2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "hw/sysbus.h"
27 #include "hw/char/escc.h"
28 #include "sysemu/char.h"
29 #include "ui/console.h"
35 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
36 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
38 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
39 * (Slave I/O), also produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
43 * mouse and keyboard ports don't implement all functions and they are
44 * only asynchronous. There is no DMA.
46 * Z85C30 is also used on PowerMacs. There are some small differences
47 * between Sparc version (sunzilog) and PowerMac (pmac):
48 * Offset between control and data registers
49 * There is some kind of lockup bug, but we can ignore it
51 * DMA on pmac using DBDMA chip
52 * pmac can do IRDA and faster rates, sunzilog can only do 38400
53 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
58 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
60 * Implemented serial mouse protocol.
62 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic
69 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
75 #define SERIO_QUEUE_SIZE 256
78 uint8_t data
[SERIO_QUEUE_SIZE
];
79 int rptr
, wptr
, count
;
82 #define SERIAL_REGS 16
83 typedef struct ChannelState
{
85 uint32_t rxint
, txint
, rxint_under_svc
, txint_under_svc
;
86 struct ChannelState
*otherchn
;
88 uint8_t wregs
[SERIAL_REGS
], rregs
[SERIAL_REGS
];
91 int e0_mode
, led_mode
, caps_lock_mode
, num_lock_mode
;
94 uint32_t vmstate_dummy
;
95 ChnID chn
; // this channel, A (base+4) or B (base+0)
98 QemuInputHandlerState
*hs
;
101 #define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
103 typedef struct ESCCState
{
104 SysBusDevice parent_obj
;
106 struct ChannelState chn
[2];
113 #define SERIAL_CTRL 0
114 #define SERIAL_DATA 1
117 #define CMD_PTR_MASK 0x07
118 #define CMD_CMD_MASK 0x38
120 #define CMD_CLR_TXINT 0x28
121 #define CMD_CLR_IUS 0x38
123 #define INTR_INTALL 0x01
124 #define INTR_TXINT 0x02
125 #define INTR_RXMODEMSK 0x18
126 #define INTR_RXINT1ST 0x08
127 #define INTR_RXINTALL 0x10
130 #define RXCTRL_RXEN 0x01
132 #define TXCTRL1_PAREN 0x01
133 #define TXCTRL1_PAREV 0x02
134 #define TXCTRL1_1STOP 0x04
135 #define TXCTRL1_1HSTOP 0x08
136 #define TXCTRL1_2STOP 0x0c
137 #define TXCTRL1_STPMSK 0x0c
138 #define TXCTRL1_CLK1X 0x00
139 #define TXCTRL1_CLK16X 0x40
140 #define TXCTRL1_CLK32X 0x80
141 #define TXCTRL1_CLK64X 0xc0
142 #define TXCTRL1_CLKMSK 0xc0
144 #define TXCTRL2_TXEN 0x08
145 #define TXCTRL2_BITMSK 0x60
146 #define TXCTRL2_5BITS 0x00
147 #define TXCTRL2_7BITS 0x20
148 #define TXCTRL2_6BITS 0x40
