target-i386/hyperv: Hyper-V SynIC SINT routing and vcpu exit
[qemu.git] / target-i386 / kvm.c
blobd1c2c819da456a9101d6587d2a5cbd281739b51b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm_int.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "hyperv.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
39 #include "exec/ioport.h"
40 #include "standard-headers/asm-x86/hyperv.h"
41 #include "hw/pci/pci.h"
42 #include "migration/migration.h"
43 #include "exec/memattrs.h"
45 //#define DEBUG_KVM
47 #ifdef DEBUG_KVM
48 #define DPRINTF(fmt, ...) \
49 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
50 #else
51 #define DPRINTF(fmt, ...) \
52 do { } while (0)
53 #endif
55 #define MSR_KVM_WALL_CLOCK 0x11
56 #define MSR_KVM_SYSTEM_TIME 0x12
58 #ifndef BUS_MCEERR_AR
59 #define BUS_MCEERR_AR 4
60 #endif
61 #ifndef BUS_MCEERR_AO
62 #define BUS_MCEERR_AO 5
63 #endif
65 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
66 KVM_CAP_INFO(SET_TSS_ADDR),
67 KVM_CAP_INFO(EXT_CPUID),
68 KVM_CAP_INFO(MP_STATE),
69 KVM_CAP_LAST_INFO
72 static bool has_msr_star;
73 static bool has_msr_hsave_pa;
74 static bool has_msr_tsc_aux;
75 static bool has_msr_tsc_adjust;
76 static bool has_msr_tsc_deadline;
77 static bool has_msr_feature_control;
78 static bool has_msr_async_pf_en;
79 static bool has_msr_pv_eoi_en;
80 static bool has_msr_misc_enable;
81 static bool has_msr_smbase;
82 static bool has_msr_bndcfgs;
83 static bool has_msr_kvm_steal_time;
84 static int lm_capable_kernel;
85 static bool has_msr_hv_hypercall;
86 static bool has_msr_hv_vapic;
87 static bool has_msr_hv_tsc;
88 static bool has_msr_hv_crash;
89 static bool has_msr_hv_reset;
90 static bool has_msr_hv_vpindex;
91 static bool has_msr_hv_runtime;
92 static bool has_msr_hv_synic;
93 static bool has_msr_mtrr;
94 static bool has_msr_xss;
96 static bool has_msr_architectural_pmu;
97 static uint32_t num_architectural_pmu_counters;
99 static int has_xsave;
100 static int has_xcrs;
101 static int has_pit_state2;
103 int kvm_has_pit_state2(void)
105 return has_pit_state2;
108 bool kvm_has_smm(void)
110 return kvm_check_extension(kvm_state, KVM_CAP_X86_SMM);
113 bool kvm_allows_irq0_override(void)
115 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
118 static int kvm_get_tsc(CPUState *cs)
120 X86CPU *cpu = X86_CPU(cs);
121 CPUX86State *env = &cpu->env;
122 struct {
123 struct kvm_msrs info;
124 struct kvm_msr_entry entries[1];
125 } msr_data;
126 int ret;
128 if (env->tsc_valid) {
129 return 0;
132 msr_data.info.nmsrs = 1;
133 msr_data.entries[0].index = MSR_IA32_TSC;
134 env->tsc_valid = !runstate_is_running();
136 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
137 if (ret < 0) {
138 return ret;
141 env->tsc = msr_data.entries[0].data;
142 return 0;
145 static inline void do_kvm_synchronize_tsc(void *arg)
147 CPUState *cpu = arg;
149 kvm_get_tsc(cpu);
152 void kvm_synchronize_all_tsc(void)
154 CPUState *cpu;
156 if (kvm_enabled()) {
157 CPU_FOREACH(cpu) {
158 run_on_cpu(cpu, do_kvm_synchronize_tsc, cpu);
163 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
165 struct kvm_cpuid2 *cpuid;
166 int r, size;
168 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
169 cpuid = g_malloc0(size);
170 cpuid->nent = max;
171 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
172 if (r == 0 && cpuid->nent >= max) {
173 r = -E2BIG;
175 if (r < 0) {
176 if (r == -E2BIG) {
177 g_free(cpuid);
178 return NULL;
179 } else {
180 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
181 strerror(-r));
182 exit(1);
185 return cpuid;
188 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
189 * for all entries.
191 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
193 struct kvm_cpuid2 *cpuid;
194 int max = 1;
195 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
196 max *= 2;
198 return cpuid;
201 static const struct kvm_para_features {
202 int cap;
203 int feature;
204 } para_features[] = {
205 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
206 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
207 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
208 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
211 static int get_para_features(KVMState *s)
213 int i, features = 0;
215 for (i = 0; i < ARRAY_SIZE(para_features); i++) {
216 if (kvm_check_extension(s, para_features[i].cap)) {
217 features |= (1 << para_features[i].feature);
221 return features;
225 /* Returns the value for a specific register on the cpuid entry
227 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
229 uint32_t ret = 0;
230 switch (reg) {
231 case R_EAX:
232 ret = entry->eax;
233 break;
234 case R_EBX:
235 ret = entry->ebx;
236 break;
237 case R_ECX:
238 ret = entry->ecx;
239 break;
240 case R_EDX:
241 ret = entry->edx;
242 break;
244 return ret;
247 /* Find matching entry for function/index on kvm_cpuid2 struct
249 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
250 uint32_t function,
251 uint32_t index)
253 int i;
254 for (i = 0; i < cpuid->nent; ++i) {
255 if (cpuid->entries[i].function == function &&
256 cpuid->entries[i].index == index) {
257 return &cpuid->entries[i];
260 /* not found: */
261 return NULL;
264 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
265 uint32_t index, int reg)
267 struct kvm_cpuid2 *cpuid;
268 uint32_t ret = 0;
269 uint32_t cpuid_1_edx;
270 bool found = false;
272 cpuid = get_supported_cpuid(s);
274 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
275 if (entry) {
276 found = true;
277 ret = cpuid_entry_get_reg(entry, reg);
280 /* Fixups for the data returned by KVM, below */
282 if (function == 1 && reg == R_EDX) {
283 /* KVM before 2.6.30 misreports the following features */
284 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
285 } else if (function == 1 && reg == R_ECX) {
286 /* We can set the hypervisor flag, even if KVM does not return it on
287 * GET_SUPPORTED_CPUID
289 ret |= CPUID_EXT_HYPERVISOR;
290 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
291 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
292 * and the irqchip is in the kernel.
294 if (kvm_irqchip_in_kernel() &&
295 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
296 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
299 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
300 * without the in-kernel irqchip
302 if (!kvm_irqchip_in_kernel()) {
303 ret &= ~CPUID_EXT_X2APIC;
305 } else if (function == 6 && reg == R_EAX) {
306 ret |= CPUID_6_EAX_ARAT; /* safe to allow because of emulated APIC */
307 } else if (function == 0x80000001 && reg == R_EDX) {
308 /* On Intel, kvm returns cpuid according to the Intel spec,
309 * so add missing bits according to the AMD spec:
311 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
312 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
315 g_free(cpuid);
317 /* fallback for older kernels */
318 if ((function == KVM_CPUID_FEATURES) && !found) {
319 ret = get_para_features(s);
322 return ret;
325 typedef struct HWPoisonPage {
326 ram_addr_t ram_addr;
327 QLIST_ENTRY(HWPoisonPage) list;
328 } HWPoisonPage;
330 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
331 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
333 static void kvm_unpoison_all(void *param)
335 HWPoisonPage *page, *next_page;
337 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
338 QLIST_REMOVE(page, list);
339 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
340 g_free(page);
344 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
346 HWPoisonPage *page;
348 QLIST_FOREACH(page, &hwpoison_page_list, list) {
349 if (page->ram_addr == ram_addr) {
350 return;
353 page = g_new(HWPoisonPage, 1);
354 page->ram_addr = ram_addr;
355 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
358 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
359 int *max_banks)
361 int r;
363 r = kvm_check_extension(s, KVM_CAP_MCE);
364 if (r > 0) {
365 *max_banks = r;
366 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
368 return -ENOSYS;
371 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
373 CPUX86State *env = &cpu->env;
374 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
375 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
376 uint64_t mcg_status = MCG_STATUS_MCIP;
378 if (code == BUS_MCEERR_AR) {
379 status |= MCI_STATUS_AR | 0x134;
380 mcg_status |= MCG_STATUS_EIPV;
381 } else {
382 status |= 0xc0;
383 mcg_status |= MCG_STATUS_RIPV;
385 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
386 (MCM_ADDR_PHYS << 6) | 0xc,
387 cpu_x86_support_mca_broadcast(env) ?
388 MCE_INJECT_BROADCAST : 0);
391 static void hardware_memory_error(void)
393 fprintf(stderr, "Hardware memory error!\n");
394 exit(1);
397 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
399 X86CPU *cpu = X86_CPU(c);
400 CPUX86State *env = &cpu->env;
401 ram_addr_t ram_addr;
402 hwaddr paddr;
404 if ((env->mcg_cap & MCG_SER_P) && addr
405 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
406 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
407 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
408 fprintf(stderr, "Hardware memory error for memory used by "
409 "QEMU itself instead of guest system!\n");
410 /* Hope we are lucky for AO MCE */
411 if (code == BUS_MCEERR_AO) {
412 return 0;
413 } else {
414 hardware_memory_error();
417 kvm_hwpoison_page_add(ram_addr);
418 kvm_mce_inject(cpu, paddr, code);
419 } else {
420 if (code == BUS_MCEERR_AO) {
421 return 0;
422 } else if (code == BUS_MCEERR_AR) {
423 hardware_memory_error();
424 } else {
425 return 1;
428 return 0;
431 int kvm_arch_on_sigbus(int code, void *addr)
433 X86CPU *cpu = X86_CPU(first_cpu);
435 if ((cpu->env.mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
436 ram_addr_t ram_addr;
437 hwaddr paddr;
439 /* Hope we are lucky for AO MCE */
440 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
441 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state,
442 addr, &paddr)) {
443 fprintf(stderr, "Hardware memory error for memory used by "
444 "QEMU itself instead of guest system!: %p\n", addr);
445 return 0;
447 kvm_hwpoison_page_add(ram_addr);
448 kvm_mce_inject(X86_CPU(first_cpu), paddr, code);
449 } else {
450 if (code == BUS_MCEERR_AO) {
451 return 0;
452 } else if (code == BUS_MCEERR_AR) {
453 hardware_memory_error();
454 } else {
455 return 1;
458 return 0;
461 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
463 CPUX86State *env = &cpu->env;
465 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
466 unsigned int bank, bank_num = env->mcg_cap & 0xff;
467 struct kvm_x86_mce mce;
469 env->exception_injected = -1;
472 * There must be at least one bank in use if an MCE is pending.
473 * Find it and use its values for the event injection.
