2 * Status and system control registers for Xilinx Zynq Platform
4 * Copyright (c) 2011 Michal Simek <monstr@monstr.eu>
5 * Copyright (c) 2012 PetaLogix Pty Ltd.
6 * Based on hw/arm_sysctl.c, written by Paul Brook
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
13 * You should have received a copy of the GNU General Public License along
14 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 #include "qemu/osdep.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "hw/sysbus.h"
21 #include "migration/vmstate.h"
23 #include "qemu/module.h"
24 #include "hw/registerfields.h"
25 #include "hw/qdev-clock.h"
26 #include "qom/object.h"
28 #ifndef ZYNQ_SLCR_ERR_DEBUG
29 #define ZYNQ_SLCR_ERR_DEBUG 0
32 #define DB_PRINT(...) do { \
33 if (ZYNQ_SLCR_ERR_DEBUG) { \
34 fprintf(stderr, ": %s: ", __func__); \
35 fprintf(stderr, ## __VA_ARGS__); \
39 #define XILINX_LOCK_KEY 0x767b
40 #define XILINX_UNLOCK_KEY 0xdf0d
47 REG32(ARM_PLL_CTRL
, 0x100)
48 REG32(DDR_PLL_CTRL
, 0x104)
49 REG32(IO_PLL_CTRL
, 0x108)
50 /* fields for [ARM|DDR|IO]_PLL_CTRL registers */
51 FIELD(xxx_PLL_CTRL
, PLL_RESET
, 0, 1)
52 FIELD(xxx_PLL_CTRL
, PLL_PWRDWN
, 1, 1)
53 FIELD(xxx_PLL_CTRL
, PLL_BYPASS_QUAL
, 3, 1)
54 FIELD(xxx_PLL_CTRL
, PLL_BYPASS_FORCE
, 4, 1)
55 FIELD(xxx_PLL_CTRL
, PLL_FPDIV
, 12, 7)
56 REG32(PLL_STATUS
, 0x10c)
57 REG32(ARM_PLL_CFG
, 0x110)
58 REG32(DDR_PLL_CFG
, 0x114)
59 REG32(IO_PLL_CFG
, 0x118)
61 REG32(ARM_CLK_CTRL
, 0x120)
62 REG32(DDR_CLK_CTRL
, 0x124)
63 REG32(DCI_CLK_CTRL
, 0x128)
64 REG32(APER_CLK_CTRL
, 0x12c)
65 REG32(USB0_CLK_CTRL
, 0x130)
66 REG32(USB1_CLK_CTRL
, 0x134)
67 REG32(GEM0_RCLK_CTRL
, 0x138)
68 REG32(GEM1_RCLK_CTRL
, 0x13c)
69 REG32(GEM0_CLK_CTRL
, 0x140)
70 REG32(GEM1_CLK_CTRL
, 0x144)
71 REG32(SMC_CLK_CTRL
, 0x148)
72 REG32(LQSPI_CLK_CTRL
, 0x14c)
73 REG32(SDIO_CLK_CTRL
, 0x150)
74 REG32(UART_CLK_CTRL
, 0x154)
75 FIELD(UART_CLK_CTRL
, CLKACT0
, 0, 1)
76 FIELD(UART_CLK_CTRL
, CLKACT1
, 1, 1)
77 FIELD(UART_CLK_CTRL
, SRCSEL
, 4, 2)
78 FIELD(UART_CLK_CTRL
, DIVISOR
, 8, 6)
79 REG32(SPI_CLK_CTRL
, 0x158)
80 REG32(CAN_CLK_CTRL
, 0x15c)
81 REG32(CAN_MIOCLK_CTRL
, 0x160)
82 REG32(DBG_CLK_CTRL
, 0x164)
83 REG32(PCAP_CLK_CTRL
, 0x168)
84 REG32(TOPSW_CLK_CTRL
, 0x16c)
86 #define FPGA_CTRL_REGS(n, start) \
87 REG32(FPGA ## n ## _CLK_CTRL, (start)) \
88 REG32(FPGA ## n ## _THR_CTRL, (start) + 0x4)\
89 REG32(FPGA ## n ## _THR_CNT, (start) + 0x8)\
90 REG32(FPGA ## n ## _THR_STA, (start) + 0xc)
91 FPGA_CTRL_REGS(0, 0x170)
92 FPGA_CTRL_REGS(1, 0x180)