149 #define TXCTRL2_8BITS 0x60
154 #define MINTR_STATUSHI 0x10
155 #define MINTR_RST_MASK 0xc0
156 #define MINTR_RST_B 0x40
157 #define MINTR_RST_A 0x80
158 #define MINTR_RST_ALL 0xc0
161 #define CLOCK_TRXC 0x08
165 #define MISC2_PLLDIS 0x30
167 #define EXTINT_DCD 0x08
168 #define EXTINT_SYNCINT 0x10
169 #define EXTINT_CTSINT 0x20
170 #define EXTINT_TXUNDRN 0x40
171 #define EXTINT_BRKINT 0x80
174 #define STATUS_RXAV 0x01
175 #define STATUS_ZERO 0x02
176 #define STATUS_TXEMPTY 0x04
177 #define STATUS_DCD 0x08
178 #define STATUS_SYNC 0x10
179 #define STATUS_CTS 0x20
180 #define STATUS_TXUNDRN 0x40
181 #define STATUS_BRK 0x80
183 #define SPEC_ALLSENT 0x01
184 #define SPEC_BITS8 0x06
186 #define IVEC_TXINTB 0x00
187 #define IVEC_LONOINT 0x06
188 #define IVEC_LORXINTA 0x0c
189 #define IVEC_LORXINTB 0x04
190 #define IVEC_LOTXINTA 0x08
191 #define IVEC_HINOINT 0x60
192 #define IVEC_HIRXINTA 0x30
193 #define IVEC_HIRXINTB 0x20
194 #define IVEC_HITXINTA 0x10
196 #define INTR_EXTINTB 0x01
197 #define INTR_TXINTB 0x02
198 #define INTR_RXINTB 0x04
199 #define INTR_EXTINTA 0x08
200 #define INTR_TXINTA 0x10
201 #define INTR_RXINTA 0x20
215 static void handle_kbd_command(ChannelState
*s
, int val
);
216 static int serial_can_receive(void *opaque
);
217 static void serial_receive_byte(ChannelState
*s
, int ch
);
219 static void clear_queue(void *opaque
)
221 ChannelState
*s
= opaque
;
222 SERIOQueue
*q
= &s
->queue
;
223 q
->rptr
= q
->wptr
= q
->count
= 0;
226 static void put_queue(void *opaque
, int b
)
228 ChannelState
*s
= opaque
;
229 SERIOQueue
*q
= &s
->queue
;
231 trace_escc_put_queue(CHN_C(s
), b
);
232 if (q
->count
>= SERIO_QUEUE_SIZE
)
234 q
->data
[q
->wptr
] = b
;
235 if (++q
->wptr
== SERIO_QUEUE_SIZE
)
238 serial_receive_byte(s
, 0);
241 static uint32_t get_queue(void *opaque
)
243 ChannelState
*s
= opaque
;
244 SERIOQueue
*q
= &s
->queue
;
250 val
= q
->data
[q
->rptr
];
251 if (++q
->rptr
== SERIO_QUEUE_SIZE
)
255 trace_escc_get_queue(CHN_C(s
), val
);
257 serial_receive_byte(s
, 0);
261 static int escc_update_irq_chn(ChannelState
*s
)
263 if ((((s
->wregs
[W_INTR
] & INTR_TXINT
) && (s
->txint
== 1)) ||
264 // tx ints enabled, pending
265 ((((s
->wregs
[W_INTR
] & INTR_RXMODEMSK
) == INTR_RXINT1ST
) ||
266 ((s
->wregs
[W_INTR
] & INTR_RXMODEMSK
) == INTR_RXINTALL
)) &&
267 s
->rxint
== 1) || // rx ints enabled, pending
268 ((s
->wregs
[W_EXTINT
] & EXTINT_BRKINT
) &&
269 (s
->rregs
[R_STATUS
] & STATUS_BRK
)))) { // break int e&p
275 static void escc_update_irq(ChannelState
*s
)
279 irq
= escc_update_irq_chn(s
);
280 irq
|= escc_update_irq_chn(s
->otherchn
);
282 trace_escc_update_irq(irq
);
