4 * Copyright (c) 2005-2007 CodeSourcery, LLC
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "exec/helper-proto.h"
22 #include "internals.h"
23 #include "exec/exec-all.h"
24 #include "exec/cpu_ldst.h"
26 #define SIGNBIT (uint32_t)0x80000000
27 #define SIGNBIT64 ((uint64_t)1 << 63)
29 static void raise_exception(CPUARMState
*env
, uint32_t excp
,
30 uint32_t syndrome
, uint32_t target_el
)
32 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
34 assert(!excp_is_internal(excp
));
35 cs
->exception_index
= excp
;
36 env
->exception
.syndrome
= syndrome
;
37 env
->exception
.target_el
= target_el
;
41 static int exception_target_el(CPUARMState
*env
)
43 int target_el
= MAX(1, arm_current_el(env
));
45 /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
46 * to EL3 in this case.
48 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3) && target_el
== 1) {
55 uint32_t HELPER(neon_tbl
)(CPUARMState
*env
, uint32_t ireg
, uint32_t def
,
56 uint32_t rn
, uint32_t maxindex
)
63 table
= (uint64_t *)&env
->vfp
.regs
[rn
];
65 for (shift
= 0; shift
< 32; shift
+= 8) {
66 index
= (ireg
>> shift
) & 0xff;
67 if (index
< maxindex
) {
68 tmp
= (table
[index
>> 3] >> ((index
& 7) << 3)) & 0xff;
71 val
|= def
& (0xff << shift
);
77 #if !defined(CONFIG_USER_ONLY)
79 static inline uint32_t merge_syn_data_abort(uint32_t template_syn
,
80 unsigned int target_el
,
82 bool s1ptw
, int is_write
,
87 /* ISV is only set for data aborts routed to EL2 and
88 * never for stage-1 page table walks faulting on stage 2.
90 * Furthermore, ISV is only set for certain kinds of load/stores.
91 * If the template syndrome does not have ISV set, we should leave
94 * See ARMv8 specs, D7-1974:
95 * ISS encoding for an exception from a Data Abort, the
98 if (!(template_syn
& ARM_EL_ISV
) || target_el
!= 2 || s1ptw
) {
99 syn
= syn_data_abort_no_iss(same_el
,
100 0, 0, s1ptw
, is_write
== 1, fsc
);
102 /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
103 * syndrome created at translation time.
104 * Now we create the runtime syndrome with the remaining fields.
106 syn
= syn_data_abort_with_iss(same_el
,
108 0, 0, s1ptw
, is_write
== 1, fsc
,
110 /* Merge the runtime syndrome with the template syndrome. */
116 /* try to fill the TLB and return an exception if error. If retaddr is
117 * NULL, it means that the function was called in C code (i.e. not
118 * from generated code or from helper.c)
120 void tlb_fill(CPUState
*cs
, target_ulong addr
, int is_write
, int mmu_idx
,
125 ARMMMUFaultInfo fi
= {};
127 ret
= arm_tlb_fill(cs
, addr
, is_write
, mmu_idx
, &fsr
, &fi
);
129 ARMCPU
*cpu
= ARM_CPU(cs
);
130 CPUARMState
*env
= &cpu
->env
;
132 unsigned int target_el
;
136 /* now we have a real cpu fault */
137 cpu_restore_state(cs
, retaddr
);
140 target_el
= exception_target_el(env
);
143 env
->cp15
.hpfar_el2
= extract64(fi
.s2addr
, 12, 47) << 4;
145 same_el
= arm_current_el(env
) == target_el
;
146 /* AArch64 syndrome does not have an LPAE bit */
147 syn
= fsr
& ~(1 << 9);
149 /* For insn and data aborts we assume there is no instruction syndrome
150 * information; this is always true for exceptions reported to EL1.
