ACPI: Add GPIO Connection Descriptor
[qemu.git] / hw / char / escc.c
blobb35121461a1616a5955321c77291b8579886b179
1 /*
2 * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw/hw.h"
26 #include "hw/sysbus.h"
27 #include "hw/char/escc.h"
28 #include "sysemu/char.h"
29 #include "ui/console.h"
30 #include "ui/input.h"
31 #include "trace.h"
34 * Chipset docs:
35 * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual",
36 * http://www.zilog.com/docs/serial/scc_escc_um.pdf
38 * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001
39 * (Slave I/O), also produced as NCR89C105. See
40 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
42 * The serial ports implement full AMD AM8530 or Zilog Z8530 chips,
43 * mouse and keyboard ports don't implement all functions and they are
44 * only asynchronous. There is no DMA.
46 * Z85C30 is also used on PowerMacs. There are some small differences
47 * between Sparc version (sunzilog) and PowerMac (pmac):
48 * Offset between control and data registers
49 * There is some kind of lockup bug, but we can ignore it
50 * CTS is inverted
51 * DMA on pmac using DBDMA chip
52 * pmac can do IRDA and faster rates, sunzilog can only do 38400
53 * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz
57 * Modifications:
58 * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented
59 * serial mouse queue.
60 * Implemented serial mouse protocol.
62 * 2010-May-23 Artyom Tarasenko: Reworked IUS logic
65 typedef enum {
66 chn_a, chn_b,
67 } ChnID;
69 #define CHN_C(s) ((s)->chn == chn_b? 'b' : 'a')
71 typedef enum {
72 ser, kbd, mouse,
73 } ChnType;
75 #define SERIO_QUEUE_SIZE 256
77 typedef struct {
78 uint8_t data[SERIO_QUEUE_SIZE];
79 int rptr, wptr, count;
80 } SERIOQueue;
82 #define SERIAL_REGS 16
83 typedef struct ChannelState {
84 qemu_irq irq;
85 uint32_t rxint, txint, rxint_under_svc, txint_under_svc;
86 struct ChannelState *otherchn;
87 uint32_t reg;
88 uint8_t wregs[SERIAL_REGS], rregs[SERIAL_REGS];
89 SERIOQueue queue;
90 CharDriverState *chr;
91 int e0_mode, led_mode, caps_lock_mode, num_lock_mode;
92 int disabled;
93 int clock;
94 uint32_t vmstate_dummy;
95 ChnID chn; // this channel, A (base+4) or B (base+0)
96 ChnType type;
97 uint8_t rx, tx;
98 QemuInputHandlerState *hs;
99 } ChannelState;
101 #define ESCC(obj) OBJECT_CHECK(ESCCState, (obj), TYPE_ESCC)
103 typedef struct ESCCState {
104 SysBusDevice parent_obj;
106 struct ChannelState chn[2];
107 uint32_t it_shift;
108 MemoryRegion mmio;
109 uint32_t disabled;
110 uint32_t frequency;
111 } ESCCState;
113 #define SERIAL_CTRL 0
114 #define SERIAL_DATA 1
116 #define W_CMD 0
117 #define CMD_PTR_MASK 0x07
118 #define CMD_CMD_MASK 0x38
119 #define CMD_HI 0x08
120 #define CMD_CLR_TXINT 0x28
121 #define CMD_CLR_IUS 0x38
122 #define W_INTR 1
123 #define INTR_INTALL 0x01
124 #define INTR_TXINT 0x02
125 #define INTR_RXMODEMSK 0x18
126 #define INTR_RXINT1ST 0x08
127 #define INTR_RXINTALL 0x10
128 #define W_IVEC 2
129 #define W_RXCTRL 3
130 #define RXCTRL_RXEN 0x01
131 #define W_TXCTRL1 4
132 #define TXCTRL1_PAREN 0x01
133 #define TXCTRL1_PAREV 0x02
134 #define TXCTRL1_1STOP 0x04
135 #define TXCTRL1_1HSTOP 0x08
136 #define TXCTRL1_2STOP 0x0c
137 #define TXCTRL1_STPMSK 0x0c
138 #define TXCTRL1_CLK1X 0x00
139 #define TXCTRL1_CLK16X 0x40
140 #define TXCTRL1_CLK32X 0x80
