spapr: Pass the maximum number of vCPUs to the KVM interrupt controller
[qemu.git] / hw / intc / spapr_xive.c
blob18a043a277f22f9f20dc9d9a5b4d29d66ad1832e
1 /*
2 * QEMU PowerPC sPAPR XIVE interrupt controller model
4 * Copyright (c) 2017-2018, IBM Corporation.
6 * This code is licensed under the GPL version 2 or later. See the
7 * COPYING file in the top-level directory.
8 */
10 #include "qemu/osdep.h"
11 #include "qemu/log.h"
12 #include "qemu/module.h"
13 #include "qapi/error.h"
14 #include "qemu/error-report.h"
15 #include "target/ppc/cpu.h"
16 #include "sysemu/cpus.h"
17 #include "sysemu/reset.h"
18 #include "migration/vmstate.h"
19 #include "monitor/monitor.h"
20 #include "hw/ppc/fdt.h"
21 #include "hw/ppc/spapr.h"
22 #include "hw/ppc/spapr_cpu_core.h"
23 #include "hw/ppc/spapr_xive.h"
24 #include "hw/ppc/xive.h"
25 #include "hw/ppc/xive_regs.h"
26 #include "hw/qdev-properties.h"
29 * XIVE Virtualization Controller BAR and Thread Managment BAR that we
30 * use for the ESB pages and the TIMA pages
32 #define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
33 #define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
36 * The allocation of VP blocks is a complex operation in OPAL and the
37 * VP identifiers have a relation with the number of HW chips, the
38 * size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
39 * controller model does not have the same constraints and can use a
40 * simple mapping scheme of the CPU vcpu_id
42 * These identifiers are never returned to the OS.
45 #define SPAPR_XIVE_NVT_BASE 0x400
48 * sPAPR NVT and END indexing helpers
50 static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
52 return nvt_idx - SPAPR_XIVE_NVT_BASE;
55 static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
56 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
58 assert(cpu);
60 if (out_nvt_blk) {
61 *out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
64 if (out_nvt_blk) {
65 *out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
69 static int spapr_xive_target_to_nvt(uint32_t target,
70 uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
72 PowerPCCPU *cpu = spapr_find_cpu(target);
74 if (!cpu) {
75 return -1;
78 spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
79 return 0;
83 * sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
84 * priorities per CPU
86 int spapr_xive_end_to_target(uint8_t end_blk, uint32_t end_idx,
87 uint32_t *out_server, uint8_t *out_prio)
90 assert(end_blk == SPAPR_XIVE_BLOCK_ID);
92 if (out_server) {
93 *out_server = end_idx >> 3;
96 if (out_prio) {
97 *out_prio = end_idx & 0x7;
99 return 0;
102 static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
103 uint8_t *out_end_blk, uint32_t *out_end_idx)
105 assert(cpu);
107 if (out_end_blk) {
108 *out_end_blk = SPAPR_XIVE_BLOCK_ID;
111 if (out_end_idx) {
112 *out_end_idx = (cpu->vcpu_id << 3) + prio;
116 static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
117 uint8_t *out_end_blk, uint32_t *out_end_idx)
119 PowerPCCPU *cpu = spapr_find_cpu(target);
121 if (!cpu) {
122 return -1;
125 spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
126 return 0;
130 * On sPAPR machines, use a simplified output for the XIVE END
131 * structure dumping only the information related to the OS EQ.
133 static void spapr_xive_end_pic_print_info(SpaprXive *xive, XiveEND *end,
134 Monitor *mon)
136 uint64_t qaddr_base = xive_end_qaddr(end);
137 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
138 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
139 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
140 uint32_t qentries = 1 << (qsize + 10);
141 uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
142 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
144 monitor_printf(mon, "%3d/%d % 6d/%5d @%"PRIx64" ^%d",
145 spapr_xive_nvt_to_target(0, nvt),
146 priority, qindex, qentries, qaddr_base, qgen);
148 xive_end_queue_pic_print_info(end, 6, mon);
151 void spapr_xive_pic_print_info(SpaprXive *xive, Monitor *mon)
153 XiveSource *xsrc = &xive->source;
154 int i;
156 if (kvm_irqchip_in_kernel()) {
157 Error *local_err = NULL;
159 kvmppc_xive_synchronize_state(xive, &local_err);
160 if (local_err) {
161 error_report_err(local_err);
162 return;
166 monitor_printf(mon, " LISN PQ EISN CPU/PRIO EQ\n");
168 for (i = 0; i < xive->nr_irqs; i++) {
169 uint8_t pq = xive_source_esb_get(xsrc, i);
170 XiveEAS *eas = &xive->eat[i];
172 if (!xive_eas_is_valid(eas)) {
173 continue;
176 monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
177 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
178 pq & XIVE_ESB_VAL_P ? 'P' : '-',
179 pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
180 xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
181 xive_eas_is_masked(eas) ? "M" : " ",
182 (int) xive_get_field64(EAS_END_DATA, eas->w));
184 if (!xive_eas_is_masked(eas)) {
185 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
186 XiveEND *end;
188 assert(end_idx < xive->nr_ends);
189 end = &xive->endt[end_idx];
191 if (xive_end_is_valid(end)) {
192 spapr_xive_end_pic_print_info(xive, end, mon);
195 monitor_printf(mon, "\n");
199 void spapr_xive_mmio_set_enabled(SpaprXive *xive, bool enable)
201 memory_region_set_enabled(&xive->source.esb_mmio, enable);
202 memory_region_set_enabled(&xive->tm_mmio, enable);
204 /* Disable the END ESBs until a guest OS makes use of them */
205 memory_region_set_enabled(&xive->end_source.esb_mmio, false);
208 static void spapr_xive_end_reset(XiveEND *end)
210 memset(end, 0, sizeof(*end));
212 /* switch off the escalation and notification ESBs */
213 end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
216 static void spapr_xive_reset(void *dev)
218 SpaprXive *xive = SPAPR_XIVE(dev);
219 int i;
222 * The XiveSource has its own reset handler, which mask off all
223 * IRQs (!P|Q)
226 /* Mask all valid EASs in the IRQ number space. */
227 for (i = 0; i < xive->nr_irqs; i++) {
228 XiveEAS *eas = &xive->eat[i];
229 if (xive_eas_is_valid(eas)) {
230 eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
231 } else {
232 eas->w = 0;
236 /* Clear all ENDs */
237 for (i = 0; i < xive->nr_ends; i++) {
238 spapr_xive_end_reset(&xive->endt[i]);
242 static void spapr_xive_instance_init(Object *obj)
244 SpaprXive *xive = SPAPR_XIVE(obj);
246 object_initialize_child(obj, "source", &xive->source, sizeof(xive->source),
247 TYPE_XIVE_SOURCE, &error_abort, NULL);
249 object_initialize_child(obj, "end_source", &xive->end_source,
250 sizeof(xive->end_source), TYPE_XIVE_END_SOURCE,
251 &error_abort, NULL);
253 /* Not connected to the KVM XIVE device */
254 xive->fd = -1;
257 static void spapr_xive_realize(DeviceState *dev, Error **errp)
259 SpaprXive *xive = SPAPR_XIVE(dev);
260 XiveSource *xsrc = &xive->source;
261 XiveENDSource *end_xsrc = &xive->end_source;
262 Error *local_err = NULL;
264 if (!xive->nr_irqs) {
265 error_setg(errp, "Number of interrupt needs to be greater 0");
266 return;
269 if (!xive->nr_ends) {
270 error_setg(errp, "Number of interrupt needs to be greater 0");
271 return;
275 * Initialize the internal sources, for IPIs and virtual devices.