475 for (bank = 0; bank < bank_num; bank++) {
476 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
477 break;
480 assert(bank < bank_num);
482 mce.bank = bank;
483 mce.status = env->mce_banks[bank * 4 + 1];
484 mce.mcg_status = env->mcg_status;
485 mce.addr = env->mce_banks[bank * 4 + 2];
486 mce.misc = env->mce_banks[bank * 4 + 3];
488 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
490 return 0;
493 static void cpu_update_state(void *opaque, int running, RunState state)
495 CPUX86State *env = opaque;
497 if (running) {
498 env->tsc_valid = false;
502 unsigned long kvm_arch_vcpu_id(CPUState *cs)
504 X86CPU *cpu = X86_CPU(cs);
505 return cpu->apic_id;
508 #ifndef KVM_CPUID_SIGNATURE_NEXT
509 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
510 #endif
512 static bool hyperv_hypercall_available(X86CPU *cpu)
514 return cpu->hyperv_vapic ||
515 (cpu->hyperv_spinlock_attempts != HYPERV_SPINLOCK_NEVER_RETRY);
518 static bool hyperv_enabled(X86CPU *cpu)
520 CPUState *cs = CPU(cpu);
521 return kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV) > 0 &&
522 (hyperv_hypercall_available(cpu) ||
523 cpu->hyperv_time ||
524 cpu->hyperv_relaxed_timing ||
525 cpu->hyperv_crash ||
526 cpu->hyperv_reset ||
527 cpu->hyperv_vpindex ||
528 cpu->hyperv_runtime ||
529 cpu->hyperv_synic);
532 static Error *invtsc_mig_blocker;
534 #define KVM_MAX_CPUID_ENTRIES 100
536 int kvm_arch_init_vcpu(CPUState *cs)
538 struct {
539 struct kvm_cpuid2 cpuid;
540 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
541 } QEMU_PACKED cpuid_data;
542 X86CPU *cpu = X86_CPU(cs);
543 CPUX86State *env = &cpu->env;
544 uint32_t limit, i, j, cpuid_i;
545 uint32_t unused;
546 struct kvm_cpuid_entry2 *c;
547 uint32_t signature[3];
548 int kvm_base = KVM_CPUID_SIGNATURE;
549 int r;
551 memset(&cpuid_data, 0, sizeof(cpuid_data));
553 cpuid_i = 0;
555 /* Paravirtualization CPUIDs */
556 if (hyperv_enabled(cpu)) {
557 c = &cpuid_data.entries[cpuid_i++];
558 c->function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS;
559 if (!cpu->hyperv_vendor_id) {
560 memcpy(signature, "Microsoft Hv", 12);
561 } else {
562 size_t len = strlen(cpu->hyperv_vendor_id);
564 if (len > 12) {
565 error_report("hv-vendor-id truncated to 12 characters");
566 len = 12;
568 memset(signature, 0, 12);
569 memcpy(signature, cpu->hyperv_vendor_id, len);
571 c->eax = HYPERV_CPUID_MIN;
572 c->ebx = signature[0];
573 c->ecx = signature[1];
574 c->edx = signature[2];
576 c = &cpuid_data.entries[cpuid_i++];
577 c->function = HYPERV_CPUID_INTERFACE;
578 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
579 c->eax = signature[0];
580 c->ebx = 0;
581 c->ecx = 0;
582 c->edx = 0;
584 c = &cpuid_data.entries[cpuid_i++];
585 c->function = HYPERV_CPUID_VERSION;
586 c->eax = 0x00001bbc;
587 c->ebx = 0x00060001;
589 c = &cpuid_data.entries[cpuid_i++];
590 c->function = HYPERV_CPUID_FEATURES;
591 if (cpu->hyperv_relaxed_timing) {
592 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
594 if (cpu->hyperv_vapic) {
595 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
596 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
597 has_msr_hv_vapic = true;
599 if (cpu->hyperv_time &&
600 kvm_check_extension(cs->kvm_state, KVM_CAP_HYPERV_TIME) > 0) {
601 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
602 c->eax |= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE;
603 c->eax |= 0x200;
604 has_msr_hv_tsc = true;
606 if (cpu->hyperv_crash && has_msr_hv_crash) {
607 c->edx |= HV_X64_GUEST_CRASH_MSR_AVAILABLE;
609 if (cpu->hyperv_reset && has_msr_hv_reset) {
610 c->eax |= HV_X64_MSR_RESET_AVAILABLE;
612 if (cpu->hyperv_vpindex && has_msr_hv_vpindex) {
613 c->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
615 if (cpu->hyperv_runtime && has_msr_hv_runtime) {
616 c->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
618 if (cpu->hyperv_synic) {
619 int sint;
621 if (!has_msr_hv_synic ||
622 kvm_vcpu_enable_cap(cs, KVM_CAP_HYPERV_SYNIC, 0)) {
623 fprintf(stderr, "Hyper-V SynIC is not supported by kernel\n");
624 return -ENOSYS;
627 c->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
628 env->msr_hv_synic_version = HV_SYNIC_VERSION_1;
629 for (sint = 0; sint < ARRAY_SIZE(env->msr_hv_synic_sint); sint++) {
630 env->msr_hv_synic_sint[sint] = HV_SYNIC_SINT_MASKED;
633 c = &cpuid_data.entries[cpuid_i++];
634 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
635 if (cpu->hyperv_relaxed_timing) {
636 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
638 if (has_msr_hv_vapic) {
639 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
641 c->ebx = cpu->hyperv_spinlock_attempts;
643 c = &cpuid_data.entries[cpuid_i++];
644 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
645 c->eax = 0x40;
646 c->ebx = 0x40;
648 kvm_base = KVM_CPUID_SIGNATURE_NEXT;
649 has_msr_hv_hypercall = true;
652 if (cpu->expose_kvm) {
653 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
654 c = &cpuid_data.entries[cpuid_i++];
655 c->function = KVM_CPUID_SIGNATURE | kvm_base;
656 c->eax = KVM_CPUID_FEATURES | kvm_base;
657 c->ebx = signature[0];
658 c->ecx = signature[1];
659 c->edx = signature[2];
661 c = &cpuid_data.entries[cpuid_i++];
662 c->function = KVM_CPUID_FEATURES | kvm_base;
663 c->eax = env->features[FEAT_KVM];
665 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
667 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
669 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
672 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
674 for (i = 0; i <= limit; i++) {
675 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
676 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
677 abort();
679 c = &cpuid_data.entries[cpuid_i++];
681 switch (i) {
682 case 2: {
683 /* Keep reading function 2 till all the input is received */
684 int times;
686 c->function = i;
687 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
688 KVM_CPUID_FLAG_STATE_READ_NEXT;
689 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
690 times = c->eax & 0xff;
692 for (j = 1; j < times; ++j) {
693 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
694 fprintf(stderr, "cpuid_data is full, no space for "
695 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
696 abort();
698 c = &cpuid_data.entries[cpuid_i++];
699 c->function = i;
700 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
701 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
703 break;
705 case 4:
706 case 0xb:
707 case 0xd:
708 for (j = 0; ; j++) {
709 if (i == 0xd && j == 64) {
710 break;
712 c->function = i;
713 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
714 c->index = j;
715 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
717 if (i == 4 && c->eax == 0) {
718 break;
720 if (i == 0xb && !(c->ecx & 0xff00)) {
721 break;
723 if (i == 0xd && c->eax == 0) {
724 continue;
726 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
727 fprintf(stderr, "cpuid_data is full, no space for "
728 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
729 abort();
731 c = &cpuid_data.entries[cpuid_i++];
733 break;
734 default:
735 c->function = i;
736 c->flags = 0;
737 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
738 break;
742 if (limit >= 0x0a) {
743 uint32_t ver;
745 cpu_x86_cpuid(env, 0x0a, 0, &ver, &unused, &unused, &unused);
746 if ((ver & 0xff) > 0) {
747 has_msr_architectural_pmu = true;
748 num_architectural_pmu_counters = (ver & 0xff00) >> 8;
750 /* Shouldn't be more than 32, since that's the number of bits
751 * available in EBX to tell us _which_ counters are available.
752 * Play it safe.
754 if (num_architectural_pmu_counters > MAX_GP_COUNTERS) {
755 num_architectural_pmu_counters = MAX_GP_COUNTERS;
760 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
762 for (i = 0x80000000; i <= limit; i++) {
763 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
764 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
765 abort();
767 c = &cpuid_data.entries[cpuid_i++];
769 c->function = i;
770 c->flags = 0;
771 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
774 /* Call Centaur's CPUID instructions they are supported. */
775 if (env->cpuid_xlevel2 > 0) {
776 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
778 for (i = 0xC0000000; i <= limit; i++) {
779 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
780 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
781 abort();
783 c = &cpuid_data.entries[cpuid_i++];
785 c->function = i;
786 c->flags = 0;
787 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
791 cpuid_data.cpuid.nent = cpuid_i;
793 if (((env->cpuid_version >> 8)&0xF) >= 6
794 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
795 (CPUID_MCE | CPUID_MCA)
796 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
797 uint64_t mcg_cap, unsupported_caps;
798 int banks;
799 int ret;
801 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
802 if (ret < 0) {
803 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
804 return ret;
807 if (banks < (env->mcg_cap & MCG_CAP_BANKS_MASK)) {
808 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
809 (int)(env->mcg_cap & MCG_CAP_BANKS_MASK), banks);
810 return -ENOTSUP;
813 unsupported_caps = env->mcg_cap & ~(mcg_cap | MCG_CAP_BANKS_MASK);
814 if (unsupported_caps) {
815 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64,
816 unsupported_caps);
819 env->mcg_cap &= mcg_cap | MCG_CAP_BANKS_MASK;
820 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &env->mcg_cap);
821 if (ret < 0) {
822 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
823 return ret;
827 qemu_add_vm_change_state_handler(cpu_update_state, env);
829 c = cpuid_find_entry(&cpuid_data.cpuid, 1, 0);
830 if (c) {
831 has_msr_feature_control = !!(c->ecx & CPUID_EXT_VMX) ||
832 !!(c->ecx & CPUID_EXT_SMX);
835 c = cpuid_find_entry(&cpuid_data.cpuid, 0x80000007, 0);
836 if (c && (c->edx & 1<<8) && invtsc_mig_blocker == NULL) {
837 /* for migration */
838 error_setg(&invtsc_mig_blocker,
839 "State blocked by non-migratable CPU device"
840 " (invtsc flag)");
841 migrate_add_blocker(invtsc_mig_blocker);
842 /* for savevm */
843 vmstate_x86_cpu.unmigratable = 1;
846 cpuid_data.cpuid.padding = 0;
847 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
848 if (r) {
849 return r;
852 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
853 if (r && env->tsc_khz) {
854 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
855 if (r < 0) {
856 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
857 return r;
861 if (has_xsave) {
862 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
865 if (env->features[FEAT_1_EDX] & CPUID_MTRR) {
866 has_msr_mtrr = true;
869 return 0;
872 void kvm_arch_reset_vcpu(X86CPU *cpu)
874 CPUX86State *env = &cpu->env;
876 env->exception_injected = -1;
877 env->interrupt_injected = -1;
878 env->xcr0 = 1;
879 if (kvm_irqchip_in_kernel()) {
880 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
881 KVM_MP_STATE_UNINITIALIZED;
882 } else {
883 env->mp_state = KVM_MP_STATE_RUNNABLE;
887 void kvm_arch_do_init_vcpu(X86CPU *cpu)
889 CPUX86State *env = &cpu->env;
891 /* APs get directly into wait-for-SIPI state. */
892 if (env->mp_state == KVM_MP_STATE_UNINITIALIZED) {
893 env->mp_state = KVM_MP_STATE_INIT_RECEIVED;
897 static int kvm_get_supported_msrs(KVMState *s)
899 static int kvm_supported_msrs;
900 int ret = 0;
902 /* first time */
903 if (kvm_supported_msrs == 0) {
904 struct kvm_msr_list msr_list, *kvm_msr_list;
906 kvm_supported_msrs = -1;
908 /* Obtain MSR list from KVM. These are the MSRs that we must
909 * save/restore */
910 msr_list.nmsrs = 0;
911 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
912 if (ret < 0 && ret != -E2BIG) {
913 return ret;
915 /* Old kernel modules had a bug and could write beyond the provided
916 memory. Allocate at least a safe amount of 1K. */
917 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
918 msr_list.nmsrs *
919 sizeof(msr_list.indices[0])));
921 kvm_msr_list->nmsrs = msr_list.nmsrs;
922 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
923 if (ret >= 0) {
924 int i;
926 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
927 if (kvm_msr_list->indices[i] == MSR_STAR) {
928 has_msr_star = true;
929 continue;
931 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
932 has_msr_hsave_pa = true;
933 continue;
935 if (kvm_msr_list->indices[i] == MSR_TSC_AUX) {
936 has_msr_tsc_aux = true;
937 continue;
939 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
940 has_msr_tsc_adjust = true;
941 continue;
943 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
944 has_msr_tsc_deadline = true;
945 continue;
947 if (kvm_msr_list->indices[i] == MSR_IA32_SMBASE) {
948 has_msr_smbase = true;
949 continue;
951 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
952 has_msr_misc_enable = true;
953 continue;
955 if (kvm_msr_list->indices[i] == MSR_IA32_BNDCFGS) {
956 has_msr_bndcfgs = true;
957 continue;
959 if (kvm_msr_list->indices[i] == MSR_IA32_XSS) {
960 has_msr_xss = true;
961 continue;
963 if (kvm_msr_list->indices[i] == HV_X64_MSR_CRASH_CTL) {
964 has_msr_hv_crash = true;
965 continue;
967 if (kvm_msr_list->indices[i] == HV_X64_MSR_RESET) {
968 has_msr_hv_reset = true;
969 continue;
971 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_INDEX) {
972 has_msr_hv_vpindex = true;
973 continue;
975 if (kvm_msr_list->indices[i] == HV_X64_MSR_VP_RUNTIME) {
976 has_msr_hv_runtime = true;
977 continue;
979 if (kvm_msr_list->indices[i] == HV_X64_MSR_SCONTROL) {
980 has_msr_hv_synic = true;
981 continue;
986 g_free(kvm_msr_list);
989 return ret;
992 static Notifier smram_machine_done;
993 static KVMMemoryListener smram_listener;
994 static AddressSpace smram_address_space;
995 static MemoryRegion smram_as_root;
996 static MemoryRegion smram_as_mem;
998 static void register_smram_listener(Notifier *n, void *unused)
1000 MemoryRegion *smram =
1001 (MemoryRegion *) object_resolve_path("/machine/smram", NULL);
1003 /* Outer container... */
1004 memory_region_init(&smram_as_root, OBJECT(kvm_state), "mem-container-smram", ~0ull);
1005 memory_region_set_enabled(&smram_as_root, true);
1007 /* ... with two regions inside: normal system memory with low
1008 * priority, and...