283 qemu_set_irq(s
->irq
, irq
);
286 static void escc_reset_chn(ChannelState
*s
)
291 for (i
= 0; i
< SERIAL_REGS
; i
++) {
295 s
->wregs
[W_TXCTRL1
] = TXCTRL1_1STOP
; // 1X divisor, 1 stop bit, no parity
296 s
->wregs
[W_MINTR
] = MINTR_RST_ALL
;
297 s
->wregs
[W_CLOCK
] = CLOCK_TRXC
; // Synch mode tx clock = TRxC
298 s
->wregs
[W_MISC2
] = MISC2_PLLDIS
; // PLL disabled
299 s
->wregs
[W_EXTINT
] = EXTINT_DCD
| EXTINT_SYNCINT
| EXTINT_CTSINT
|
300 EXTINT_TXUNDRN
| EXTINT_BRKINT
; // Enable most interrupts
302 s
->rregs
[R_STATUS
] = STATUS_TXEMPTY
| STATUS_DCD
| STATUS_SYNC
|
303 STATUS_CTS
| STATUS_TXUNDRN
;
305 s
->rregs
[R_STATUS
] = STATUS_TXEMPTY
| STATUS_TXUNDRN
;
306 s
->rregs
[R_SPEC
] = SPEC_BITS8
| SPEC_ALLSENT
;
309 s
->rxint
= s
->txint
= 0;
310 s
->rxint_under_svc
= s
->txint_under_svc
= 0;
311 s
->e0_mode
= s
->led_mode
= s
->caps_lock_mode
= s
->num_lock_mode
= 0;
315 static void escc_reset(DeviceState
*d
)
317 ESCCState
*s
= ESCC(d
);
319 escc_reset_chn(&s
->chn
[0]);
320 escc_reset_chn(&s
->chn
[1]);
323 static inline void set_rxint(ChannelState
*s
)
326 /* XXX: missing daisy chainnig: chn_b rx should have a lower priority
327 than chn_a rx/tx/special_condition service*/
328 s
->rxint_under_svc
= 1;
329 if (s
->chn
== chn_a
) {
330 s
->rregs
[R_INTR
] |= INTR_RXINTA
;
331 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
332 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HIRXINTA
;
334 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LORXINTA
;
336 s
->otherchn
->rregs
[R_INTR
] |= INTR_RXINTB
;
337 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
338 s
->rregs
[R_IVEC
] = IVEC_HIRXINTB
;
340 s
->rregs
[R_IVEC
] = IVEC_LORXINTB
;
345 static inline void set_txint(ChannelState
*s
)
348 if (!s
->rxint_under_svc
) {
349 s
->txint_under_svc
= 1;
350 if (s
->chn
== chn_a
) {
351 if (s
->wregs
[W_INTR
] & INTR_TXINT
) {
352 s
->rregs
[R_INTR
] |= INTR_TXINTA
;
354 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
355 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HITXINTA
;
357 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LOTXINTA
;
359 s
->rregs
[R_IVEC
] = IVEC_TXINTB
;
360 if (s
->wregs
[W_INTR
] & INTR_TXINT
) {
361 s
->otherchn
->rregs
[R_INTR
] |= INTR_TXINTB
;
368 static inline void clr_rxint(ChannelState
*s
)
371 s
->rxint_under_svc
= 0;
372 if (s
->chn
== chn_a
) {
373 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
374 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HINOINT
;
376 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LONOINT
;
377 s
->rregs
[R_INTR
] &= ~INTR_RXINTA
;
379 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