93 FPGA_CTRL_REGS(2, 0x190)
94 FPGA_CTRL_REGS(3, 0x1a0)
96 REG32(BANDGAP_TRIP
, 0x1b8)
97 REG32(PLL_PREDIVISOR
, 0x1c0)
98 REG32(CLK_621_TRUE
, 0x1c4)
100 REG32(PSS_RST_CTRL
, 0x200)
101 FIELD(PSS_RST_CTRL
, SOFT_RST
, 0, 1)
102 REG32(DDR_RST_CTRL
, 0x204)
103 REG32(TOPSW_RESET_CTRL
, 0x208)
104 REG32(DMAC_RST_CTRL
, 0x20c)
105 REG32(USB_RST_CTRL
, 0x210)
106 REG32(GEM_RST_CTRL
, 0x214)
107 REG32(SDIO_RST_CTRL
, 0x218)
108 REG32(SPI_RST_CTRL
, 0x21c)
109 REG32(CAN_RST_CTRL
, 0x220)
110 REG32(I2C_RST_CTRL
, 0x224)
111 REG32(UART_RST_CTRL
, 0x228)
112 REG32(GPIO_RST_CTRL
, 0x22c)
113 REG32(LQSPI_RST_CTRL
, 0x230)
114 REG32(SMC_RST_CTRL
, 0x234)
115 REG32(OCM_RST_CTRL
, 0x238)
116 REG32(FPGA_RST_CTRL
, 0x240)
117 REG32(A9_CPU_RST_CTRL
, 0x244)
119 REG32(RS_AWDT_CTRL
, 0x24c)
120 REG32(RST_REASON
, 0x250)
122 REG32(REBOOT_STATUS
, 0x258)
123 REG32(BOOT_MODE
, 0x25c)
125 REG32(APU_CTRL
, 0x300)
126 REG32(WDT_CLK_SEL
, 0x304)
128 REG32(TZ_DMA_NS
, 0x440)
129 REG32(TZ_DMA_IRQ_NS
, 0x444)
130 REG32(TZ_DMA_PERIPH_NS
, 0x448)
132 REG32(PSS_IDCODE
, 0x530)
134 REG32(DDR_URGENT
, 0x600)
135 REG32(DDR_CAL_START
, 0x60c)
136 REG32(DDR_REF_START
, 0x614)
137 REG32(DDR_CMD_STA
, 0x618)
138 REG32(DDR_URGENT_SEL
, 0x61c)
139 REG32(DDR_DFI_STATUS
, 0x620)
142 #define MIO_LENGTH 54
144 REG32(MIO_LOOPBACK
, 0x804)
145 REG32(MIO_MST_TRI0
, 0x808)
146 REG32(MIO_MST_TRI1
, 0x80c)
148 REG32(SD0_WP_CD_SEL
, 0x830)
149 REG32(SD1_WP_CD_SEL
, 0x834)
151 REG32(LVL_SHFTR_EN
, 0x900)
152 REG32(OCM_CFG
, 0x910)
154 REG32(CPU_RAM
, 0xa00)
158 REG32(DMAC_RAM
, 0xa50)
168 REG32(DEVCI_RAM
, 0xaa0)
170 REG32(CSG_RAM
, 0xab0)
172 REG32(GPIOB_CTRL
, 0xb00)
173 REG32(GPIOB_CFG_CMOS18
, 0xb04)
174 REG32(GPIOB_CFG_CMOS25
, 0xb08)
175 REG32(GPIOB_CFG_CMOS33
, 0xb0c)
176 REG32(GPIOB_CFG_HSTL
, 0xb14)
177 REG32(GPIOB_DRVR_BIAS_CTRL
, 0xb18)
180 #define DDRIOB_LENGTH 14
182 #define ZYNQ_SLCR_MMIO_SIZE 0x1000
183 #define ZYNQ_SLCR_NUM_REGS (ZYNQ_SLCR_MMIO_SIZE / 4)
185 #define TYPE_ZYNQ_SLCR "xilinx-zynq_slcr"
186 OBJECT_DECLARE_SIMPLE_TYPE(ZynqSLCRState
, ZYNQ_SLCR
)
188 struct ZynqSLCRState
{
189 SysBusDevice parent_obj
;
193 uint32_t regs
[ZYNQ_SLCR_NUM_REGS
];
196 Clock
*uart0_ref_clk
;
197 Clock
*uart1_ref_clk
;
201 * return the output frequency of ARM/DDR/IO pll
202 * using input frequency and PLL_CTRL register
204 static uint64_t zynq_slcr_compute_pll(uint64_t input
, uint32_t ctrl_reg
)
206 uint32_t mult
= ((ctrl_reg
& R_xxx_PLL_CTRL_PLL_FPDIV_MASK
) >>