277 object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
278 &error_fatal);
279 object_property_set_link(OBJECT(xsrc), OBJECT(xive), "xive",
280 &error_abort);
281 object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
282 if (local_err) {
283 error_propagate(errp, local_err);
284 return;
286 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
289 * Initialize the END ESB source
291 object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
292 &error_fatal);
293 object_property_set_link(OBJECT(end_xsrc), OBJECT(xive), "xive",
294 &error_abort);
295 object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
296 if (local_err) {
297 error_propagate(errp, local_err);
298 return;
300 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
302 /* Set the mapping address of the END ESB pages after the source ESBs */
303 xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
306 * Allocate the routing tables
308 xive->eat = g_new0(XiveEAS, xive->nr_irqs);
309 xive->endt = g_new0(XiveEND, xive->nr_ends);
311 xive->nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
312 xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
314 qemu_register_reset(spapr_xive_reset, dev);
316 /* TIMA initialization */
317 memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
318 "xive.tima", 4ull << TM_SHIFT);
319 sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
322 * Map all regions. These will be enabled or disabled at reset and
323 * can also be overridden by KVM memory regions if active
325 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
326 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
327 sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
330 static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
331 uint32_t eas_idx, XiveEAS *eas)
333 SpaprXive *xive = SPAPR_XIVE(xrtr);
335 if (eas_idx >= xive->nr_irqs) {
336 return -1;
339 *eas = xive->eat[eas_idx];
340 return 0;
343 static int spapr_xive_get_end(XiveRouter *xrtr,
344 uint8_t end_blk, uint32_t end_idx, XiveEND *end)
346 SpaprXive *xive = SPAPR_XIVE(xrtr);
348 if (end_idx >= xive->nr_ends) {
349 return -1;
352 memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
353 return 0;
356 static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
357 uint32_t end_idx, XiveEND *end,
358 uint8_t word_number)
360 SpaprXive *xive = SPAPR_XIVE(xrtr);
362 if (end_idx >= xive->nr_ends) {
363 return -1;
366 memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
367 return 0;
370 static int spapr_xive_get_nvt(XiveRouter *xrtr,
371 uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
373 uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
374 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
376 if (!cpu) {
377 /* TODO: should we assert() if we can find a NVT ? */
378 return -1;
382 * sPAPR does not maintain a NVT table. Return that the NVT is
383 * valid if we have found a matching CPU
385 nvt->w0 = cpu_to_be32(NVT_W0_VALID);
386 return 0;
389 static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
390 uint32_t nvt_idx, XiveNVT *nvt,
391 uint8_t word_number)
394 * We don't need to write back to the NVTs because the sPAPR
395 * machine should never hit a non-scheduled NVT. It should never
396 * get called.
398 g_assert_not_reached();
401 static XiveTCTX *spapr_xive_get_tctx(XiveRouter *xrtr, CPUState *cs)
403 PowerPCCPU *cpu = POWERPC_CPU(cs);
405 return spapr_cpu_state(cpu)->tctx;
408 static int spapr_xive_match_nvt(XivePresenter *xptr, uint8_t format,
409 uint8_t nvt_blk, uint32_t nvt_idx,
410 bool cam_ignore, uint8_t priority,
411 uint32_t logic_serv, XiveTCTXMatch *match)
413 CPUState *cs;
414 int count = 0;
416 CPU_FOREACH(cs) {
417 PowerPCCPU *cpu = POWERPC_CPU(cs);
418 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
419 int ring;
422 * Skip partially initialized vCPUs. This can happen when
423 * vCPUs are hotplugged.
425 if (!tctx) {
426 continue;
430 * Check the thread context CAM lines and record matches.
432 ring = xive_presenter_tctx_match(xptr, tctx, format, nvt_blk, nvt_idx,
433 cam_ignore, logic_serv);
435 * Save the matching thread interrupt context and follow on to
436 * check for duplicates which are invalid.