380 s
->rregs
[R_IVEC
] = IVEC_HINOINT
;
382 s
->rregs
[R_IVEC
] = IVEC_LONOINT
;
383 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_RXINTB
;
390 static inline void clr_txint(ChannelState
*s
)
393 s
->txint_under_svc
= 0;
394 if (s
->chn
== chn_a
) {
395 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
396 s
->otherchn
->rregs
[R_IVEC
] = IVEC_HINOINT
;
398 s
->otherchn
->rregs
[R_IVEC
] = IVEC_LONOINT
;
399 s
->rregs
[R_INTR
] &= ~INTR_TXINTA
;
401 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_TXINTB
;
402 if (s
->wregs
[W_MINTR
] & MINTR_STATUSHI
)
403 s
->rregs
[R_IVEC
] = IVEC_HINOINT
;
405 s
->rregs
[R_IVEC
] = IVEC_LONOINT
;
406 s
->otherchn
->rregs
[R_INTR
] &= ~INTR_TXINTB
;
413 static void escc_update_parameters(ChannelState
*s
)
415 int speed
, parity
, data_bits
, stop_bits
;
416 QEMUSerialSetParams ssp
;
418 if (!s
->chr
|| s
->type
!= ser
)
421 if (s
->wregs
[W_TXCTRL1
] & TXCTRL1_PAREN
) {
422 if (s
->wregs
[W_TXCTRL1
] & TXCTRL1_PAREV
)
429 if ((s
->wregs
[W_TXCTRL1
] & TXCTRL1_STPMSK
) == TXCTRL1_2STOP
)
433 switch (s
->wregs
[W_TXCTRL2
] & TXCTRL2_BITMSK
) {
448 speed
= s
->clock
/ ((s
->wregs
[W_BRGLO
] | (s
->wregs
[W_BRGHI
] << 8)) + 2);
449 switch (s
->wregs
[W_TXCTRL1
] & TXCTRL1_CLKMSK
) {
465 ssp
.data_bits
= data_bits
;
466 ssp
.stop_bits
= stop_bits
;
467 trace_escc_update_parameters(CHN_C(s
), speed
, parity
, data_bits
, stop_bits
);
468 qemu_chr_fe_ioctl(s
->chr
, CHR_IOCTL_SERIAL_SET_PARAMS
, &ssp
);
471 static void escc_mem_write(void *opaque
, hwaddr addr
,
472 uint64_t val
, unsigned size
)
474 ESCCState
*serial
= opaque
;
480 saddr
= (addr
>> serial
->it_shift
) & 1;
481 channel
= (addr
>> (serial
->it_shift
+ 1)) & 1;
482 s
= &serial
->chn
[channel
];
485 trace_escc_mem_writeb_ctrl(CHN_C(s
), s
->reg
, val
& 0xff);
489 newreg
= val
& CMD_PTR_MASK
;
499 if (s
->rxint_under_svc
) {
500 s
->rxint_under_svc
= 0;
504 } else if (s
->txint_under_svc
) {
505 s
->txint_under_svc
= 0;
513 case W_INTR
... W_RXCTRL
:
514 case W_SYNC1
... W_TXBUF
:
515 case W_MISC1
... W_CLOCK
:
516 case W_MISC2
... W_EXTINT
:
517 s
->wregs
[s
->reg
] = val
;
521 s
->wregs
[s
->reg
] = val
;
522 escc_update_parameters(s
);
526 s
->wregs
[s
->reg
] = val
;
527 s
->rregs
[s
->reg
] = val
;
528 escc_update_parameters(s
);
531 switch (val
& MINTR_RST_MASK
) {
536 escc_reset_chn(&serial
->chn
[0]);
539 escc_reset_chn(&serial
->chn
[1]);
542 escc_reset(DEVICE(serial
));
555 trace_escc_mem_writeb_data(CHN_C(s
), val
);
557 if (s
->wregs
[W_TXCTRL2
] & TXCTRL2_TXEN
) { // tx enabled
559 qemu_chr_fe_write(s
->chr
, &s
->tx
, 1);
560 else if (s
->type
== kbd
&& !s
