reorganize pci-ids.txt
[qemu.git] / cpu-exec.c
blob19ebb4a924c244b2d35212a9dc097614519c4703
1 /*
2 * emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas/disas.h"
22 #include "tcg.h"
23 #include "qemu/atomic.h"
24 #include "sysemu/qtest.h"
26 int tb_invalidated_flag;
28 //#define CONFIG_DEBUG_EXEC
30 bool qemu_cpu_has_work(CPUState *cpu)
32 return cpu_has_work(cpu);
35 void cpu_loop_exit(CPUArchState *env)
37 env->current_tb = NULL;
38 longjmp(env->jmp_env, 1);
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState *env, void *puc)
47 /* XXX: restore cpu registers saved in host registers */
49 env->exception_index = -1;
50 longjmp(env->jmp_env, 1);
52 #endif
54 /* Execute the code without caching the generated code. An interpreter
55 could be used if available. */
56 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
57 TranslationBlock *orig_tb)
59 tcg_target_ulong next_tb;
60 TranslationBlock *tb;
62 /* Should never happen.
63 We only end up here when an existing TB is too long. */
64 if (max_cycles > CF_COUNT_MASK)
65 max_cycles = CF_COUNT_MASK;
67 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
68 max_cycles);
69 env->current_tb = tb;
70 /* execute the generated code */
71 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
72 env->current_tb = NULL;
74 if ((next_tb & 3) == 2) {
75 /* Restore PC. This may happen if async event occurs before
76 the TB starts executing. */
77 cpu_pc_from_tb(env, tb);
79 tb_phys_invalidate(tb, -1);
80 tb_free(tb);
83 static TranslationBlock *tb_find_slow(CPUArchState *env,
84 target_ulong pc,
85 target_ulong cs_base,
86 uint64_t flags)
88 TranslationBlock *tb, **ptb1;
89 unsigned int h;
90 tb_page_addr_t phys_pc, phys_page1;
91 target_ulong virt_page2;
93 tb_invalidated_flag = 0;
95 /* find translated block using physical mappings */
96 phys_pc = get_page_addr_code(env, pc);
97 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 tb_page_addr_t phys_page2;
112 virt_page2 = (pc & TARGET_PAGE_MASK) +
113 TARGET_PAGE_SIZE;
114 phys_page2 = get_page_addr_code(env, virt_page2);
115 if (tb->page_addr[1] == phys_page2)
116 goto found;
117 } else {
118 goto found;
121 ptb1 = &tb->phys_hash_next;
123 not_found:
124 /* if no translated code available, then translate it now */
125 tb = tb_gen_code(env, pc, cs_base, flags, 0);
127 found:
128 /* Move the last found TB to the head of the list */
129 if (likely(*ptb1)) {
130 *ptb1 = tb->phys_hash_next;
131 tb->phys_hash_next = tb_phys_hash[h];
132 tb_phys_hash[h] = tb;
134 /* we add the TB in the virtual pc hash table */
135 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
136 return tb;
139 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
141 TranslationBlock *tb;
142 target_ulong cs_base, pc;
143 int flags;
145 /* we record a subset of the CPU state. It will
146 always be the same before a given translated block
147 is executed. */
148 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
149 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
150 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
151 tb->flags != flags)) {
152 tb = tb_find_slow(env, pc, cs_base, flags);
154 return tb;
157 static CPUDebugExcpHandler *debug_excp_handler;
159 void cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
161 debug_excp_handler = handler;
164 static void cpu_handle_debug_exception(CPUArchState *env)
166 CPUWatchpoint *wp;
168 if (!env->watchpoint_hit) {
169 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
170 wp->flags &= ~BP_WATCHPOINT_HIT;
173 if (debug_excp_handler) {
174 debug_excp_handler(env);
178 /* main execution loop */
180 volatile sig_atomic_t exit_request;
182 int cpu_exec(CPUArchState *env)
184 CPUState *cpu = ENV_GET_CPU(env);
185 int ret, interrupt_request;
186 TranslationBlock *tb;
187 uint8_t *tc_ptr;
188 tcg_target_ulong next_tb;