141 #define TXCTRL1_CLK64X 0xc0
142 #define TXCTRL1_CLKMSK 0xc0
143 #define W_TXCTRL2 5
144 #define TXCTRL2_TXEN 0x08
145 #define TXCTRL2_BITMSK 0x60
146 #define TXCTRL2_5BITS 0x00
147 #define TXCTRL2_7BITS 0x20
148 #define TXCTRL2_6BITS 0x40
149 #define TXCTRL2_8BITS 0x60
150 #define W_SYNC1 6
151 #define W_SYNC2 7
152 #define W_TXBUF 8
153 #define W_MINTR 9
154 #define MINTR_STATUSHI 0x10
155 #define MINTR_RST_MASK 0xc0
156 #define MINTR_RST_B 0x40
157 #define MINTR_RST_A 0x80
158 #define MINTR_RST_ALL 0xc0
159 #define W_MISC1 10
160 #define W_CLOCK 11
161 #define CLOCK_TRXC 0x08
162 #define W_BRGLO 12
163 #define W_BRGHI 13
164 #define W_MISC2 14
165 #define MISC2_PLLDIS 0x30
166 #define W_EXTINT 15
167 #define EXTINT_DCD 0x08
168 #define EXTINT_SYNCINT 0x10
169 #define EXTINT_CTSINT 0x20
170 #define EXTINT_TXUNDRN 0x40
171 #define EXTINT_BRKINT 0x80
173 #define R_STATUS 0
174 #define STATUS_RXAV 0x01
175 #define STATUS_ZERO 0x02
176 #define STATUS_TXEMPTY 0x04
177 #define STATUS_DCD 0x08
178 #define STATUS_SYNC 0x10
179 #define STATUS_CTS 0x20
180 #define STATUS_TXUNDRN 0x40
181 #define STATUS_BRK 0x80
182 #define R_SPEC 1
183 #define SPEC_ALLSENT 0x01
184 #define SPEC_BITS8 0x06
185 #define R_IVEC 2
186 #define IVEC_TXINTB 0x00
187 #define IVEC_LONOINT 0x06
188 #define IVEC_LORXINTA 0x0c
189 #define IVEC_LORXINTB 0x04
190 #define IVEC_LOTXINTA 0x08
191 #define IVEC_HINOINT 0x60
192 #define IVEC_HIRXINTA 0x30
193 #define IVEC_HIRXINTB 0x20
194 #define IVEC_HITXINTA 0x10
195 #define R_INTR 3
196 #define INTR_EXTINTB 0x01
197 #define INTR_TXINTB 0x02
198 #define INTR_RXINTB 0x04
199 #define INTR_EXTINTA 0x08
200 #define INTR_TXINTA 0x10
201 #define INTR_RXINTA 0x20
202 #define R_IPEN 4
203 #define R_TXCTRL1 5
204 #define R_TXCTRL2 6
205 #define R_BC 7
206 #define R_RXBUF 8
207 #define R_RXCTRL 9
208 #define R_MISC 10
209 #define R_MISC1 11
210 #define R_BRGLO 12
211 #define R_BRGHI 13
212 #define R_MISC1I 14
213 #define R_EXTINT 15
215 static void handle_kbd_command(ChannelState *s, int val);
216 static int serial_can_receive(void *opaque);
217 static void serial_receive_byte(ChannelState *s, int ch);
219 static void clear_queue(void *opaque)
221 ChannelState *s = opaque;
222 SERIOQueue *q = &s->queue;
223 q->rptr = q->wptr = q->count = 0;
226 static void put_queue(void *opaque, int b)
228 ChannelState *s = opaque;
229 SERIOQueue *q = &s->queue;
231 trace_escc_put_queue(CHN_C(s), b);
232 if (q->count >= SERIO_QUEUE_SIZE)
233 return;
234 q->data[q->wptr] = b;
235 if (++q->wptr == SERIO_QUEUE_SIZE)
236 q->wptr = 0;
237 q->count++;
238 serial_receive_byte(s, 0);
241 static uint32_t get_queue(void *opaque)
243 ChannelState *s = opaque;
244 SERIOQueue *q = &s->queue;
245 int val;
247 if (q->count == 0) {
248 return 0;
249 } else {
250 val = q->data[q->rptr];
251 if (++q->rptr == SERIO_QUEUE_SIZE)
252 q->rptr = 0;
253 q->count--;
255 trace_escc_get_queue(CHN_C(s), val);
256 if (q->count > 0)
257 serial_receive_byte(s, 0);
258 return val;
261 static int escc_update_irq_chn(ChannelState *s)
263 if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) ||
264 // tx ints enabled, pending
265 ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) ||
266 ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) &&
267 s->rxint == 1) || // rx ints enabled, pending