153 syn
= syn_insn_abort(same_el
, 0, fi
.s1ptw
, syn
);
154 exc
= EXCP_PREFETCH_ABORT
;
156 syn
= merge_syn_data_abort(env
->exception
.syndrome
, target_el
,
157 same_el
, fi
.s1ptw
, is_write
, syn
);
158 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
161 exc
= EXCP_DATA_ABORT
;
164 env
->exception
.vaddress
= addr
;
165 env
->exception
.fsr
= fsr
;
166 raise_exception(env
, exc
, syn
, target_el
);
170 /* Raise a data fault alignment exception for the specified virtual address */
171 void arm_cpu_do_unaligned_access(CPUState
*cs
, vaddr vaddr
, int is_write
,
172 int is_user
, uintptr_t retaddr
)
174 ARMCPU
*cpu
= ARM_CPU(cs
);
175 CPUARMState
*env
= &cpu
->env
;
181 /* now we have a real cpu fault */
182 cpu_restore_state(cs
, retaddr
);
185 target_el
= exception_target_el(env
);
186 same_el
= (arm_current_el(env
) == target_el
);
188 env
->exception
.vaddress
= vaddr
;
190 /* the DFSR for an alignment fault depends on whether we're using
191 * the LPAE long descriptor format, or the short descriptor format
193 if (arm_s1_regime_using_lpae_format(env
, cpu_mmu_index(env
, false))) {
194 env
->exception
.fsr
= 0x21;
196 env
->exception
.fsr
= 0x1;
199 if (is_write
== 1 && arm_feature(env
, ARM_FEATURE_V6
)) {
200 env
->exception
.fsr
|= (1 << 11);
203 syn
= merge_syn_data_abort(env
->exception
.syndrome
, target_el
,
204 same_el
, 0, is_write
, 0x21);
205 raise_exception(env
, EXCP_DATA_ABORT
, syn
, target_el
);
208 #endif /* !defined(CONFIG_USER_ONLY) */
210 uint32_t HELPER(add_setq
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
212 uint32_t res
= a
+ b
;
213 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
))
218 uint32_t HELPER(add_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
220 uint32_t res
= a
+ b
;
221 if (((res
^ a
) & SIGNBIT
) && !((a
^ b
) & SIGNBIT
)) {
223 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
228 uint32_t HELPER(sub_saturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
230 uint32_t res
= a
- b
;
231 if (((res
^ a
) & SIGNBIT
) && ((a
^ b
) & SIGNBIT
)) {
233 res
= ~(((int32_t)a
>> 31) ^ SIGNBIT
);
238 uint32_t HELPER(double_saturate
)(CPUARMState
*env
, int32_t val
)
241 if (val
>= 0x40000000) {
244 } else if (val
<= (int32_t)0xc0000000) {
253 uint32_t HELPER(add_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
255 uint32_t res
= a
+ b
;
263 uint32_t HELPER(sub_usaturate
)(CPUARMState
*env
, uint32_t a
, uint32_t b
)
265 uint32_t res
= a
- b
;
273 /* Signed saturation. */
274 static inline uint32_t do_ssat(CPUARMState
*env
, int32_t val
, int shift
)
280 mask
= (1u << shift
) - 1;
284 } else if (top
< -1) {
291 /* Unsigned saturation. */
292 static inline uint32_t do_usat(CPUARMState
*env
, int32_t val
, int shift
)
296 max
= (1u << shift
) - 1;
300 } else if (val
> max
) {
307 /* Signed saturate. */
308 uint32_t HELPER(ssat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
310 return do_ssat(env
, x
, shift
);
313 /* Dual halfword signed saturate. */
314 uint32_t HELPER(ssat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
318 res
= (uint16_t)do_ssat(env
, (int16_t)x
, shift
);
319 res
|= do_ssat(env
, ((int32_t)x
) >> 16, shift
) << 16;
323 /* Unsigned saturate. */
324 uint32_t HELPER(usat
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
326 return do_usat(env
, x
, shift
);
329 /* Dual halfword unsigned saturate. */
330 uint32_t HELPER(usat16
)(CPUARMState
*env
, uint32_t x
, uint32_t shift
)
334 res
= (uint16_t)do_usat(env
, (int16_t)x
, shift
);
335 res
|= do_usat(env
, ((int32_t)x
) >> 16, shift
) << 16;
339 void HELPER(setend
)(CPUARMState
*env
)
341 env
->uncached_cpsr
^= CPSR_E
;
344 /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
345 * The function returns the target EL (1-3) if the instruction is to be trapped;
346 * otherwise it returns 0 indicating it is not trapped.
348 static inline int check_wfx_trap(CPUARMState
*env
, bool is_wfe
)
350 int cur_el
= arm_current_el(env
);
353 /* If we are currently in EL0 then we need to check if SCTLR is set up for
354 * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
356 if (cur_el
< 1 && arm_feature(env
, ARM_FEATURE_V8
)) {
359 mask
= is_wfe
? SCTLR_nTWE
: SCTLR_nTWI
;
360 if (arm_is_secure_below_el3(env
) && !arm_el_is_aa64(env
, 3)) {
361 /* Secure EL0 and Secure PL1 is at EL3 */
367 if (!(env
->cp15
.sctlr_el
[target_el
] & mask
)) {
372 /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
373 * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
374 * bits will be zero indicating no trap.