438 if (ring != -1) {
439 if (match->tctx) {
440 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: already found a thread "
441 "context NVT %x/%x\n", nvt_blk, nvt_idx);
442 return -1;
445 match->ring = ring;
446 match->tctx = tctx;
447 count++;
451 return count;
454 static const VMStateDescription vmstate_spapr_xive_end = {
455 .name = TYPE_SPAPR_XIVE "/end",
456 .version_id = 1,
457 .minimum_version_id = 1,
458 .fields = (VMStateField []) {
459 VMSTATE_UINT32(w0, XiveEND),
460 VMSTATE_UINT32(w1, XiveEND),
461 VMSTATE_UINT32(w2, XiveEND),
462 VMSTATE_UINT32(w3, XiveEND),
463 VMSTATE_UINT32(w4, XiveEND),
464 VMSTATE_UINT32(w5, XiveEND),
465 VMSTATE_UINT32(w6, XiveEND),
466 VMSTATE_UINT32(w7, XiveEND),
467 VMSTATE_END_OF_LIST()
471 static const VMStateDescription vmstate_spapr_xive_eas = {
472 .name = TYPE_SPAPR_XIVE "/eas",
473 .version_id = 1,
474 .minimum_version_id = 1,
475 .fields = (VMStateField []) {
476 VMSTATE_UINT64(w, XiveEAS),
477 VMSTATE_END_OF_LIST()
481 static int vmstate_spapr_xive_pre_save(void *opaque)
483 if (kvm_irqchip_in_kernel()) {
484 return kvmppc_xive_pre_save(SPAPR_XIVE(opaque));
487 return 0;
491 * Called by the sPAPR IRQ backend 'post_load' method at the machine
492 * level.
494 static int spapr_xive_post_load(SpaprInterruptController *intc, int version_id)
496 if (kvm_irqchip_in_kernel()) {
497 return kvmppc_xive_post_load(SPAPR_XIVE(intc), version_id);
500 return 0;
503 static const VMStateDescription vmstate_spapr_xive = {
504 .name = TYPE_SPAPR_XIVE,
505 .version_id = 1,
506 .minimum_version_id = 1,
507 .pre_save = vmstate_spapr_xive_pre_save,
508 .post_load = NULL, /* handled at the machine level */
509 .fields = (VMStateField[]) {
510 VMSTATE_UINT32_EQUAL(nr_irqs, SpaprXive, NULL),
511 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, SpaprXive, nr_irqs,
512 vmstate_spapr_xive_eas, XiveEAS),
513 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, SpaprXive, nr_ends,
514 vmstate_spapr_xive_end, XiveEND),
515 VMSTATE_END_OF_LIST()
519 static int spapr_xive_claim_irq(SpaprInterruptController *intc, int lisn,
520 bool lsi, Error **errp)
522 SpaprXive *xive = SPAPR_XIVE(intc);
523 XiveSource *xsrc = &xive->source;
525 assert(lisn < xive->nr_irqs);
527 if (xive_eas_is_valid(&xive->eat[lisn])) {
528 error_setg(errp, "IRQ %d is not free", lisn);
529 return -EBUSY;
533 * Set default values when allocating an IRQ number
535 xive->eat[lisn].w |= cpu_to_be64(EAS_VALID | EAS_MASKED);
536 if (lsi) {
537 xive_source_irq_set_lsi(xsrc, lisn);
540 if (kvm_irqchip_in_kernel()) {
541 return kvmppc_xive_source_reset_one(xsrc, lisn, errp);
544 return 0;
547 static void spapr_xive_free_irq(SpaprInterruptController *intc, int lisn)
549 SpaprXive *xive = SPAPR_XIVE(intc);
550 assert(lisn < xive->nr_irqs);
552 xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
555 static Property spapr_xive_properties[] = {
556 DEFINE_PROP_UINT32("nr-irqs", SpaprXive, nr_irqs, 0),
557 DEFINE_PROP_UINT32("nr-ends", SpaprXive, nr_ends, 0),
558 DEFINE_PROP_UINT64("vc-base", SpaprXive, vc_base, SPAPR_XIVE_VC_BASE),
559 DEFINE_PROP_UINT64("tm-base", SpaprXive, tm_base, SPAPR_XIVE_TM_BASE),
560 DEFINE_PROP_END_OF_LIST(),
563 static int spapr_xive_cpu_intc_create(SpaprInterruptController *intc,
564 PowerPCCPU *cpu, Error **errp)
566 SpaprXive *xive = SPAPR_XIVE(intc);
567 Object *obj;
568 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
570 obj = xive_tctx_create(OBJECT(cpu), XIVE_ROUTER(xive), errp);
571 if (!obj) {
572 return -1;
575 spapr_cpu->tctx = XIVE_TCTX(obj);
576 return 0;
579 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t os_cam)
581 uint32_t qw1w2 = cpu_to_be32(TM_QW1W2_VO | os_cam);
582 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4);
585 static void spapr_xive_cpu_intc_reset(SpaprInterruptController *intc,
586 PowerPCCPU *cpu)
588 XiveTCTX *tctx = spapr_cpu_state(cpu)->tctx;
589 uint8_t nvt_blk;
590 uint32_t nvt_idx;
592 xive_tctx_reset(tctx);
595 * When a Virtual Processor is scheduled to run on a HW thread,
596 * the hypervisor pushes its identifier in the OS CAM line.
597 * Emulate the same behavior under QEMU.
599 spapr_xive_cpu_to_nvt(cpu, &nvt_blk, &nvt_idx);
601 xive_tctx_set_os_cam(tctx, xive_nvt_cam_line(nvt_blk, nvt_idx));
604 static void spapr_xive_cpu_intc_destroy(SpaprInterruptController *intc,
605 PowerPCCPU *cpu)
607 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
609 xive_tctx_destroy(spapr_cpu->tctx);
610 spapr_cpu->tctx = NULL;
613 static void spapr_xive_set_irq(SpaprInterruptController *intc, int irq, int val)
615 SpaprXive *xive = SPAPR_XIVE(intc);
617 if (kvm_irqchip_in_kernel()) {
618 kvmppc_xive_source_set_irq(&xive->source, irq, val);
619 } else {
620 xive_source_set_irq(&xive->source, irq, val);
624 static void spapr_xive_print_info(SpaprInterruptController *intc, Monitor *mon)
626 SpaprXive *xive = SPAPR_XIVE(intc);
627 CPUState *cs;
629 CPU_FOREACH(cs) {
630 PowerPCCPU *cpu = POWERPC_CPU(cs);
632 xive_tctx_pic_print_info(spapr_cpu_state(cpu)->tctx, mon);
635 spapr_xive_pic_print_info(xive, mon);
638 static void spapr_xive_dt(SpaprInterruptController *intc, uint32_t nr_servers,
639 void *fdt, uint32_t phandle)
641 SpaprXive *xive = SPAPR_XIVE(intc);
642 int node;
643 uint64_t timas[2 * 2];
644 /* Interrupt number ranges for the IPIs */
645 uint32_t lisn_ranges[] = {
646 cpu_to_be32(0),
647 cpu_to_be32(nr_servers),
650 * EQ size - the sizes of pages supported by the system 4K, 64K,
651 * 2M, 16M. We only advertise 64K for the moment.
