hw/bonito.c: convert to PCIDeviceInfo to initialize ids
[qemu.git] / block / qed.h
blob1d1421fee1230e3c7f0262939cd878cae779cac6
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #ifndef BLOCK_QED_H
16 #define BLOCK_QED_H
18 #include "block_int.h"
20 /* The layout of a QED file is as follows:
22 * +--------+----------+----------+----------+-----+
23 * | header | L1 table | cluster0 | cluster1 | ... |
24 * +--------+----------+----------+----------+-----+
26 * There is a 2-level pagetable for cluster allocation:
28 * +----------+
29 * | L1 table |
30 * +----------+
31 * ,------' | '------.
32 * +----------+ | +----------+
33 * | L2 table | ... | L2 table |
34 * +----------+ +----------+
35 * ,------' | '------.
36 * +----------+ | +----------+
37 * | Data | ... | Data |
38 * +----------+ +----------+
40 * The L1 table is fixed size and always present. L2 tables are allocated on
41 * demand. The L1 table size determines the maximum possible image size; it
42 * can be influenced using the cluster_size and table_size values.
44 * All fields are little-endian on disk.
47 enum {
48 QED_MAGIC = 'Q' | 'E' << 8 | 'D' << 16 | '\0' << 24,
50 /* The image supports a backing file */
51 QED_F_BACKING_FILE = 0x01,
53 /* The image needs a consistency check before use */
54 QED_F_NEED_CHECK = 0x02,
56 /* The backing file format must not be probed, treat as raw image */
57 QED_F_BACKING_FORMAT_NO_PROBE = 0x04,
59 /* Feature bits must be used when the on-disk format changes */
60 QED_FEATURE_MASK = QED_F_BACKING_FILE | /* supported feature bits */
61 QED_F_NEED_CHECK |
62 QED_F_BACKING_FORMAT_NO_PROBE,
63 QED_COMPAT_FEATURE_MASK = 0, /* supported compat feature bits */
64 QED_AUTOCLEAR_FEATURE_MASK = 0, /* supported autoclear feature bits */
66 /* Data is stored in groups of sectors called clusters. Cluster size must
67 * be large to avoid keeping too much metadata. I/O requests that have
68 * sub-cluster size will require read-modify-write.
70 QED_MIN_CLUSTER_SIZE = 4 * 1024, /* in bytes */
71 QED_MAX_CLUSTER_SIZE = 64 * 1024 * 1024,
72 QED_DEFAULT_CLUSTER_SIZE = 64 * 1024,
74 /* Allocated clusters are tracked using a 2-level pagetable. Table size is
75 * a multiple of clusters so large maximum image sizes can be supported
76 * without jacking up the cluster size too much.
78 QED_MIN_TABLE_SIZE = 1, /* in clusters */
79 QED_MAX_TABLE_SIZE = 16,
80 QED_DEFAULT_TABLE_SIZE = 4,
83 typedef struct {
84 uint32_t magic; /* QED\0 */
86 uint32_t cluster_size; /* in bytes */
87 uint32_t table_size; /* for L1 and L2 tables, in clusters */
88 uint32_t header_size; /* in clusters */
90 uint64_t features; /* format feature bits */
91 uint64_t compat_features; /* compatible feature bits */
92 uint64_t autoclear_features; /* self-resetting feature bits */
94 uint64_t l1_table_offset; /* in bytes */
95 uint64_t image_size; /* total logical image size, in bytes */
97 /* if (features & QED_F_BACKING_FILE) */
98 uint32_t backing_filename_offset; /* in bytes from start of header */
99 uint32_t backing_filename_size; /* in bytes */
100 } QEDHeader;
102 typedef struct {
103 uint64_t offsets[0]; /* in bytes */
104 } QEDTable;
106 /* The L2 cache is a simple write-through cache for L2 structures */
107 typedef struct CachedL2Table {
108 QEDTable *table;
109 uint64_t offset; /* offset=0 indicates an invalidate entry */
110 QTAILQ_ENTRY(CachedL2Table) node;
111 int ref;
112 } CachedL2Table;
114 typedef struct {
115 QTAILQ_HEAD(, CachedL2Table) entries;
116 unsigned int n_entries;
117 } L2TableCache;
119 typedef struct QEDRequest {
120 CachedL2Table *l2_table;
121 } QEDRequest;
123 typedef struct QEDAIOCB {
124 BlockDriverAIOCB common;
125 QEMUBH *bh;
126 int bh_ret; /* final return status for completion bh */
127 QSIMPLEQ_ENTRY(QEDAIOCB) next; /* next request */
128 bool is_write; /* false - read, true - write */
129 bool *finished; /* signal for cancel completion */
130 uint64_t end_pos; /* request end on block device, in bytes */
132 /* User scatter-gather list */
133 QEMUIOVector *qiov;
134 size_t qiov_offset; /* byte count already processed */
136 /* Current cluster scatter-gather list */
137 QEMUIOVector cur_qiov;
138 uint64_t cur_pos; /* position on block device, in bytes */
139 uint64_t cur_cluster; /* cluster offset in image file */
140 unsigned int cur_nclusters; /* number of clusters being accessed */
141 int find_cluster_ret; /* used for L1/L2 update */
143 QEDRequest request;
144 } QEDAIOCB;
146 typedef struct {
147 BlockDriverState *bs; /* device */
148 uint64_t file_size; /* length of image file, in bytes */
150 QEDHeader header; /* always cpu-endian */
151 QEDTable *l1_table;
152 L2TableCache l2_cache; /* l2 table cache */
153 uint32_t table_nelems;
154 uint32_t l1_shift;
155 uint32_t l2_shift;
156 uint32_t l2_mask;
158 /* Allocating write request queue */
159 QSIMPLEQ_HEAD(, QEDAIOCB) allocating_write_reqs;
160 } BDRVQEDState;
162 enum {
163 QED_CLUSTER_FOUND, /* cluster found */
164 QED_CLUSTER_ZERO, /* zero cluster found */
165 QED_CLUSTER_L2, /* cluster missing in L2 */
166 QED_CLUSTER_L1, /* cluster missing in L1 */
170 * qed_find_cluster() completion callback
172 * @opaque: User data for completion callback
173 * @ret: QED_CLUSTER_FOUND Success
174 * QED_CLUSTER_L2 Data cluster unallocated in L2
175 * QED_CLUSTER_L1 L2 unallocated in L1
176 * -errno POSIX error occurred
177 * @offset: Data cluster offset
178 * @len: Contiguous bytes starting from cluster offset
180 * This function is invoked when qed_find_cluster() completes.