376 if (cur_el
< 2 && !arm_is_secure(env
)) {
377 mask
= (is_wfe
) ? HCR_TWE
: HCR_TWI
;
378 if (env
->cp15
.hcr_el2
& mask
) {
383 /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
385 mask
= (is_wfe
) ? SCR_TWE
: SCR_TWI
;
386 if (env
->cp15
.scr_el3
& mask
) {
394 void HELPER(wfi
)(CPUARMState
*env
)
396 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
397 int target_el
= check_wfx_trap(env
, false);
399 if (cpu_has_work(cs
)) {
400 /* Don't bother to go into our "low power state" if
401 * we would just wake up immediately.
408 raise_exception(env
, EXCP_UDEF
, syn_wfx(1, 0xe, 0), target_el
);
411 cs
->exception_index
= EXCP_HLT
;
416 void HELPER(wfe
)(CPUARMState
*env
)
418 /* This is a hint instruction that is semantically different
419 * from YIELD even though we currently implement it identically.
420 * Don't actually halt the CPU, just yield back to top
421 * level loop. This is not going into a "low power state"
422 * (ie halting until some event occurs), so we never take
423 * a configurable trap to a different exception level.
428 void HELPER(yield
)(CPUARMState
*env
)
430 ARMCPU
*cpu
= arm_env_get_cpu(env
);
431 CPUState
*cs
= CPU(cpu
);
433 /* This is a non-trappable hint instruction that generally indicates
434 * that the guest is currently busy-looping. Yield control back to the
435 * top level loop so that a more deserving VCPU has a chance to run.
437 cs
->exception_index
= EXCP_YIELD
;
441 /* Raise an internal-to-QEMU exception. This is limited to only
442 * those EXCP values which are special cases for QEMU to interrupt
443 * execution and not to be used for exceptions which are passed to
444 * the guest (those must all have syndrome information and thus should
445 * use exception_with_syndrome).
447 void HELPER(exception_internal
)(CPUARMState
*env
, uint32_t excp
)
449 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
451 assert(excp_is_internal(excp
));
452 cs
->exception_index
= excp
;
456 /* Raise an exception with the specified syndrome register value */
457 void HELPER(exception_with_syndrome
)(CPUARMState
*env
, uint32_t excp
,
458 uint32_t syndrome
, uint32_t target_el
)
460 raise_exception(env
, excp
, syndrome
, target_el
);
463 uint32_t HELPER(cpsr_read
)(CPUARMState
*env
)
465 return cpsr_read(env
) & ~(CPSR_EXEC
| CPSR_RESERVED
);
468 void HELPER(cpsr_write
)(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
470 cpsr_write(env
, val
, mask
, CPSRWriteByInstr
);
473 /* Write the CPSR for a 32-bit exception return */
474 void HELPER(cpsr_write_eret
)(CPUARMState
*env
, uint32_t val
)
476 cpsr_write(env
, val
, CPSR_ERET_MASK
, CPSRWriteExceptionReturn
);
479 /* Access to user mode registers from privileged modes. */
480 uint32_t HELPER(get_user_reg
)(CPUARMState
*env
, uint32_t regno
)
485 val
= env
->banked_r13
[BANK_USRSYS
];
486 } else if (regno
== 14) {
487 val
= env
->banked_r14
[BANK_USRSYS
];
488 } else if (regno
>= 8
489 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
490 val
= env
->usr_regs
[regno
- 8];
492 val
= env
->regs
[regno
];
497 void HELPER(set_user_reg
)(CPUARMState
*env
, uint32_t regno
, uint32_t val
)
500 env
->banked_r13
[BANK_USRSYS
] = val
;
501 } else if (regno
== 14) {
502 env
->banked_r14
[BANK_USRSYS
] = val
;
503 } else if (regno
>= 8
504 && (env
->uncached_cpsr
& 0x1f) == ARM_CPU_MODE_FIQ
) {
505 env
->usr_regs
[regno
- 8] = val
;
507 env
->regs
[regno
] = val
;
511 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
513 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
516 env
->banked_r13
[bank_number(mode
)] = val
;
520 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
522 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_SYS
) {
523 /* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
524 * Other UNPREDICTABLE and UNDEF cases were caught at translate time.