190 if (env->halted) {
191 if (!cpu_has_work(cpu)) {
192 return EXCP_HALTED;
195 env->halted = 0;
198 cpu_single_env = env;
200 if (unlikely(exit_request)) {
201 env->exit_request = 1;
204 #if defined(TARGET_I386)
205 /* put eflags in CPU temporary format */
206 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
207 DF = 1 - (2 * ((env->eflags >> 10) & 1));
208 CC_OP = CC_OP_EFLAGS;
209 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
210 #elif defined(TARGET_SPARC)
211 #elif defined(TARGET_M68K)
212 env->cc_op = CC_OP_FLAGS;
213 env->cc_dest = env->sr & 0xf;
214 env->cc_x = (env->sr >> 4) & 1;
215 #elif defined(TARGET_ALPHA)
216 #elif defined(TARGET_ARM)
217 #elif defined(TARGET_UNICORE32)
218 #elif defined(TARGET_PPC)
219 env->reserve_addr = -1;
220 #elif defined(TARGET_LM32)
221 #elif defined(TARGET_MICROBLAZE)
222 #elif defined(TARGET_MIPS)
223 #elif defined(TARGET_OPENRISC)
224 #elif defined(TARGET_SH4)
225 #elif defined(TARGET_CRIS)
226 #elif defined(TARGET_S390X)
227 #elif defined(TARGET_XTENSA)
228 /* XXXXX */
229 #else
230 #error unsupported target CPU
231 #endif
232 env->exception_index = -1;
234 /* prepare setjmp context for exception handling */
235 for(;;) {
236 if (setjmp(env->jmp_env) == 0) {
237 /* if an exception is pending, we execute it here */
238 if (env->exception_index >= 0) {
239 if (env->exception_index >= EXCP_INTERRUPT) {
240 /* exit request from the cpu execution loop */
241 ret = env->exception_index;
242 if (ret == EXCP_DEBUG) {
243 cpu_handle_debug_exception(env);
245 break;
246 } else {
247 #if defined(CONFIG_USER_ONLY)
248 /* if user mode only, we simulate a fake exception
249 which will be handled outside the cpu execution
250 loop */
251 #if defined(TARGET_I386)
252 do_interrupt(env);
253 #endif
254 ret = env->exception_index;
255 break;
256 #else
257 do_interrupt(env);
258 env->exception_index = -1;
259 #endif
263 next_tb = 0; /* force lookup of first TB */
264 for(;;) {
265 interrupt_request = env->interrupt_request;
266 if (unlikely(interrupt_request)) {
267 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
268 /* Mask out external interrupts for this step. */
269 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
271 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
272 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
273 env->exception_index = EXCP_DEBUG;
274 cpu_loop_exit(env);
276 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
277 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
278 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
279 if (interrupt_request & CPU_INTERRUPT_HALT) {
280 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
281 env->halted = 1;
282 env->exception_index = EXCP_HLT;
283 cpu_loop_exit(env);
285 #endif
286 #if defined(TARGET_I386)
287 #if !defined(CONFIG_USER_ONLY)
288 if (interrupt_request & CPU_INTERRUPT_POLL) {
289 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
290 apic_poll_irq(env->apic_state);
292 #endif
293 if (interrupt_request & CPU_INTERRUPT_INIT) {
294 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT,
296 do_cpu_init(x86_env_get_cpu(env));
297 env->exception_index = EXCP_HALTED;
298 cpu_loop_exit(env);
299 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
300 do_cpu_sipi(x86_env_get_cpu(env));
301 } else if (env->hflags2 & HF2_GIF_MASK) {
302 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
303 !(env->hflags & HF_SMM_MASK)) {
304 cpu_svm_check_intercept_param(env, SVM_EXIT_SMI,
306 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
307 do_smm_enter(env);
308 next_tb = 0;
309 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
310 !(env->hflags2 & HF2_NMI_MASK)) {
311 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
312 env->hflags2 |= HF2_NMI_MASK;
313 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