207 R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT
);
209 /* first, check if pll is bypassed */
210 if (ctrl_reg
& R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK
) {
214 /* is pll disabled ? */
215 if (ctrl_reg
& (R_xxx_PLL_CTRL_PLL_RESET_MASK
|
216 R_xxx_PLL_CTRL_PLL_PWRDWN_MASK
)) {
220 /* Consider zero feedback as maximum divide ratio possible */
222 mult
= 1 << R_xxx_PLL_CTRL_PLL_FPDIV_LENGTH
;
225 /* frequency multiplier -> period division */
230 * return the output period of a clock given:
231 * + the periods in an array corresponding to input mux selector
232 * + the register xxx_CLK_CTRL value
233 * + enable bit index in ctrl register
235 * This function makes the assumption that the ctrl_reg value is organized as
237 * + bits[13:8] clock frequency divisor
238 * + bits[5:4] clock mux selector (index in array)
239 * + bits[index] clock enable
241 static uint64_t zynq_slcr_compute_clock(const uint64_t periods
[],
245 uint32_t srcsel
= extract32(ctrl_reg
, 4, 2); /* bits [5:4] */
246 uint32_t divisor
= extract32(ctrl_reg
, 8, 6); /* bits [13:8] */
248 /* first, check if clock is disabled */
249 if (((ctrl_reg
>> index
) & 1u) == 0) {
254 * according to the Zynq technical ref. manual UG585 v1.12.2 in
255 * Clocks chapter, section 25.10.1 page 705:
256 * "The 6-bit divider provides a divide range of 1 to 63"
257 * We follow here what is implemented in linux kernel and consider
258 * the 0 value as a bypass (no division).
260 /* frequency divisor -> period multiplication */
261 return periods
[srcsel
] * (divisor
? divisor
: 1u);
265 * macro helper around zynq_slcr_compute_clock to avoid repeating
268 #define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
269 zynq_slcr_compute_clock((plls), (state)->regs[reg], \
270 reg ## _ ## enable_field ## _SHIFT)
272 static void zynq_slcr_compute_clocks_internal(ZynqSLCRState
*s
, uint64_t ps_clk
)
274 uint64_t io_pll
= zynq_slcr_compute_pll(ps_clk
, s
->regs
[R_IO_PLL_CTRL
]);
275 uint64_t arm_pll
= zynq_slcr_compute_pll(ps_clk
, s
->regs
[R_ARM_PLL_CTRL
]);
276 uint64_t ddr_pll
= zynq_slcr_compute_pll(ps_clk
, s
->regs
[R_DDR_PLL_CTRL
]);
278 uint64_t uart_mux
[4] = {io_pll
, io_pll
, arm_pll
, ddr_pll
};
280 /* compute uartX reference clocks */
281 clock_set(s
->uart0_ref_clk
,
282 ZYNQ_COMPUTE_CLK(s
, uart_mux
, R_UART_CLK_CTRL
, CLKACT0
));
283 clock_set(s
->uart1_ref_clk
,
284 ZYNQ_COMPUTE_CLK(s
, uart_mux
, R_UART_CLK_CTRL
, CLKACT1
));
288 * Compute and set the ouputs clocks periods.