526 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
527 exception_target_el(env
));
530 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
531 return env
->regs
[13];
533 return env
->banked_r13
[bank_number(mode
)];
537 static void msr_mrs_banked_exc_checks(CPUARMState
*env
, uint32_t tgtmode
,
540 /* Raise an exception if the requested access is one of the UNPREDICTABLE
541 * cases; otherwise return. This broadly corresponds to the pseudocode
542 * BankedRegisterAccessValid() and SPSRAccessValid(),
543 * except that we have already handled some cases at translate time.
545 int curmode
= env
->uncached_cpsr
& CPSR_M
;
547 if (curmode
== tgtmode
) {
551 if (tgtmode
== ARM_CPU_MODE_USR
) {
554 if (curmode
!= ARM_CPU_MODE_FIQ
) {
559 if (curmode
== ARM_CPU_MODE_SYS
) {
564 if (curmode
== ARM_CPU_MODE_HYP
|| curmode
== ARM_CPU_MODE_SYS
) {
573 if (tgtmode
== ARM_CPU_MODE_HYP
) {
575 case 17: /* ELR_Hyp */
576 if (curmode
!= ARM_CPU_MODE_HYP
&& curmode
!= ARM_CPU_MODE_MON
) {
581 if (curmode
!= ARM_CPU_MODE_MON
) {
591 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
592 exception_target_el(env
));
595 void HELPER(msr_banked
)(CPUARMState
*env
, uint32_t value
, uint32_t tgtmode
,
598 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
602 env
->banked_spsr
[bank_number(tgtmode
)] = value
;
604 case 17: /* ELR_Hyp */
605 env
->elr_el
[2] = value
;
608 env
->banked_r13
[bank_number(tgtmode
)] = value
;
611 env
->banked_r14
[bank_number(tgtmode
)] = value
;
615 case ARM_CPU_MODE_USR
:
616 env
->usr_regs
[regno
- 8] = value
;
618 case ARM_CPU_MODE_FIQ
:
619 env
->fiq_regs
[regno
- 8] = value
;
622 g_assert_not_reached();
626 g_assert_not_reached();
630 uint32_t HELPER(mrs_banked
)(CPUARMState
*env
, uint32_t tgtmode
, uint32_t regno
)
632 msr_mrs_banked_exc_checks(env
, tgtmode
, regno
);
636 return env
->banked_spsr
[bank_number(tgtmode
)];
637 case 17: /* ELR_Hyp */
638 return env
->elr_el
[2];
640 return env
->banked_r13
[bank_number(tgtmode
)];
642 return env
->banked_r14
[bank_number(tgtmode
)];
645 case ARM_CPU_MODE_USR
:
646 return env
->usr_regs
[regno
- 8];
647 case ARM_CPU_MODE_FIQ
:
648 return env
->fiq_regs
[regno
- 8];
650 g_assert_not_reached();
653 g_assert_not_reached();
657 void HELPER(access_check_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t syndrome
,
660 const ARMCPRegInfo
*ri
= rip
;
663 if (arm_feature(env
, ARM_FEATURE_XSCALE
) && ri
->cp
< 14
664 && extract32(env
->cp15
.c15_cpar
, ri
->cp
, 1) == 0) {
665 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
672 switch (ri
->accessfn(env
, ri
, isread
)) {
676 target_el
= exception_target_el(env
);
678 case CP_ACCESS_TRAP_EL2
:
679 /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
680 * a bug in the access function.
682 assert(!arm_is_secure(env
) && arm_current_el(env
) != 3);
685 case CP_ACCESS_TRAP_EL3
:
688 case CP_ACCESS_TRAP_UNCATEGORIZED
:
689 target_el
= exception_target_el(env
);
690 syndrome
= syn_uncategorized();
692 case CP_ACCESS_TRAP_UNCATEGORIZED_EL2
:
694 syndrome
= syn_uncategorized();
696 case CP_ACCESS_TRAP_UNCATEGORIZED_EL3
:
698 syndrome
= syn_uncategorized();
700 case CP_ACCESS_TRAP_FP_EL2
:
702 /* Since we are an implementation that takes exceptions on a trapped
703 * conditional insn only if the insn has passed its condition code
704 * check, we take the IMPDEF choice to always report CV=1 COND=0xe
705 * (which is also the required value for AArch64 traps).
