target-arm: Add write_type argument to cpsr_write()
[qemu.git] / target-arm / op_helper.c
blob543d33aad2db733a9c04050dfbcecc45f994a21c
1 /*
2 * ARM helper routines
4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/cpu_ldst.h"
25 #define SIGNBIT (uint32_t)0x80000000
26 #define SIGNBIT64 ((uint64_t)1 << 63)
28 static void raise_exception(CPUARMState *env, uint32_t excp,
29 uint32_t syndrome, uint32_t target_el)
31 CPUState *cs = CPU(arm_env_get_cpu(env));
33 assert(!excp_is_internal(excp));
34 cs->exception_index = excp;
35 env->exception.syndrome = syndrome;
36 env->exception.target_el = target_el;
37 cpu_loop_exit(cs);
40 static int exception_target_el(CPUARMState *env)
42 int target_el = MAX(1, arm_current_el(env));
44 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
45 * to EL3 in this case.
47 if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
48 target_el = 3;
51 return target_el;
54 uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
55 uint32_t rn, uint32_t maxindex)
57 uint32_t val;
58 uint32_t tmp;
59 int index;
60 int shift;
61 uint64_t *table;
62 table = (uint64_t *)&env->vfp.regs[rn];
63 val = 0;
64 for (shift = 0; shift < 32; shift += 8) {
65 index = (ireg >> shift) & 0xff;
66 if (index < maxindex) {
67 tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
68 val |= tmp << shift;
69 } else {
70 val |= def & (0xff << shift);
73 return val;
76 #if !defined(CONFIG_USER_ONLY)
78 /* try to fill the TLB and return an exception if error. If retaddr is
79 * NULL, it means that the function was called in C code (i.e. not
80 * from generated code or from helper.c)
82 void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
83 uintptr_t retaddr)
85 bool ret;
86 uint32_t fsr = 0;
87 ARMMMUFaultInfo fi = {};
89 ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
90 if (unlikely(ret)) {
91 ARMCPU *cpu = ARM_CPU(cs);
92 CPUARMState *env = &cpu->env;
93 uint32_t syn, exc;
94 unsigned int target_el;
95 bool same_el;
97 if (retaddr) {
98 /* now we have a real cpu fault */
99 cpu_restore_state(cs, retaddr);
102 target_el = exception_target_el(env);
103 if (fi.stage2) {
104 target_el = 2;
105 env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
107 same_el = arm_current_el(env) == target_el;
108 /* AArch64 syndrome does not have an LPAE bit */
109 syn = fsr & ~(1 << 9);
111 /* For insn and data aborts we assume there is no instruction syndrome
112 * information; this is always true for exceptions reported to EL1.
114 if (is_write == 2) {
115 syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
116 exc = EXCP_PREFETCH_ABORT;
117 } else {
118 syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn);
119 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
120 fsr |= (1 << 11);
122 exc = EXCP_DATA_ABORT;
125 env->exception.vaddress = addr;
126 env->exception.fsr = fsr;
127 raise_exception(env, exc, syn, target_el);
131 /* Raise a data fault alignment exception for the specified virtual address */
132 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr, int is_write,
133 int is_user, uintptr_t retaddr)
135 ARMCPU *cpu = ARM_CPU(cs);
136 CPUARMState *env = &cpu->env;
137 int target_el;
138 bool same_el;
140 if (retaddr) {
141 /* now we have a real cpu fault */
142 cpu_restore_state(cs, retaddr);
145 target_el = exception_target_el(env);
146 same_el = (arm_current_el(env) == target_el);
148 env->exception.vaddress = vaddr;
150 /* the DFSR for an alignment fault depends on whether we're using
151 * the LPAE long descriptor format, or the short descriptor format
153 if (arm_s1_regime_using_lpae_format(env, cpu_mmu_index(env, false))) {
154 env->exception.fsr = 0x21;
155 } else {
156 env->exception.fsr = 0x1;
159 if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
160 env->exception.fsr |= (1 << 11);
163 raise_exception(env, EXCP_DATA_ABORT,
164 syn_data_abort(same_el, 0, 0, 0, is_write == 1, 0x21),
165 target_el);
168 #endif /* !defined(CONFIG_USER_ONLY) */
170 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
172 uint32_t res = a + b;
173 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
174 env->QF = 1;
175 return res;
178 uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
180 uint32_t res = a + b;
181 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
182 env->QF = 1;
183 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