653 uint32_t eq_sizes[] = {
654 cpu_to_be32(16), /* 64K */
657 * The following array is in sync with the reserved priorities
658 * defined by the 'spapr_xive_priority_is_reserved' routine.
660 uint32_t plat_res_int_priorities[] = {
661 cpu_to_be32(7), /* start */
662 cpu_to_be32(0xf8), /* count */
665 /* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
666 timas[0] = cpu_to_be64(xive->tm_base +
667 XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
668 timas[1] = cpu_to_be64(1ull << TM_SHIFT);
669 timas[2] = cpu_to_be64(xive->tm_base +
670 XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
671 timas[3] = cpu_to_be64(1ull << TM_SHIFT);
673 _FDT(node = fdt_add_subnode(fdt, 0, xive->nodename));
675 _FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
676 _FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
678 _FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
679 _FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
680 sizeof(eq_sizes)));
681 _FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
682 sizeof(lisn_ranges)));
684 /* For Linux to link the LSIs to the interrupt controller. */
685 _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
686 _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
688 /* For SLOF */
689 _FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
690 _FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
693 * The "ibm,plat-res-int-priorities" property defines the priority
694 * ranges reserved by the hypervisor
696 _FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
697 plat_res_int_priorities, sizeof(plat_res_int_priorities)));
700 static int spapr_xive_activate(SpaprInterruptController *intc,
701 uint32_t nr_servers, Error **errp)
703 SpaprXive *xive = SPAPR_XIVE(intc);
705 if (kvm_enabled()) {
706 int rc = spapr_irq_init_kvm(kvmppc_xive_connect, intc, nr_servers,
707 errp);
708 if (rc < 0) {
709 return rc;
713 /* Activate the XIVE MMIOs */
714 spapr_xive_mmio_set_enabled(xive, true);
716 return 0;
719 static void spapr_xive_deactivate(SpaprInterruptController *intc)
721 SpaprXive *xive = SPAPR_XIVE(intc);
723 spapr_xive_mmio_set_enabled(xive, false);
725 if (kvm_irqchip_in_kernel()) {
726 kvmppc_xive_disconnect(intc);
730 static void spapr_xive_class_init(ObjectClass *klass, void *data)
732 DeviceClass *dc = DEVICE_CLASS(klass);
733 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
734 SpaprInterruptControllerClass *sicc = SPAPR_INTC_CLASS(klass);
735 XivePresenterClass *xpc = XIVE_PRESENTER_CLASS(klass);
737 dc->desc = "sPAPR XIVE Interrupt Controller";
738 dc->props = spapr_xive_properties;
739 dc->realize = spapr_xive_realize;
740 dc->vmsd = &vmstate_spapr_xive;
742 xrc->get_eas = spapr_xive_get_eas;
743 xrc->get_end = spapr_xive_get_end;
744 xrc->write_end = spapr_xive_write_end;
745 xrc->get_nvt = spapr_xive_get_nvt;
746 xrc->write_nvt = spapr_xive_write_nvt;
747 xrc->get_tctx = spapr_xive_get_tctx;
749 sicc->activate = spapr_xive_activate;
750 sicc->deactivate = spapr_xive_deactivate;
751 sicc->cpu_intc_create = spapr_xive_cpu_intc_create;
752 sicc->cpu_intc_reset = spapr_xive_cpu_intc_reset;
753 sicc->cpu_intc_destroy = spapr_xive_cpu_intc_destroy;
754 sicc->claim_irq = spapr_xive_claim_irq;
755 sicc->free_irq = spapr_xive_free_irq;
756 sicc->set_irq = spapr_xive_set_irq;
757 sicc->print_info = spapr_xive_print_info;
758 sicc->dt = spapr_xive_dt;
759 sicc->post_load = spapr_xive_post_load;
761 xpc->match_nvt = spapr_xive_match_nvt;
764 static const TypeInfo spapr_xive_info = {
765 .name = TYPE_SPAPR_XIVE,
766 .parent = TYPE_XIVE_ROUTER,
767 .instance_init = spapr_xive_instance_init,
768 .instance_size = sizeof(SpaprXive),
769 .class_init = spapr_xive_class_init,
770 .interfaces = (InterfaceInfo[]) {
771 { TYPE_SPAPR_INTC },
776 static void spapr_xive_register_types(void)
778 type_register_static(&spapr_xive_info);
781 type_init(spapr_xive_register_types)
784 * XIVE hcalls
786 * The terminology used by the XIVE hcalls is the following :
788 * TARGET vCPU number
789 * EQ Event Queue assigned by OS to receive event data
790 * ESB page for source interrupt management
791 * LISN Logical Interrupt Source Number identifying a source in the
792 * machine
793 * EISN Effective Interrupt Source Number used by guest OS to
794 * identify source in the guest
796 * The EAS, END, NVT structures are not exposed.
800 * Linux hosts under OPAL reserve priority 7 for their own escalation
801 * interrupts (DD2.X POWER9). So we only allow the guest to use
802 * priorities [0..6].
804 static bool spapr_xive_priority_is_reserved(uint8_t priority)
806 switch (priority) {
807 case 0 ... 6:
808 return false;
809 case 7: /* OPAL escalation queue */
810 default:
811 return true;
816 * The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
817 * real address of the MMIO page through which the Event State Buffer
818 * entry associated with the value of the "lisn" parameter is managed.