707 syndrome
= syn_fp_access_trap(1, 0xe, false);
709 case CP_ACCESS_TRAP_FP_EL3
:
711 syndrome
= syn_fp_access_trap(1, 0xe, false);
714 g_assert_not_reached();
717 raise_exception(env
, EXCP_UDEF
, syndrome
, target_el
);
720 void HELPER(set_cp_reg
)(CPUARMState
*env
, void *rip
, uint32_t value
)
722 const ARMCPRegInfo
*ri
= rip
;
724 ri
->writefn(env
, ri
, value
);
727 uint32_t HELPER(get_cp_reg
)(CPUARMState
*env
, void *rip
)
729 const ARMCPRegInfo
*ri
= rip
;
731 return ri
->readfn(env
, ri
);
734 void HELPER(set_cp_reg64
)(CPUARMState
*env
, void *rip
, uint64_t value
)
736 const ARMCPRegInfo
*ri
= rip
;
738 ri
->writefn(env
, ri
, value
);
741 uint64_t HELPER(get_cp_reg64
)(CPUARMState
*env
, void *rip
)
743 const ARMCPRegInfo
*ri
= rip
;
745 return ri
->readfn(env
, ri
);
748 void HELPER(msr_i_pstate
)(CPUARMState
*env
, uint32_t op
, uint32_t imm
)
750 /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
751 * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
752 * to catch that case at translate time.
754 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
755 uint32_t syndrome
= syn_aa64_sysregtrap(0, extract32(op
, 0, 3),
756 extract32(op
, 3, 3), 4,
758 raise_exception(env
, EXCP_UDEF
, syndrome
, exception_target_el(env
));
762 case 0x05: /* SPSel */
763 update_spsel(env
, imm
);
765 case 0x1e: /* DAIFSet */
766 env
->daif
|= (imm
<< 6) & PSTATE_DAIF
;
768 case 0x1f: /* DAIFClear */
769 env
->daif
&= ~((imm
<< 6) & PSTATE_DAIF
);
772 g_assert_not_reached();
776 void HELPER(clear_pstate_ss
)(CPUARMState
*env
)
778 env
->pstate
&= ~PSTATE_SS
;
781 void HELPER(pre_hvc
)(CPUARMState
*env
)
783 ARMCPU
*cpu
= arm_env_get_cpu(env
);
784 int cur_el
= arm_current_el(env
);
785 /* FIXME: Use actual secure state. */
789 if (arm_is_psci_call(cpu
, EXCP_HVC
)) {
790 /* If PSCI is enabled and this looks like a valid PSCI call then
791 * that overrides the architecturally mandated HVC behaviour.
796 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
797 /* If EL2 doesn't exist, HVC always UNDEFs */
799 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
800 /* EL3.HCE has priority over EL2.HCD. */
801 undef
= !(env
->cp15
.scr_el3
& SCR_HCE
);
803 undef
= env
->cp15
.hcr_el2
& HCR_HCD
;
806 /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
807 * For ARMv8/AArch64, HVC is allowed in EL3.
808 * Note that we've already trapped HVC from EL0 at translation
811 if (secure
&& (!is_a64(env
) || cur_el
== 1)) {
816 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
817 exception_target_el(env
));
821 void HELPER(pre_smc
)(CPUARMState
*env
, uint32_t syndrome
)
823 ARMCPU
*cpu
= arm_env_get_cpu(env
);
824 int cur_el
= arm_current_el(env
);
825 bool secure
= arm_is_secure(env
);
826 bool smd
= env
->cp15
.scr_el3
& SCR_SMD
;
827 /* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
828 * On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
829 * extensions, SMD only applies to NS state.
830 * On ARMv7 without the Virtualization extensions, the SMD bit
831 * doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
832 * so we need not special case this here.
834 bool undef
= arm_feature(env
, ARM_FEATURE_AARCH64
) ? smd
: smd
&& !secure
;
836 if (arm_is_psci_call(cpu
, EXCP_SMC
)) {
837 /* If PSCI is enabled and this looks like a valid PSCI call then
838 * that overrides the architecturally mandated SMC behaviour.