185 return res;
188 uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
190 uint32_t res = a - b;
191 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
192 env->QF = 1;
193 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
195 return res;
198 uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
200 uint32_t res;
201 if (val >= 0x40000000) {
202 res = ~SIGNBIT;
203 env->QF = 1;
204 } else if (val <= (int32_t)0xc0000000) {
205 res = SIGNBIT;
206 env->QF = 1;
207 } else {
208 res = val << 1;
210 return res;
213 uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
215 uint32_t res = a + b;
216 if (res < a) {
217 env->QF = 1;
218 res = ~0;
220 return res;
223 uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
225 uint32_t res = a - b;
226 if (res > a) {
227 env->QF = 1;
228 res = 0;
230 return res;
233 /* Signed saturation. */
234 static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
236 int32_t top;
237 uint32_t mask;
239 top = val >> shift;
240 mask = (1u << shift) - 1;
241 if (top > 0) {
242 env->QF = 1;
243 return mask;
244 } else if (top < -1) {
245 env->QF = 1;
246 return ~mask;
248 return val;
251 /* Unsigned saturation. */
252 static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
254 uint32_t max;
256 max = (1u << shift) - 1;
257 if (val < 0) {
258 env->QF = 1;
259 return 0;
260 } else if (val > max) {
261 env->QF = 1;
262 return max;
264 return val;
267 /* Signed saturate. */
268 uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
270 return do_ssat(env, x, shift);
273 /* Dual halfword signed saturate. */
274 uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
276 uint32_t res;
278 res = (uint16_t)do_ssat(env, (int16_t)x, shift);
279 res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
280 return res;
283 /* Unsigned saturate. */
284 uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
286 return do_usat(env, x, shift);
289 /* Dual halfword unsigned saturate. */
290 uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
292 uint32_t res;
294 res = (uint16_t)do_usat(env, (int16_t)x, shift);
295 res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
296 return res;
299 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
300 * The function returns the target EL (1-3) if the instruction is to be trapped;
301 * otherwise it returns 0 indicating it is not trapped.
303 static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
305 int cur_el = arm_current_el(env);
306 uint64_t mask;
308 /* If we are currently in EL0 then we need to check if SCTLR is set up for
309 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
311 if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
312 int target_el;
314 mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
315 if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
316 /* Secure EL0 and Secure PL1 is at EL3 */
317 target_el = 3;
318 } else {
319 target_el = 1;
322 if (!(env->cp15.sctlr_el[target_el] & mask)) {
323 return target_el;
327 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
328 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
329 * bits will be zero indicating no trap.
331 if (cur_el < 2 && !arm_is_secure(env)) {
332 mask = (is_wfe) ? HCR_TWE : HCR_TWI;
333 if (env->cp15.hcr_el2 & mask) {
334 return 2;
338 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
339 if (cur_el < 3) {
340 mask = (is_wfe) ? SCR_TWE : SCR_TWI;
341 if (env->cp15.scr_el3 & mask) {
342 return 3;
346 return 0;
349 void HELPER(wfi)(CPUARMState *env)
351 CPUState *cs = CPU(arm_env_get_cpu(env));
352 int target_el = check_wfx_trap(env, false);
354 if (cpu_has_work(cs)) {
355 /* Don't bother to go into our "low power state" if
356 * we would just wake up immediately.
358 return;
361 if (target_el) {
362 env->pc -= 4;
363 raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
366 cs->exception_index = EXCP_HLT;
367 cs->halted = 1;
368 cpu_loop_exit(cs);
371 void HELPER(wfe)(CPUARMState *env)
373 /* This is a hint instruction that is semantically different
374 * from YIELD even though we currently implement it identically.
375 * Don't actually halt the CPU, just yield back to top
376 * level loop. This is not going into a "low power state"
377 * (ie halting until some event occurs), so we never take
378 * a configurable trap to a different exception level.
