2 * ARM implementation of KVM hooks
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
12 #include <sys/types.h>
13 #include <sys/ioctl.h>
16 #include <linux/kvm.h>
18 #include "qemu-common.h"
19 #include "qemu/timer.h"
20 #include "sysemu/sysemu.h"
21 #include "sysemu/kvm.h"
24 #include "hw/arm/arm.h"
26 /* Check that cpu.h's idea of coprocessor fields matches KVM's */
27 #if (CP_REG_SIZE_SHIFT != KVM_REG_SIZE_SHIFT) || \
28 (CP_REG_SIZE_MASK != KVM_REG_SIZE_MASK) || \
29 (CP_REG_SIZE_U32 != KVM_REG_SIZE_U32) || \
30 (CP_REG_SIZE_U64 != KVM_REG_SIZE_U64) || \
31 (CP_REG_ARM != KVM_REG_ARM)
32 #error mismatch between cpu.h and KVM header definitions
35 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
39 int kvm_arch_init(KVMState
*s
)
41 /* For ARM interrupt delivery is always asynchronous,
42 * whether we are using an in-kernel VGIC or not.
44 kvm_async_interrupts_allowed
= true;
48 unsigned long kvm_arch_vcpu_id(CPUState
*cpu
)
50 return cpu
->cpu_index
;
53 static bool reg_syncs_via_tuple_list(uint64_t regidx
)
55 /* Return true if the regidx is a register we should synchronize
56 * via the cpreg_tuples array (ie is not a core reg we sync by
57 * hand in kvm_arch_get/put_registers())
59 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
60 case KVM_REG_ARM_CORE
:
68 static int compare_u64(const void *a
, const void *b
)
70 return *(uint64_t *)a
- *(uint64_t *)b
;
73 int kvm_arch_init_vcpu(CPUState
*cs
)
75 struct kvm_vcpu_init init
;
79 struct kvm_reg_list rl
;
80 struct kvm_reg_list
*rlp
;
81 ARMCPU
*cpu
= ARM_CPU(cs
);
83 init
.target
= KVM_ARM_TARGET_CORTEX_A15
;
84 memset(init
.features
, 0, sizeof(init
.features
));
85 ret
= kvm_vcpu_ioctl(cs
, KVM_ARM_VCPU_INIT
, &init
);
89 /* Query the kernel to make sure it supports 32 VFP
90 * registers: QEMU's "cortex-a15" CPU is always a
91 * VFP-D32 core. The simplest way to do this is just
92 * to attempt to read register d31.
94 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
95 r
.addr
= (uintptr_t)(&v
);
96 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
101 /* Populate the cpreg list based on the kernel's idea
102 * of what registers exist (and throw away the TCG-created list).
105 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, &rl
);
109 rlp
= g_malloc(sizeof(struct kvm_reg_list
) + rl
.n
* sizeof(uint64_t));
111 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_REG_LIST
, rlp
);
115 /* Sort the list we get back from the kernel, since cpreg_tuples
116 * must be in strictly ascending order.
118 qsort(&rlp
->reg
, rlp
->n
, sizeof(rlp
->reg
[0]), compare_u64
);
120 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
121 if (!reg_syncs_via_tuple_list(rlp
->reg
[i
])) {
124 switch (rlp
->reg
[i
] & KVM_REG_SIZE_MASK
) {
125 case KVM_REG_SIZE_U32
:
126 case KVM_REG_SIZE_U64
:
129 fprintf(stderr
, "Can't handle size of register in kernel list\n");
137 cpu
->cpreg_indexes
= g_renew(uint64_t, cpu
->cpreg_indexes
, arraylen
);
138 cpu
->cpreg_values
= g_renew(uint64_t, cpu
->cpreg_values
, arraylen
);
139 cpu
->cpreg_vmstate_indexes
= g_renew(uint64_t, cpu
->cpreg_vmstate_indexes
,
141 cpu
->cpreg_vmstate_values
= g_renew(uint64_t, cpu
->cpreg_vmstate_values
,
143 cpu
->cpreg_array_len
= arraylen
;
144 cpu
->cpreg_vmstate_array_len
= arraylen
;
146 for (i
= 0, arraylen
= 0; i
< rlp
->n
; i
++) {
147 uint64_t regidx
= rlp
->reg
[i
];
148 if (!reg_syncs_via_tuple_list(regidx
)) {
151 cpu
->cpreg_indexes
[arraylen
] = regidx
;
154 assert(cpu
->cpreg_array_len
== arraylen
);
156 if (!write_kvmstate_to_list(cpu
)) {
157 /* Shouldn't happen unless kernel is inconsistent about
158 * what registers exist.