1010 memory_region_init_alias(&smram_as_mem, OBJECT(kvm_state), "mem-smram",
1011 get_system_memory(), 0, ~0ull);
1012 memory_region_add_subregion_overlap(&smram_as_root, 0, &smram_as_mem, 0);
1013 memory_region_set_enabled(&smram_as_mem, true);
1015 if (smram) {
1016 /* ... SMRAM with higher priority */
1017 memory_region_add_subregion_overlap(&smram_as_root, 0, smram, 10);
1018 memory_region_set_enabled(smram, true);
1021 address_space_init(&smram_address_space, &smram_as_root, "KVM-SMRAM");
1022 kvm_memory_listener_register(kvm_state, &smram_listener,
1023 &smram_address_space, 1);
1026 int kvm_arch_init(MachineState *ms, KVMState *s)
1028 uint64_t identity_base = 0xfffbc000;
1029 uint64_t shadow_mem;
1030 int ret;
1031 struct utsname utsname;
1033 #ifdef KVM_CAP_XSAVE
1034 has_xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
1035 #endif
1037 #ifdef KVM_CAP_XCRS
1038 has_xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
1039 #endif
1041 #ifdef KVM_CAP_PIT_STATE2
1042 has_pit_state2 = kvm_check_extension(s, KVM_CAP_PIT_STATE2);
1043 #endif
1045 ret = kvm_get_supported_msrs(s);
1046 if (ret < 0) {
1047 return ret;
1050 uname(&utsname);
1051 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
1054 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1055 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1056 * Since these must be part of guest physical memory, we need to allocate
1057 * them, both by setting their start addresses in the kernel and by
1058 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1060 * Older KVM versions may not support setting the identity map base. In
1061 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1062 * size.
1064 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
1065 /* Allows up to 16M BIOSes. */
1066 identity_base = 0xfeffc000;
1068 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
1069 if (ret < 0) {
1070 return ret;
1074 /* Set TSS base one page after EPT identity map. */
1075 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
1076 if (ret < 0) {
1077 return ret;
1080 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1081 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
1082 if (ret < 0) {
1083 fprintf(stderr, "e820_add_entry() table is full\n");
1084 return ret;
1086 qemu_register_reset(kvm_unpoison_all, NULL);
1088 shadow_mem = machine_kvm_shadow_mem(ms);
1089 if (shadow_mem != -1) {
1090 shadow_mem /= 4096;
1091 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
1092 if (ret < 0) {
1093 return ret;
1097 if (kvm_check_extension(s, KVM_CAP_X86_SMM)) {
1098 smram_machine_done.notify = register_smram_listener;
1099 qemu_add_machine_init_done_notifier(&smram_machine_done);
1101 return 0;
1104 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1106 lhs->selector = rhs->selector;
1107 lhs->base = rhs->base;
1108 lhs->limit = rhs->limit;
1109 lhs->type = 3;
1110 lhs->present = 1;
1111 lhs->dpl = 3;
1112 lhs->db = 0;
1113 lhs->s = 1;
1114 lhs->l = 0;
1115 lhs->g = 0;
1116 lhs->avl = 0;
1117 lhs->unusable = 0;
1120 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
1122 unsigned flags = rhs->flags;
1123 lhs->selector = rhs->selector;
1124 lhs->base = rhs->base;
1125 lhs->limit = rhs->limit;
1126 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
1127 lhs->present = (flags & DESC_P_MASK) != 0;
1128 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
1129 lhs->db = (flags >> DESC_B_SHIFT) & 1;
1130 lhs->s = (flags & DESC_S_MASK) != 0;
1131 lhs->l = (flags >> DESC_L_SHIFT) & 1;
1132 lhs->g = (flags & DESC_G_MASK) != 0;
1133 lhs->avl = (flags & DESC_AVL_MASK) != 0;
1134 lhs->unusable = 0;
1135 lhs->padding = 0;
1138 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
1140 lhs->selector = rhs->selector;
1141 lhs->base = rhs->base;
1142 lhs->limit = rhs->limit;
1143 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
1144 (rhs->present * DESC_P_MASK) |
1145 (rhs->dpl << DESC_DPL_SHIFT) |
1146 (rhs->db << DESC_B_SHIFT) |
1147 (rhs->s * DESC_S_MASK) |
1148 (rhs->l << DESC_L_SHIFT) |
1149 (rhs->g * DESC_G_MASK) |
1150 (rhs->avl * DESC_AVL_MASK);
1153 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
1155 if (set) {
1156 *kvm_reg = *qemu_reg;
1157 } else {
1158 *qemu_reg = *kvm_reg;
1162 static int kvm_getput_regs(X86CPU *cpu, int set)
1164 CPUX86State *env = &cpu->env;
1165 struct kvm_regs regs;
1166 int ret = 0;
1168 if (!set) {
1169 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
1170 if (ret < 0) {
1171 return ret;
1175 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
1176 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
1177 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
1178 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
1179 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
1180 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
1181 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
1182 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
1183 #ifdef TARGET_X86_64
1184 kvm_getput_reg(&regs.r8, &env->regs[8], set);
1185 kvm_getput_reg(&regs.r9, &env->regs[9], set);
1186 kvm_getput_reg(&regs.r10, &env->regs[10], set);
1187 kvm_getput_reg(&regs.r11, &env->regs[11], set);
1188 kvm_getput_reg(&regs.r12, &env->regs[12], set);
1189 kvm_getput_reg(&regs.r13, &env->regs[13], set);
1190 kvm_getput_reg(&regs.r14, &env->regs[14], set);
1191 kvm_getput_reg(&regs.r15, &env->regs[15], set);
1192 #endif
1194 kvm_getput_reg(&regs.rflags, &env->eflags, set);
1195 kvm_getput_reg(&regs.rip, &env->eip, set);
1197 if (set) {
1198 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
1201 return ret;
1204 static int kvm_put_fpu(X86CPU *cpu)
1206 CPUX86State *env = &cpu->env;
1207 struct kvm_fpu fpu;
1208 int i;
1210 memset(&fpu, 0, sizeof fpu);
1211 fpu.fsw = env->fpus & ~(7 << 11);
1212 fpu.fsw |= (env->fpstt & 7) << 11;
1213 fpu.fcw = env->fpuc;
1214 fpu.last_opcode = env->fpop;
1215 fpu.last_ip = env->fpip;
1216 fpu.last_dp = env->fpdp;
1217 for (i = 0; i < 8; ++i) {
1218 fpu.ftwx |= (!env->fptags[i]) << i;
1220 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
1221 for (i = 0; i < CPU_NB_REGS; i++) {
1222 stq_p(&fpu.xmm[i][0], env->xmm_regs[i].XMM_Q(0));
1223 stq_p(&fpu.xmm[i][8], env->xmm_regs[i].XMM_Q(1));
1225 fpu.mxcsr = env->mxcsr;
1227 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
1230 #define XSAVE_FCW_FSW 0
1231 #define XSAVE_FTW_FOP 1
1232 #define XSAVE_CWD_RIP 2
1233 #define XSAVE_CWD_RDP 4
1234 #define XSAVE_MXCSR 6
1235 #define XSAVE_ST_SPACE 8
1236 #define XSAVE_XMM_SPACE 40
1237 #define XSAVE_XSTATE_BV 128
1238 #define XSAVE_YMMH_SPACE 144
1239 #define XSAVE_BNDREGS 240
1240 #define XSAVE_BNDCSR 256
1241 #define XSAVE_OPMASK 272
1242 #define XSAVE_ZMM_Hi256 288
1243 #define XSAVE_Hi16_ZMM 416
1245 static int kvm_put_xsave(X86CPU *cpu)
1247 CPUX86State *env = &cpu->env;
1248 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1249 uint16_t cwd, swd, twd;
1250 uint8_t *xmm, *ymmh, *zmmh;
1251 int i, r;
1253 if (!has_xsave) {
1254 return kvm_put_fpu(cpu);
1257 memset(xsave, 0, sizeof(struct kvm_xsave));
1258 twd = 0;
1259 swd = env->fpus & ~(7 << 11);
1260 swd |= (env->fpstt & 7) << 11;
1261 cwd = env->fpuc;
1262 for (i = 0; i < 8; ++i) {
1263 twd |= (!env->fptags[i]) << i;
1265 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
1266 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
1267 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
1268 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
1269 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
1270 sizeof env->fpregs);
1271 xsave->region[XSAVE_MXCSR] = env->mxcsr;
1272 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
1273 memcpy(&xsave->region[XSAVE_BNDREGS], env->bnd_regs,
1274 sizeof env->bnd_regs);
1275 memcpy(&xsave->region[XSAVE_BNDCSR], &env->bndcs_regs,
1276 sizeof(env->bndcs_regs));
1277 memcpy(&xsave->region[XSAVE_OPMASK], env->opmask_regs,
1278 sizeof env->opmask_regs);
1280 xmm = (uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1281 ymmh = (uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1282 zmmh = (uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1283 for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1284 stq_p(xmm, env->xmm_regs[i].XMM_Q(0));
1285 stq_p(xmm+8, env->xmm_regs[i].XMM_Q(1));
1286 stq_p(ymmh, env->xmm_regs[i].XMM_Q(2));
1287 stq_p(ymmh+8, env->xmm_regs[i].XMM_Q(3));
1288 stq_p(zmmh, env->xmm_regs[i].XMM_Q(4));
1289 stq_p(zmmh+8, env->xmm_regs[i].XMM_Q(5));
1290 stq_p(zmmh+16, env->xmm_regs[i].XMM_Q(6));
1291 stq_p(zmmh+24, env->xmm_regs[i].XMM_Q(7));
1294 #ifdef TARGET_X86_64
1295 memcpy(&xsave->region[XSAVE_Hi16_ZMM], &env->xmm_regs[16],
1296 16 * sizeof env->xmm_regs[16]);
1297 #endif
1298 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
1299 return r;
1302 static int kvm_put_xcrs(X86CPU *cpu)
1304 CPUX86State *env = &cpu->env;
1305 struct kvm_xcrs xcrs = {};
1307 if (!has_xcrs) {
1308 return 0;
1311 xcrs.nr_xcrs = 1;
1312 xcrs.flags = 0;
1313 xcrs.xcrs[0].xcr = 0;
1314 xcrs.xcrs[0].value = env->xcr0;
1315 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
1318 static int kvm_put_sregs(X86CPU *cpu)
