4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
28 #include "sysemu/accel.h"
30 #include "hw/pci/msi.h"
31 #include "hw/s390x/adapter.h"
32 #include "exec/gdbstub.h"
33 #include "sysemu/kvm.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
41 #include "hw/boards.h"
43 /* This check must be after config-host.h is included */
45 #include <sys/eventfd.h>
48 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
49 #define PAGE_SIZE TARGET_PAGE_SIZE
54 #define DPRINTF(fmt, ...) \
55 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
57 #define DPRINTF(fmt, ...) \
61 #define KVM_MSI_HASHTAB_SIZE 256
63 typedef struct KVMSlot
66 ram_addr_t memory_size
;
72 typedef struct kvm_dirty_log KVMDirtyLog
;
76 AccelState parent_obj
;
83 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
84 bool coalesced_flush_in_progress
;
85 int broken_set_mem_region
;
87 int robust_singlestep
;
89 #ifdef KVM_CAP_SET_GUEST_DEBUG
90 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
96 /* The man page (and posix) say ioctl numbers are signed int, but
97 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
98 * unsigned, and treating them as signed here can break things */
99 unsigned irq_set_ioctl
;
100 unsigned int sigmask_len
;
101 #ifdef KVM_CAP_IRQ_ROUTING
102 struct kvm_irq_routing
*irq_routes
;
103 int nr_allocated_irq_routes
;
104 uint32_t *used_gsi_bitmap
;
105 unsigned int gsi_count
;
106 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
111 #define TYPE_KVM_ACCEL ACCEL_CLASS_NAME("kvm")
113 #define KVM_STATE(obj) \
114 OBJECT_CHECK(KVMState, (obj), TYPE_KVM_ACCEL)
117 bool kvm_kernel_irqchip
;
118 bool kvm_async_interrupts_allowed
;
119 bool kvm_halt_in_kernel_allowed
;
120 bool kvm_eventfds_allowed
;
121 bool kvm_irqfds_allowed
;
122 bool kvm_resamplefds_allowed
;
123 bool kvm_msi_via_irqfd_allowed
;
124 bool kvm_gsi_routing_allowed
;
125 bool kvm_gsi_direct_mapping
;
127 bool kvm_readonly_mem_allowed
;
128 bool kvm_vm_attributes_allowed
;
130 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
131 KVM_CAP_INFO(USER_MEMORY
),
132 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
136 static KVMSlot
*kvm_get_free_slot(KVMState
*s
)
140 for (i
= 0; i
< s
->nr_slots
; i
++) {
141 if (s
->slots
[i
].memory_size
== 0) {
149 bool kvm_has_free_slot(MachineState
*ms
)
151 return kvm_get_free_slot(KVM_STATE(ms
->accelerator
));
154 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
156 KVMSlot
*slot
= kvm_get_free_slot(s
);
162 fprintf(stderr
, "%s: no free slot available\n", __func__
);
166 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
172 for (i
= 0; i
< s
->nr_slots
; i
++) {
173 KVMSlot
*mem
= &s
->slots
[i
];
175 if (start_addr
== mem
->start_addr
&&
176 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
185 * Find overlapping slot with lowest start address
187 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
191 KVMSlot
*found
= NULL
;
194 for (i
= 0; i
< s
->nr_slots
; i
++) {
195 KVMSlot
*mem
= &s
->slots
[i
];
197 if (mem
->memory_size
== 0 ||
198 (found
&& found
->start_addr
< mem
->start_addr
)) {
202 if (end_addr
> mem
->start_addr
&&
203 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
211 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
216 for (i
= 0; i
< s
->nr_slots
; i
++) {
217 KVMSlot
*mem
= &s
->slots
[i
];
219 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
220 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
228 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
230 struct kvm_userspace_memory_region mem
;
232 mem
.slot
= slot
->slot
;
233 mem
.guest_phys_addr
= slot
->start_addr
;
234 mem
.userspace_addr
= (unsigned long)slot
->ram
;
235 mem
.flags
= slot
->flags
;
237 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
238 /* Set the slot size to 0 before setting the slot to the desired
239 * value. This is needed based on KVM commit 75d61fbc. */
241 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
243 mem
.memory_size
= slot
->memory_size
;
244 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
247 int kvm_init_vcpu(CPUState
*cpu
)
249 KVMState
*s
= kvm_state
;
253 DPRINTF("kvm_init_vcpu\n");
255 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
257 DPRINTF("kvm_create_vcpu failed\n");
263 cpu
->kvm_vcpu_dirty
= true;
265 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
268 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
272 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
274 if (cpu
->kvm_run
== MAP_FAILED
) {
276 DPRINTF("mmap'ing vcpu state failed\n");
280 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
281 s
->coalesced_mmio_ring
=
282 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
285 ret
= kvm_arch_init_vcpu(cpu
);
291 * dirty pages logging control
294 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
297 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
298 if (readonly
&& kvm_readonly_mem_allowed
) {
299 flags
|= KVM_MEM_READONLY
;
304 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
306 KVMState
*s
= kvm_state
;
307 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
310 old_flags
= mem
->flags
;
312 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
315 /* If nothing changed effectively, no need to issue ioctl */
316 if (flags
== old_flags
) {
320 return kvm_set_user_memory_region(s
, mem
);