820 * Parameters:
821 * Input
822 * - R4: "flags"
823 * Bits 0-63 reserved
824 * - R5: "lisn" is per "interrupts", "interrupt-map", or
825 * "ibm,xive-lisn-ranges" properties, or as returned by the
826 * ibm,query-interrupt-source-number RTAS call, or as returned
827 * by the H_ALLOCATE_VAS_WINDOW hcall
829 * Output
830 * - R4: "flags"
831 * Bits 0-59: Reserved
832 * Bit 60: H_INT_ESB must be used for Event State Buffer
833 * management
834 * Bit 61: 1 == LSI 0 == MSI
835 * Bit 62: the full function page supports trigger
836 * Bit 63: Store EOI Supported
837 * - R5: Logical Real address of full function Event State Buffer
838 * management page, -1 if H_INT_ESB hcall flag is set to 1.
839 * - R6: Logical Real Address of trigger only Event State Buffer
840 * management page or -1.
841 * - R7: Power of 2 page size for the ESB management pages returned in
842 * R5 and R6.
845 #define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
846 #define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
847 #define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
848 on same page */
849 #define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
851 static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
852 SpaprMachineState *spapr,
853 target_ulong opcode,
854 target_ulong *args)
856 SpaprXive *xive = spapr->xive;
857 XiveSource *xsrc = &xive->source;
858 target_ulong flags = args[0];
859 target_ulong lisn = args[1];
861 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
862 return H_FUNCTION;
865 if (flags) {
866 return H_PARAMETER;
869 if (lisn >= xive->nr_irqs) {
870 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
871 lisn);
872 return H_P2;
875 if (!xive_eas_is_valid(&xive->eat[lisn])) {
876 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
877 lisn);
878 return H_P2;
882 * All sources are emulated under the main XIVE object and share
883 * the same characteristics.
885 args[0] = 0;
886 if (!xive_source_esb_has_2page(xsrc)) {
887 args[0] |= SPAPR_XIVE_SRC_TRIGGER;
889 if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
890 args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
894 * Force the use of the H_INT_ESB hcall in case of an LSI
895 * interrupt. This is necessary under KVM to re-trigger the
896 * interrupt if the level is still asserted
898 if (xive_source_irq_is_lsi(xsrc, lisn)) {
899 args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
902 if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
903 args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
904 } else {
905 args[1] = -1;
908 if (xive_source_esb_has_2page(xsrc) &&
909 !(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
910 args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
911 } else {
912 args[2] = -1;
915 if (xive_source_esb_has_2page(xsrc)) {
916 args[3] = xsrc->esb_shift - 1;
917 } else {
918 args[3] = xsrc->esb_shift;
921 return H_SUCCESS;
925 * The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
926 * Interrupt Source to a target. The Logical Interrupt Source is
927 * designated with the "lisn" parameter and the target is designated
928 * with the "target" and "priority" parameters. Upon return from the
929 * hcall(), no additional interrupts will be directed to the old EQ.
931 * Parameters:
932 * Input:
933 * - R4: "flags"
934 * Bits 0-61: Reserved
935 * Bit 62: set the "eisn" in the EAS
936 * Bit 63: masks the interrupt source in the hardware interrupt
937 * control structure. An interrupt masked by this mechanism will
938 * be dropped, but it's source state bits will still be
939 * set. There is no race-free way of unmasking and restoring the
940 * source. Thus this should only be used in interrupts that are
941 * also masked at the source, and only in cases where the
942 * interrupt is not meant to be used for a large amount of time
943 * because no valid target exists for it for example
944 * - R5: "lisn" is per "interrupts", "interrupt-map", or
945 * "ibm,xive-lisn-ranges" properties, or as returned by the
946 * ibm,query-interrupt-source-number RTAS call, or as returned by
947 * the H_ALLOCATE_VAS_WINDOW hcall
948 * - R6: "target" is per "ibm,ppc-interrupt-server#s" or
949 * "ibm,ppc-interrupt-gserver#s"
950 * - R7: "priority" is a valid priority not in
951 * "ibm,plat-res-int-priorities"
952 * - R8: "eisn" is the guest EISN associated with the "lisn"
954 * Output:
955 * - None
958 #define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
959 #define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
961 static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
962 SpaprMachineState *spapr,
963 target_ulong opcode,
964 target_ulong *args)
966 SpaprXive *xive = spapr->xive;
967 XiveEAS eas, new_eas;
968 target_ulong flags = args[0];
969 target_ulong lisn = args[1];
970 target_ulong target = args[2];
971 target_ulong priority = args[3];
972 target_ulong eisn = args[4];
973 uint8_t end_blk;
974 uint32_t end_idx;
976 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
977 return H_FUNCTION;
980 if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
981 return H_PARAMETER;
984 if (lisn >= xive->nr_irqs) {
985 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
986 lisn);
987 return H_P2;
990 eas = xive->eat[lisn];
991 if (!xive_eas_is_valid(&eas)) {
992 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
993 lisn);
994 return H_P2;
997 /* priority 0xff is used to reset the EAS */
998 if (priority == 0xff) {
999 new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
1000 goto out;
1003 if (flags & SPAPR_XIVE_SRC_MASK) {
1004 new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
1005 } else {
1006 new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
1009 if (spapr_xive_priority_is_reserved(priority)) {
1010 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1011 " is reserved\n", priority);
1012 return H_P4;
1016 * Validate that "target" is part of the list of threads allocated
1017 * to the partition. For that, find the END corresponding to the
1018 * target.
1020 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1021 return H_P3;
1024 new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
1025 new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
1027 if (flags & SPAPR_XIVE_SRC_SET_EISN) {
1028 new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
1031 if (kvm_irqchip_in_kernel()) {
1032 Error *local_err = NULL;
1034 kvmppc_xive_set_source_config(xive, lisn, &new_eas, &local_err);
1035 if (local_err) {
1036 error_report_err(local_err);
1037 return H_HARDWARE;
1041 out:
1042 xive->eat[lisn] = new_eas;
1043 return H_SUCCESS;
1047 * The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
1048 * target/priority pair is assigned to the specified Logical Interrupt
1049 * Source.