1320 CPUX86State *env = &cpu->env;
1321 struct kvm_sregs sregs;
1323 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
1324 if (env->interrupt_injected >= 0) {
1325 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
1326 (uint64_t)1 << (env->interrupt_injected % 64);
1329 if ((env->eflags & VM_MASK)) {
1330 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1331 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1332 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1333 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1334 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1335 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1336 } else {
1337 set_seg(&sregs.cs, &env->segs[R_CS]);
1338 set_seg(&sregs.ds, &env->segs[R_DS]);
1339 set_seg(&sregs.es, &env->segs[R_ES]);
1340 set_seg(&sregs.fs, &env->segs[R_FS]);
1341 set_seg(&sregs.gs, &env->segs[R_GS]);
1342 set_seg(&sregs.ss, &env->segs[R_SS]);
1345 set_seg(&sregs.tr, &env->tr);
1346 set_seg(&sregs.ldt, &env->ldt);
1348 sregs.idt.limit = env->idt.limit;
1349 sregs.idt.base = env->idt.base;
1350 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1351 sregs.gdt.limit = env->gdt.limit;
1352 sregs.gdt.base = env->gdt.base;
1353 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1355 sregs.cr0 = env->cr[0];
1356 sregs.cr2 = env->cr[2];
1357 sregs.cr3 = env->cr[3];
1358 sregs.cr4 = env->cr[4];
1360 sregs.cr8 = cpu_get_apic_tpr(cpu->apic_state);
1361 sregs.apic_base = cpu_get_apic_base(cpu->apic_state);
1363 sregs.efer = env->efer;
1365 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1368 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1369 uint32_t index, uint64_t value)
1371 entry->index = index;
1372 entry->reserved = 0;
1373 entry->data = value;
1376 static int kvm_put_tscdeadline_msr(X86CPU *cpu)
1378 CPUX86State *env = &cpu->env;
1379 struct {
1380 struct kvm_msrs info;
1381 struct kvm_msr_entry entries[1];
1382 } msr_data;
1383 struct kvm_msr_entry *msrs = msr_data.entries;
1385 if (!has_msr_tsc_deadline) {
1386 return 0;
1389 kvm_msr_entry_set(&msrs[0], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1391 msr_data.info = (struct kvm_msrs) {
1392 .nmsrs = 1,
1395 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1399 * Provide a separate write service for the feature control MSR in order to
1400 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1401 * before writing any other state because forcibly leaving nested mode
1402 * invalidates the VCPU state.
1404 static int kvm_put_msr_feature_control(X86CPU *cpu)
1406 struct {
1407 struct kvm_msrs info;
1408 struct kvm_msr_entry entry;
1409 } msr_data;
1411 kvm_msr_entry_set(&msr_data.entry, MSR_IA32_FEATURE_CONTROL,
1412 cpu->env.msr_ia32_feature_control);
1414 msr_data.info = (struct kvm_msrs) {
1415 .nmsrs = 1,
1418 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1421 static int kvm_put_msrs(X86CPU *cpu, int level)
1423 CPUX86State *env = &cpu->env;
1424 struct {
1425 struct kvm_msrs info;
1426 struct kvm_msr_entry entries[150];
1427 } msr_data;
1428 struct kvm_msr_entry *msrs = msr_data.entries;
1429 int n = 0, i;
1431 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1432 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1433 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1434 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1435 if (has_msr_star) {
1436 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1438 if (has_msr_hsave_pa) {
1439 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1441 if (has_msr_tsc_aux) {
1442 kvm_msr_entry_set(&msrs[n++], MSR_TSC_AUX, env->tsc_aux);
1444 if (has_msr_tsc_adjust) {
1445 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1447 if (has_msr_misc_enable) {
1448 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1449 env->msr_ia32_misc_enable);
1451 if (has_msr_smbase) {
1452 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SMBASE, env->smbase);
1454 if (has_msr_bndcfgs) {
1455 kvm_msr_entry_set(&msrs[n++], MSR_IA32_BNDCFGS, env->msr_bndcfgs);
1457 if (has_msr_xss) {
1458 kvm_msr_entry_set(&msrs[n++], MSR_IA32_XSS, env->xss);
1460 #ifdef TARGET_X86_64
1461 if (lm_capable_kernel) {
1462 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1463 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1464 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1465 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1467 #endif
1469 * The following MSRs have side effects on the guest or are too heavy
1470 * for normal writeback. Limit them to reset or full state updates.
1472 if (level >= KVM_PUT_RESET_STATE) {
1473 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1474 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1475 env->system_time_msr);
1476 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1477 if (has_msr_async_pf_en) {
1478 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1479 env->async_pf_en_msr);
1481 if (has_msr_pv_eoi_en) {
1482 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1483 env->pv_eoi_en_msr);
1485 if (has_msr_kvm_steal_time) {
1486 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1487 env->steal_time_msr);
1489 if (has_msr_architectural_pmu) {
1490 /* Stop the counter. */
1491 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL, 0);
1492 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL, 0);
1494 /* Set the counter values. */
1495 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1496 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR0 + i,
1497 env->msr_fixed_counters[i]);
1499 for (i = 0; i < num_architectural_pmu_counters; i++) {
1500 kvm_msr_entry_set(&msrs[n++], MSR_P6_PERFCTR0 + i,
1501 env->msr_gp_counters[i]);
1502 kvm_msr_entry_set(&msrs[n++], MSR_P6_EVNTSEL0 + i,
1503 env->msr_gp_evtsel[i]);
1505 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_STATUS,
1506 env->msr_global_status);
1507 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1508 env->msr_global_ovf_ctrl);
1510 /* Now start the PMU. */
1511 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_FIXED_CTR_CTRL,
1512 env->msr_fixed_ctr_ctrl);
1513 kvm_msr_entry_set(&msrs[n++], MSR_CORE_PERF_GLOBAL_CTRL,
1514 env->msr_global_ctrl);
1516 if (has_msr_hv_hypercall) {
1517 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID,
1518 env->msr_hv_guest_os_id);
1519 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL,
1520 env->msr_hv_hypercall);
1522 if (has_msr_hv_vapic) {
1523 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE,
1524 env->msr_hv_vapic);
1526 if (has_msr_hv_tsc) {
1527 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_REFERENCE_TSC,
1528 env->msr_hv_tsc);
1530 if (has_msr_hv_crash) {
1531 int j;
1533 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++)
1534 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_P0 + j,
1535 env->msr_hv_crash_params[j]);
1537 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_CRASH_CTL,
1538 HV_X64_MSR_CRASH_CTL_NOTIFY);
1540 if (has_msr_hv_runtime) {
1541 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_VP_RUNTIME,
1542 env->msr_hv_runtime);
1544 if (cpu->hyperv_synic) {
1545 int j;
1547 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SCONTROL,
1548 env->msr_hv_synic_control);
1549 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SVERSION,
1550 env->msr_hv_synic_version);
1551 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIEFP,
1552 env->msr_hv_synic_evt_page);
1553 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SIMP,
1554 env->msr_hv_synic_msg_page);
1556 for (j = 0; j < ARRAY_SIZE(env->msr_hv_synic_sint); j++) {
1557 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_SINT0 + j,
1558 env->msr_hv_synic_sint[j]);
1561 if (has_msr_mtrr) {
1562 kvm_msr_entry_set(&msrs[n++], MSR_MTRRdefType, env->mtrr_deftype);
1563 kvm_msr_entry_set(&msrs[n++],
1564 MSR_MTRRfix64K_00000, env->mtrr_fixed[0]);
1565 kvm_msr_entry_set(&msrs[n++],
1566 MSR_MTRRfix16K_80000, env->mtrr_fixed[1]);
1567 kvm_msr_entry_set(&msrs[n++],
1568 MSR_MTRRfix16K_A0000, env->mtrr_fixed[2]);
1569 kvm_msr_entry_set(&msrs[n++],
1570 MSR_MTRRfix4K_C0000, env->mtrr_fixed[3]);
1571 kvm_msr_entry_set(&msrs[n++],
1572 MSR_MTRRfix4K_C8000, env->mtrr_fixed[4]);
1573 kvm_msr_entry_set(&msrs[n++],
1574 MSR_MTRRfix4K_D0000, env->mtrr_fixed[5]);
1575 kvm_msr_entry_set(&msrs[n++],
1576 MSR_MTRRfix4K_D8000, env->mtrr_fixed[6]);
1577 kvm_msr_entry_set(&msrs[n++],
1578 MSR_MTRRfix4K_E0000, env->mtrr_fixed[7]);
1579 kvm_msr_entry_set(&msrs[n++],
1580 MSR_MTRRfix4K_E8000, env->mtrr_fixed[8]);
1581 kvm_msr_entry_set(&msrs[n++],
1582 MSR_MTRRfix4K_F0000, env->mtrr_fixed[9]);
1583 kvm_msr_entry_set(&msrs[n++],
1584 MSR_MTRRfix4K_F8000, env->mtrr_fixed[10]);
1585 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1586 kvm_msr_entry_set(&msrs[n++],
1587 MSR_MTRRphysBase(i), env->mtrr_var[i].base);
1588 kvm_msr_entry_set(&msrs[n++],
1589 MSR_MTRRphysMask(i), env->mtrr_var[i].mask);
1593 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1594 * kvm_put_msr_feature_control. */
1596 if (env->mcg_cap) {
1597 int i;