843 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
844 /* If we have no EL3 then SMC always UNDEFs */
846 } else if (!secure
&& cur_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TSC
)) {
847 /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
848 raise_exception(env
, EXCP_HYP_TRAP
, syndrome
, 2);
852 raise_exception(env
, EXCP_UDEF
, syn_uncategorized(),
853 exception_target_el(env
));
857 static int el_from_spsr(uint32_t spsr
)
859 /* Return the exception level that this SPSR is requesting a return to,
860 * or -1 if it is invalid (an illegal return)
862 if (spsr
& PSTATE_nRW
) {
863 switch (spsr
& CPSR_M
) {
864 case ARM_CPU_MODE_USR
:
866 case ARM_CPU_MODE_HYP
:
868 case ARM_CPU_MODE_FIQ
:
869 case ARM_CPU_MODE_IRQ
:
870 case ARM_CPU_MODE_SVC
:
871 case ARM_CPU_MODE_ABT
:
872 case ARM_CPU_MODE_UND
:
873 case ARM_CPU_MODE_SYS
:
875 case ARM_CPU_MODE_MON
:
876 /* Returning to Mon from AArch64 is never possible,
877 * so this is an illegal return.
883 if (extract32(spsr
, 1, 1)) {
884 /* Return with reserved M[1] bit set */
887 if (extract32(spsr
, 0, 4) == 1) {
888 /* return to EL0 with M[0] bit set */
891 return extract32(spsr
, 2, 2);
895 void HELPER(exception_return
)(CPUARMState
*env
)
897 int cur_el
= arm_current_el(env
);
898 unsigned int spsr_idx
= aarch64_banked_spsr_index(cur_el
);
899 uint32_t spsr
= env
->banked_spsr
[spsr_idx
];
901 bool return_to_aa64
= (spsr
& PSTATE_nRW
) == 0;
903 aarch64_save_sp(env
, cur_el
);
905 env
->exclusive_addr
= -1;
907 /* We must squash the PSTATE.SS bit to zero unless both of the
909 * 1. debug exceptions are currently disabled
910 * 2. singlestep will be active in the EL we return to
911 * We check 1 here and 2 after we've done the pstate/cpsr write() to
912 * transition to the EL we're going to.
914 if (arm_generate_debug_exceptions(env
)) {
918 new_el
= el_from_spsr(spsr
);
923 || (new_el
== 2 && !arm_feature(env
, ARM_FEATURE_EL2
))) {
924 /* Disallow return to an EL which is unimplemented or higher
925 * than the current one.
930 if (new_el
!= 0 && arm_el_is_aa64(env
, new_el
) != return_to_aa64
) {
931 /* Return to an EL which is configured for a different register width */
935 if (new_el
== 2 && arm_is_secure_below_el3(env
)) {
936 /* Return to the non-existent secure-EL2 */
940 if (new_el
== 1 && (env
->cp15
.hcr_el2
& HCR_TGE
)
941 && !arm_is_secure_below_el3(env
)) {
945 if (!return_to_aa64
) {
947 /* We do a raw CPSR write because aarch64_sync_64_to_32()
948 * will sort the register banks out for us, and we've already
949 * caught all the bad-mode cases in el_from_spsr().
951 cpsr_write(env
, spsr
, ~0, CPSRWriteRaw
);
952 if (!arm_singlestep_active(env
)) {
953 env
->uncached_cpsr
&= ~PSTATE_SS
;
955 aarch64_sync_64_to_32(env
);
958 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x1;
960 env
->regs
[15] = env
->elr_el
[cur_el
] & ~0x3;
964 pstate_write(env
, spsr
);
965 if (!arm_singlestep_active(env
)) {
966 env
->pstate
&= ~PSTATE_SS
;
968 aarch64_restore_sp(env
, new_el
);
969 env
->pc
= env
->elr_el
[cur_el
];
975 /* Illegal return events of various kinds have architecturally
976 * mandated behaviour:
977 * restore NZCV and DAIF from SPSR_ELx
979 * restore PC from ELR_ELx
980 * no change to exception level, execution state or stack pointer
982 env
->pstate
|= PSTATE_IL
;
983 env
->pc
= env
->elr_el
[cur_el
];
984 spsr
&= PSTATE_NZCV
| PSTATE_DAIF
;
985 spsr
|= pstate_read(env
) & ~(PSTATE_NZCV
| PSTATE_DAIF
);
986 pstate_write(env
, spsr
);
987 if (!arm_singlestep_active(env
)) {
988 env
->pstate
&= ~PSTATE_SS
;
992 /* Return true if the linked breakpoint entry lbn passes its checks */
993 static bool linked_bp_matches(ARMCPU
*cpu
, int lbn
)
995 CPUARMState
*env
= &cpu
->env
;
996 uint64_t bcr
= env
->cp15
.dbgbcr
[lbn
];
997 int brps
= extract32(cpu
->dbgdidr
, 24, 4);
998 int ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
1000 uint32_t contextidr
;
1002 /* Links to unimplemented or non-context aware breakpoints are
1003 * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
1004 * as if linked to an UNKNOWN context-aware breakpoint (in which
1005 * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
1006 * We choose the former.