268 ((s->wregs[W_EXTINT] & EXTINT_BRKINT) &&
269 (s->rregs[R_STATUS] & STATUS_BRK)))) { // break int e&p
270 return 1;
272 return 0;
275 static void escc_update_irq(ChannelState *s)
277 int irq;
279 irq = escc_update_irq_chn(s);
280 irq |= escc_update_irq_chn(s->otherchn);
282 trace_escc_update_irq(irq);
283 qemu_set_irq(s->irq, irq);
286 static void escc_reset_chn(ChannelState *s)
288 int i;
290 s->reg = 0;
291 for (i = 0; i < SERIAL_REGS; i++) {
292 s->rregs[i] = 0;
293 s->wregs[i] = 0;
295 s->wregs[W_TXCTRL1] = TXCTRL1_1STOP; // 1X divisor, 1 stop bit, no parity
296 s->wregs[W_MINTR] = MINTR_RST_ALL;
297 s->wregs[W_CLOCK] = CLOCK_TRXC; // Synch mode tx clock = TRxC
298 s->wregs[W_MISC2] = MISC2_PLLDIS; // PLL disabled
299 s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT |
300 EXTINT_TXUNDRN | EXTINT_BRKINT; // Enable most interrupts
301 if (s->disabled)
302 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_DCD | STATUS_SYNC |
303 STATUS_CTS | STATUS_TXUNDRN;
304 else
305 s->rregs[R_STATUS] = STATUS_TXEMPTY | STATUS_TXUNDRN;
306 s->rregs[R_SPEC] = SPEC_BITS8 | SPEC_ALLSENT;
308 s->rx = s->tx = 0;
309 s->rxint = s->txint = 0;
310 s->rxint_under_svc = s->txint_under_svc = 0;
311 s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0;
312 clear_queue(s);
315 static void escc_reset(DeviceState *d)
317 ESCCState *s = ESCC(d);
319 escc_reset_chn(&s->chn[0]);
320 escc_reset_chn(&s->chn[1]);
323 static inline void set_rxint(ChannelState *s)
325 s->rxint = 1;
326 /* XXX: missing daisy chainnig: chn_b rx should have a lower priority
327 than chn_a rx/tx/special_condition service*/
328 s->rxint_under_svc = 1;
329 if (s->chn == chn_a) {
330 s->rregs[R_INTR] |= INTR_RXINTA;
331 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
332 s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA;
333 else
334 s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA;
335 } else {
336 s->otherchn->rregs[R_INTR] |= INTR_RXINTB;
337 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
338 s->rregs[R_IVEC] = IVEC_HIRXINTB;
339 else
340 s->rregs[R_IVEC] = IVEC_LORXINTB;
342 escc_update_irq(s);
345 static inline void set_txint(ChannelState *s)
347 s->txint = 1;
348 if (!s->rxint_under_svc) {
349 s->txint_under_svc = 1;
350 if (s->chn == chn_a) {
351 if (s->wregs[W_INTR] & INTR_TXINT) {
352 s->rregs[R_INTR] |= INTR_TXINTA;
354 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
355 s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA;
356 else
357 s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA;
358 } else {
359 s->rregs[R_IVEC] = IVEC_TXINTB;
360 if (s->wregs[W_INTR] & INTR_TXINT) {
361 s->otherchn->rregs[R_INTR] |= INTR_TXINTB;
364 escc_update_irq(s);
368 static inline void clr_rxint(ChannelState *s)
370 s->rxint = 0;
371 s->rxint_under_svc = 0;
372 if (s->chn == chn_a) {
373 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
374 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
375 else
376 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
377 s->rregs[R_INTR] &= ~INTR_RXINTA;
378 } else {
379 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
380 s->rregs[R_IVEC] = IVEC_HINOINT;
381 else
382 s->rregs[R_IVEC] = IVEC_LONOINT;
383 s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB;
385 if (s->txint)
386 set_txint(s);