380 HELPER(yield)(env);
383 void HELPER(yield)(CPUARMState *env)
385 ARMCPU *cpu = arm_env_get_cpu(env);
386 CPUState *cs = CPU(cpu);
388 /* This is a non-trappable hint instruction that generally indicates
389 * that the guest is currently busy-looping. Yield control back to the
390 * top level loop so that a more deserving VCPU has a chance to run.
392 cs->exception_index = EXCP_YIELD;
393 cpu_loop_exit(cs);
396 /* Raise an internal-to-QEMU exception. This is limited to only
397 * those EXCP values which are special cases for QEMU to interrupt
398 * execution and not to be used for exceptions which are passed to
399 * the guest (those must all have syndrome information and thus should
400 * use exception_with_syndrome).
402 void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
404 CPUState *cs = CPU(arm_env_get_cpu(env));
406 assert(excp_is_internal(excp));
407 cs->exception_index = excp;
408 cpu_loop_exit(cs);
411 /* Raise an exception with the specified syndrome register value */
412 void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
413 uint32_t syndrome, uint32_t target_el)
415 raise_exception(env, excp, syndrome, target_el);
418 uint32_t HELPER(cpsr_read)(CPUARMState *env)
420 return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
423 void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
425 cpsr_write(env, val, mask, CPSRWriteByInstr);
428 /* Write the CPSR for a 32-bit exception return */
429 void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
431 cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
434 /* Access to user mode registers from privileged modes. */
435 uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
437 uint32_t val;
439 if (regno == 13) {
440 val = env->banked_r13[BANK_USRSYS];
441 } else if (regno == 14) {
442 val = env->banked_r14[BANK_USRSYS];
443 } else if (regno >= 8
444 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
445 val = env->usr_regs[regno - 8];
446 } else {
447 val = env->regs[regno];
449 return val;
452 void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
454 if (regno == 13) {
455 env->banked_r13[BANK_USRSYS] = val;
456 } else if (regno == 14) {
457 env->banked_r14[BANK_USRSYS] = val;
458 } else if (regno >= 8
459 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
460 env->usr_regs[regno - 8] = val;
461 } else {
462 env->regs[regno] = val;
466 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
468 if ((env->uncached_cpsr & CPSR_M) == mode) {
469 env->regs[13] = val;
470 } else {
471 env->banked_r13[bank_number(mode)] = val;
475 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
477 if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
478 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
479 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
481 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
482 exception_target_el(env));
485 if ((env->uncached_cpsr & CPSR_M) == mode) {
486 return env->regs[13];
487 } else {
488 return env->banked_r13[bank_number(mode)];
492 void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
493 uint32_t isread)
495 const ARMCPRegInfo *ri = rip;
496 int target_el;
498 if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
499 && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
500 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
503 if (!ri->accessfn) {
504 return;
507 switch (ri->accessfn(env, ri, isread)) {
508 case CP_ACCESS_OK:
509 return;
510 case CP_ACCESS_TRAP:
511 target_el = exception_target_el(env);
512 break;
513 case CP_ACCESS_TRAP_EL2:
514 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
515 * a bug in the access function.
517 assert(!arm_is_secure(env) && arm_current_el(env) != 3);
518 target_el = 2;
519 break;
520 case CP_ACCESS_TRAP_EL3:
521 target_el = 3;
522 break;
523 case CP_ACCESS_TRAP_UNCATEGORIZED:
524 target_el = exception_target_el(env);
525 syndrome = syn_uncategorized();
526 break;
527 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
528 target_el = 2;
529 syndrome = syn_uncategorized();
530 break;
531 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
532 target_el = 3;
533 syndrome = syn_uncategorized();
534 break;
535 case CP_ACCESS_TRAP_FP_EL2:
536 target_el = 2;
537 /* Since we are an implementation that takes exceptions on a trapped
538 * conditional insn only if the insn has passed its condition code
539 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
540 * (which is also the required value for AArch64 traps).