323 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
324 ram_addr_t size
, bool log_dirty
)
326 KVMState
*s
= kvm_state
;
327 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
332 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
336 static void kvm_log_start(MemoryListener
*listener
,
337 MemoryRegionSection
*section
,
346 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
347 int128_get64(section
->size
), true);
353 static void kvm_log_stop(MemoryListener
*listener
,
354 MemoryRegionSection
*section
,
363 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
364 int128_get64(section
->size
), false);
370 /* get kvm's dirty pages bitmap and update qemu's */
371 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
372 unsigned long *bitmap
)
374 ram_addr_t start
= section
->offset_within_region
+ section
->mr
->ram_addr
;
375 ram_addr_t pages
= int128_get64(section
->size
) / getpagesize();
377 cpu_physical_memory_set_dirty_lebitmap(bitmap
, start
, pages
);
381 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
384 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
385 * This function updates qemu's dirty bitmap using
386 * memory_region_set_dirty(). This means all bits are set
389 * @start_add: start of logged region.
390 * @end_addr: end of logged region.
392 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
394 KVMState
*s
= kvm_state
;
395 unsigned long size
, allocated_size
= 0;
399 hwaddr start_addr
= section
->offset_within_address_space
;
400 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
402 d
.dirty_bitmap
= NULL
;
403 while (start_addr
< end_addr
) {
404 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
409 /* XXX bad kernel interface alert
410 * For dirty bitmap, kernel allocates array of size aligned to
411 * bits-per-long. But for case when the kernel is 64bits and
412 * the userspace is 32bits, userspace can't align to the same
413 * bits-per-long, since sizeof(long) is different between kernel
414 * and user space. This way, userspace will provide buffer which
415 * may be 4 bytes less than the kernel will use, resulting in
416 * userspace memory corruption (which is not detectable by valgrind
417 * too, in most cases).
418 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
419 * a hope that sizeof(long) wont become >8 any time soon.
421 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
422 /*HOST_LONG_BITS*/ 64) / 8;
423 if (!d
.dirty_bitmap
) {
424 d
.dirty_bitmap
= g_malloc(size
);
425 } else if (size
> allocated_size
) {
426 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
428 allocated_size
= size
;
429 memset(d
.dirty_bitmap
, 0, allocated_size
);
433 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
434 DPRINTF("ioctl failed %d\n", errno
);
439 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
440 start_addr
= mem
->start_addr
+ mem
->memory_size
;
442 g_free(d
.dirty_bitmap
);
447 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
448 MemoryRegionSection
*secion
,
449 hwaddr start
, hwaddr size
)
451 KVMState
*s
= kvm_state
;
453 if (s
->coalesced_mmio
) {
454 struct kvm_coalesced_mmio_zone zone
;
460 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
464 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
465 MemoryRegionSection
*secion
,
466 hwaddr start
, hwaddr size
)
468 KVMState
*s
= kvm_state
;
470 if (s
->coalesced_mmio
) {
471 struct kvm_coalesced_mmio_zone zone
;
477 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
481 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
485 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
493 int kvm_vm_check_extension(KVMState
*s
, unsigned int extension
)
497 ret
= kvm_vm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
499 /* VM wide version not implemented, use global one instead */
500 ret
= kvm_check_extension(s
, extension
);
506 static uint32_t adjust_ioeventfd_endianness(uint32_t val
, uint32_t size
)
508 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
509 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
510 * endianness, but the memory core hands them in target endianness.
511 * For example, PPC is always treated as big-endian even if running
512 * on KVM and on PPC64LE. Correct here.
526 static int kvm_set_ioeventfd_mmio(int fd
, hwaddr addr
, uint32_t val
,
527 bool assign
, uint32_t size
, bool datamatch
)
530 struct kvm_ioeventfd iofd
= {
531 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
538 if (!kvm_enabled()) {
543 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
546 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
549 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
558 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
559 bool assign
, uint32_t size
, bool datamatch
)
561 struct kvm_ioeventfd kick
= {
562 .datamatch
= datamatch
? adjust_ioeventfd_endianness(val
, size
) : 0,
564 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
569 if (!kvm_enabled()) {
573 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
576 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
578 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
586 static int kvm_check_many_ioeventfds(void)
588 /* Userspace can use ioeventfd for io notification. This requires a host
589 * that supports eventfd(2) and an I/O thread; since eventfd does not
590 * support SIGIO it cannot interrupt the vcpu.