->disabled
) {
561 handle_kbd_command(s
, val
);
564 s
->rregs
[R_STATUS
] |= STATUS_TXEMPTY
; // Tx buffer empty
565 s
->rregs
[R_SPEC
] |= SPEC_ALLSENT
; // All sent
573 static uint64_t escc_mem_read(void *opaque
, hwaddr addr
,
576 ESCCState
*serial
= opaque
;
582 saddr
= (addr
>> serial
->it_shift
) & 1;
583 channel
= (addr
>> (serial
->it_shift
+ 1)) & 1;
584 s
= &serial
->chn
[channel
];
587 trace_escc_mem_readb_ctrl(CHN_C(s
), s
->reg
, s
->rregs
[s
->reg
]);
588 ret
= s
->rregs
[s
->reg
];
592 s
->rregs
[R_STATUS
] &= ~STATUS_RXAV
;
594 if (s
->type
== kbd
|| s
->type
== mouse
)
598 trace_escc_mem_readb_data(CHN_C(s
), ret
);
600 qemu_chr_accept_input(s
->chr
);
608 static const MemoryRegionOps escc_mem_ops
= {
609 .read
= escc_mem_read
,
610 .write
= escc_mem_write
,
611 .endianness
= DEVICE_NATIVE_ENDIAN
,
613 .min_access_size
= 1,
614 .max_access_size
= 1,
618 static int serial_can_receive(void *opaque
)
620 ChannelState
*s
= opaque
;
623 if (((s
->wregs
[W_RXCTRL
] & RXCTRL_RXEN
) == 0) // Rx not enabled
624 || ((s
->rregs
[R_STATUS
] & STATUS_RXAV
) == STATUS_RXAV
))
625 // char already available
632 static void serial_receive_byte(ChannelState
*s
, int ch
)
634 trace_escc_serial_receive_byte(CHN_C(s
), ch
);
635 s
->rregs
[R_STATUS
] |= STATUS_RXAV
;
640 static void serial_receive_break(ChannelState
*s
)
642 s
->rregs
[R_STATUS
] |= STATUS_BRK
;
646 static void serial_receive1(void *opaque
, const uint8_t *buf
, int size
)
648 ChannelState
*s
= opaque
;
649 serial_receive_byte(s
, buf
[0]);
652 static void serial_event(void *opaque
, int event
)
654 ChannelState
*s
= opaque
;
655 if (event
== CHR_EVENT_BREAK
)
656 serial_receive_break(s
);
659 static const VMStateDescription vmstate_escc_chn
= {
662 .minimum_version_id
= 1,
663 .fields
= (VMStateField
[]) {
664 VMSTATE_UINT32(vmstate_dummy
, ChannelState
),
665 VMSTATE_UINT32(reg
, ChannelState
),
666 VMSTATE_UINT32(rxint
, ChannelState
),
667 VMSTATE_UINT32(txint
, ChannelState
),
668 VMSTATE_UINT32(rxint_under_svc
, ChannelState
),
669 VMSTATE_UINT32(txint_under_svc
, ChannelState
),
670 VMSTATE_UINT8(rx
, ChannelState
),
671 VMSTATE_UINT8(tx
, ChannelState
),
672 VMSTATE_BUFFER(wregs
, ChannelState
),
673 VMSTATE_BUFFER(rregs
, ChannelState
),
674 VMSTATE_END_OF_LIST()
678 static const VMStateDescription vmstate_escc
= {
681 .minimum_version_id
= 1,
682 .fields
= (VMStateField
[]) {
683 VMSTATE_STRUCT_ARRAY(chn
, ESCCState
, 2, 2, vmstate_escc_chn
,
685 VMSTATE_END_OF_LIST()
689 MemoryRegion
*escc_init(hwaddr base
, qemu_irq irqA
, qemu_irq irqB
,
690 CharDriverState
*chrA
, CharDriverState
*chrB
,
691 int clock
, int it_shift