542 syndrome = syn_fp_access_trap(1, 0xe, false);
543 break;
544 case CP_ACCESS_TRAP_FP_EL3:
545 target_el = 3;
546 syndrome = syn_fp_access_trap(1, 0xe, false);
547 break;
548 default:
549 g_assert_not_reached();
552 raise_exception(env, EXCP_UDEF, syndrome, target_el);
555 void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
557 const ARMCPRegInfo *ri = rip;
559 ri->writefn(env, ri, value);
562 uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
564 const ARMCPRegInfo *ri = rip;
566 return ri->readfn(env, ri);
569 void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
571 const ARMCPRegInfo *ri = rip;
573 ri->writefn(env, ri, value);
576 uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
578 const ARMCPRegInfo *ri = rip;
580 return ri->readfn(env, ri);
583 void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
585 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
586 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
587 * to catch that case at translate time.
589 if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
590 uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
591 extract32(op, 3, 3), 4,
592 imm, 0x1f, 0);
593 raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
596 switch (op) {
597 case 0x05: /* SPSel */
598 update_spsel(env, imm);
599 break;
600 case 0x1e: /* DAIFSet */
601 env->daif |= (imm << 6) & PSTATE_DAIF;
602 break;
603 case 0x1f: /* DAIFClear */
604 env->daif &= ~((imm << 6) & PSTATE_DAIF);
605 break;
606 default:
607 g_assert_not_reached();
611 void HELPER(clear_pstate_ss)(CPUARMState *env)
613 env->pstate &= ~PSTATE_SS;
616 void HELPER(pre_hvc)(CPUARMState *env)
618 ARMCPU *cpu = arm_env_get_cpu(env);
619 int cur_el = arm_current_el(env);
620 /* FIXME: Use actual secure state. */
621 bool secure = false;
622 bool undef;
624 if (arm_is_psci_call(cpu, EXCP_HVC)) {
625 /* If PSCI is enabled and this looks like a valid PSCI call then
626 * that overrides the architecturally mandated HVC behaviour.
628 return;
631 if (!arm_feature(env, ARM_FEATURE_EL2)) {
632 /* If EL2 doesn't exist, HVC always UNDEFs */
633 undef = true;
634 } else if (arm_feature(env, ARM_FEATURE_EL3)) {
635 /* EL3.HCE has priority over EL2.HCD. */
636 undef = !(env->cp15.scr_el3 & SCR_HCE);
637 } else {
638 undef = env->cp15.hcr_el2 & HCR_HCD;
641 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
642 * For ARMv8/AArch64, HVC is allowed in EL3.
643 * Note that we've already trapped HVC from EL0 at translation
644 * time.
646 if (secure && (!is_a64(env) || cur_el == 1)) {
647 undef = true;
650 if (undef) {
651 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
652 exception_target_el(env));
656 void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
658 ARMCPU *cpu = arm_env_get_cpu(env);
659 int cur_el = arm_current_el(env);
660 bool secure = arm_is_secure(env);
661 bool smd = env->cp15.scr_el3 & SCR_SMD;
662 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
663 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
664 * extensions, SMD only applies to NS state.
665 * On ARMv7 without the Virtualization extensions, the SMD bit
666 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
667 * so we need not special case this here.
669 bool undef = arm_feature(env, ARM_FEATURE_AARCH64) ? smd : smd && !secure;
671 if (arm_is_psci_call(cpu, EXCP_SMC)) {
672 /* If PSCI is enabled and this looks like a valid PSCI call then
673 * that overrides the architecturally mandated SMC behaviour.
675 return;
678 if (!arm_feature(env, ARM_FEATURE_EL3)) {
679 /* If we have no EL3 then SMC always UNDEFs */
680 undef = true;
681 } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
682 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
683 raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
686 if (undef) {
687 raise_exception(env, EXCP_UDEF, syn_uncategorized(),
688 exception_target_el(env));
692 static int el_from_spsr(uint32_t spsr)
694 /* Return the exception level that this SPSR is requesting a return to,
695 * or -1 if it is invalid (an illegal return)
697 if (spsr & PSTATE_nRW) {
698 switch (spsr & CPSR_M) {
699 case ARM_CPU_MODE_USR:
700 return 0;
701 case ARM_CPU_MODE_HYP:
702 return 2;
703 case ARM_CPU_MODE_FIQ:
704 case ARM_CPU_MODE_IRQ:
705 case ARM_CPU_MODE_SVC:
706 case ARM_CPU_MODE_ABT:
707 case ARM_CPU_MODE_UND:
708 case ARM_CPU_MODE_SYS:
709 return 1;
710 case ARM_CPU_MODE_MON:
711 /* Returning to Mon from AArch64 is never possible,
712 * so this is an illegal return.