289 * But do not propagate them further. Connected clocks
290 * will not receive any updates (See zynq_slcr_compute_clocks())
292 static void zynq_slcr_compute_clocks(ZynqSLCRState
*s
)
294 uint64_t ps_clk
= clock_get(s
->ps_clk
);
296 /* consider outputs clocks are disabled while in reset */
297 if (device_is_in_reset(DEVICE(s
))) {
301 zynq_slcr_compute_clocks_internal(s
, ps_clk
);
305 * Propagate the outputs clocks.
306 * zynq_slcr_compute_clocks() should have been called before
309 static void zynq_slcr_propagate_clocks(ZynqSLCRState
*s
)
311 clock_propagate(s
->uart0_ref_clk
);
312 clock_propagate(s
->uart1_ref_clk
);
315 static void zynq_slcr_ps_clk_callback(void *opaque
, ClockEvent event
)
317 ZynqSLCRState
*s
= (ZynqSLCRState
*) opaque
;
319 zynq_slcr_compute_clocks(s
);
320 zynq_slcr_propagate_clocks(s
);
323 static void zynq_slcr_reset_init(Object
*obj
, ResetType type
)
325 ZynqSLCRState
*s
= ZYNQ_SLCR(obj
);
330 s
->regs
[R_LOCKSTA
] = 1;
332 s
->regs
[R_ARM_PLL_CTRL
] = 0x0001A008;
333 s
->regs
[R_DDR_PLL_CTRL
] = 0x0001A008;
334 s
->regs
[R_IO_PLL_CTRL
] = 0x0001A008;
335 s
->regs
[R_PLL_STATUS
] = 0x0000003F;
336 s
->regs
[R_ARM_PLL_CFG
] = 0x00014000;
337 s
->regs
[R_DDR_PLL_CFG
] = 0x00014000;
338 s
->regs
[R_IO_PLL_CFG
] = 0x00014000;
341 s
->regs
[R_ARM_CLK_CTRL
] = 0x1F000400;
342 s
->regs
[R_DDR_CLK_CTRL
] = 0x18400003;
343 s
->regs
[R_DCI_CLK_CTRL
] = 0x01E03201;
344 s
->regs
[R_APER_CLK_CTRL
] = 0x01FFCCCD;
345 s
->regs
[R_USB0_CLK_CTRL
] = s
->regs
[R_USB1_CLK_CTRL
] = 0x00101941;
346 s
->regs
[R_GEM0_RCLK_CTRL
] = s
->regs
[R_GEM1_RCLK_CTRL
] = 0x00000001;
347 s
->regs
[R_GEM0_CLK_CTRL
] = s
->regs
[R_GEM1_CLK_CTRL
] = 0x00003C01;
348 s
->regs
[R_SMC_CLK_CTRL
] = 0x00003C01;
349 s
->regs
[R_LQSPI_CLK_CTRL
] = 0x00002821;
350 s
->regs
[R_SDIO_CLK_CTRL
] = 0x00001E03;
351 s
->regs
[R_UART_CLK_CTRL
] = 0x00003F03;
352 s
->regs
[R_SPI_CLK_CTRL
] = 0x00003F03;
353 s
->regs
[R_CAN_CLK_CTRL
] = 0x00501903;
354 s
->regs
[R_DBG_CLK_CTRL
] = 0x00000F03;
355 s
->regs
[R_PCAP_CLK_CTRL
] = 0x00000F01;
358 s
->regs
[R_FPGA0_CLK_CTRL
] = s
->regs
[R_FPGA1_CLK_CTRL
]
359 = s
->regs
[R_FPGA2_CLK_CTRL
]
360 = s
->regs
[R_FPGA3_CLK_CTRL
] = 0x00101800;
361 s
->regs
[R_FPGA0_THR_STA
] = s
->regs
[R_FPGA1_THR_STA
]
362 = s
->regs
[R_FPGA2_THR_STA
]
363 = s
->regs