182 * On success ret is QED_CLUSTER_FOUND and offset/len are a contiguous range
183 * in the image file.
185 * On failure ret is QED_CLUSTER_L2 or QED_CLUSTER_L1 for missing L2 or L1
186 * table offset, respectively. len is number of contiguous unallocated bytes.
188 typedef void QEDFindClusterFunc(void *opaque, int ret, uint64_t offset, size_t len);
191 * Generic callback for chaining async callbacks
193 typedef struct {
194 BlockDriverCompletionFunc *cb;
195 void *opaque;
196 } GenericCB;
198 void *gencb_alloc(size_t len, BlockDriverCompletionFunc *cb, void *opaque);
199 void gencb_complete(void *opaque, int ret);
202 * L2 cache functions
204 void qed_init_l2_cache(L2TableCache *l2_cache);
205 void qed_free_l2_cache(L2TableCache *l2_cache);
206 CachedL2Table *qed_alloc_l2_cache_entry(L2TableCache *l2_cache);
207 void qed_unref_l2_cache_entry(CachedL2Table *entry);
208 CachedL2Table *qed_find_l2_cache_entry(L2TableCache *l2_cache, uint64_t offset);
209 void qed_commit_l2_cache_entry(L2TableCache *l2_cache, CachedL2Table *l2_table);
212 * Table I/O functions
214 int qed_read_l1_table_sync(BDRVQEDState *s);
215 void qed_write_l1_table(BDRVQEDState *s, unsigned int index, unsigned int n,
216 BlockDriverCompletionFunc *cb, void *opaque);
217 int qed_write_l1_table_sync(BDRVQEDState *s, unsigned int index,
218 unsigned int n);
219 int qed_read_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
220 uint64_t offset);
221 void qed_read_l2_table(BDRVQEDState *s, QEDRequest *request, uint64_t offset,
222 BlockDriverCompletionFunc *cb, void *opaque);
223 void qed_write_l2_table(BDRVQEDState *s, QEDRequest *request,
224 unsigned int index, unsigned int n, bool flush,
225 BlockDriverCompletionFunc *cb, void *opaque);
226 int qed_write_l2_table_sync(BDRVQEDState *s, QEDRequest *request,
227 unsigned int index, unsigned int n, bool flush);
230 * Cluster functions
232 void qed_find_cluster(BDRVQEDState *s, QEDRequest *request, uint64_t pos,
233 size_t len, QEDFindClusterFunc *cb, void *opaque);
236 * Consistency check
238 int qed_check(BDRVQEDState *s, BdrvCheckResult *result, bool fix);
240 QEDTable *qed_alloc_table(BDRVQEDState *s);
243 * Round down to the start of a cluster
245 static inline uint64_t qed_start_of_cluster(BDRVQEDState *s, uint64_t offset)
247 return offset & ~(uint64_t)(s->header.cluster_size - 1);
250 static inline uint64_t qed_offset_into_cluster(BDRVQEDState *s, uint64_t offset)
252 return offset & (s->header.cluster_size - 1);
255 static inline uint64_t qed_bytes_to_clusters(BDRVQEDState *s, uint64_t bytes)
257 return qed_start_of_cluster(s, bytes + (s->header.cluster_size - 1)) /
258 (s->header.cluster_size - 1);
261 static inline unsigned int qed_l1_index(BDRVQEDState *s, uint64_t pos)
263 return pos >> s->l1_shift;
266 static inline unsigned int qed_l2_index(BDRVQEDState *s, uint64_t pos)
268 return (pos >> s->l2_shift) & s->l2_mask;
272 * Test if a cluster offset is valid
274 static inline bool qed_check_cluster_offset(BDRVQEDState *s, uint64_t offset)
276 uint64_t header_size = (uint64_t)s->header.header_size *
277 s->header.cluster_size;
279 if (offset & (s->header.cluster_size - 1)) {
280 return false;
282 return offset >= header_size && offset < s->file_size;
286 * Test if a table offset is valid
288 static inline bool qed_check_table_offset(BDRVQEDState *s, uint64_t offset)
290 uint64_t end_offset = offset + (s->header.table_size - 1) *
291 s->header.cluster_size;
293 /* Overflow check */
294 if (end_offset <= offset) {
295 return false;
298 return qed_check_cluster_offset(s, offset) &&
299 qed_check_cluster_offset(s, end_offset);
302 static inline bool qed_offset_is_cluster_aligned(BDRVQEDState *s,
303 uint64_t offset)
305 if (qed_offset_into_cluster(s, offset)) {
306 return false;
308 return true;
311 static inline bool qed_offset_is_unalloc_cluster(uint64_t offset)
313 if (offset == 0) {
314 return true;
316 return false;
319 static inline bool qed_offset_is_zero_cluster(uint64_t offset)
321 if (offset == 1) {
322 return true;
324 return false;
327 #endif /* BLOCK_QED_H */