1008 if (lbn
> brps
|| lbn
< (brps
- ctx_cmps
)) {
1012 bcr
= env
->cp15
.dbgbcr
[lbn
];
1014 if (extract64(bcr
, 0, 1) == 0) {
1015 /* Linked breakpoint disabled : generate no events */
1019 bt
= extract64(bcr
, 20, 4);
1021 /* We match the whole register even if this is AArch32 using the
1022 * short descriptor format (in which case it holds both PROCID and ASID),
1023 * since we don't implement the optional v7 context ID masking.
1025 contextidr
= extract64(env
->cp15
.contextidr_el
[1], 0, 32);
1028 case 3: /* linked context ID match */
1029 if (arm_current_el(env
) > 1) {
1030 /* Context matches never fire in EL2 or (AArch64) EL3 */
1033 return (contextidr
== extract64(env
->cp15
.dbgbvr
[lbn
], 0, 32));
1034 case 5: /* linked address mismatch (reserved in AArch64) */
1035 case 9: /* linked VMID match (reserved if no EL2) */
1036 case 11: /* linked context ID and VMID match (reserved if no EL2) */
1038 /* Links to Unlinked context breakpoints must generate no
1039 * events; we choose to do the same for reserved values too.
1047 static bool bp_wp_matches(ARMCPU
*cpu
, int n
, bool is_wp
)
1049 CPUARMState
*env
= &cpu
->env
;
1051 int pac
, hmc
, ssc
, wt
, lbn
;
1052 /* Note that for watchpoints the check is against the CPU security
1053 * state, not the S/NS attribute on the offending data access.
1055 bool is_secure
= arm_is_secure(env
);
1056 int access_el
= arm_current_el(env
);
1059 CPUWatchpoint
*wp
= env
->cpu_watchpoint
[n
];
1061 if (!wp
|| !(wp
->flags
& BP_WATCHPOINT_HIT
)) {
1064 cr
= env
->cp15
.dbgwcr
[n
];
1065 if (wp
->hitattrs
.user
) {
1066 /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
1067 * match watchpoints as if they were accesses done at EL0, even if
1068 * the CPU is at EL1 or higher.
1073 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1075 if (!env
->cpu_breakpoint
[n
] || env
->cpu_breakpoint
[n
]->pc
!= pc
) {
1078 cr
= env
->cp15
.dbgbcr
[n
];
1080 /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
1081 * enabled and that the address and access type match; for breakpoints
1082 * we know the address matched; check the remaining fields, including
1083 * linked breakpoints. We rely on WCR and BCR having the same layout
1084 * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
1085 * Note that some combinations of {PAC, HMC, SSC} are reserved and
1086 * must act either like some valid combination or as if the watchpoint
1087 * were disabled. We choose the former, and use this together with
1088 * the fact that EL3 must always be Secure and EL2 must always be
1089 * Non-Secure to simplify the code slightly compared to the full
1090 * table in the ARM ARM.
1092 pac
= extract64(cr
, 1, 2);
1093 hmc
= extract64(cr
, 13, 1);
1094 ssc
= extract64(cr
, 14, 2);
1112 switch (access_el
) {
1120 if (extract32(pac
, 0, 1) == 0) {
1125 if (extract32(pac
, 1, 1) == 0) {
1130 g_assert_not_reached();
1133 wt
= extract64(cr
, 20, 1);
1134 lbn
= extract64(cr
, 16, 4);
1136 if (wt
&& !linked_bp_matches(cpu
, lbn
)) {
1143 static bool check_watchpoints(ARMCPU
*cpu
)
1145 CPUARMState
*env
= &cpu
->env
;
1148 /* If watchpoints are disabled globally or we can't take debug
1149 * exceptions here then watchpoint firings are ignored.
1151 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1152 || !arm_generate_debug_exceptions(env
)) {
1156 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_watchpoint
); n
++) {
1157 if (bp_wp_matches(cpu
, n
, true)) {
1164 static bool check_breakpoints(ARMCPU
*cpu
)
1166 CPUARMState
*env
= &cpu
->env
;
1169 /* If breakpoints are disabled globally or we can't take debug
1170 * exceptions here then breakpoint firings are ignored.