[R_FPGA3_THR_STA
] = 0x00010000;
366 s
->regs
[R_BANDGAP_TRIP
] = 0x0000001F;
367 s
->regs
[R_PLL_PREDIVISOR
] = 0x00000001;
368 s
->regs
[R_CLK_621_TRUE
] = 0x00000001;
371 s
->regs
[R_FPGA_RST_CTRL
] = 0x01F33F0F;
372 s
->regs
[R_RST_REASON
] = 0x00000040;
374 s
->regs
[R_BOOT_MODE
] = 0x00000001;
377 for (i
= 0; i
< 54; i
++) {
378 s
->regs
[R_MIO
+ i
] = 0x00001601;
380 for (i
= 2; i
<= 8; i
++) {
381 s
->regs
[R_MIO
+ i
] = 0x00000601;
384 s
->regs
[R_MIO_MST_TRI0
] = s
->regs
[R_MIO_MST_TRI1
] = 0xFFFFFFFF;
386 s
->regs
[R_CPU_RAM
+ 0] = s
->regs
[R_CPU_RAM
+ 1] = s
->regs
[R_CPU_RAM
+ 3]
387 = s
->regs
[R_CPU_RAM
+ 4] = s
->regs
[R_CPU_RAM
+ 7]
389 s
->regs
[R_CPU_RAM
+ 2] = s
->regs
[R_CPU_RAM
+ 5] = 0x01010101;
390 s
->regs
[R_CPU_RAM
+ 6] = 0x00000001;
392 s
->regs
[R_IOU
+ 0] = s
->regs
[R_IOU
+ 1] = s
->regs
[R_IOU
+ 2]
393 = s
->regs
[R_IOU
+ 3] = 0x09090909;
394 s
->regs
[R_IOU
+ 4] = s
->regs
[R_IOU
+ 5] = 0x00090909;
395 s
->regs
[R_IOU
+ 6] = 0x00000909;
397 s
->regs
[R_DMAC_RAM
] = 0x00000009;
399 s
->regs
[R_AFI0
+ 0] = s
->regs
[R_AFI0
+ 1] = 0x09090909;
400 s
->regs
[R_AFI1
+ 0] = s
->regs
[R_AFI1
+ 1] = 0x09090909;
401 s
->regs
[R_AFI2
+ 0] = s
->regs
[R_AFI2
+ 1] = 0x09090909;
402 s
->regs
[R_AFI3
+ 0] = s
->regs
[R_AFI3
+ 1] = 0x09090909;
403 s
->regs
[R_AFI0
+ 2] = s
->regs
[R_AFI1
+ 2] = s
->regs
[R_AFI2
+ 2]
404 = s
->regs
[R_AFI3
+ 2] = 0x00000909;
406 s
->regs
[R_OCM
+ 0] = 0x01010101;
407 s
->regs
[R_OCM
+ 1] = s
->regs
[R_OCM
+ 2] = 0x09090909;
409 s
->regs
[R_DEVCI_RAM
] = 0x00000909;
410 s
->regs
[R_CSG_RAM
] = 0x00000001;
412 s
->regs
[R_DDRIOB
+ 0] = s
->regs
[R_DDRIOB
+ 1] = s
->regs
[R_DDRIOB
+ 2]
413 = s
->regs
[R_DDRIOB
+ 3] = 0x00000e00;
414 s
->regs
[R_DDRIOB
+ 4] = s
->regs
[R_DDRIOB
+ 5] = s
->regs
[R_DDRIOB
+ 6]
416 s
->regs
[R_DDRIOB
+ 12] = 0x00000021;
419 static void zynq_slcr_reset_hold(Object
*obj
)
421 ZynqSLCRState
*s
= ZYNQ_SLCR(obj
);
423 /* will disable all output clocks */
424 zynq_slcr_compute_clocks_internal(s
, 0);
425 zynq_slcr_propagate_clocks(s
);
428 static void zynq_slcr_reset_exit(Object
*obj
)
430 ZynqSLCRState
*s
= ZYNQ_SLCR(obj
);
432 /* will compute output clocks according to ps_clk and registers */
433 zynq_slcr_compute_clocks_internal(s
, clock_get(s
->ps_clk
));
434 zynq_slcr_propagate_clocks(s
);