)
697 dev
= qdev_create(NULL
, TYPE_ESCC
);
698 qdev_prop_set_uint32(dev
, "disabled", 0);
699 qdev_prop_set_uint32(dev
, "frequency", clock
);
700 qdev_prop_set_uint32(dev
, "it_shift", it_shift
);
701 qdev_prop_set_chr(dev
, "chrB", chrB
);
702 qdev_prop_set_chr(dev
, "chrA", chrA
);
703 qdev_prop_set_uint32(dev
, "chnBtype", ser
);
704 qdev_prop_set_uint32(dev
, "chnAtype", ser
);
705 qdev_init_nofail(dev
);
706 s
= SYS_BUS_DEVICE(dev
);
707 sysbus_connect_irq(s
, 0, irqB
);
708 sysbus_connect_irq(s
, 1, irqA
);
710 sysbus_mmio_map(s
, 0, base
);
717 static const uint8_t qcode_to_keycode
[Q_KEY_CODE__MAX
] = {
718 [Q_KEY_CODE_SHIFT
] = 99,
719 [Q_KEY_CODE_SHIFT_R
] = 110,
720 [Q_KEY_CODE_ALT
] = 19,
721 [Q_KEY_CODE_ALT_R
] = 13,
722 [Q_KEY_CODE_ALTGR
] = 13,
723 [Q_KEY_CODE_CTRL
] = 76,
724 [Q_KEY_CODE_CTRL_R
] = 76,
725 [Q_KEY_CODE_ESC
] = 29,
736 [Q_KEY_CODE_MINUS
] = 40,
737 [Q_KEY_CODE_EQUAL
] = 41,
738 [Q_KEY_CODE_BACKSPACE
] = 43,
739 [Q_KEY_CODE_TAB
] = 53,
750 [Q_KEY_CODE_BRACKET_LEFT
] = 64,
751 [Q_KEY_CODE_BRACKET_RIGHT
] = 65,
752 [Q_KEY_CODE_RET
] = 89,
762 [Q_KEY_CODE_SEMICOLON
] = 86,
763 [Q_KEY_CODE_APOSTROPHE
] = 87,
764 [Q_KEY_CODE_GRAVE_ACCENT
] = 42,
765 [Q_KEY_CODE_BACKSLASH
] = 88,
766 [Q_KEY_CODE_Z
] = 100,
767 [Q_KEY_CODE_X
] = 101,
768 [Q_KEY_CODE_C
] = 102,
769 [Q_KEY_CODE_V
] = 103,
770 [Q_KEY_CODE_B
] = 104,
771 [Q_KEY_CODE_N
] = 105,
772 [Q_KEY_CODE_M
] = 106,
773 [Q_KEY_CODE_COMMA
] = 107,
774 [Q_KEY_CODE_DOT
] = 108,
775 [Q_KEY_CODE_SLASH
] = 109,
776 [Q_KEY_CODE_ASTERISK
] = 47,
777 [Q_KEY_CODE_SPC
] = 121,
778 [Q_KEY_CODE_CAPS_LOCK
] = 119,
782 [Q_KEY_CODE_F4
] = 10,
783 [Q_KEY_CODE_F5
] = 12,
784 [Q_KEY_CODE_F6
] = 14,
785 [Q_KEY_CODE_F7
] = 16,
786 [Q_KEY_CODE_F8
] = 17,
787 [Q_KEY_CODE_F9
] = 18,
788 [Q_KEY_CODE_F10
] = 7,
789 [Q_KEY_CODE_NUM_LOCK
] = 98,
790 [Q_KEY_CODE_SCROLL_LOCK
] = 23,
791 [Q_KEY_CODE_KP_DIVIDE
] = 46,
792 [Q_KEY_CODE_KP_MULTIPLY
] = 47,
793 [Q_KEY_CODE_KP_SUBTRACT
] = 71,
794 [Q_KEY_CODE_KP_ADD
] = 125,
795 [Q_KEY_CODE_KP_ENTER
] = 90,
796 [Q_KEY_CODE_KP_DECIMAL
] = 50,
797 [Q_KEY_CODE_KP_0
] = 94,
798 [Q_KEY_CODE_KP_1
] = 112,
799 [Q_KEY_CODE_KP_2
] = 113,
800 [Q_KEY_CODE_KP_3
] = 114,
801 [Q_KEY_CODE_KP_4
] = 91,
802 [Q_KEY_CODE_KP_5
] = 92,
803 [Q_KEY_CODE_KP_6
] = 93,
804 [Q_KEY_CODE_KP_7
] = 68,
805 [Q_KEY_CODE_KP_8
] = 69,
806 [Q_KEY_CODE_KP_9
] = 70,
807 [Q_KEY_CODE_LESS
] = 124,
808 [Q_KEY_CODE_F11
] = 9,
809 [Q_KEY_CODE_F12
] = 11,
810 [Q_KEY_CODE_HOME
] = 52,
811 [Q_KEY_CODE_PGUP
] = 96,
812 [Q_KEY_CODE_PGDN
] = 123,
813 [Q_KEY_CODE_END
] = 74,
814 [Q_KEY_CODE_LEFT
] = 24,
815 [Q_KEY_CODE_UP
] = 20,
816 [Q_KEY_CODE_DOWN