1172 if (extract32(env
->cp15
.mdscr_el1
, 15, 1) == 0
1173 || !arm_generate_debug_exceptions(env
)) {
1177 for (n
= 0; n
< ARRAY_SIZE(env
->cpu_breakpoint
); n
++) {
1178 if (bp_wp_matches(cpu
, n
, false)) {
1185 void HELPER(check_breakpoints
)(CPUARMState
*env
)
1187 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1189 if (check_breakpoints(cpu
)) {
1190 HELPER(exception_internal(env
, EXCP_DEBUG
));
1194 bool arm_debug_check_watchpoint(CPUState
*cs
, CPUWatchpoint
*wp
)
1196 /* Called by core code when a CPU watchpoint fires; need to check if this
1197 * is also an architectural watchpoint match.
1199 ARMCPU
*cpu
= ARM_CPU(cs
);
1201 return check_watchpoints(cpu
);
1204 void arm_debug_excp_handler(CPUState
*cs
)
1206 /* Called by core code when a watchpoint or breakpoint fires;
1207 * need to check which one and raise the appropriate exception.
1209 ARMCPU
*cpu
= ARM_CPU(cs
);
1210 CPUARMState
*env
= &cpu
->env
;
1211 CPUWatchpoint
*wp_hit
= cs
->watchpoint_hit
;
1214 if (wp_hit
->flags
& BP_CPU
) {
1215 bool wnr
= (wp_hit
->flags
& BP_WATCHPOINT_HIT_WRITE
) != 0;
1216 bool same_el
= arm_debug_target_el(env
) == arm_current_el(env
);
1218 cs
->watchpoint_hit
= NULL
;
1220 if (extended_addresses_enabled(env
)) {
1221 env
->exception
.fsr
= (1 << 9) | 0x22;
1223 env
->exception
.fsr
= 0x2;
1225 env
->exception
.vaddress
= wp_hit
->hitaddr
;
1226 raise_exception(env
, EXCP_DATA_ABORT
,
1227 syn_watchpoint(same_el
, 0, wnr
),
1228 arm_debug_target_el(env
));
1231 uint64_t pc
= is_a64(env
) ? env
->pc
: env
->regs
[15];
1232 bool same_el
= (arm_debug_target_el(env
) == arm_current_el(env
));
1234 /* (1) GDB breakpoints should be handled first.
1235 * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
1236 * since singlestep is also done by generating a debug internal
1239 if (cpu_breakpoint_test(cs
, pc
, BP_GDB
)
1240 || !cpu_breakpoint_test(cs
, pc
, BP_CPU
)) {
1244 if (extended_addresses_enabled(env
)) {
1245 env
->exception
.fsr
= (1 << 9) | 0x22;
1247 env
->exception
.fsr
= 0x2;
1249 /* FAR is UNKNOWN, so doesn't need setting */
1250 raise_exception(env
, EXCP_PREFETCH_ABORT
,
1251 syn_breakpoint(same_el
),
1252 arm_debug_target_el(env
));
1256 /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
1257 The only way to do that in TCG is a conditional branch, which clobbers
1258 all our temporaries. For now implement these as helper functions. */
1260 /* Similarly for variable shift instructions. */
1262 uint32_t HELPER(shl_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1264 int shift
= i
& 0xff;
1271 } else if (shift
!= 0) {
1272 env
->CF
= (x
>> (32 - shift
)) & 1;
1278 uint32_t HELPER(shr_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1280 int shift
= i
& 0xff;
1283 env
->CF
= (x
>> 31) & 1;
1287 } else if (shift
!= 0) {
1288 env
->CF
= (x
>> (shift
- 1)) & 1;
1294 uint32_t HELPER(sar_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1296 int shift
= i
& 0xff;
1298 env
->CF
= (x
>> 31) & 1;
1299 return (int32_t)x
>> 31;
1300 } else if (shift
!= 0) {
1301 env
->CF
= (x
>> (shift
- 1)) & 1;
1302 return (int32_t)x
>> shift
;
1307 uint32_t HELPER(ror_cc
)(CPUARMState
*env
, uint32_t x
, uint32_t i
)
1311 shift
= shift1
& 0x1f;
1314 env
->CF
= (x
>> 31) & 1;
1317 env
->CF
= (x
>> (shift
- 1)) & 1;
1318 return ((uint32_t)x
>> shift
) | (x
<< (32 - shift
));