314 next_tb = 0;
315 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
316 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
317 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
318 next_tb = 0;
319 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
320 (((env->hflags2 & HF2_VINTR_MASK) &&
321 (env->hflags2 & HF2_HIF_MASK)) ||
322 (!(env->hflags2 & HF2_VINTR_MASK) &&
323 (env->eflags & IF_MASK &&
324 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
325 int intno;
326 cpu_svm_check_intercept_param(env, SVM_EXIT_INTR,
328 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
329 intno = cpu_get_pic_interrupt(env);
330 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
331 do_interrupt_x86_hardirq(env, intno, 1);
332 /* ensure that no TB jump will be modified as
333 the program flow was changed */
334 next_tb = 0;
335 #if !defined(CONFIG_USER_ONLY)
336 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
337 (env->eflags & IF_MASK) &&
338 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
339 int intno;
340 /* FIXME: this should respect TPR */
341 cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR,
343 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
344 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
345 do_interrupt_x86_hardirq(env, intno, 1);
346 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
347 next_tb = 0;
348 #endif
351 #elif defined(TARGET_PPC)
352 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
353 cpu_reset(cpu);
355 if (interrupt_request & CPU_INTERRUPT_HARD) {
356 ppc_hw_interrupt(env);
357 if (env->pending_interrupts == 0)
358 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
359 next_tb = 0;
361 #elif defined(TARGET_LM32)
362 if ((interrupt_request & CPU_INTERRUPT_HARD)
363 && (env->ie & IE_IE)) {
364 env->exception_index = EXCP_IRQ;
365 do_interrupt(env);
366 next_tb = 0;
368 #elif defined(TARGET_MICROBLAZE)
369 if ((interrupt_request & CPU_INTERRUPT_HARD)
370 && (env->sregs[SR_MSR] & MSR_IE)
371 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
372 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
373 env->exception_index = EXCP_IRQ;
374 do_interrupt(env);
375 next_tb = 0;
377 #elif defined(TARGET_MIPS)
378 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
379 cpu_mips_hw_interrupts_pending(env)) {
380 /* Raise it */
381 env->exception_index = EXCP_EXT_INTERRUPT;
382 env->error_code = 0;
383 do_interrupt(env);
384 next_tb = 0;
386 #elif defined(TARGET_OPENRISC)
388 int idx = -1;
389 if ((interrupt_request & CPU_INTERRUPT_HARD)
390 && (env->sr & SR_IEE)) {
391 idx = EXCP_INT;
393 if ((interrupt_request & CPU_INTERRUPT_TIMER)
394 && (env->sr & SR_TEE)) {
395 idx = EXCP_TICK;
397 if (idx >= 0) {
398 env->exception_index = idx;
399 do_interrupt(env);
400 next_tb = 0;
403 #elif defined(TARGET_SPARC)
404 if (interrupt_request & CPU_INTERRUPT_HARD) {
405 if (cpu_interrupts_enabled(env) &&
406 env->interrupt_index > 0) {
407 int pil = env->interrupt_index & 0xf;
408 int type = env->interrupt_index & 0xf0;
410 if (((type == TT_EXTINT) &&
411 cpu_pil_allowed(env, pil)) ||
412 type != TT_EXTINT) {
413 env->exception_index = env->interrupt_index;
414 do_interrupt(env);
415 next_tb = 0;
419 #elif defined(TARGET_ARM)
420 if (interrupt_request & CPU_INTERRUPT_FIQ
421 && !(env->uncached_cpsr & CPSR_F)) {
422 env->exception_index = EXCP_FIQ;
423 do_interrupt(env);
424 next_tb = 0;
426 /* ARMv7-M interrupt return works by loading a magic value
427 into the PC. On real hardware the load causes the
428 return to occur. The qemu implementation performs the
429 jump normally, then does the exception return when the
430 CPU tries to execute code at the magic address.
431 This will cause the magic PC value to be pushed to
432 the stack if an interrupt occurred at the wrong time.