160 fprintf(stderr
, "Initial read of kernel register state failed\n");
165 /* Save a copy of the initial register values so that we can
166 * feed it back to the kernel on VCPU reset.
168 cpu
->cpreg_reset_values
= g_memdup(cpu
->cpreg_values
,
169 cpu
->cpreg_array_len
*
170 sizeof(cpu
->cpreg_values
[0]));
177 /* We track all the KVM devices which need their memory addresses
178 * passing to the kernel in a list of these structures.
179 * When board init is complete we run through the list and
180 * tell the kernel the base addresses of the memory regions.
181 * We use a MemoryListener to track mapping and unmapping of
182 * the regions during board creation, so the board models don't
183 * need to do anything special for the KVM case.
185 typedef struct KVMDevice
{
186 struct kvm_arm_device_addr kda
;
188 QSLIST_ENTRY(KVMDevice
) entries
;
191 static QSLIST_HEAD(kvm_devices_head
, KVMDevice
) kvm_devices_head
;
193 static void kvm_arm_devlistener_add(MemoryListener
*listener
,
194 MemoryRegionSection
*section
)
198 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
199 if (section
->mr
== kd
->mr
) {
200 kd
->kda
.addr
= section
->offset_within_address_space
;
205 static void kvm_arm_devlistener_del(MemoryListener
*listener
,
206 MemoryRegionSection
*section
)
210 QSLIST_FOREACH(kd
, &kvm_devices_head
, entries
) {
211 if (section
->mr
== kd
->mr
) {
217 static MemoryListener devlistener
= {
218 .region_add
= kvm_arm_devlistener_add
,
219 .region_del
= kvm_arm_devlistener_del
,
222 static void kvm_arm_machine_init_done(Notifier
*notifier
, void *data
)
226 memory_listener_unregister(&devlistener
);
227 QSLIST_FOREACH_SAFE(kd
, &kvm_devices_head
, entries
, tkd
) {
228 if (kd
->kda
.addr
!= -1) {
229 if (kvm_vm_ioctl(kvm_state
, KVM_ARM_SET_DEVICE_ADDR
,
231 fprintf(stderr
, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
236 memory_region_unref(kd
->mr
);
241 static Notifier notify
= {
242 .notify
= kvm_arm_machine_init_done
,
245 void kvm_arm_register_device(MemoryRegion
*mr
, uint64_t devid
)
249 if (!kvm_irqchip_in_kernel()) {
253 if (QSLIST_EMPTY(&kvm_devices_head
)) {
254 memory_listener_register(&devlistener
, NULL
);
255 qemu_add_machine_init_done_notifier(¬ify
);
257 kd
= g_new0(KVMDevice
, 1);
261 QSLIST_INSERT_HEAD(&kvm_devices_head
, kd
, entries
);
262 memory_region_ref(kd
->mr
);
265 bool write_kvmstate_to_list(ARMCPU
*cpu
)
267 CPUState
*cs
= CPU(cpu
);
271 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
272 struct kvm_one_reg r
;
273 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
279 switch (regidx
& KVM_REG_SIZE_MASK
) {
280 case KVM_REG_SIZE_U32
:
281 r
.addr
= (uintptr_t)&v32
;
282 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
284 cpu
->cpreg_values
[i
] = v32
;
287 case KVM_REG_SIZE_U64
:
288 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
289 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
301 bool write_list_to_kvmstate(ARMCPU
*cpu
)
303 CPUState
*cs
= CPU(cpu
);
307 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
308 struct kvm_one_reg r
;
309 uint64_t regidx
= cpu
->cpreg_indexes
[i
];
314 switch (regidx
& KVM_REG_SIZE_MASK
) {
315 case KVM_REG_SIZE_U32
:
316 v32
= cpu
->cpreg_values
[i
];
317 r
.addr
= (uintptr_t)&v32
;
319 case KVM_REG_SIZE_U64
:
320 r
.addr
= (uintptr_t)(cpu
->cpreg_values
+ i
);
325 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
327 /* We might fail for "unknown register" and also for
328 * "you tried to set a register which is constant with
329 * a different value from what it actually contains".