] = 27,
817 [Q_KEY_CODE_RIGHT
] = 28,
818 [Q_KEY_CODE_INSERT
] = 44,
819 [Q_KEY_CODE_DELETE
] = 66,
820 [Q_KEY_CODE_STOP
] = 1,
821 [Q_KEY_CODE_AGAIN
] = 3,
822 [Q_KEY_CODE_PROPS
] = 25,
823 [Q_KEY_CODE_UNDO
] = 26,
824 [Q_KEY_CODE_FRONT
] = 49,
825 [Q_KEY_CODE_COPY
] = 51,
826 [Q_KEY_CODE_OPEN
] = 72,
827 [Q_KEY_CODE_PASTE
] = 73,
828 [Q_KEY_CODE_FIND
] = 95,
829 [Q_KEY_CODE_CUT
] = 97,
830 [Q_KEY_CODE_LF
] = 111,
831 [Q_KEY_CODE_HELP
] = 118,
832 [Q_KEY_CODE_META_L
] = 120,
833 [Q_KEY_CODE_META_R
] = 122,
834 [Q_KEY_CODE_COMPOSE
] = 67,
835 [Q_KEY_CODE_PRINT
] = 22,
836 [Q_KEY_CODE_SYSRQ
] = 21,
839 static void sunkbd_handle_event(DeviceState
*dev
, QemuConsole
*src
,
842 ChannelState
*s
= (ChannelState
*)dev
;
845 assert(evt
->type
== INPUT_EVENT_KIND_KEY
);
846 qcode
= qemu_input_key_value_to_qcode(evt
->u
.key
->key
);
847 trace_escc_sunkbd_event_in(qcode
, QKeyCode_lookup
[qcode
],
850 if (qcode
== Q_KEY_CODE_CAPS_LOCK
) {
851 if (evt
->u
.key
->down
) {
852 s
->caps_lock_mode
^= 1;
853 if (s
->caps_lock_mode
== 2) {
854 return; /* Drop second press */
857 s
->caps_lock_mode
^= 2;
858 if (s
->caps_lock_mode
== 3) {
859 return; /* Drop first release */
864 if (qcode
== Q_KEY_CODE_NUM_LOCK
) {
865 if (evt
->u
.key
->down
) {
866 s
->num_lock_mode
^= 1;
867 if (s
->num_lock_mode
== 2) {
868 return; /* Drop second press */
871 s
->num_lock_mode
^= 2;
872 if (s
->num_lock_mode
== 3) {
873 return; /* Drop first release */
878 keycode
= qcode_to_keycode
[qcode
];
879 if (!evt
->u
.key
->down
) {
882 trace_escc_sunkbd_event_out(keycode
);
883 put_queue(s
, keycode
);
886 static QemuInputHandler sunkbd_handler
= {
887 .name
= "sun keyboard",
888 .mask
= INPUT_EVENT_MASK_KEY
,
889 .event
= sunkbd_handle_event
,
892 static void handle_kbd_command(ChannelState
*s
, int val
)
894 trace_escc_kbd_command(val
);
895 if (s
->led_mode
) { // Ignore led byte
900 case 1: // Reset, return type code
903 put_queue(s
, 4); // Type 4
906 case 0xe: // Set leds
909 case 7: // Query layout
913 put_queue(s
, 0x21); /* en-us layout */
920 static void sunmouse_event(void *opaque
,
921 int dx
, int dy
, int dz
, int buttons_state
)
923 ChannelState
*s
= opaque
;
926 trace_escc_sunmouse_event(dx
, dy
, buttons_state
);
927 ch
= 0x80 | 0x7; /* protocol start byte, no buttons pressed */
929 if (buttons_state
& MOUSE_EVENT_LBUTTON
)
931 if (buttons_state
& MOUSE_EVENT_MBUTTON
)
933 if (buttons_state
& MOUSE_EVENT_RBUTTON
)
945 put_queue(s
, ch
& 0xff);
954 put_queue(s
, ch
& 0xff);
956 // MSC protocol specify two extra motion bytes
962 void slavio_serial_ms_kbd_init(hwaddr base
, qemu_irq irq
,
963 int disabled
