value
<< 1) & (sizeof(s
->buf
) / 4 - 1));
1358 case MUSB_HDRC_RXFIFOADDR
:
1359 s
->ep
[s
->idx
].fifoaddr
[1] = value
;
1360 s
->ep
[s
->idx
].buf
[1] =
1361 s
->buf
+ ((value
<< 1) & (sizeof(s
->buf
) / 4 - 1));
1364 case MUSB_HDRC_EP_IDX
... (MUSB_HDRC_EP_IDX
+ 0xf):
1365 musb_ep_writeh(s
, s
->idx
, addr
& 0xf, value
);
1368 case MUSB_HDRC_BUSCTL
... (MUSB_HDRC_BUSCTL
+ 0x7f):
1369 ep
= (addr
>> 3) & 0xf;
1370 musb_busctl_writeh(s
, ep
, addr
& 0x7, value
);
1373 case MUSB_HDRC_EP
... (MUSB_HDRC_EP
+ 0xff):
1374 ep
= (addr
>> 4) & 0xf;
1375 musb_ep_writeh(s
, ep
, addr
& 0xf, value
);
1379 musb_writeb(s
, addr
, value
& 0xff);
1380 musb_writeb(s
, addr
| 1, value
>> 8);
1384 static uint32_t musb_readw(void *opaque
, target_phys_addr_t addr
)
1386 MUSBState
*s
= (MUSBState
*) opaque
;
1391 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1392 epnum
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1395 if (ep
->fifolen
[1] >= 16) {
1396 /* We have a FIFO underrun */
1397 printf("%s: EP%i FIFO is now empty, stop reading\n",
1398 __FUNCTION__
, epnum
);
1401 /* In DMA mode clear RXPKTRDY and set REQPKT automatically
1402 * (if AUTOREQ is set) */
1404 ep
->csr
[1] &= ~MGC_M_RXCSR_FIFOFULL
;
1405 return ep
->buf
[1][ep
->fifostart
[1] + ep
->fifolen
[1] ++];
1408 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1413 static void musb_writew(void *opaque
, target_phys_addr_t addr
, uint32_t value
)
1415 MUSBState
*s
= (MUSBState
*) opaque
;
1420 case MUSB_HDRC_FIFO
... (MUSB_HDRC_FIFO
+ 0x3f):
1421 epnum
= ((addr
- MUSB_HDRC_FIFO
) >> 2) & 0xf;
1424 if (ep
->fifolen
[0] >= 16) {
1425 /* We have a FIFO overrun */
1426 printf("%s: EP%i FIFO exceeded 64 bytes, stop feeding data\n",
1427 __FUNCTION__
, epnum
);
1431 ep
->buf
[0][ep
->fifostart
[0] + ep
->fifolen
[0] ++] = value
;
1433 ep
->csr
[0] |= MGC_M_TXCSR_FIFONOTEMPTY
;
1437 printf("%s: unknown register at %02x\n", __FUNCTION__
, (int) addr
);
1441 CPUReadMemoryFunc
* const musb_read
[] = {
1447 CPUWriteMemoryFunc
* const musb_write
[] = {