437 static bool zynq_slcr_check_offset(hwaddr offset
, bool rnw
)
442 case R_DDR_CAL_START
:
443 case R_DDR_REF_START
:
444 return !rnw
; /* Write only */
446 case R_FPGA0_THR_STA
:
447 case R_FPGA1_THR_STA
:
448 case R_FPGA2_THR_STA
:
449 case R_FPGA3_THR_STA
:
453 case R_DDR_DFI_STATUS
:
455 return rnw
;/* read only */
457 case R_ARM_PLL_CTRL
... R_IO_PLL_CTRL
:
458 case R_ARM_PLL_CFG
... R_IO_PLL_CFG
:
459 case R_ARM_CLK_CTRL
... R_TOPSW_CLK_CTRL
:
460 case R_FPGA0_CLK_CTRL
... R_FPGA0_THR_CNT
:
461 case R_FPGA1_CLK_CTRL
... R_FPGA1_THR_CNT
:
462 case R_FPGA2_CLK_CTRL
... R_FPGA2_THR_CNT
:
463 case R_FPGA3_CLK_CTRL
... R_FPGA3_THR_CNT
:
465 case R_PLL_PREDIVISOR
:
467 case R_PSS_RST_CTRL
... R_A9_CPU_RST_CTRL
:
470 case R_REBOOT_STATUS
:
473 case R_TZ_DMA_NS
... R_TZ_DMA_PERIPH_NS
:
475 case R_DDR_URGENT_SEL
:
476 case R_MIO
... R_MIO
+ MIO_LENGTH
- 1:
477 case R_MIO_LOOPBACK
... R_MIO_MST_TRI1
:
478 case R_SD0_WP_CD_SEL
:
479 case R_SD1_WP_CD_SEL
:
485 case R_AFI0
... R_AFI3
+ AFI_LENGTH
- 1:
489 case R_GPIOB_CTRL
... R_GPIOB_CFG_CMOS33
:
490 case R_GPIOB_CFG_HSTL
:
491 case R_GPIOB_DRVR_BIAS_CTRL
:
492 case R_DDRIOB
... R_DDRIOB
+ DDRIOB_LENGTH
- 1:
499 static uint64_t zynq_slcr_read(void *opaque
, hwaddr offset
,
502 ZynqSLCRState
*s
= opaque
;
504 uint32_t ret
= s
->regs
[offset
];
506 if (!zynq_slcr_check_offset(offset
, true)) {
507 qemu_log_mask(LOG_GUEST_ERROR
, "zynq_slcr: Invalid read access to "
508 " addr %" HWADDR_PRIx
"\n", offset
* 4);
511 DB_PRINT("addr: %08" HWADDR_PRIx
" data: %08" PRIx32
"\n", offset
* 4, ret
);
515 static void zynq_slcr_write(void *opaque
, hwaddr offset
,
516 uint64_t val
, unsigned size
)
518 ZynqSLCRState
*s
= (ZynqSLCRState
*)opaque
;
521 DB_PRINT("addr: %08" HWADDR_PRIx
" data: %08" PRIx64
"\n", offset
* 4, val
);
523 if (!zynq_slcr_check_offset(offset
, false)) {
524 qemu_log_mask(LOG_GUEST_ERROR
, "zynq_slcr: Invalid write access to "
525 "addr %" HWADDR_PRIx
"\n", offset
* 4);
531 s
->regs
[R_SCL
] = val
& 0x1;
534 if ((val
& 0xFFFF) == XILINX_LOCK_KEY
) {
535 DB_PRINT("XILINX LOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset
,
536 (unsigned)val
& 0xFFFF);
537 s
->regs
[R_LOCKSTA
] = 1;
539 DB_PRINT("WRONG XILINX LOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
540 (int)offset
, (unsigned)val
& 0xFFFF);
544 if ((val