714 default:
715 return -1;
717 } else {
718 if (extract32(spsr, 1, 1)) {
719 /* Return with reserved M[1] bit set */
720 return -1;
722 if (extract32(spsr, 0, 4) == 1) {
723 /* return to EL0 with M[0] bit set */
724 return -1;
726 return extract32(spsr, 2, 2);
730 void HELPER(exception_return)(CPUARMState *env)
732 int cur_el = arm_current_el(env);
733 unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
734 uint32_t spsr = env->banked_spsr[spsr_idx];
735 int new_el;
736 bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
738 aarch64_save_sp(env, cur_el);
740 env->exclusive_addr = -1;
742 /* We must squash the PSTATE.SS bit to zero unless both of the
743 * following hold:
744 * 1. debug exceptions are currently disabled
745 * 2. singlestep will be active in the EL we return to
746 * We check 1 here and 2 after we've done the pstate/cpsr write() to
747 * transition to the EL we're going to.
749 if (arm_generate_debug_exceptions(env)) {
750 spsr &= ~PSTATE_SS;
753 new_el = el_from_spsr(spsr);
754 if (new_el == -1) {
755 goto illegal_return;
757 if (new_el > cur_el
758 || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
759 /* Disallow return to an EL which is unimplemented or higher
760 * than the current one.
762 goto illegal_return;
765 if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
766 /* Return to an EL which is configured for a different register width */
767 goto illegal_return;
770 if (new_el == 2 && arm_is_secure_below_el3(env)) {
771 /* Return to the non-existent secure-EL2 */
772 goto illegal_return;
775 if (new_el == 1 && (env->cp15.hcr_el2 & HCR_TGE)
776 && !arm_is_secure_below_el3(env)) {
777 goto illegal_return;
780 if (!return_to_aa64) {
781 env->aarch64 = 0;
782 env->uncached_cpsr = spsr & CPSR_M;
783 cpsr_write(env, spsr, ~0, CPSRWriteRaw);
784 if (!arm_singlestep_active(env)) {
785 env->uncached_cpsr &= ~PSTATE_SS;
787 aarch64_sync_64_to_32(env);
789 if (spsr & CPSR_T) {
790 env->regs[15] = env->elr_el[cur_el] & ~0x1;
791 } else {
792 env->regs[15] = env->elr_el[cur_el] & ~0x3;
794 } else {
795 env->aarch64 = 1;
796 pstate_write(env, spsr);
797 if (!arm_singlestep_active(env)) {
798 env->pstate &= ~PSTATE_SS;
800 aarch64_restore_sp(env, new_el);
801 env->pc = env->elr_el[cur_el];
804 return;
806 illegal_return:
807 /* Illegal return events of various kinds have architecturally
808 * mandated behaviour:
809 * restore NZCV and DAIF from SPSR_ELx
810 * set PSTATE.IL
811 * restore PC from ELR_ELx
812 * no change to exception level, execution state or stack pointer
814 env->pstate |= PSTATE_IL;
815 env->pc = env->elr_el[cur_el];
816 spsr &= PSTATE_NZCV | PSTATE_DAIF;
817 spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
818 pstate_write(env, spsr);
819 if (!arm_singlestep_active(env)) {
820 env->pstate &= ~PSTATE_SS;
824 /* Return true if the linked breakpoint entry lbn passes its checks */
825 static bool linked_bp_matches(ARMCPU *cpu, int lbn)
827 CPUARMState *env = &cpu->env;
828 uint64_t bcr = env->cp15.dbgbcr[lbn];
829 int brps = extract32(cpu->dbgdidr, 24, 4);
830 int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
831 int bt;
832 uint32_t contextidr;
834 /* Links to unimplemented or non-context aware breakpoints are
835 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
836 * as if linked to an UNKNOWN context-aware breakpoint (in which
837 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
838 * We choose the former.