1599 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1600 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1601 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1602 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1606 msr_data.info = (struct kvm_msrs) {
1607 .nmsrs = n,
1610 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1615 static int kvm_get_fpu(X86CPU *cpu)
1617 CPUX86State *env = &cpu->env;
1618 struct kvm_fpu fpu;
1619 int i, ret;
1621 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1622 if (ret < 0) {
1623 return ret;
1626 env->fpstt = (fpu.fsw >> 11) & 7;
1627 env->fpus = fpu.fsw;
1628 env->fpuc = fpu.fcw;
1629 env->fpop = fpu.last_opcode;
1630 env->fpip = fpu.last_ip;
1631 env->fpdp = fpu.last_dp;
1632 for (i = 0; i < 8; ++i) {
1633 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1635 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1636 for (i = 0; i < CPU_NB_REGS; i++) {
1637 env->xmm_regs[i].XMM_Q(0) = ldq_p(&fpu.xmm[i][0]);
1638 env->xmm_regs[i].XMM_Q(1) = ldq_p(&fpu.xmm[i][8]);
1640 env->mxcsr = fpu.mxcsr;
1642 return 0;
1645 static int kvm_get_xsave(X86CPU *cpu)
1647 CPUX86State *env = &cpu->env;
1648 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1649 int ret, i;
1650 const uint8_t *xmm, *ymmh, *zmmh;
1651 uint16_t cwd, swd, twd;
1653 if (!has_xsave) {
1654 return kvm_get_fpu(cpu);
1657 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1658 if (ret < 0) {
1659 return ret;
1662 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1663 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1664 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1665 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1666 env->fpstt = (swd >> 11) & 7;
1667 env->fpus = swd;
1668 env->fpuc = cwd;
1669 for (i = 0; i < 8; ++i) {
1670 env->fptags[i] = !((twd >> i) & 1);
1672 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1673 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1674 env->mxcsr = xsave->region[XSAVE_MXCSR];
1675 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1676 sizeof env->fpregs);
1677 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1678 memcpy(env->bnd_regs, &xsave->region[XSAVE_BNDREGS],
1679 sizeof env->bnd_regs);
1680 memcpy(&env->bndcs_regs, &xsave->region[XSAVE_BNDCSR],
1681 sizeof(env->bndcs_regs));
1682 memcpy(env->opmask_regs, &xsave->region[XSAVE_OPMASK],
1683 sizeof env->opmask_regs);
1685 xmm = (const uint8_t *)&xsave->region[XSAVE_XMM_SPACE];
1686 ymmh = (const uint8_t *)&xsave->region[XSAVE_YMMH_SPACE];
1687 zmmh = (const uint8_t *)&xsave->region[XSAVE_ZMM_Hi256];
1688 for (i = 0; i < CPU_NB_REGS; i++, xmm += 16, ymmh += 16, zmmh += 32) {
1689 env->xmm_regs[i].XMM_Q(0) = ldq_p(xmm);
1690 env->xmm_regs[i].XMM_Q(1) = ldq_p(xmm+8);
1691 env->xmm_regs[i].XMM_Q(2) = ldq_p(ymmh);
1692 env->xmm_regs[i].XMM_Q(3) = ldq_p(ymmh+8);
1693 env->xmm_regs[i].XMM_Q(4) = ldq_p(zmmh);
1694 env->xmm_regs[i].XMM_Q(5) = ldq_p(zmmh+8);
1695 env->xmm_regs[i].XMM_Q(6) = ldq_p(zmmh+16);
1696 env->xmm_regs[i].XMM_Q(7) = ldq_p(zmmh+24);
1699 #ifdef TARGET_X86_64
1700 memcpy(&env->xmm_regs[16], &xsave->region[XSAVE_Hi16_ZMM],
1701 16 * sizeof env->xmm_regs[16]);
1702 #endif
1703 return 0;
1706 static int kvm_get_xcrs(X86CPU *cpu)
1708 CPUX86State *env = &cpu->env;
1709 int i, ret;
1710 struct kvm_xcrs xcrs;
1712 if (!has_xcrs) {
1713 return 0;
1716 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1717 if (ret < 0) {
1718 return ret;
1721 for (i = 0; i < xcrs.nr_xcrs; i++) {
1722 /* Only support xcr0 now */
1723 if (xcrs.xcrs[i].xcr == 0) {
1724 env->xcr0 = xcrs.xcrs[i].value;
1725 break;
1728 return 0;
1731 static int kvm_get_sregs(X86CPU *cpu)
1733 CPUX86State *env = &cpu->env;
1734 struct kvm_sregs sregs;
1735 uint32_t hflags;
1736 int bit, i, ret;
1738 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1739 if (ret < 0) {
1740 return ret;
1743 /* There can only be one pending IRQ set in the bitmap at a time, so try
1744 to find it and save its number instead (-1 for none). */
1745 env->interrupt_injected = -1;
1746 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1747 if (sregs.interrupt_bitmap[i]) {
1748 bit = ctz64(sregs.interrupt_bitmap[i]);
1749 env->interrupt_injected = i * 64 + bit;
1750 break;
1754 get_seg(&env->segs[R_CS], &sregs.cs);
1755 get_seg(&env->segs[R_DS], &sregs.ds);
1756 get_seg(&env->segs[R_ES], &sregs.es);
1757 get_seg(&env->segs[R_FS], &sregs.fs);
1758 get_seg(&env->segs[R_GS], &sregs.gs);
1759 get_seg(&env->segs[R_SS], &sregs.ss);
1761 get_seg(&env->tr, &sregs.tr);
1762 get_seg(&env->ldt, &sregs.ldt);
1764 env->idt.limit = sregs.idt.limit;
1765 env->idt.base = sregs.idt.base;
1766 env->gdt.limit = sregs.gdt.limit;
1767 env->gdt.base = sregs.gdt.base;
1769 env->cr[0] = sregs.cr0;
1770 env->cr[2] = sregs.cr2;
1771 env->cr[3] = sregs.cr3;
1772 env->cr[4] = sregs.cr4;
1774 env->efer = sregs.efer;
1776 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1778 #define HFLAG_COPY_MASK \
1779 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1780 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1781 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1782 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1784 hflags = (env->segs[R_SS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1785 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1786 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1787 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1788 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1789 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1790 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1792 if (env->efer & MSR_EFER_LMA) {
1793 hflags |= HF_LMA_MASK;
1796 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1797 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1798 } else {
1799 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1800 (DESC_B_SHIFT - HF_CS32_SHIFT);
1801 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1802 (DESC_B_SHIFT - HF_SS32_SHIFT);
1803 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1804 !(hflags & HF_CS32_MASK)) {
1805 hflags |= HF_ADDSEG_MASK;
1806 } else {
1807 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1808 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1811 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1813 return 0;
1816 static int kvm_get_msrs(X86CPU *cpu)
1818 CPUX86State *env = &cpu->env;
1819 struct {
1820 struct kvm_msrs info;
1821 struct kvm_msr_entry entries[150];
1822 } msr_data;
1823 struct kvm_msr_entry *msrs = msr_data.entries;
1824 int ret, i, n;
1826 n = 0;
1827 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1828 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1829 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1830 msrs[n++].index = MSR_PAT;
1831 if (has_msr_star) {
1832 msrs[n++].index = MSR_STAR;
1834 if (has_msr_hsave_pa) {
1835 msrs[n++].index = MSR_VM_HSAVE_PA;
1837 if (has_msr_tsc_aux) {
1838 msrs[n++].index = MSR_TSC_AUX;
1840 if (has_msr_tsc_adjust) {
1841 msrs[n++].index = MSR_TSC_ADJUST;
1843 if (has_msr_tsc_deadline) {
1844 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1846 if (has_msr_misc_enable) {
1847 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1849 if (has_msr_smbase) {
1850 msrs[n++].index = MSR_IA32_SMBASE;
1852 if (has_msr_feature_control) {
1853 msrs[n++].index = MSR_IA32_FEATURE_CONTROL;
1855 if (has_msr_bndcfgs) {
1856 msrs[n++].index = MSR_IA32_BNDCFGS;
1858 if (has_msr_xss) {
1859 msrs[n++].index = MSR_IA32_XSS;
1863 if (!env->tsc_valid) {
1864 msrs[n++].index = MSR_IA32_TSC;
1865 env->tsc_valid = !runstate_is_running();
1868 #ifdef TARGET_X86_64
1869 if (lm_capable_kernel) {
1870 msrs[n++].index = MSR_CSTAR;
1871 msrs[n++].index = MSR_KERNELGSBASE;
1872 msrs[n++].index = MSR_FMASK;
1873 msrs[n++].index = MSR_LSTAR;
1875 #endif
1876 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1877 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1878 if (has_msr_async_pf_en) {
1879 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1881 if (has_msr_pv_eoi_en) {
1882 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1884 if (has_msr_kvm_steal_time) {
1885 msrs[n++].index = MSR_KVM_STEAL_TIME;
1887 if (has_msr_architectural_pmu) {
1888 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR_CTRL;
1889 msrs[n++].index = MSR_CORE_PERF_GLOBAL_CTRL;
1890 msrs[n++].index = MSR_CORE_PERF_GLOBAL_STATUS;
1891 msrs[n++].index = MSR_CORE_PERF_GLOBAL_OVF_CTRL;
1892 for (i = 0; i < MAX_FIXED_COUNTERS; i++) {
1893 msrs[n++].index = MSR_CORE_PERF_FIXED_CTR0 + i;
1895 for (i = 0; i < num_architectural_pmu_counters; i++) {
1896 msrs[n++].index = MSR_P6_PERFCTR0 + i;
1897 msrs[n++].index = MSR_P6_EVNTSEL0 + i;
1901 if (env->mcg_cap) {
1902 msrs[n++].index = MSR_MCG_STATUS;
1903 msrs[n++].index = MSR_MCG_CTL;
1904 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1905 msrs[n++].index = MSR_MC0_CTL + i;
1909 if (has_msr_hv_hypercall) {
1910 msrs[n++].index = HV_X64_MSR_HYPERCALL;
1911 msrs[n++].index = HV_X64_MSR_GUEST_OS_ID;
1913 if (has_msr_hv_vapic) {
1914 msrs[n++].index = HV_X64_MSR_APIC_ASSIST_PAGE;
1916 if (has_msr_hv_tsc) {
1917 msrs[n++].index = HV_X64_MSR_REFERENCE_TSC;
1919 if (has_msr_hv_crash) {
1920 int j;