& 0xFFFF) == XILINX_UNLOCK_KEY
) {
545 DB_PRINT("XILINX UNLOCK 0xF8000000 + 0x%x <= 0x%x\n", (int)offset
,
546 (unsigned)val
& 0xFFFF);
547 s
->regs
[R_LOCKSTA
] = 0;
549 DB_PRINT("WRONG XILINX UNLOCK KEY 0xF8000000 + 0x%x <= 0x%x\n",
550 (int)offset
, (unsigned)val
& 0xFFFF);
555 if (s
->regs
[R_LOCKSTA
]) {
556 qemu_log_mask(LOG_GUEST_ERROR
,
557 "SCLR registers are locked. Unlock them first\n");
560 s
->regs
[offset
] = val
;
564 if (FIELD_EX32(val
, PSS_RST_CTRL
, SOFT_RST
)) {
565 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
571 case R_UART_CLK_CTRL
:
572 zynq_slcr_compute_clocks(s
);
573 zynq_slcr_propagate_clocks(s
);
578 static const MemoryRegionOps slcr_ops
= {
579 .read
= zynq_slcr_read
,
580 .write
= zynq_slcr_write
,
581 .endianness
= DEVICE_NATIVE_ENDIAN
,
584 static const ClockPortInitArray zynq_slcr_clocks
= {
585 QDEV_CLOCK_IN(ZynqSLCRState
, ps_clk
, zynq_slcr_ps_clk_callback
, ClockUpdate
),
586 QDEV_CLOCK_OUT(ZynqSLCRState
, uart0_ref_clk
),
587 QDEV_CLOCK_OUT(ZynqSLCRState
, uart1_ref_clk
),
591 static void zynq_slcr_init(Object
*obj
)
593 ZynqSLCRState
*s
= ZYNQ_SLCR(obj
);
595 memory_region_init_io(&s
->iomem
, obj
, &slcr_ops
, s
, "slcr",
596 ZYNQ_SLCR_MMIO_SIZE
);
597 sysbus_init_mmio(SYS_BUS_DEVICE(obj
), &s
->iomem
);
599 qdev_init_clocks(DEVICE(obj
), zynq_slcr_clocks
);
602 static const VMStateDescription vmstate_zynq_slcr
= {
605 .minimum_version_id
= 2,
606 .fields
= (VMStateField
[]) {
607 VMSTATE_UINT32_ARRAY(regs
, ZynqSLCRState
, ZYNQ_SLCR_NUM_REGS
),
608 VMSTATE_CLOCK_V(ps_clk
, ZynqSLCRState
, 3),
609 VMSTATE_END_OF_LIST()
613 static void zynq_slcr_class_init(ObjectClass
*klass
, void *data
)
615 DeviceClass
*dc
= DEVICE_CLASS(klass
);
616 ResettableClass
*rc
= RESETTABLE_CLASS(klass
);
618 dc
->vmsd
= &vmstate_zynq_slcr
;
619 rc
->phases
.enter
= zynq_slcr_reset_init
;
620 rc
->phases
.hold
= zynq_slcr_reset_hold
;
621 rc
->phases
.exit
= zynq_slcr_reset_exit
;
624 static const TypeInfo zynq_slcr_info
= {
625 .class_init
= zynq_slcr_class_init
,
626 .name
= TYPE_ZYNQ_SLCR
,
627 .parent
= TYPE_SYS_BUS_DEVICE
,
628 .instance_size
= sizeof(ZynqSLCRState
),
629 .instance_init
= zynq_slcr_init
,
632 static void zynq_slcr_register_types(void)
634 type_register_static(&zynq_slcr_info
);
637 type_init(zynq_slcr_register_types
)