840 if (lbn > brps || lbn < (brps - ctx_cmps)) {
841 return false;
844 bcr = env->cp15.dbgbcr[lbn];
846 if (extract64(bcr, 0, 1) == 0) {
847 /* Linked breakpoint disabled : generate no events */
848 return false;
851 bt = extract64(bcr, 20, 4);
853 /* We match the whole register even if this is AArch32 using the
854 * short descriptor format (in which case it holds both PROCID and ASID),
855 * since we don't implement the optional v7 context ID masking.
857 contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
859 switch (bt) {
860 case 3: /* linked context ID match */
861 if (arm_current_el(env) > 1) {
862 /* Context matches never fire in EL2 or (AArch64) EL3 */
863 return false;
865 return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
866 case 5: /* linked address mismatch (reserved in AArch64) */
867 case 9: /* linked VMID match (reserved if no EL2) */
868 case 11: /* linked context ID and VMID match (reserved if no EL2) */
869 default:
870 /* Links to Unlinked context breakpoints must generate no
871 * events; we choose to do the same for reserved values too.
873 return false;
876 return false;
879 static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
881 CPUARMState *env = &cpu->env;
882 uint64_t cr;
883 int pac, hmc, ssc, wt, lbn;
884 /* Note that for watchpoints the check is against the CPU security
885 * state, not the S/NS attribute on the offending data access.
887 bool is_secure = arm_is_secure(env);
888 int access_el = arm_current_el(env);
890 if (is_wp) {
891 CPUWatchpoint *wp = env->cpu_watchpoint[n];
893 if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
894 return false;
896 cr = env->cp15.dbgwcr[n];
897 if (wp->hitattrs.user) {
898 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
899 * match watchpoints as if they were accesses done at EL0, even if
900 * the CPU is at EL1 or higher.
902 access_el = 0;
904 } else {
905 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
907 if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
908 return false;
910 cr = env->cp15.dbgbcr[n];
912 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
913 * enabled and that the address and access type match; for breakpoints
914 * we know the address matched; check the remaining fields, including
915 * linked breakpoints. We rely on WCR and BCR having the same layout
916 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
917 * Note that some combinations of {PAC, HMC, SSC} are reserved and
918 * must act either like some valid combination or as if the watchpoint
919 * were disabled. We choose the former, and use this together with
920 * the fact that EL3 must always be Secure and EL2 must always be
921 * Non-Secure to simplify the code slightly compared to the full
922 * table in the ARM ARM.
924 pac = extract64(cr, 1, 2);
925 hmc = extract64(cr, 13, 1);
926 ssc = extract64(cr, 14, 2);
928 switch (ssc) {
929 case 0:
930 break;
931 case 1:
932 case 3:
933 if (is_secure) {
934 return false;
936 break;
937 case 2:
938 if (!is_secure) {
939 return false;
941 break;
944 switch (access_el) {
945 case 3:
946 case 2:
947 if (!hmc) {
948 return false;
950 break;
951 case 1:
952 if (extract32(pac, 0, 1) == 0) {
953 return false;
955 break;
956 case 0:
957 if (extract32(pac, 1, 1) == 0) {
958 return false;
960 break;
961 default:
962 g_assert_not_reached();
965 wt = extract64(cr, 20, 1);
966 lbn = extract64(cr, 16, 4);
968 if (wt && !linked_bp_matches(cpu, lbn)) {
969 return false;
972 return true;
975 static bool check_watchpoints(ARMCPU *cpu)
977 CPUARMState *env = &cpu->env;
978 int n;
980 /* If watchpoints are disabled globally or we can't take debug
981 * exceptions here then watchpoint firings are ignored.
983 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
984 || !arm_generate_debug_exceptions(env)) {
985 return false;
988 for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
989 if (bp_wp_matches(cpu, n, true)) {
990 return true;
993 return false;
996 static bool check_breakpoints(ARMCPU *cpu)
998 CPUARMState *env = &cpu->env;
999 int n;
1001 /* If breakpoints are disabled globally or we can't take debug
1002 * exceptions here then breakpoint firings are ignored.