387 escc_update_irq(s);
390 static inline void clr_txint(ChannelState *s)
392 s->txint = 0;
393 s->txint_under_svc = 0;
394 if (s->chn == chn_a) {
395 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
396 s->otherchn->rregs[R_IVEC] = IVEC_HINOINT;
397 else
398 s->otherchn->rregs[R_IVEC] = IVEC_LONOINT;
399 s->rregs[R_INTR] &= ~INTR_TXINTA;
400 } else {
401 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
402 if (s->wregs[W_MINTR] & MINTR_STATUSHI)
403 s->rregs[R_IVEC] = IVEC_HINOINT;
404 else
405 s->rregs[R_IVEC] = IVEC_LONOINT;
406 s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB;
408 if (s->rxint)
409 set_rxint(s);
410 escc_update_irq(s);
413 static void escc_update_parameters(ChannelState *s)
415 int speed, parity, data_bits, stop_bits;
416 QEMUSerialSetParams ssp;
418 if (!s->chr || s->type != ser)
419 return;
421 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) {
422 if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV)
423 parity = 'E';
424 else
425 parity = 'O';
426 } else {
427 parity = 'N';
429 if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP)
430 stop_bits = 2;
431 else
432 stop_bits = 1;
433 switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) {
434 case TXCTRL2_5BITS:
435 data_bits = 5;
436 break;
437 case TXCTRL2_7BITS:
438 data_bits = 7;
439 break;
440 case TXCTRL2_6BITS:
441 data_bits = 6;
442 break;
443 default:
444 case TXCTRL2_8BITS:
445 data_bits = 8;
446 break;
448 speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2);
449 switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) {
450 case TXCTRL1_CLK1X:
451 break;
452 case TXCTRL1_CLK16X:
453 speed /= 16;
454 break;
455 case TXCTRL1_CLK32X:
456 speed /= 32;
457 break;
458 default:
459 case TXCTRL1_CLK64X:
460 speed /= 64;
461 break;
463 ssp.speed = speed;
464 ssp.parity = parity;
465 ssp.data_bits = data_bits;
466 ssp.stop_bits = stop_bits;
467 trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits);
468 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
471 static void escc_mem_write(void *opaque, hwaddr addr,
472 uint64_t val, unsigned size)
474 ESCCState *serial = opaque;
475 ChannelState *s;
476 uint32_t saddr;
477 int newreg, channel;
479 val &= 0xff;
480 saddr = (addr >> serial->it_shift) & 1;
481 channel = (addr >> (serial->it_shift + 1)) & 1;
482 s = &serial->chn[channel];
483 switch (saddr) {
484 case SERIAL_CTRL:
485 trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff);
486 newreg = 0;
487 switch (s->reg) {
488 case W_CMD:
489 newreg = val & CMD_PTR_MASK;
490 val &= CMD_CMD_MASK;
491 switch (val) {
492 case CMD_HI:
493 newreg |= CMD_HI;
494 break;
495 case CMD_CLR_TXINT:
496 clr_txint(s);
497 break;
498 case CMD_CLR_IUS:
499 if (s->rxint_under_svc) {
500 s->rxint_under_svc = 0;
501 if (s->txint) {
502 set_txint(s);
504 } else if (s->txint_under_svc) {
505 s->txint_under_svc = 0;
507 escc_update_irq(s);
508 break;
509 default:
510 break;
512 break;
513 case W_INTR ... W_RXCTRL:
514 case W_SYNC1 ... W_TXBUF:
515 case W_MISC1 ... W_CLOCK:
516 case W_MISC2 ... W_EXTINT:
517 s->wregs[s->reg] = val;
518 break;
519 case W_TXCTRL1:
520 case W_TXCTRL2:
521 s->wregs[s->reg] = val;
522 escc_update_parameters(s);
523 break;
524 case W_BRGLO:
525 case W_BRGHI:
526 s->wregs[s->reg] = val;
527 s->rregs[s->reg] = val;