342 #define COREREG(KERNELNAME, QEMUFIELD) \
344 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
345 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
346 offsetof(CPUARMState, QEMUFIELD) \
349 #define VFPSYSREG(R) \
351 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
352 KVM_REG_ARM_VFP_##R, \
353 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
356 static const Reg regs
[] = {
357 /* R0_usr .. R14_usr */
358 COREREG(usr_regs
.uregs
[0], regs
[0]),
359 COREREG(usr_regs
.uregs
[1], regs
[1]),
360 COREREG(usr_regs
.uregs
[2], regs
[2]),
361 COREREG(usr_regs
.uregs
[3], regs
[3]),
362 COREREG(usr_regs
.uregs
[4], regs
[4]),
363 COREREG(usr_regs
.uregs
[5], regs
[5]),
364 COREREG(usr_regs
.uregs
[6], regs
[6]),
365 COREREG(usr_regs
.uregs
[7], regs
[7]),
366 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
367 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
368 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
369 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
370 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
371 COREREG(usr_regs
.uregs
[13], banked_r13
[0]),
372 COREREG(usr_regs
.uregs
[14], banked_r14
[0]),
373 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
374 COREREG(svc_regs
[0], banked_r13
[1]),
375 COREREG(svc_regs
[1], banked_r14
[1]),
376 COREREG(svc_regs
[2], banked_spsr
[1]),
377 COREREG(abt_regs
[0], banked_r13
[2]),
378 COREREG(abt_regs
[1], banked_r14
[2]),
379 COREREG(abt_regs
[2], banked_spsr
[2]),
380 COREREG(und_regs
[0], banked_r13
[3]),
381 COREREG(und_regs
[1], banked_r14
[3]),
382 COREREG(und_regs
[2], banked_spsr
[3]),
383 COREREG(irq_regs
[0], banked_r13
[4]),
384 COREREG(irq_regs
[1], banked_r14
[4]),
385 COREREG(irq_regs
[2], banked_spsr
[4]),
386 /* R8_fiq .. R14_fiq and SPSR_fiq */
387 COREREG(fiq_regs
[0], fiq_regs
[0]),
388 COREREG(fiq_regs
[1], fiq_regs
[1]),
389 COREREG(fiq_regs
[2], fiq_regs
[2]),
390 COREREG(fiq_regs
[3], fiq_regs
[3]),
391 COREREG(fiq_regs
[4], fiq_regs
[4]),
392 COREREG(fiq_regs
[5], banked_r13
[5]),
393 COREREG(fiq_regs
[6], banked_r14
[5]),
394 COREREG(fiq_regs
[7], banked_spsr
[5]),
396 COREREG(usr_regs
.uregs
[15], regs
[15]),
397 /* VFP system registers */
406 int kvm_arch_put_registers(CPUState
*cs
, int level
)
408 ARMCPU
*cpu
= ARM_CPU(cs
);
409 CPUARMState
*env
= &cpu
->env
;
410 struct kvm_one_reg r
;
413 uint32_t cpsr
, fpscr
;
415 /* Make sure the banked regs are properly set */
416 mode
= env
->uncached_cpsr
& CPSR_M
;
417 bn
= bank_number(mode
);
418 if (mode
== ARM_CPU_MODE_FIQ
) {
419 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
421 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
423 env
->banked_r13
[bn
] = env
->regs
[13];
424 env
->banked_r14
[bn
] = env
->regs
[14];
425 env
->banked_spsr
[bn
] = env
->spsr
;
427 /* Now we can safely copy stuff down to the kernel */
428 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
430 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
431 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
437 /* Special cases which aren't a single CPUARMState field */
438 cpsr
= cpsr_read(env
);
439 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
440 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
441 r
.addr
= (uintptr_t)(&cpsr
);
442 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
448 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
449 for (i
= 0; i
< 32; i
++) {
450 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
451 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
458 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
459 KVM_REG_ARM_VFP_FPSCR
;
460 fpscr
= vfp_get_fpscr(env
);
461 r
.addr
= (uintptr_t)&fpscr
;
462 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
467 /* Note that we do not call write_cpustate_to_list()
468 * here, so we are only writing the tuple list back to
469 * KVM. This is safe because nothing can change the
470 * CPUARMState cp15 fields (in particular gdb accesses cannot)
471 * and so there are no changes to sync. In fact syncing would
472 * be wrong at this point: for a constant register where TCG and
473 * KVM disagree about its value, the preceding write_list_to_cpustate()
474 * would not have had any effect on the CPUARMState value (since the
475 * register is read-only), and a write_cpustate_to_list() here would
476 * then try to write the TCG value back into KVM -- this would either
477 * fail or incorrectly change the value the guest sees.