1004 if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
1005 || !arm_generate_debug_exceptions(env)) {
1006 return false;
1009 for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
1010 if (bp_wp_matches(cpu, n, false)) {
1011 return true;
1014 return false;
1017 void HELPER(check_breakpoints)(CPUARMState *env)
1019 ARMCPU *cpu = arm_env_get_cpu(env);
1021 if (check_breakpoints(cpu)) {
1022 HELPER(exception_internal(env, EXCP_DEBUG));
1026 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
1028 /* Called by core code when a CPU watchpoint fires; need to check if this
1029 * is also an architectural watchpoint match.
1031 ARMCPU *cpu = ARM_CPU(cs);
1033 return check_watchpoints(cpu);
1036 void arm_debug_excp_handler(CPUState *cs)
1038 /* Called by core code when a watchpoint or breakpoint fires;
1039 * need to check which one and raise the appropriate exception.
1041 ARMCPU *cpu = ARM_CPU(cs);
1042 CPUARMState *env = &cpu->env;
1043 CPUWatchpoint *wp_hit = cs->watchpoint_hit;
1045 if (wp_hit) {
1046 if (wp_hit->flags & BP_CPU) {
1047 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
1048 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
1050 cs->watchpoint_hit = NULL;
1052 if (extended_addresses_enabled(env)) {
1053 env->exception.fsr = (1 << 9) | 0x22;
1054 } else {
1055 env->exception.fsr = 0x2;
1057 env->exception.vaddress = wp_hit->hitaddr;
1058 raise_exception(env, EXCP_DATA_ABORT,
1059 syn_watchpoint(same_el, 0, wnr),
1060 arm_debug_target_el(env));
1062 } else {
1063 uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
1064 bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
1066 /* (1) GDB breakpoints should be handled first.
1067 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1068 * since singlestep is also done by generating a debug internal
1069 * exception.
1071 if (cpu_breakpoint_test(cs, pc, BP_GDB)
1072 || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
1073 return;
1076 if (extended_addresses_enabled(env)) {
1077 env->exception.fsr = (1 << 9) | 0x22;
1078 } else {
1079 env->exception.fsr = 0x2;
1081 /* FAR is UNKNOWN, so doesn't need setting */
1082 raise_exception(env, EXCP_PREFETCH_ABORT,
1083 syn_breakpoint(same_el),
1084 arm_debug_target_el(env));
1088 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1089 The only way to do that in TCG is a conditional branch, which clobbers
1090 all our temporaries. For now implement these as helper functions. */
1092 /* Similarly for variable shift instructions. */
1094 uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1096 int shift = i & 0xff;
1097 if (shift >= 32) {
1098 if (shift == 32)
1099 env->CF = x & 1;
1100 else
1101 env->CF = 0;
1102 return 0;
1103 } else if (shift != 0) {
1104 env->CF = (x >> (32 - shift)) & 1;
1105 return x << shift;
1107 return x;
1110 uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1112 int shift = i & 0xff;
1113 if (shift >= 32) {
1114 if (shift == 32)
1115 env->CF = (x >> 31) & 1;
1116 else
1117 env->CF = 0;
1118 return 0;
1119 } else if (shift != 0) {
1120 env->CF = (x >> (shift - 1)) & 1;
1121 return x >> shift;
1123 return x;
1126 uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1128 int shift = i & 0xff;
1129 if (shift >= 32) {
1130 env->CF = (x >> 31) & 1;
1131 return (int32_t)x >> 31;
1132 } else if (shift != 0) {
1133 env->CF = (x >> (shift - 1)) & 1;
1134 return (int32_t)x >> shift;
1136 return x;
1139 uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
1141 int shift1, shift;
1142 shift1 = i & 0xff;
1143 shift = shift1 & 0x1f;
1144 if (shift == 0) {
1145 if (shift1 != 0)
1146 env->CF = (x >> 31) & 1;
1147 return x;
1148 } else {
1149 env->CF = (x >> (shift - 1)) & 1;
1150 return ((uint32_t)x >> shift) | (x << (32 - shift));