433 We avoid this by disabling interrupts when
434 pc contains a magic address. */
435 if (interrupt_request & CPU_INTERRUPT_HARD
436 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
437 || !(env->uncached_cpsr & CPSR_I))) {
438 env->exception_index = EXCP_IRQ;
439 do_interrupt(env);
440 next_tb = 0;
442 #elif defined(TARGET_UNICORE32)
443 if (interrupt_request & CPU_INTERRUPT_HARD
444 && !(env->uncached_asr & ASR_I)) {
445 env->exception_index = UC32_EXCP_INTR;
446 do_interrupt(env);
447 next_tb = 0;
449 #elif defined(TARGET_SH4)
450 if (interrupt_request & CPU_INTERRUPT_HARD) {
451 do_interrupt(env);
452 next_tb = 0;
454 #elif defined(TARGET_ALPHA)
456 int idx = -1;
457 /* ??? This hard-codes the OSF/1 interrupt levels. */
458 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
459 case 0 ... 3:
460 if (interrupt_request & CPU_INTERRUPT_HARD) {
461 idx = EXCP_DEV_INTERRUPT;
463 /* FALLTHRU */
464 case 4:
465 if (interrupt_request & CPU_INTERRUPT_TIMER) {
466 idx = EXCP_CLK_INTERRUPT;
468 /* FALLTHRU */
469 case 5:
470 if (interrupt_request & CPU_INTERRUPT_SMP) {
471 idx = EXCP_SMP_INTERRUPT;
473 /* FALLTHRU */
474 case 6:
475 if (interrupt_request & CPU_INTERRUPT_MCHK) {
476 idx = EXCP_MCHK;
479 if (idx >= 0) {
480 env->exception_index = idx;
481 env->error_code = 0;
482 do_interrupt(env);
483 next_tb = 0;
486 #elif defined(TARGET_CRIS)
487 if (interrupt_request & CPU_INTERRUPT_HARD
488 && (env->pregs[PR_CCS] & I_FLAG)
489 && !env->locked_irq) {
490 env->exception_index = EXCP_IRQ;
491 do_interrupt(env);
492 next_tb = 0;
494 if (interrupt_request & CPU_INTERRUPT_NMI) {
495 unsigned int m_flag_archval;
496 if (env->pregs[PR_VR] < 32) {
497 m_flag_archval = M_FLAG_V10;
498 } else {
499 m_flag_archval = M_FLAG_V32;
501 if ((env->pregs[PR_CCS] & m_flag_archval)) {
502 env->exception_index = EXCP_NMI;
503 do_interrupt(env);
504 next_tb = 0;
507 #elif defined(TARGET_M68K)
508 if (interrupt_request & CPU_INTERRUPT_HARD
509 && ((env->sr & SR_I) >> SR_I_SHIFT)
510 < env->pending_level) {
511 /* Real hardware gets the interrupt vector via an
512 IACK cycle at this point. Current emulated
513 hardware doesn't rely on this, so we
514 provide/save the vector when the interrupt is
515 first signalled. */
516 env->exception_index = env->pending_vector;
517 do_interrupt_m68k_hardirq(env);
518 next_tb = 0;
520 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
521 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
522 (env->psw.mask & PSW_MASK_EXT)) {
523 do_interrupt(env);
524 next_tb = 0;
526 #elif defined(TARGET_XTENSA)
527 if (interrupt_request & CPU_INTERRUPT_HARD) {
528 env->exception_index = EXC_IRQ;
529 do_interrupt(env);
530 next_tb = 0;
532 #endif
533 /* Don't use the cached interrupt_request value,
534 do_interrupt may have updated the EXITTB flag. */
535 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
536 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
537 /* ensure that no TB jump will be modified as
538 the program flow was changed */
539 next_tb = 0;
542 if (unlikely(env->exit_request)) {
543 env->exit_request = 0;
544 env->exception_index = EXCP_INTERRUPT;
545 cpu_loop_exit(env);
547 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
548 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
549 /* restore flags in standard format */
550 #if defined(TARGET_I386)
551 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
552 | (DF & DF_MASK);
553 log_cpu_state(env, CPU_DUMP_CCOP);
554 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
555 #elif defined(TARGET_M68K)