479 * If we ever want to allow the user to modify cp15 registers via
480 * the gdb stub, we would need to be more clever here (for instance
481 * tracking the set of registers kvm_arch_get_registers() successfully
482 * managed to update the CPUARMState with, and only allowing those
483 * to be written back up into the kernel).
485 if (!write_list_to_kvmstate(cpu
)) {
492 int kvm_arch_get_registers(CPUState
*cs
)
494 ARMCPU
*cpu
= ARM_CPU(cs
);
495 CPUARMState
*env
= &cpu
->env
;
496 struct kvm_one_reg r
;
499 uint32_t cpsr
, fpscr
;
501 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
503 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
504 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
510 /* Special cases which aren't a single CPUARMState field */
511 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
512 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
513 r
.addr
= (uintptr_t)(&cpsr
);
514 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
518 cpsr_write(env
, cpsr
, 0xffffffff);
520 /* Make sure the current mode regs are properly set */
521 mode
= env
->uncached_cpsr
& CPSR_M
;
522 bn
= bank_number(mode
);
523 if (mode
== ARM_CPU_MODE_FIQ
) {
524 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
526 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
528 env
->regs
[13] = env
->banked_r13
[bn
];
529 env
->regs
[14] = env
->banked_r14
[bn
];
530 env
->spsr
= env
->banked_spsr
[bn
];
533 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
534 for (i
= 0; i
< 32; i
++) {
535 r
.addr
= (uintptr_t)(&env
->vfp
.regs
[i
]);
536 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
543 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
544 KVM_REG_ARM_VFP_FPSCR
;
545 r
.addr
= (uintptr_t)&fpscr
;
546 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
550 vfp_set_fpscr(env
, fpscr
);
552 if (!write_kvmstate_to_list(cpu
)) {
555 /* Note that it's OK to have registers which aren't in CPUState,
556 * so we can ignore a failure return here.
558 write_list_to_cpustate(cpu
);
563 void kvm_arch_pre_run(CPUState
*cs
, struct kvm_run
*run
)
567 void kvm_arch_post_run(CPUState
*cs
, struct kvm_run
*run
)
571 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
576 void kvm_arch_reset_vcpu(CPUState
*cs
)
578 /* Feed the kernel back its initial register state */
579 ARMCPU
*cpu
= ARM_CPU(cs
);
581 memmove(cpu
->cpreg_values
, cpu
->cpreg_reset_values
,
582 cpu
->cpreg_array_len
* sizeof(cpu
->cpreg_values
[0]));
584 if (!write_list_to_kvmstate(cpu
)) {
589 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
594 int kvm_arch_process_async_events(CPUState
*cs
)
599 int kvm_arch_on_sigbus_vcpu(CPUState
*cs
, int code
, void *addr
)
604 int kvm_arch_on_sigbus(int code
, void *addr
)
609 void kvm_arch_update_guest_debug(CPUState
*cs
, struct kvm_guest_debug
*dbg
)
611 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
614 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
,
615 struct kvm_sw_breakpoint
*bp
)
617 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
621 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
622 target_ulong len
, int type
)
624 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
628 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
629 target_ulong len
, int type
)
631 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
635 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
,
636 struct kvm_sw_breakpoint
*bp
)
638 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
642 void kvm_arch_remove_all_hw_breakpoints(void)
644 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
647 void kvm_arch_init_irq_routing(KVMState
*s
)