1051 * Parameters:
1052 * Input:
1053 * - R4: "flags"
1054 * Bits 0-63 Reserved
1055 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1056 * "ibm,xive-lisn-ranges" properties, or as returned by the
1057 * ibm,query-interrupt-source-number RTAS call, or as
1058 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1060 * Output:
1061 * - R4: Target to which the specified Logical Interrupt Source is
1062 * assigned
1063 * - R5: Priority to which the specified Logical Interrupt Source is
1064 * assigned
1065 * - R6: EISN for the specified Logical Interrupt Source (this will be
1066 * equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
1068 static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
1069 SpaprMachineState *spapr,
1070 target_ulong opcode,
1071 target_ulong *args)
1073 SpaprXive *xive = spapr->xive;
1074 target_ulong flags = args[0];
1075 target_ulong lisn = args[1];
1076 XiveEAS eas;
1077 XiveEND *end;
1078 uint8_t nvt_blk;
1079 uint32_t end_idx, nvt_idx;
1081 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1082 return H_FUNCTION;
1085 if (flags) {
1086 return H_PARAMETER;
1089 if (lisn >= xive->nr_irqs) {
1090 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1091 lisn);
1092 return H_P2;
1095 eas = xive->eat[lisn];
1096 if (!xive_eas_is_valid(&eas)) {
1097 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1098 lisn);
1099 return H_P2;
1102 /* EAS_END_BLOCK is unused on sPAPR */
1103 end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
1105 assert(end_idx < xive->nr_ends);
1106 end = &xive->endt[end_idx];
1108 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
1109 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
1110 args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
1112 if (xive_eas_is_masked(&eas)) {
1113 args[1] = 0xff;
1114 } else {
1115 args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
1118 args[2] = xive_get_field64(EAS_END_DATA, eas.w);
1120 return H_SUCCESS;
1124 * The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
1125 * address of the notification management page associated with the
1126 * specified target and priority.
1128 * Parameters:
1129 * Input:
1130 * - R4: "flags"
1131 * Bits 0-63 Reserved
1132 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1133 * "ibm,ppc-interrupt-gserver#s"
1134 * - R6: "priority" is a valid priority not in
1135 * "ibm,plat-res-int-priorities"
1137 * Output:
1138 * - R4: Logical real address of notification page
1139 * - R5: Power of 2 page size of the notification page
1141 static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
1142 SpaprMachineState *spapr,
1143 target_ulong opcode,
1144 target_ulong *args)
1146 SpaprXive *xive = spapr->xive;
1147 XiveENDSource *end_xsrc = &xive->end_source;
1148 target_ulong flags = args[0];
1149 target_ulong target = args[1];
1150 target_ulong priority = args[2];
1151 XiveEND *end;
1152 uint8_t end_blk;
1153 uint32_t end_idx;
1155 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1156 return H_FUNCTION;
1159 if (flags) {
1160 return H_PARAMETER;
1164 * H_STATE should be returned if a H_INT_RESET is in progress.
1165 * This is not needed when running the emulation under QEMU
1168 if (spapr_xive_priority_is_reserved(priority)) {
1169 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1170 " is reserved\n", priority);
1171 return H_P3;
1175 * Validate that "target" is part of the list of threads allocated
1176 * to the partition. For that, find the END corresponding to the
1177 * target.
1179 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1180 return H_P2;
1183 assert(end_idx < xive->nr_ends);
1184 end = &xive->endt[end_idx];
1186 args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
1187 if (xive_end_is_enqueue(end)) {
1188 args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1189 } else {
1190 args[1] = 0;
1193 return H_SUCCESS;
1197 * The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
1198 * a given "target" and "priority". It is also used to set the
1199 * notification config associated with the EQ. An EQ size of 0 is
1200 * used to reset the EQ config for a given target and priority. If
1201 * resetting the EQ config, the END associated with the given "target"
1202 * and "priority" will be changed to disable queueing.
1204 * Upon return from the hcall(), no additional interrupts will be
1205 * directed to the old EQ (if one was set). The old EQ (if one was
1206 * set) should be investigated for interrupts that occurred prior to
1207 * or during the hcall().
1209 * Parameters:
1210 * Input:
1211 * - R4: "flags"
1212 * Bits 0-62: Reserved
1213 * Bit 63: Unconditional Notify (n) per the XIVE spec
1214 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1215 * "ibm,ppc-interrupt-gserver#s"
1216 * - R6: "priority" is a valid priority not in
1217 * "ibm,plat-res-int-priorities"
1218 * - R7: "eventQueue": The logical real address of the start of the EQ
1219 * - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
1221 * Output:
1222 * - None
1225 #define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
1227 static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
1228 SpaprMachineState *spapr,
1229 target_ulong opcode,
1230 target_ulong *args)
1232 SpaprXive *xive = spapr->xive;
1233 target_ulong flags = args[0];
1234 target_ulong target = args[1];
1235 target_ulong priority = args[2];
1236 target_ulong qpage = args[3];
1237 target_ulong qsize = args[4];
1238 XiveEND end;
1239 uint8_t end_blk, nvt_blk;
1240 uint32_t end_idx, nvt_idx;
1242 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1243 return H_FUNCTION;
1246 if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1247 return H_PARAMETER;
1251 * H_STATE should be returned if a H_INT_RESET is in progress.
1252 * This is not needed when running the emulation under QEMU
1255 if (spapr_xive_priority_is_reserved(priority)) {
1256 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1257 " is reserved\n", priority);
1258 return H_P3;
1262 * Validate that "target" is part of the list of threads allocated
1263 * to the partition. For that, find the END corresponding to the
1264 * target.
1267 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1268 return H_P2;
1271 assert(end_idx < xive->nr_ends);
1272 memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
1274 switch (qsize) {
1275 case 12:
1276 case 16:
1277 case 21:
1278 case 24:
1279 if (!QEMU_IS_ALIGNED(qpage, 1ul << qsize)) {
1280 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: EQ @0x%" HWADDR_PRIx
1281 " is not naturally aligned with %" HWADDR_PRIx "\n",
1282 qpage, (hwaddr)1 << qsize);
1283 return H_P4;
1285 end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
1286 end.w3 = cpu_to_be32(qpage & 0xffffffff);
1287 end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
1288 end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
1289 break;
1290 case 0:
1291 /* reset queue and disable queueing */
1292 spapr_xive_end_reset(&end);
1293 goto out;
1295 default:
1296 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
1297 qsize);
1298 return H_P5;
1301 if (qsize) {
1302 hwaddr plen = 1 << qsize;
1303 void *eq;
1306 * Validate the guest EQ. We should also check that the queue
1307 * has been zeroed by the OS.