528 escc_update_parameters(s);
529 break;
530 case W_MINTR:
531 switch (val & MINTR_RST_MASK) {
532 case 0:
533 default:
534 break;
535 case MINTR_RST_B:
536 escc_reset_chn(&serial->chn[0]);
537 return;
538 case MINTR_RST_A:
539 escc_reset_chn(&serial->chn[1]);
540 return;
541 case MINTR_RST_ALL:
542 escc_reset(DEVICE(serial));
543 return;
545 break;
546 default:
547 break;
549 if (s->reg == 0)
550 s->reg = newreg;
551 else
552 s->reg = 0;
553 break;
554 case SERIAL_DATA:
555 trace_escc_mem_writeb_data(CHN_C(s), val);
556 s->tx = val;
557 if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { // tx enabled
558 if (s->chr)
559 qemu_chr_fe_write(s->chr, &s->tx, 1);
560 else if (s->type == kbd && !s->disabled) {
561 handle_kbd_command(s, val);
564 s->rregs[R_STATUS] |= STATUS_TXEMPTY; // Tx buffer empty
565 s->rregs[R_SPEC] |= SPEC_ALLSENT; // All sent
566 set_txint(s);
567 break;
568 default:
569 break;
573 static uint64_t escc_mem_read(void *opaque, hwaddr addr,
574 unsigned size)
576 ESCCState *serial = opaque;
577 ChannelState *s;
578 uint32_t saddr;
579 uint32_t ret;
580 int channel;
582 saddr = (addr >> serial->it_shift) & 1;
583 channel = (addr >> (serial->it_shift + 1)) & 1;
584 s = &serial->chn[channel];
585 switch (saddr) {
586 case SERIAL_CTRL:
587 trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]);
588 ret = s->rregs[s->reg];
589 s->reg = 0;
590 return ret;
591 case SERIAL_DATA:
592 s->rregs[R_STATUS] &= ~STATUS_RXAV;
593 clr_rxint(s);
594 if (s->type == kbd || s->type == mouse)
595 ret = get_queue(s);
596 else
597 ret = s->rx;
598 trace_escc_mem_readb_data(CHN_C(s), ret);
599 if (s->chr)
600 qemu_chr_accept_input(s->chr);
601 return ret;
602 default:
603 break;
605 return 0;
608 static const MemoryRegionOps escc_mem_ops = {
609 .read = escc_mem_read,
610 .write = escc_mem_write,
611 .endianness = DEVICE_NATIVE_ENDIAN,
612 .valid = {
613 .min_access_size = 1,
614 .max_access_size = 1,
618 static int serial_can_receive(void *opaque)
620 ChannelState *s = opaque;
621 int ret;
623 if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) // Rx not enabled
624 || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV))
625 // char already available
626 ret = 0;
627 else
628 ret = 1;
629 return ret;
632 static void serial_receive_byte(ChannelState *s, int ch)
634 trace_escc_serial_receive_byte(CHN_C(s), ch);
635 s->rregs[R_STATUS] |= STATUS_RXAV;
636 s->rx = ch;
637 set_rxint(s);
640 static void serial_receive_break(ChannelState *s)
642 s->rregs[R_STATUS] |= STATUS_BRK;
643 escc_update_irq(s);
646 static void serial_receive1(void *opaque, const uint8_t *buf, int size)
648 ChannelState *s = opaque;
649 serial_receive_byte(s, buf[0]);
652 static void serial_event(void *opaque, int event)
654 ChannelState *s = opaque;
655 if (event == CHR_EVENT_BREAK)
656 serial_receive_break(s);
659 static const VMStateDescription vmstate_escc_chn = {
660 .name ="escc_chn",
661 .version_id = 2,
662 .minimum_version_id = 1,
663 .fields = (VMStateField[]) {
664 VMSTATE_UINT32(vmstate_dummy, ChannelState),
665 VMSTATE_UINT32(reg, ChannelState),
666 VMSTATE_UINT32(rxint, ChannelState),
667 VMSTATE_UINT32(txint, ChannelState),
668 VMSTATE_UINT32(rxint_under_svc, ChannelState),
669 VMSTATE_UINT32(txint_under_svc, ChannelState),
670 VMSTATE_UINT8(rx, ChannelState),