1922 for (j = 0; j < HV_X64_MSR_CRASH_PARAMS; j++) {
1923 msrs[n++].index = HV_X64_MSR_CRASH_P0 + j;
1926 if (has_msr_hv_runtime) {
1927 msrs[n++].index = HV_X64_MSR_VP_RUNTIME;
1929 if (cpu->hyperv_synic) {
1930 uint32_t msr;
1932 msrs[n++].index = HV_X64_MSR_SCONTROL;
1933 msrs[n++].index = HV_X64_MSR_SVERSION;
1934 msrs[n++].index = HV_X64_MSR_SIEFP;
1935 msrs[n++].index = HV_X64_MSR_SIMP;
1936 for (msr = HV_X64_MSR_SINT0; msr <= HV_X64_MSR_SINT15; msr++) {
1937 msrs[n++].index = msr;
1940 if (has_msr_mtrr) {
1941 msrs[n++].index = MSR_MTRRdefType;
1942 msrs[n++].index = MSR_MTRRfix64K_00000;
1943 msrs[n++].index = MSR_MTRRfix16K_80000;
1944 msrs[n++].index = MSR_MTRRfix16K_A0000;
1945 msrs[n++].index = MSR_MTRRfix4K_C0000;
1946 msrs[n++].index = MSR_MTRRfix4K_C8000;
1947 msrs[n++].index = MSR_MTRRfix4K_D0000;
1948 msrs[n++].index = MSR_MTRRfix4K_D8000;
1949 msrs[n++].index = MSR_MTRRfix4K_E0000;
1950 msrs[n++].index = MSR_MTRRfix4K_E8000;
1951 msrs[n++].index = MSR_MTRRfix4K_F0000;
1952 msrs[n++].index = MSR_MTRRfix4K_F8000;
1953 for (i = 0; i < MSR_MTRRcap_VCNT; i++) {
1954 msrs[n++].index = MSR_MTRRphysBase(i);
1955 msrs[n++].index = MSR_MTRRphysMask(i);
1959 msr_data.info = (struct kvm_msrs) {
1960 .nmsrs = n,
1963 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1964 if (ret < 0) {
1965 return ret;
1968 for (i = 0; i < ret; i++) {
1969 uint32_t index = msrs[i].index;
1970 switch (index) {
1971 case MSR_IA32_SYSENTER_CS:
1972 env->sysenter_cs = msrs[i].data;
1973 break;
1974 case MSR_IA32_SYSENTER_ESP:
1975 env->sysenter_esp = msrs[i].data;
1976 break;
1977 case MSR_IA32_SYSENTER_EIP:
1978 env->sysenter_eip = msrs[i].data;
1979 break;
1980 case MSR_PAT:
1981 env->pat = msrs[i].data;
1982 break;
1983 case MSR_STAR:
1984 env->star = msrs[i].data;
1985 break;
1986 #ifdef TARGET_X86_64
1987 case MSR_CSTAR:
1988 env->cstar = msrs[i].data;
1989 break;
1990 case MSR_KERNELGSBASE:
1991 env->kernelgsbase = msrs[i].data;
1992 break;
1993 case MSR_FMASK:
1994 env->fmask = msrs[i].data;
1995 break;
1996 case MSR_LSTAR:
1997 env->lstar = msrs[i].data;
1998 break;
1999 #endif
2000 case MSR_IA32_TSC:
2001 env->tsc = msrs[i].data;
2002 break;
2003 case MSR_TSC_AUX:
2004 env->tsc_aux = msrs[i].data;
2005 break;
2006 case MSR_TSC_ADJUST:
2007 env->tsc_adjust = msrs[i].data;
2008 break;
2009 case MSR_IA32_TSCDEADLINE:
2010 env->tsc_deadline = msrs[i].data;
2011 break;
2012 case MSR_VM_HSAVE_PA:
2013 env->vm_hsave = msrs[i].data;
2014 break;
2015 case MSR_KVM_SYSTEM_TIME:
2016 env->system_time_msr = msrs[i].data;
2017 break;
2018 case MSR_KVM_WALL_CLOCK:
2019 env->wall_clock_msr = msrs[i].data;
2020 break;
2021 case MSR_MCG_STATUS:
2022 env->mcg_status = msrs[i].data;
2023 break;
2024 case MSR_MCG_CTL:
2025 env->mcg_ctl = msrs[i].data;
2026 break;
2027 case MSR_IA32_MISC_ENABLE:
2028 env->msr_ia32_misc_enable = msrs[i].data;
2029 break;
2030 case MSR_IA32_SMBASE:
2031 env->smbase = msrs[i].data;
2032 break;
2033 case MSR_IA32_FEATURE_CONTROL:
2034 env->msr_ia32_feature_control = msrs[i].data;
2035 break;
2036 case MSR_IA32_BNDCFGS:
2037 env->msr_bndcfgs = msrs[i].data;
2038 break;
2039 case MSR_IA32_XSS:
2040 env->xss = msrs[i].data;
2041 break;
2042 default:
2043 if (msrs[i].index >= MSR_MC0_CTL &&
2044 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
2045 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
2047 break;
2048 case MSR_KVM_ASYNC_PF_EN:
2049 env->async_pf_en_msr = msrs[i].data;
2050 break;
2051 case MSR_KVM_PV_EOI_EN:
2052 env->pv_eoi_en_msr = msrs[i].data;
2053 break;
2054 case MSR_KVM_STEAL_TIME:
2055 env->steal_time_msr = msrs[i].data;
2056 break;
2057 case MSR_CORE_PERF_FIXED_CTR_CTRL:
2058 env->msr_fixed_ctr_ctrl = msrs[i].data;
2059 break;
2060 case MSR_CORE_PERF_GLOBAL_CTRL:
2061 env->msr_global_ctrl = msrs[i].data;
2062 break;
2063 case MSR_CORE_PERF_GLOBAL_STATUS:
2064 env->msr_global_status = msrs[i].data;
2065 break;
2066 case MSR_CORE_PERF_GLOBAL_OVF_CTRL:
2067 env->msr_global_ovf_ctrl = msrs[i].data;
2068 break;
2069 case MSR_CORE_PERF_FIXED_CTR0 ... MSR_CORE_PERF_FIXED_CTR0 + MAX_FIXED_COUNTERS - 1:
2070 env->msr_fixed_counters[index - MSR_CORE_PERF_FIXED_CTR0] = msrs[i].data;
2071 break;
2072 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR0 + MAX_GP_COUNTERS - 1:
2073 env->msr_gp_counters[index - MSR_P6_PERFCTR0] = msrs[i].data;
2074 break;
2075 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL0 + MAX_GP_COUNTERS - 1:
2076 env->msr_gp_evtsel[index - MSR_P6_EVNTSEL0] = msrs[i].data;
2077 break;
2078 case HV_X64_MSR_HYPERCALL:
2079 env->msr_hv_hypercall = msrs[i].data;
2080 break;
2081 case HV_X64_MSR_GUEST_OS_ID:
2082 env->msr_hv_guest_os_id = msrs[i].data;
2083 break;
2084 case HV_X64_MSR_APIC_ASSIST_PAGE:
2085 env->msr_hv_vapic = msrs[i].data;
2086 break;
2087 case HV_X64_MSR_REFERENCE_TSC:
2088 env->msr_hv_tsc = msrs[i].data;
2089 break;
2090 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2091 env->msr_hv_crash_params[index - HV_X64_MSR_CRASH_P0] = msrs[i].data;
2092 break;
2093 case HV_X64_MSR_VP_RUNTIME:
2094 env->msr_hv_runtime = msrs[i].data;
2095 break;
2096 case HV_X64_MSR_SCONTROL:
2097 env->msr_hv_synic_control = msrs[i].data;
2098 break;
2099 case HV_X64_MSR_SVERSION:
2100 env->msr_hv_synic_version = msrs[i].data;
2101 break;
2102 case HV_X64_MSR_SIEFP:
2103 env->msr_hv_synic_evt_page = msrs[i].data;
2104 break;
2105 case HV_X64_MSR_SIMP:
2106 env->msr_hv_synic_msg_page = msrs[i].data;
2107 break;
2108 case HV_X64_MSR_SINT0 ... HV_X64_MSR_SINT15:
2109 env->msr_hv_synic_sint[index - HV_X64_MSR_SINT0] = msrs[i].data;
2110 break;
2111 case MSR_MTRRdefType:
2112 env->mtrr_deftype = msrs[i].data;
2113 break;
2114 case MSR_MTRRfix64K_00000:
2115 env->mtrr_fixed[0] = msrs[i].data;
2116 break;
2117 case MSR_MTRRfix16K_80000:
2118 env->mtrr_fixed[1] = msrs[i].data;
2119 break;
2120 case MSR_MTRRfix16K_A0000:
2121 env->mtrr_fixed[2] = msrs[i].data;
2122 break;
2123 case MSR_MTRRfix4K_C0000:
2124 env->mtrr_fixed[3] = msrs[i].data;
2125 break;
2126 case MSR_MTRRfix4K_C8000:
2127 env->mtrr_fixed[4] = msrs[i].data;
2128 break;
2129 case MSR_MTRRfix4K_D0000:
2130 env->mtrr_fixed[5] = msrs[i].data;
2131 break;
2132 case MSR_MTRRfix4K_D8000:
2133 env->mtrr_fixed[6] = msrs[i].data;
2134 break;
2135 case MSR_MTRRfix4K_E0000:
2136 env->mtrr_fixed[7] = msrs[i].data;
2137 break;
2138 case MSR_MTRRfix4K_E8000:
2139 env->mtrr_fixed[8] = msrs[i].data;
2140 break;
2141 case MSR_MTRRfix4K_F0000:
2142 env->mtrr_fixed[9] = msrs[i].data;
2143 break;
2144 case MSR_MTRRfix4K_F8000:
2145 env->mtrr_fixed[10] = msrs[i].data;
2146 break;
2147 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT - 1):
2148 if (index & 1) {
2149 env->mtrr_var[MSR_MTRRphysIndex(index)].mask = msrs[i].data;
2150 } else {
2151 env->mtrr_var[MSR_MTRRphysIndex(index)].base = msrs[i].data;
2153 break;
2157 return 0;
2160 static int kvm_put_mp_state(X86CPU *cpu)
2162 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
2164 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
2167 static int kvm_get_mp_state(X86CPU *cpu)
2169 CPUState *cs = CPU(cpu);
2170 CPUX86State *env = &cpu->env;
2171 struct kvm_mp_state mp_state;
2172 int ret;
2174 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
2175 if (ret < 0) {
2176 return ret;
2178 env->mp_state = mp_state.mp_state;
2179 if (kvm_irqchip_in_kernel()) {
2180 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
2182 return 0;
2185 static int kvm_get_apic(X86CPU *cpu)
2187 DeviceState *apic = cpu->apic_state;
2188 struct kvm_lapic_state kapic;
2189 int ret;
2191 if (apic && kvm_irqchip_in_kernel()) {
2192 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
2193 if (ret < 0) {
2194 return ret;
2197 kvm_get_apic_state(apic, &kapic);
2199 return 0;
2202 static int kvm_put_apic(X86CPU *cpu)
2204 DeviceState *apic = cpu->apic_state;
2205 struct kvm_lapic_state kapic;
2207 if (apic && kvm_irqchip_in_kernel()) {
2208 kvm_put_apic_state(apic, &kapic);
2210 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
2212 return 0;
2215 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
2217 CPUState *cs = CPU(cpu);
2218 CPUX86State *env = &cpu->env;
2219 struct kvm_vcpu_events events = {};
2221 if (!kvm_has_vcpu_events()) {
2222 return 0;
2225 events.exception.injected = (env->exception_injected >= 0);
2226 events.exception.nr = env->exception_injected;
2227 events.exception.has_error_code = env->has_error_code;
2228 events.exception.error_code = env->error_code;
2229 events.exception.pad = 0;
2231 events.interrupt.injected = (env->interrupt_injected >= 0);
2232 events.interrupt.nr = env->interrupt_injected;
2233 events.interrupt.soft = env->soft_interrupt;
2235 events.nmi.injected = env->nmi_injected;
2236 events.nmi.pending = env->nmi_pending;
2237 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
2238 events.nmi.pad = 0;
2240 events.sipi_vector = env->sipi_vector;
2242 if (has_msr_smbase) {
2243 events.smi.smm = !!(env->hflags & HF_SMM_MASK);
2244 events.smi.smm_inside_nmi = !!(env->hflags2 & HF2_SMM_INSIDE_NMI_MASK);
2245 if (kvm_irqchip_in_kernel()) {
2246 /* As soon as these are moved to the kernel, remove them
2247 * from cs->interrupt_request.