556 cpu_m68k_flush_flags(env, env->cc_op);
557 env->cc_op = CC_OP_FLAGS;
558 env->sr = (env->sr & 0xffe0)
559 | env->cc_dest | (env->cc_x << 4);
560 log_cpu_state(env, 0);
561 #else
562 log_cpu_state(env, 0);
563 #endif
565 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
566 spin_lock(&tb_lock);
567 tb = tb_find_fast(env);
568 /* Note: we do it here to avoid a gcc bug on Mac OS X when
569 doing it in tb_find_slow */
570 if (tb_invalidated_flag) {
571 /* as some TB could have been invalidated because
572 of memory exceptions while generating the code, we
573 must recompute the hash index here */
574 next_tb = 0;
575 tb_invalidated_flag = 0;
577 #ifdef CONFIG_DEBUG_EXEC
578 qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
579 tb->tc_ptr, tb->pc,
580 lookup_symbol(tb->pc));
581 #endif
582 /* see if we can patch the calling TB. When the TB
583 spans two pages, we cannot safely do a direct
584 jump. */
585 if (next_tb != 0 && tb->page_addr[1] == -1) {
586 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
588 spin_unlock(&tb_lock);
590 /* cpu_interrupt might be called while translating the
591 TB, but before it is linked into a potentially
592 infinite loop and becomes env->current_tb. Avoid
593 starting execution if there is a pending interrupt. */
594 env->current_tb = tb;
595 barrier();
596 if (likely(!env->exit_request)) {
597 tc_ptr = tb->tc_ptr;
598 /* execute the generated code */
599 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
600 if ((next_tb & 3) == 2) {
601 /* Instruction counter expired. */
602 int insns_left;
603 tb = (TranslationBlock *)(next_tb & ~3);
604 /* Restore PC. */
605 cpu_pc_from_tb(env, tb);
606 insns_left = env->icount_decr.u32;
607 if (env->icount_extra && insns_left >= 0) {
608 /* Refill decrementer and continue execution. */
609 env->icount_extra += insns_left;
610 if (env->icount_extra > 0xffff) {
611 insns_left = 0xffff;
612 } else {
613 insns_left = env->icount_extra;
615 env->icount_extra -= insns_left;
616 env->icount_decr.u16.low = insns_left;
617 } else {
618 if (insns_left > 0) {
619 /* Execute remaining instructions. */
620 cpu_exec_nocache(env, insns_left, tb);
622 env->exception_index = EXCP_INTERRUPT;
623 next_tb = 0;
624 cpu_loop_exit(env);
628 env->current_tb = NULL;
629 /* reset soft MMU for next block (it can currently
630 only be set by a memory fault) */
631 } /* for(;;) */
632 } else {
633 /* Reload env after longjmp - the compiler may have smashed all
634 * local variables as longjmp is marked 'noreturn'. */
635 env = cpu_single_env;
637 } /* for(;;) */
640 #if defined(TARGET_I386)
641 /* restore flags in standard format */
642 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
643 | (DF & DF_MASK);
644 #elif defined(TARGET_ARM)
645 /* XXX: Save/restore host fpu exception state?. */
646 #elif defined(TARGET_UNICORE32)
647 #elif defined(TARGET_SPARC)
648 #elif defined(TARGET_PPC)
649 #elif defined(TARGET_LM32)
650 #elif defined(TARGET_M68K)
651 cpu_m68k_flush_flags(env, env->cc_op);
652 env->cc_op = CC_OP_FLAGS;
653 env->sr = (env->sr & 0xffe0)
654 | env->cc_dest | (env->cc_x << 4);
655 #elif defined(TARGET_MICROBLAZE)
656 #elif defined(TARGET_MIPS)
657 #elif defined(TARGET_OPENRISC)
658 #elif defined(TARGET_SH4)
659 #elif defined(TARGET_ALPHA)
660 #elif defined(TARGET_CRIS)
661 #elif defined(TARGET_S390X)
662 #elif defined(TARGET_XTENSA)
663 /* XXXXX */
664 #else
665 #error unsupported target CPU
666 #endif
668 /* fail safe : never use cpu_single_env outside cpu_exec() */
669 cpu_single_env = NULL;
670 return ret;