671 VMSTATE_UINT8(tx, ChannelState),
672 VMSTATE_BUFFER(wregs, ChannelState),
673 VMSTATE_BUFFER(rregs, ChannelState),
674 VMSTATE_END_OF_LIST()
678 static const VMStateDescription vmstate_escc = {
679 .name ="escc",
680 .version_id = 2,
681 .minimum_version_id = 1,
682 .fields = (VMStateField[]) {
683 VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn,
684 ChannelState),
685 VMSTATE_END_OF_LIST()
689 MemoryRegion *escc_init(hwaddr base, qemu_irq irqA, qemu_irq irqB,
690 CharDriverState *chrA, CharDriverState *chrB,
691 int clock, int it_shift)
693 DeviceState *dev;
694 SysBusDevice *s;
695 ESCCState *d;
697 dev = qdev_create(NULL, TYPE_ESCC);
698 qdev_prop_set_uint32(dev, "disabled", 0);
699 qdev_prop_set_uint32(dev, "frequency", clock);
700 qdev_prop_set_uint32(dev, "it_shift", it_shift);
701 qdev_prop_set_chr(dev, "chrB", chrB);
702 qdev_prop_set_chr(dev, "chrA", chrA);
703 qdev_prop_set_uint32(dev, "chnBtype", ser);
704 qdev_prop_set_uint32(dev, "chnAtype", ser);
705 qdev_init_nofail(dev);
706 s = SYS_BUS_DEVICE(dev);
707 sysbus_connect_irq(s, 0, irqB);
708 sysbus_connect_irq(s, 1, irqA);
709 if (base) {
710 sysbus_mmio_map(s, 0, base);
713 d = ESCC(s);
714 return &d->mmio;
717 static const uint8_t qcode_to_keycode[Q_KEY_CODE__MAX] = {
718 [Q_KEY_CODE_SHIFT] = 99,
719 [Q_KEY_CODE_SHIFT_R] = 110,
720 [Q_KEY_CODE_ALT] = 19,
721 [Q_KEY_CODE_ALT_R] = 13,
722 [Q_KEY_CODE_ALTGR] = 13,
723 [Q_KEY_CODE_CTRL] = 76,
724 [Q_KEY_CODE_CTRL_R] = 76,
725 [Q_KEY_CODE_ESC] = 29,
726 [Q_KEY_CODE_1] = 30,
727 [Q_KEY_CODE_2] = 31,
728 [Q_KEY_CODE_3] = 32,
729 [Q_KEY_CODE_4] = 33,
730 [Q_KEY_CODE_5] = 34,
731 [Q_KEY_CODE_6] = 35,
732 [Q_KEY_CODE_7] = 36,
733 [Q_KEY_CODE_8] = 37,
734 [Q_KEY_CODE_9] = 38,
735 [Q_KEY_CODE_0] = 39,
736 [Q_KEY_CODE_MINUS] = 40,
737 [Q_KEY_CODE_EQUAL] = 41,
738 [Q_KEY_CODE_BACKSPACE] = 43,
739 [Q_KEY_CODE_TAB] = 53,
740 [Q_KEY_CODE_Q] = 54,
741 [Q_KEY_CODE_W] = 55,
742 [Q_KEY_CODE_E] = 56,
743 [Q_KEY_CODE_R] = 57,
744 [Q_KEY_CODE_T] = 58,
745 [Q_KEY_CODE_Y] = 59,
746 [Q_KEY_CODE_U] = 60,
747 [Q_KEY_CODE_I] = 61,
748 [Q_KEY_CODE_O] = 62,
749 [Q_KEY_CODE_P] = 63,
750 [Q_KEY_CODE_BRACKET_LEFT] = 64,
751 [Q_KEY_CODE_BRACKET_RIGHT] = 65,
752 [Q_KEY_CODE_RET] = 89,
753 [Q_KEY_CODE_A] = 77,
754 [Q_KEY_CODE_S] = 78,
755 [Q_KEY_CODE_D] = 79,
756 [Q_KEY_CODE_F] = 80,
757 [Q_KEY_CODE_G] = 81,
758 [Q_KEY_CODE_H] = 82,
759 [Q_KEY_CODE_J] = 83,
760 [Q_KEY_CODE_K] = 84,
761 [Q_KEY_CODE_L] = 85,
762 [Q_KEY_CODE_SEMICOLON] = 86,
763 [Q_KEY_CODE_APOSTROPHE] = 87,
764 [Q_KEY_CODE_GRAVE_ACCENT] = 42,
765 [Q_KEY_CODE_BACKSLASH] = 88,
766 [Q_KEY_CODE_Z] = 100,
767 [Q_KEY_CODE_X] = 101,
768 [Q_KEY_CODE_C] = 102,
769 [Q_KEY_CODE_V] = 103,
770 [Q_KEY_CODE_B] = 104,
771 [Q_KEY_CODE_N] = 105,
772 [Q_KEY_CODE_M] = 106,
773 [Q_KEY_CODE_COMMA] = 107,
774 [Q_KEY_CODE_DOT] = 108,
775 [Q_KEY_CODE_SLASH] = 109,
776 [Q_KEY_CODE_ASTERISK] = 47,
777 [Q_KEY_CODE_SPC] = 121,
778 [Q_KEY_CODE_CAPS_LOCK] = 119,
779 [Q_KEY_CODE_F1] = 5,
780 [Q_KEY_CODE_F2] = 6,
781 [Q_KEY_CODE_F3] = 8,
782 [Q_KEY_CODE_F4] = 10,
783 [Q_KEY_CODE_F5] = 12,
784 [Q_KEY_CODE_F6] = 14,
785 [Q_KEY_CODE_F7] = 16,
786 [Q_KEY_CODE_F8] = 17,
787 [Q_KEY_CODE_F9] = 18,
788 [Q_KEY_CODE_F10] = 7,
789 [Q_KEY_CODE_NUM_LOCK] = 98,
790 [Q_KEY_CODE_SCROLL_LOCK] = 23,
791 [Q_KEY_CODE_KP_DIVIDE] = 46,