2249 events.smi.pending = cs->interrupt_request & CPU_INTERRUPT_SMI;
2250 events.smi.latched_init = cs->interrupt_request & CPU_INTERRUPT_INIT;
2251 cs->interrupt_request &= ~(CPU_INTERRUPT_INIT | CPU_INTERRUPT_SMI);
2252 } else {
2253 /* Keep these in cs->interrupt_request. */
2254 events.smi.pending = 0;
2255 events.smi.latched_init = 0;
2257 events.flags |= KVM_VCPUEVENT_VALID_SMM;
2260 events.flags = 0;
2261 if (level >= KVM_PUT_RESET_STATE) {
2262 events.flags |=
2263 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
2266 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
2269 static int kvm_get_vcpu_events(X86CPU *cpu)
2271 CPUX86State *env = &cpu->env;
2272 struct kvm_vcpu_events events;
2273 int ret;
2275 if (!kvm_has_vcpu_events()) {
2276 return 0;
2279 memset(&events, 0, sizeof(events));
2280 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
2281 if (ret < 0) {
2282 return ret;
2284 env->exception_injected =
2285 events.exception.injected ? events.exception.nr : -1;
2286 env->has_error_code = events.exception.has_error_code;
2287 env->error_code = events.exception.error_code;
2289 env->interrupt_injected =
2290 events.interrupt.injected ? events.interrupt.nr : -1;
2291 env->soft_interrupt = events.interrupt.soft;
2293 env->nmi_injected = events.nmi.injected;
2294 env->nmi_pending = events.nmi.pending;
2295 if (events.nmi.masked) {
2296 env->hflags2 |= HF2_NMI_MASK;
2297 } else {
2298 env->hflags2 &= ~HF2_NMI_MASK;
2301 if (events.flags & KVM_VCPUEVENT_VALID_SMM) {
2302 if (events.smi.smm) {
2303 env->hflags |= HF_SMM_MASK;
2304 } else {
2305 env->hflags &= ~HF_SMM_MASK;
2307 if (events.smi.pending) {
2308 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2309 } else {
2310 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
2312 if (events.smi.smm_inside_nmi) {
2313 env->hflags2 |= HF2_SMM_INSIDE_NMI_MASK;
2314 } else {
2315 env->hflags2 &= ~HF2_SMM_INSIDE_NMI_MASK;
2317 if (events.smi.latched_init) {
2318 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2319 } else {
2320 cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_INIT);
2324 env->sipi_vector = events.sipi_vector;
2326 return 0;
2329 static int kvm_guest_debug_workarounds(X86CPU *cpu)
2331 CPUState *cs = CPU(cpu);
2332 CPUX86State *env = &cpu->env;
2333 int ret = 0;
2334 unsigned long reinject_trap = 0;
2336 if (!kvm_has_vcpu_events()) {
2337 if (env->exception_injected == 1) {
2338 reinject_trap = KVM_GUESTDBG_INJECT_DB;
2339 } else if (env->exception_injected == 3) {
2340 reinject_trap = KVM_GUESTDBG_INJECT_BP;
2342 env->exception_injected = -1;
2346 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2347 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2348 * by updating the debug state once again if single-stepping is on.
2349 * Another reason to call kvm_update_guest_debug here is a pending debug
2350 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2351 * reinject them via SET_GUEST_DEBUG.
2353 if (reinject_trap ||
2354 (!kvm_has_robust_singlestep() && cs->singlestep_enabled)) {
2355 ret = kvm_update_guest_debug(cs, reinject_trap);
2357 return ret;
2360 static int kvm_put_debugregs(X86CPU *cpu)
2362 CPUX86State *env = &cpu->env;
2363 struct kvm_debugregs dbgregs;
2364 int i;
2366 if (!kvm_has_debugregs()) {
2367 return 0;
2370 for (i = 0; i < 4; i++) {
2371 dbgregs.db[i] = env->dr[i];
2373 dbgregs.dr6 = env->dr[6];
2374 dbgregs.dr7 = env->dr[7];
2375 dbgregs.flags = 0;
2377 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
2380 static int kvm_get_debugregs(X86CPU *cpu)
2382 CPUX86State *env = &cpu->env;
2383 struct kvm_debugregs dbgregs;
2384 int i, ret;
2386 if (!kvm_has_debugregs()) {
2387 return 0;
2390 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
2391 if (ret < 0) {
2392 return ret;
2394 for (i = 0; i < 4; i++) {
2395 env->dr[i] = dbgregs.db[i];
2397 env->dr[4] = env->dr[6] = dbgregs.dr6;
2398 env->dr[5] = env->dr[7] = dbgregs.dr7;
2400 return 0;
2403 int kvm_arch_put_registers(CPUState *cpu, int level)
2405 X86CPU *x86_cpu = X86_CPU(cpu);
2406 int ret;
2408 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
2410 if (level >= KVM_PUT_RESET_STATE && has_msr_feature_control) {
2411 ret = kvm_put_msr_feature_control(x86_cpu);
2412 if (ret < 0) {
2413 return ret;
2417 ret = kvm_getput_regs(x86_cpu, 1);
2418 if (ret < 0) {
2419 return ret;
2421 ret = kvm_put_xsave(x86_cpu);
2422 if (ret < 0) {
2423 return ret;
2425 ret = kvm_put_xcrs(x86_cpu);
2426 if (ret < 0) {
2427 return ret;
2429 ret = kvm_put_sregs(x86_cpu);
2430 if (ret < 0) {
2431 return ret;
2433 /* must be before kvm_put_msrs */
2434 ret = kvm_inject_mce_oldstyle(x86_cpu);
2435 if (ret < 0) {
2436 return ret;
2438 ret = kvm_put_msrs(x86_cpu, level);
2439 if (ret < 0) {
2440 return ret;
2442 if (level >= KVM_PUT_RESET_STATE) {
2443 ret = kvm_put_mp_state(x86_cpu);
2444 if (ret < 0) {
2445 return ret;
2447 ret = kvm_put_apic(x86_cpu);
2448 if (ret < 0) {
2449 return ret;
2453 ret = kvm_put_tscdeadline_msr(x86_cpu);
2454 if (ret < 0) {
2455 return ret;
2458 ret = kvm_put_vcpu_events(x86_cpu, level);
2459 if (ret < 0) {
2460 return ret;
2462 ret = kvm_put_debugregs(x86_cpu);
2463 if (ret < 0) {
2464 return ret;
2466 /* must be last */
2467 ret = kvm_guest_debug_workarounds(x86_cpu);
2468 if (ret < 0) {
2469 return ret;
2471 return 0;
2474 int kvm_arch_get_registers(CPUState *cs)
2476 X86CPU *cpu = X86_CPU(cs);
2477 int ret;
2479 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
2481 ret = kvm_getput_regs(cpu, 0);
2482 if (ret < 0) {
2483 return ret;
2485 ret = kvm_get_xsave(cpu);
2486 if (ret < 0) {
2487 return ret;
2489 ret = kvm_get_xcrs(cpu);
2490 if (ret < 0) {
2491 return ret;
2493 ret = kvm_get_sregs(cpu);
2494 if (ret < 0) {
2495 return ret;
2497 ret = kvm_get_msrs(cpu);
2498 if (ret < 0) {
2499 return ret;
2501 ret = kvm_get_mp_state(cpu);
2502 if (ret < 0) {
2503 return ret;
2505 ret = kvm_get_apic(cpu);
2506 if (ret < 0) {
2507 return ret;
2509 ret = kvm_get_vcpu_events(cpu);
2510 if (ret < 0) {
2511 return ret;
2513 ret = kvm_get_debugregs(cpu);
2514 if (ret < 0) {
2515 return ret;
2517 return 0;
2520 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
2522 X86CPU *x86_cpu = X86_CPU(cpu);
2523 CPUX86State *env = &x86_cpu->env;
2524 int ret;
2526 /* Inject NMI */
2527 if (cpu->interrupt_request & (CPU_INTERRUPT_NMI | CPU_INTERRUPT_SMI)) {
2528 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
2529 qemu_mutex_lock_iothread();
2530 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
2531 qemu_mutex_unlock_iothread();
2532 DPRINTF("injected NMI\n");
2533 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
2534 if (ret < 0) {
2535 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
2536 strerror(-ret));
2539 if (cpu->interrupt_request & CPU_INTERRUPT_SMI) {
2540 qemu_mutex_lock_iothread();
2541 cpu->interrupt_request &= ~CPU_INTERRUPT_SMI;
2542 qemu_mutex_unlock_iothread();
2543 DPRINTF("injected SMI\n");
2544 ret = kvm_vcpu_ioctl(cpu, KVM_SMI);
2545 if (ret < 0) {
2546 fprintf(stderr, "KVM: injection failed, SMI lost (%s)\n",
2547 strerror(-ret));
2552 if (!kvm_irqchip_in_kernel()) {
2553 qemu_mutex_lock_iothread();
2556 /* Force the VCPU out of its inner loop to process any INIT requests
2557 * or (for userspace APIC, but it is cheap to combine the checks here)
2558 * pending TPR access reports.