, int clock
, int it_shift
)
968 dev
= qdev_create(NULL
, TYPE_ESCC
);
969 qdev_prop_set_uint32(dev
, "disabled", disabled
);
970 qdev_prop_set_uint32(dev
, "frequency", clock
);
971 qdev_prop_set_uint32(dev
, "it_shift", it_shift
);
972 qdev_prop_set_chr(dev
, "chrB", NULL
);
973 qdev_prop_set_chr(dev
, "chrA", NULL
);
974 qdev_prop_set_uint32(dev
, "chnBtype", mouse
);
975 qdev_prop_set_uint32(dev
, "chnAtype", kbd
);
976 qdev_init_nofail(dev
);
977 s
= SYS_BUS_DEVICE(dev
);
978 sysbus_connect_irq(s
, 0, irq
);
979 sysbus_connect_irq(s
, 1, irq
);
980 sysbus_mmio_map(s
, 0, base
);
983 static int escc_init1(SysBusDevice
*dev
)
985 ESCCState
*s
= ESCC(dev
);
988 s
->chn
[0].disabled
= s
->disabled
;
989 s
->chn
[1].disabled
= s
->disabled
;
990 for (i
= 0; i
< 2; i
++) {
991 sysbus_init_irq(dev
, &s
->chn
[i
].irq
);
992 s
->chn
[i
].chn
= 1 - i
;
993 s
->chn
[i
].clock
= s
->frequency
/ 2;
995 qemu_chr_add_handlers(s
->chn
[i
].chr
, serial_can_receive
,
996 serial_receive1
, serial_event
, &s
->chn
[i
]);
999 s
->chn
[0].otherchn
= &s
->chn
[1];
1000 s
->chn
[1].otherchn
= &s
->chn
[0];
1002 memory_region_init_io(&s
->mmio
, OBJECT(s
), &escc_mem_ops
, s
, "escc",
1003 ESCC_SIZE
<< s
->it_shift
);
1004 sysbus_init_mmio(dev
, &s
->mmio
);
1006 if (s
->chn
[0].type
== mouse
) {
1007 qemu_add_mouse_event_handler(sunmouse_event
, &s
->chn
[0], 0,
1010 if (s
->chn
[1].type
== kbd
) {
1011 s
->chn
[1].hs
= qemu_input_handler_register((DeviceState
*)(&s
->chn
[1]),
1018 static Property escc_properties
[] = {
1019 DEFINE_PROP_UINT32("frequency", ESCCState
, frequency
, 0),
1020 DEFINE_PROP_UINT32("it_shift", ESCCState
, it_shift
, 0),
1021 DEFINE_PROP_UINT32("disabled", ESCCState
, disabled
, 0),
1022 DEFINE_PROP_UINT32("chnBtype", ESCCState
, chn
[0].type
, 0),
1023 DEFINE_PROP_UINT32("chnAtype", ESCCState
, chn
[1].type
, 0),
1024 DEFINE_PROP_CHR("chrB", ESCCState
, chn
[0].chr
),
1025 DEFINE_PROP_CHR("chrA", ESCCState
, chn
[1].chr
),
1026 DEFINE_PROP_END_OF_LIST(),
1029 static void escc_class_init(ObjectClass
*klass
, void *data
)
1031 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1032 SysBusDeviceClass
*k
= SYS_BUS_DEVICE_CLASS(klass
);
1034 k
->init
= escc_init1
;
1035 dc
->reset
= escc_reset
;
1036 dc
->vmsd
= &vmstate_escc
;
1037 dc
->props
= escc_properties
;
1038 set_bit(DEVICE_CATEGORY_INPUT
, dc
->categories
);
1041 static const TypeInfo escc_info
= {
1043 .parent
= TYPE_SYS_BUS_DEVICE
,
1044 .instance_size
= sizeof(ESCCState
),
1045 .class_init
= escc_class_init
,
1048 static void escc_register_types(void)
1050 type_register_static(&escc_info
);
1053 type_init(escc_register_types
)