1309 eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
1310 MEMTXATTRS_UNSPECIFIED);
1311 if (plen != 1 << qsize) {
1312 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
1313 HWADDR_PRIx "\n", qpage);
1314 return H_P4;
1316 address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
1319 /* "target" should have been validated above */
1320 if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
1321 g_assert_not_reached();
1325 * Ensure the priority and target are correctly set (they will not
1326 * be right after allocation)
1328 end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
1329 xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
1330 end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
1332 if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
1333 end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
1334 } else {
1335 end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
1339 * The generation bit for the END starts at 1 and The END page
1340 * offset counter starts at 0.
1342 end.w1 = cpu_to_be32(END_W1_GENERATION) |
1343 xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
1344 end.w0 |= cpu_to_be32(END_W0_VALID);
1347 * TODO: issue syncs required to ensure all in-flight interrupts
1348 * are complete on the old END
1351 out:
1352 if (kvm_irqchip_in_kernel()) {
1353 Error *local_err = NULL;
1355 kvmppc_xive_set_queue_config(xive, end_blk, end_idx, &end, &local_err);
1356 if (local_err) {
1357 error_report_err(local_err);
1358 return H_HARDWARE;
1362 /* Update END */
1363 memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
1364 return H_SUCCESS;
1368 * The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
1369 * target and priority.
1371 * Parameters:
1372 * Input:
1373 * - R4: "flags"
1374 * Bits 0-62: Reserved
1375 * Bit 63: Debug: Return debug data
1376 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1377 * "ibm,ppc-interrupt-gserver#s"
1378 * - R6: "priority" is a valid priority not in
1379 * "ibm,plat-res-int-priorities"
1381 * Output:
1382 * - R4: "flags":
1383 * Bits 0-61: Reserved
1384 * Bit 62: The value of Event Queue Generation Number (g) per
1385 * the XIVE spec if "Debug" = 1
1386 * Bit 63: The value of Unconditional Notify (n) per the XIVE spec
1387 * - R5: The logical real address of the start of the EQ
1388 * - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
1389 * - R7: The value of Event Queue Offset Counter per XIVE spec
1390 * if "Debug" = 1, else 0
1394 #define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
1396 static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
1397 SpaprMachineState *spapr,
1398 target_ulong opcode,
1399 target_ulong *args)
1401 SpaprXive *xive = spapr->xive;
1402 target_ulong flags = args[0];
1403 target_ulong target = args[1];
1404 target_ulong priority = args[2];
1405 XiveEND *end;
1406 uint8_t end_blk;
1407 uint32_t end_idx;
1409 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1410 return H_FUNCTION;
1413 if (flags & ~SPAPR_XIVE_END_DEBUG) {
1414 return H_PARAMETER;
1418 * H_STATE should be returned if a H_INT_RESET is in progress.
1419 * This is not needed when running the emulation under QEMU
1422 if (spapr_xive_priority_is_reserved(priority)) {
1423 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
1424 " is reserved\n", priority);
1425 return H_P3;
1429 * Validate that "target" is part of the list of threads allocated
1430 * to the partition. For that, find the END corresponding to the
1431 * target.
1433 if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
1434 return H_P2;
1437 assert(end_idx < xive->nr_ends);
1438 end = &xive->endt[end_idx];
1440 args[0] = 0;
1441 if (xive_end_is_notify(end)) {
1442 args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
1445 if (xive_end_is_enqueue(end)) {
1446 args[1] = xive_end_qaddr(end);
1447 args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
1448 } else {
1449 args[1] = 0;
1450 args[2] = 0;
1453 if (kvm_irqchip_in_kernel()) {
1454 Error *local_err = NULL;
1456 kvmppc_xive_get_queue_config(xive, end_blk, end_idx, end, &local_err);
1457 if (local_err) {
1458 error_report_err(local_err);
1459 return H_HARDWARE;
1463 /* TODO: do we need any locking on the END ? */
1464 if (flags & SPAPR_XIVE_END_DEBUG) {
1465 /* Load the event queue generation number into the return flags */
1466 args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
1468 /* Load R7 with the event queue offset counter */
1469 args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
1470 } else {
1471 args[3] = 0;
1474 return H_SUCCESS;
1478 * The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
1479 * reporting cache line pair for the calling thread. The reporting
1480 * cache lines will contain the OS interrupt context when the OS
1481 * issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
1482 * interrupt. The reporting cache lines can be reset by inputting -1
1483 * in "reportingLine". Issuing the CI store byte without reporting
1484 * cache lines registered will result in the data not being accessible
1485 * to the OS.
1487 * Parameters:
1488 * Input:
1489 * - R4: "flags"
1490 * Bits 0-63: Reserved
1491 * - R5: "reportingLine": The logical real address of the reporting cache
1492 * line pair
1494 * Output:
1495 * - None
1497 static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
1498 SpaprMachineState *spapr,
1499 target_ulong opcode,
1500 target_ulong *args)
1502 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1503 return H_FUNCTION;
1507 * H_STATE should be returned if a H_INT_RESET is in progress.
1508 * This is not needed when running the emulation under QEMU
1511 /* TODO: H_INT_SET_OS_REPORTING_LINE */
1512 return H_FUNCTION;
1516 * The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
1517 * real address of the reporting cache line pair set for the input
1518 * "target". If no reporting cache line pair has been set, -1 is
1519 * returned.
1521 * Parameters:
1522 * Input:
1523 * - R4: "flags"
1524 * Bits 0-63: Reserved
1525 * - R5: "target" is per "ibm,ppc-interrupt-server#s" or
1526 * "ibm,ppc-interrupt-gserver#s"
1527 * - R6: "reportingLine": The logical real address of the reporting
1528 * cache line pair
1530 * Output:
1531 * - R4: The logical real address of the reporting line if set, else -1
1533 static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
1534 SpaprMachineState *spapr,
1535 target_ulong opcode,
1536 target_ulong *args)
1538 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1539 return H_FUNCTION;
1543 * H_STATE should be returned if a H_INT_RESET is in progress.