792 [Q_KEY_CODE_KP_MULTIPLY] = 47,
793 [Q_KEY_CODE_KP_SUBTRACT] = 71,
794 [Q_KEY_CODE_KP_ADD] = 125,
795 [Q_KEY_CODE_KP_ENTER] = 90,
796 [Q_KEY_CODE_KP_DECIMAL] = 50,
797 [Q_KEY_CODE_KP_0] = 94,
798 [Q_KEY_CODE_KP_1] = 112,
799 [Q_KEY_CODE_KP_2] = 113,
800 [Q_KEY_CODE_KP_3] = 114,
801 [Q_KEY_CODE_KP_4] = 91,
802 [Q_KEY_CODE_KP_5] = 92,
803 [Q_KEY_CODE_KP_6] = 93,
804 [Q_KEY_CODE_KP_7] = 68,
805 [Q_KEY_CODE_KP_8] = 69,
806 [Q_KEY_CODE_KP_9] = 70,
807 [Q_KEY_CODE_LESS] = 124,
808 [Q_KEY_CODE_F11] = 9,
809 [Q_KEY_CODE_F12] = 11,
810 [Q_KEY_CODE_HOME] = 52,
811 [Q_KEY_CODE_PGUP] = 96,
812 [Q_KEY_CODE_PGDN] = 123,
813 [Q_KEY_CODE_END] = 74,
814 [Q_KEY_CODE_LEFT] = 24,
815 [Q_KEY_CODE_UP] = 20,
816 [Q_KEY_CODE_DOWN] = 27,
817 [Q_KEY_CODE_RIGHT] = 28,
818 [Q_KEY_CODE_INSERT] = 44,
819 [Q_KEY_CODE_DELETE] = 66,
820 [Q_KEY_CODE_STOP] = 1,
821 [Q_KEY_CODE_AGAIN] = 3,
822 [Q_KEY_CODE_PROPS] = 25,
823 [Q_KEY_CODE_UNDO] = 26,
824 [Q_KEY_CODE_FRONT] = 49,
825 [Q_KEY_CODE_COPY] = 51,
826 [Q_KEY_CODE_OPEN] = 72,
827 [Q_KEY_CODE_PASTE] = 73,
828 [Q_KEY_CODE_FIND] = 95,
829 [Q_KEY_CODE_CUT] = 97,
830 [Q_KEY_CODE_LF] = 111,
831 [Q_KEY_CODE_HELP] = 118,
832 [Q_KEY_CODE_META_L] = 120,
833 [Q_KEY_CODE_META_R] = 122,
834 [Q_KEY_CODE_COMPOSE] = 67,
835 [Q_KEY_CODE_PRINT] = 22,
836 [Q_KEY_CODE_SYSRQ] = 21,
839 static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src,
840 InputEvent *evt)
842 ChannelState *s = (ChannelState *)dev;
843 int qcode, keycode;
845 assert(evt->type == INPUT_EVENT_KIND_KEY);
846 qcode = qemu_input_key_value_to_qcode(evt->u.key->key);
847 trace_escc_sunkbd_event_in(qcode, QKeyCode_lookup[qcode],
848 evt->u.key->down);
850 if (qcode == Q_KEY_CODE_CAPS_LOCK) {
851 if (evt->u.key->down) {
852 s->caps_lock_mode ^= 1;
853 if (s->caps_lock_mode == 2) {
854 return; /* Drop second press */
856 } else {
857 s->caps_lock_mode ^= 2;
858 if (s->caps_lock_mode == 3) {
859 return; /* Drop first release */
864 if (qcode == Q_KEY_CODE_NUM_LOCK) {
865 if (evt->u.key->down) {
866 s->num_lock_mode ^= 1;
867 if (s->num_lock_mode == 2) {
868 return; /* Drop second press */
870 } else {
871 s->num_lock_mode ^= 2;
872 if (s->num_lock_mode == 3) {
873 return; /* Drop first release */
878 keycode = qcode_to_keycode[qcode];
879 if (!evt->u.key->down) {
880 keycode |= 0x80;
882 trace_escc_sunkbd_event_out(keycode);
883 put_queue(s, keycode);
886 static QemuInputHandler sunkbd_handler = {
887 .name = "sun keyboard",
888 .mask = INPUT_EVENT_MASK_KEY,
889 .event = sunkbd_handle_event,
892 static void handle_kbd_command(ChannelState *s, int val)
894 trace_escc_kbd_command(val);
895 if (s->led_mode) { // Ignore led byte
896 s->led_mode = 0;
897 return;
899 switch (val) {
900 case 1: // Reset, return type code
901 clear_queue(s);
902 put_queue(s, 0xff);
903 put_queue(s, 4); // Type 4
904 put_queue(s, 0x7f);
905 break;
906 case 0xe: // Set leds
907 s->led_mode = 1;
908 break;
909 case 7: // Query layout
910 case 0xf:
911 clear_queue(s);
912 put_queue(s, 0xfe);
913 put_queue(s, 0x21); /* en-us layout */
914 break;
915 default:
916 break;
920 static void sunmouse_event(void *opaque,
921 int dx, int dy, int dz, int buttons_state)
923 ChannelState *s = opaque;
924 int ch;
926 trace_escc_sunmouse_event(dx, dy, buttons_state);
927 ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */
929 if (buttons_state & MOUSE_EVENT_LBUTTON)
930 ch ^= 0x4;
931 if (buttons_state & MOUSE_EVENT_MBUTTON)
932 ch ^= 0x2;
933 if (buttons_state & MOUSE_EVENT_RBUTTON)
934 ch ^= 0x1;
936 put_queue(s, ch);
938 ch = dx;
940 if (ch > 127)
941 ch = 127;
942 else if (ch < -127)
943 ch = -127;
945 put_queue(s, ch & 0xff);
947 ch = -dy;
949 if (ch > 127)
950 ch = 127;
951 else if (ch < -127)
952 ch = -127;
954 put_queue(s, ch & 0xff);
956 // MSC protocol specify two extra motion bytes
958 put_queue(s, 0);
959 put_queue(s, 0);
962 void slavio_serial_ms_kbd_init(hwaddr base, qemu_irq irq,
963 int disabled, int clock, int it_shift)
965 DeviceState *dev;
966 SysBusDevice *s;
968 dev = qdev_create(NULL, TYPE_ESCC);
969 qdev_prop_set_uint32(dev, "disabled", disabled);
970 qdev_prop_set_uint32(dev, "frequency", clock);
971 qdev_prop_set_uint32(dev, "it_shift", it_shift);
972 qdev_prop_set_chr(dev, "chrB", NULL);
973 qdev_prop_set_chr(dev, "chrA", NULL);
974 qdev_prop_set_uint32(dev, "chnBtype", mouse);
975 qdev_prop_set_uint32(dev, "chnAtype", kbd);
976 qdev_init_nofail(dev);
977 s = SYS_BUS_DEVICE(dev);
978 sysbus_connect_irq(s, 0, irq);
979 sysbus_connect_irq(s, 1, irq);
980 sysbus_mmio_map(s, 0, base);
983 static int escc_init1(SysBusDevice *dev)
985 ESCCState *s = ESCC(dev);
986 unsigned int i;
988 s->chn[0].disabled = s->disabled;
989 s->chn[1].disabled = s->disabled;
990 for (i = 0; i < 2; i++) {
991 sysbus_init_irq(dev, &s->chn[i].irq);
992 s->chn[i].chn = 1 - i;
993 s->chn[i].clock = s->frequency / 2;
994 if (s->chn[i].chr) {
995 qemu_chr_add_handlers(s->chn[i].chr, serial_can_receive,
996 serial_receive1, serial_event, &s->chn[i]);
999 s->chn[0].otherchn = &s->chn[1];
1000 s->chn[1].otherchn = &s->chn[0];
1002 memory_region_init_io(&s->mmio, OBJECT(s), &escc_mem_ops, s, "escc",
1003 ESCC_SIZE << s->it_shift);
1004 sysbus_init_mmio(dev, &s->mmio);
1006 if (s->chn[0].type == mouse) {
1007 qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0,
1008 "QEMU Sun Mouse");
1010 if (s->chn[1].type == kbd) {
1011 s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]),
1012 &sunkbd_handler);
1015 return 0;
1018 static Property escc_properties[] = {
1019 DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0),
1020 DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0),
1021 DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0),
1022 DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0),
1023 DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0),
1024 DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr),
1025 DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr),
1026 DEFINE_PROP_END_OF_LIST(),
1029 static void escc_class_init(ObjectClass *klass, void *data)
1031 DeviceClass *dc = DEVICE_CLASS(klass);
1032 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1034 k->init = escc_init1;
1035 dc->reset = escc_reset;
1036 dc->vmsd = &vmstate_escc;
1037 dc->props = escc_properties;
1038 set_bit(DEVICE_CATEGORY_INPUT, dc->categories);
1041 static const TypeInfo escc_info = {
1042 .name = TYPE_ESCC,
1043 .parent = TYPE_SYS_BUS_DEVICE,
1044 .instance_size = sizeof(ESCCState),
1045 .class_init = escc_class_init,
1048 static void escc_register_types(void)
1050 type_register_static(&escc_info);
1053 type_init(escc_register_types)