2560 if (cpu->interrupt_request & (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
2561 if ((cpu->interrupt_request & CPU_INTERRUPT_INIT) &&
2562 !(env->hflags & HF_SMM_MASK)) {
2563 cpu->exit_request = 1;
2565 if (cpu->interrupt_request & CPU_INTERRUPT_TPR) {
2566 cpu->exit_request = 1;
2570 if (!kvm_irqchip_in_kernel()) {
2571 /* Try to inject an interrupt if the guest can accept it */
2572 if (run->ready_for_interrupt_injection &&
2573 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
2574 (env->eflags & IF_MASK)) {
2575 int irq;
2577 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
2578 irq = cpu_get_pic_interrupt(env);
2579 if (irq >= 0) {
2580 struct kvm_interrupt intr;
2582 intr.irq = irq;
2583 DPRINTF("injected interrupt %d\n", irq);
2584 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
2585 if (ret < 0) {
2586 fprintf(stderr,
2587 "KVM: injection failed, interrupt lost (%s)\n",
2588 strerror(-ret));
2593 /* If we have an interrupt but the guest is not ready to receive an
2594 * interrupt, request an interrupt window exit. This will
2595 * cause a return to userspace as soon as the guest is ready to
2596 * receive interrupts. */
2597 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
2598 run->request_interrupt_window = 1;
2599 } else {
2600 run->request_interrupt_window = 0;
2603 DPRINTF("setting tpr\n");
2604 run->cr8 = cpu_get_apic_tpr(x86_cpu->apic_state);
2606 qemu_mutex_unlock_iothread();
2610 MemTxAttrs kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
2612 X86CPU *x86_cpu = X86_CPU(cpu);
2613 CPUX86State *env = &x86_cpu->env;
2615 if (run->flags & KVM_RUN_X86_SMM) {
2616 env->hflags |= HF_SMM_MASK;
2617 } else {
2618 env->hflags &= HF_SMM_MASK;
2620 if (run->if_flag) {
2621 env->eflags |= IF_MASK;
2622 } else {
2623 env->eflags &= ~IF_MASK;
2626 /* We need to protect the apic state against concurrent accesses from
2627 * different threads in case the userspace irqchip is used. */
2628 if (!kvm_irqchip_in_kernel()) {
2629 qemu_mutex_lock_iothread();
2631 cpu_set_apic_tpr(x86_cpu->apic_state, run->cr8);
2632 cpu_set_apic_base(x86_cpu->apic_state, run->apic_base);
2633 if (!kvm_irqchip_in_kernel()) {
2634 qemu_mutex_unlock_iothread();
2636 return cpu_get_mem_attrs(env);
2639 int kvm_arch_process_async_events(CPUState *cs)
2641 X86CPU *cpu = X86_CPU(cs);
2642 CPUX86State *env = &cpu->env;
2644 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
2645 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2646 assert(env->mcg_cap);
2648 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
2650 kvm_cpu_synchronize_state(cs);
2652 if (env->exception_injected == EXCP08_DBLE) {
2653 /* this means triple fault */
2654 qemu_system_reset_request();
2655 cs->exit_request = 1;
2656 return 0;
2658 env->exception_injected = EXCP12_MCHK;
2659 env->has_error_code = 0;
2661 cs->halted = 0;
2662 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
2663 env->mp_state = KVM_MP_STATE_RUNNABLE;
2667 if ((cs->interrupt_request & CPU_INTERRUPT_INIT) &&
2668 !(env->hflags & HF_SMM_MASK)) {
2669 kvm_cpu_synchronize_state(cs);
2670 do_cpu_init(cpu);
2673 if (kvm_irqchip_in_kernel()) {
2674 return 0;
2677 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
2678 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
2679 apic_poll_irq(cpu->apic_state);
2681 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2682 (env->eflags & IF_MASK)) ||
2683 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2684 cs->halted = 0;
2686 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
2687 kvm_cpu_synchronize_state(cs);
2688 do_cpu_sipi(cpu);
2690 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
2691 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
2692 kvm_cpu_synchronize_state(cs);
2693 apic_handle_tpr_access_report(cpu->apic_state, env->eip,
2694 env->tpr_access_type);
2697 return cs->halted;
2700 static int kvm_handle_halt(X86CPU *cpu)
2702 CPUState *cs = CPU(cpu);
2703 CPUX86State *env = &cpu->env;
2705 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
2706 (env->eflags & IF_MASK)) &&
2707 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
2708 cs->halted = 1;
2709 return EXCP_HLT;
2712 return 0;
2715 static int kvm_handle_tpr_access(X86CPU *cpu)
2717 CPUState *cs = CPU(cpu);
2718 struct kvm_run *run = cs->kvm_run;
2720 apic_handle_tpr_access_report(cpu->apic_state, run->tpr_access.rip,
2721 run->tpr_access.is_write ? TPR_ACCESS_WRITE
2722 : TPR_ACCESS_READ);
2723 return 1;
2726 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2728 static const uint8_t int3 = 0xcc;
2730 if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
2731 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&int3, 1, 1)) {
2732 return -EINVAL;
2734 return 0;
2737 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
2739 uint8_t int3;
2741 if (cpu_memory_rw_debug(cs, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
2742 cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
2743 return -EINVAL;
2745 return 0;
2748 static struct {
2749 target_ulong addr;
2750 int len;
2751 int type;
2752 } hw_breakpoint[4];
2754 static int nb_hw_breakpoint;
2756 static int find_hw_breakpoint(target_ulong addr, int len, int type)
2758 int n;
2760 for (n = 0; n < nb_hw_breakpoint; n++) {
2761 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
2762 (hw_breakpoint[n].len == len || len == -1)) {
2763 return n;
2766 return -1;
2769 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
2770 target_ulong len, int type)
2772 switch (type) {
2773 case GDB_BREAKPOINT_HW:
2774 len = 1;
2775 break;
2776 case GDB_WATCHPOINT_WRITE:
2777 case GDB_WATCHPOINT_ACCESS:
2778 switch (len) {
2779 case 1:
2780 break;
2781 case 2:
2782 case 4:
2783 case 8:
2784 if (addr & (len - 1)) {
2785 return -EINVAL;
2787 break;
2788 default:
2789 return -EINVAL;
2791 break;
2792 default:
2793 return -ENOSYS;
2796 if (nb_hw_breakpoint == 4) {
2797 return -ENOBUFS;
2799 if (find_hw_breakpoint(addr, len, type) >= 0) {
2800 return -EEXIST;
2802 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2803 hw_breakpoint[nb_hw_breakpoint].len = len;
2804 hw_breakpoint[nb_hw_breakpoint].type = type;
2805 nb_hw_breakpoint++;
2807 return 0;
2810 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2811 target_ulong len, int type)
2813 int n;
2815 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2816 if (n < 0) {
2817 return -ENOENT;
2819 nb_hw_breakpoint--;
2820 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2822 return 0;
2825 void kvm_arch_remove_all_hw_breakpoints(void)
2827 nb_hw_breakpoint = 0;
2830 static CPUWatchpoint hw_watchpoint;
2832 static int kvm_handle_debug(X86CPU *cpu,
2833 struct kvm_debug_exit_arch *arch_info)
2835 CPUState *cs = CPU(cpu);
2836 CPUX86State *env = &cpu->env;
2837 int ret = 0;
2838 int n;
2840 if (arch_info->exception == 1) {
2841 if (arch_info->dr6 & (1 << 14)) {
2842 if (cs->singlestep_enabled) {
2843 ret = EXCP_DEBUG;
2845 } else {
2846 for (n = 0; n < 4; n++) {
2847 if (arch_info->dr6 & (1 << n)) {
2848 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2849 case 0x0:
2850 ret = EXCP_DEBUG;
2851 break;
2852 case 0x1:
2853 ret = EXCP_DEBUG;
2854 cs->watchpoint_hit = &hw_watchpoint;
2855 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2856 hw_watchpoint.flags = BP_MEM_WRITE;
2857 break;
2858 case 0x3:
2859 ret = EXCP_DEBUG;
2860 cs->watchpoint_hit = &hw_watchpoint;
2861 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2862 hw_watchpoint.flags = BP_MEM_ACCESS;
2863 break;
2868 } else if (kvm_find_sw_breakpoint(cs, arch_info->pc)) {
2869 ret = EXCP_DEBUG;
2871 if (ret == 0) {
2872 cpu_synchronize_state(cs);
2873 assert(env->exception_injected == -1);
2875 /* pass to guest */
2876 env->exception_injected = arch_info->exception;
2877 env->has_error_code = 0;
2880 return ret;
2883 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2885 const uint8_t type_code[] = {
2886 [GDB_BREAKPOINT_HW] = 0x0,
2887 [GDB_WATCHPOINT_WRITE] = 0x1,
2888 [GDB_WATCHPOINT_ACCESS] = 0x3
2890 const uint8_t len_code[] = {
2891 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2893 int n;
2895 if (kvm_sw_breakpoints_active(cpu)) {
2896 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2898 if (nb_hw_breakpoint > 0) {
2899 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2900 dbg->arch.debugreg[7] = 0x0600;
2901 for (n = 0; n < nb_hw_breakpoint; n++) {
2902 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2903 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2904 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2905 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2910 static bool host_supports_vmx(void)
2912 uint32_t ecx, unused;
2914 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2915 return ecx & CPUID_EXT_VMX;
2918 #define VMX_INVALID_GUEST_STATE 0x80000021
2920 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2922 X86CPU *cpu = X86_CPU(cs);
2923 uint64_t code;
2924 int ret;
2926 switch (run->exit_reason) {
2927 case KVM_EXIT_HLT:
2928 DPRINTF("handle_hlt\n");
2929 qemu_mutex_lock_iothread();
2930 ret = kvm_handle_halt(cpu);
2931 qemu_mutex_unlock_iothread();
2932 break;
2933 case KVM_EXIT_SET_TPR:
2934 ret = 0;
2935 break;
2936 case KVM_EXIT_TPR_ACCESS:
2937 qemu_mutex_lock_iothread();
2938 ret = kvm_handle_tpr_access(cpu);
2939 qemu_mutex_unlock_iothread();
2940 break;
2941 case KVM_EXIT_FAIL_ENTRY:
2942 code = run->fail_entry.hardware_entry_failure_reason;
2943 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2944 code);
2945 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2946 fprintf(stderr,
2947 "\nIf you're running a guest on an Intel machine without "
2948 "unrestricted mode\n"
2949 "support, the failure can be most likely due to the guest "
2950 "entering an invalid\n"
2951 "state for Intel VT. For example, the guest maybe running "
2952 "in big real mode\n"
2953 "which is not supported on less recent Intel processors."
2954 "\n\n");
2956 ret = -1;
2957 break;
2958 case KVM_EXIT_EXCEPTION:
2959 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2960 run->ex.exception, run->ex.error_code);
2961 ret = -1;
2962 break;
2963 case KVM_EXIT_DEBUG:
2964 DPRINTF("kvm_exit_debug\n");
2965 qemu_mutex_lock_iothread();
2966 ret = kvm_handle_debug(cpu, &run->debug.arch);
2967 qemu_mutex_unlock_iothread();
2968 break;
2969 case KVM_EXIT_HYPERV:
2970 ret = kvm_hv_handle_exit(cpu, &run->hyperv);
2971 break;
2972 default:
2973 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2974 ret = -1;
2975 break;
2978 return ret;
2981 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2983 X86CPU *cpu = X86_CPU(cs);
2984 CPUX86State *env = &cpu->env;
2986 kvm_cpu_synchronize_state(cs);
2987 return !(env->cr[0] & CR0_PE_MASK) ||
2988 ((env->segs[R_CS].selector & 3) != 3);
2991 void kvm_arch_init_irq_routing(KVMState *s)
2993 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2994 /* If kernel can't do irq routing, interrupt source
2995 * override 0->2 cannot be set up as required by HPET.
2996 * So we have to disable it.
2998 no_hpet = 1;
3000 /* We know at this point that we're using the in-kernel
3001 * irqchip, so we can use irqfds, and on x86 we know
3002 * we can use msi via irqfd and GSI routing.
3004 kvm_msi_via_irqfd_allowed = true;
3005 kvm_gsi_routing_allowed = true;
3008 /* Classic KVM device assignment interface. Will remain x86 only. */
3009 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
3010 uint32_t flags, uint32_t *dev_id)
3012 struct kvm_assigned_pci_dev dev_data = {
3013 .segnr = dev_addr->domain,
3014 .busnr = dev_addr->bus,
3015 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
3016 .flags = flags,
3018 int ret;
3020 dev_data.assigned_dev_id =
3021 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
3023 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
3024 if (ret < 0) {
3025 return ret;
3028 *dev_id = dev_data.assigned_dev_id;
3030 return 0;
3033 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
3035 struct kvm_assigned_pci_dev dev_data = {
3036 .assigned_dev_id = dev_id,
3039 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
3042 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
3043 uint32_t irq_type, uint32_t guest_irq)
3045 struct kvm_assigned_irq assigned_irq = {
3046 .assigned_dev_id = dev_id,
3047 .guest_irq = guest_irq,
3048 .flags = irq_type,
3051 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
3052 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
3053 } else {
3054 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
3058 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
3059 uint32_t guest_irq)
3061 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
3062 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
3064 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
3067 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
3069 struct kvm_assigned_pci_dev dev_data = {
3070 .assigned_dev_id = dev_id,
3071 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
3074 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
3077 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
3078 uint32_t type)
3080 struct kvm_assigned_irq assigned_irq = {
3081 .assigned_dev_id = dev_id,
3082 .flags = type,
3085 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
3088 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
3090 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
3091 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
3094 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
3096 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
3097 KVM_DEV_IRQ_GUEST_MSI, virq);
3100 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
3102 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
3103 KVM_DEV_IRQ_HOST_MSI);
3106 bool kvm_device_msix_supported(KVMState *s)
3108 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3109 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3110 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
3113 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
3114 uint32_t nr_vectors)
3116 struct kvm_assigned_msix_nr msix_nr = {
3117 .assigned_dev_id = dev_id,
3118 .entry_nr = nr_vectors,
3121 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
3124 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
3125 int virq)
3127 struct kvm_assigned_msix_entry msix_entry = {
3128 .assigned_dev_id = dev_id,
3129 .gsi = virq,
3130 .entry = vector,
3133 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
3136 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
3138 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
3139 KVM_DEV_IRQ_GUEST_MSIX, 0);
3142 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
3144 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
3145 KVM_DEV_IRQ_HOST_MSIX);
3148 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
3149 uint64_t address, uint32_t data, PCIDevice *dev)
3151 return 0;
3154 int kvm_arch_msi_data_to_gsi(uint32_t data)
3156 abort();