1544 * This is not needed when running the emulation under QEMU
1547 /* TODO: H_INT_GET_OS_REPORTING_LINE */
1548 return H_FUNCTION;
1552 * The H_INT_ESB hcall() is used to issue a load or store to the ESB
1553 * page for the input "lisn". This hcall is only supported for LISNs
1554 * that have the ESB hcall flag set to 1 when returned from hcall()
1555 * H_INT_GET_SOURCE_INFO.
1557 * Parameters:
1558 * Input:
1559 * - R4: "flags"
1560 * Bits 0-62: Reserved
1561 * bit 63: Store: Store=1, store operation, else load operation
1562 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1563 * "ibm,xive-lisn-ranges" properties, or as returned by the
1564 * ibm,query-interrupt-source-number RTAS call, or as
1565 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1566 * - R6: "esbOffset" is the offset into the ESB page for the load or
1567 * store operation
1568 * - R7: "storeData" is the data to write for a store operation
1570 * Output:
1571 * - R4: The value of the load if load operation, else -1
1574 #define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
1576 static target_ulong h_int_esb(PowerPCCPU *cpu,
1577 SpaprMachineState *spapr,
1578 target_ulong opcode,
1579 target_ulong *args)
1581 SpaprXive *xive = spapr->xive;
1582 XiveEAS eas;
1583 target_ulong flags = args[0];
1584 target_ulong lisn = args[1];
1585 target_ulong offset = args[2];
1586 target_ulong data = args[3];
1587 hwaddr mmio_addr;
1588 XiveSource *xsrc = &xive->source;
1590 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1591 return H_FUNCTION;
1594 if (flags & ~SPAPR_XIVE_ESB_STORE) {
1595 return H_PARAMETER;
1598 if (lisn >= xive->nr_irqs) {
1599 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1600 lisn);
1601 return H_P2;
1604 eas = xive->eat[lisn];
1605 if (!xive_eas_is_valid(&eas)) {
1606 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1607 lisn);
1608 return H_P2;
1611 if (offset > (1ull << xsrc->esb_shift)) {
1612 return H_P3;
1615 if (kvm_irqchip_in_kernel()) {
1616 args[0] = kvmppc_xive_esb_rw(xsrc, lisn, offset, data,
1617 flags & SPAPR_XIVE_ESB_STORE);
1618 } else {
1619 mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
1621 if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
1622 (flags & SPAPR_XIVE_ESB_STORE))) {
1623 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
1624 HWADDR_PRIx "\n", mmio_addr);
1625 return H_HARDWARE;
1627 args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
1629 return H_SUCCESS;
1633 * The H_INT_SYNC hcall() is used to issue hardware syncs that will
1634 * ensure any in flight events for the input lisn are in the event
1635 * queue.
1637 * Parameters:
1638 * Input:
1639 * - R4: "flags"
1640 * Bits 0-63: Reserved
1641 * - R5: "lisn" is per "interrupts", "interrupt-map", or
1642 * "ibm,xive-lisn-ranges" properties, or as returned by the
1643 * ibm,query-interrupt-source-number RTAS call, or as
1644 * returned by the H_ALLOCATE_VAS_WINDOW hcall
1646 * Output:
1647 * - None
1649 static target_ulong h_int_sync(PowerPCCPU *cpu,
1650 SpaprMachineState *spapr,
1651 target_ulong opcode,
1652 target_ulong *args)
1654 SpaprXive *xive = spapr->xive;
1655 XiveEAS eas;
1656 target_ulong flags = args[0];
1657 target_ulong lisn = args[1];
1659 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1660 return H_FUNCTION;
1663 if (flags) {
1664 return H_PARAMETER;
1667 if (lisn >= xive->nr_irqs) {
1668 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
1669 lisn);
1670 return H_P2;
1673 eas = xive->eat[lisn];
1674 if (!xive_eas_is_valid(&eas)) {
1675 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
1676 lisn);
1677 return H_P2;
1681 * H_STATE should be returned if a H_INT_RESET is in progress.
1682 * This is not needed when running the emulation under QEMU
1686 * This is not real hardware. Nothing to be done unless when
1687 * under KVM
1690 if (kvm_irqchip_in_kernel()) {
1691 Error *local_err = NULL;
1693 kvmppc_xive_sync_source(xive, lisn, &local_err);
1694 if (local_err) {
1695 error_report_err(local_err);
1696 return H_HARDWARE;
1699 return H_SUCCESS;
1703 * The H_INT_RESET hcall() is used to reset all of the partition's
1704 * interrupt exploitation structures to their initial state. This
1705 * means losing all previously set interrupt state set via
1706 * H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
1708 * Parameters:
1709 * Input:
1710 * - R4: "flags"
1711 * Bits 0-63: Reserved
1713 * Output:
1714 * - None
1716 static target_ulong h_int_reset(PowerPCCPU *cpu,
1717 SpaprMachineState *spapr,
1718 target_ulong opcode,
1719 target_ulong *args)
1721 SpaprXive *xive = spapr->xive;
1722 target_ulong flags = args[0];
1724 if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
1725 return H_FUNCTION;
1728 if (flags) {
1729 return H_PARAMETER;
1732 device_reset(DEVICE(xive));
1734 if (kvm_irqchip_in_kernel()) {
1735 Error *local_err = NULL;
1737 kvmppc_xive_reset(xive, &local_err);
1738 if (local_err) {
1739 error_report_err(local_err);
1740 return H_HARDWARE;
1743 return H_SUCCESS;
1746 void spapr_xive_hcall_init(SpaprMachineState *spapr)
1748 spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
1749 spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
1750 spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
1751 spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
1752 spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
1753 spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
1754 spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
1755 h_int_set_os_reporting_line);
1756 spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
1757 h_int_get_os_reporting_line);
1758 spapr_register_hypercall(H_INT_ESB, h_int_esb);
1759 spapr_register_hypercall(H_INT_SYNC, h_int_sync);
1760 spapr_register_hypercall(H_INT_RESET, h_int_reset);