592 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
593 * can avoid creating too many ioeventfds.
595 #if defined(CONFIG_EVENTFD)
598 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
599 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
600 if (ioeventfds
[i
] < 0) {
603 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
605 close(ioeventfds
[i
]);
610 /* Decide whether many devices are supported or not */
611 ret
= i
== ARRAY_SIZE(ioeventfds
);
614 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
615 close(ioeventfds
[i
]);
623 static const KVMCapabilityInfo
*
624 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
627 if (!kvm_check_extension(s
, list
->value
)) {
635 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
637 KVMState
*s
= kvm_state
;
640 MemoryRegion
*mr
= section
->mr
;
641 bool log_dirty
= memory_region_get_dirty_log_mask(mr
) != 0;
642 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
643 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
644 hwaddr start_addr
= section
->offset_within_address_space
;
645 ram_addr_t size
= int128_get64(section
->size
);
649 /* kvm works in page size chunks, but the function may be called
650 with sub-page size and unaligned start address. Pad the start
651 address to next and truncate size to previous page boundary. */
652 delta
= (TARGET_PAGE_SIZE
- (start_addr
& ~TARGET_PAGE_MASK
));
653 delta
&= ~TARGET_PAGE_MASK
;
659 size
&= TARGET_PAGE_MASK
;
660 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
664 if (!memory_region_is_ram(mr
)) {
665 if (writeable
|| !kvm_readonly_mem_allowed
) {
667 } else if (!mr
->romd_mode
) {
668 /* If the memory device is not in romd_mode, then we actually want
669 * to remove the kvm memory slot so all accesses will trap. */
674 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
677 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
682 if (add
&& start_addr
>= mem
->start_addr
&&
683 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
684 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
685 /* The new slot fits into the existing one and comes with
686 * identical parameters - update flags and done. */
687 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
693 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
694 kvm_physical_sync_dirty_bitmap(section
);
697 /* unregister the overlapping slot */
698 mem
->memory_size
= 0;
699 err
= kvm_set_user_memory_region(s
, mem
);
701 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
702 __func__
, strerror(-err
));
706 /* Workaround for older KVM versions: we can't join slots, even not by
707 * unregistering the previous ones and then registering the larger
708 * slot. We have to maintain the existing fragmentation. Sigh.
710 * This workaround assumes that the new slot starts at the same
711 * address as the first existing one. If not or if some overlapping
712 * slot comes around later, we will fail (not seen in practice so far)
713 * - and actually require a recent KVM version. */
714 if (s
->broken_set_mem_region
&&
715 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
716 mem
= kvm_alloc_slot(s
);
717 mem
->memory_size
= old
.memory_size
;
718 mem
->start_addr
= old
.start_addr
;
720 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
722 err
= kvm_set_user_memory_region(s
, mem
);
724 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
729 start_addr
+= old
.memory_size
;
730 ram
+= old
.memory_size
;
731 size
-= old
.memory_size
;
735 /* register prefix slot */
736 if (old
.start_addr
< start_addr
) {
737 mem
= kvm_alloc_slot(s
);
738 mem
->memory_size
= start_addr
- old
.start_addr
;
739 mem
->start_addr
= old
.start_addr
;
741 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
743 err
= kvm_set_user_memory_region(s
, mem
);
745 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
746 __func__
, strerror(-err
));
748 fprintf(stderr
, "%s: This is probably because your kernel's " \
749 "PAGE_SIZE is too big. Please try to use 4k " \
750 "PAGE_SIZE!\n", __func__
);
756 /* register suffix slot */
757 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
758 ram_addr_t size_delta
;
760 mem
= kvm_alloc_slot(s
);
761 mem
->start_addr
= start_addr
+ size
;
762 size_delta
= mem
->start_addr
- old
.start_addr
;
763 mem
->memory_size
= old
.memory_size
- size_delta
;
764 mem
->ram
= old
.ram
+ size_delta
;
765 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
767 err
= kvm_set_user_memory_region(s
, mem
);
769 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
770 __func__
, strerror(-err
));
776 /* in case the KVM bug workaround already "consumed" the new slot */
783 mem
= kvm_alloc_slot(s
);
784 mem
->memory_size
= size
;
785 mem
->start_addr
= start_addr
;
787 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
789 err
= kvm_set_user_memory_region(s
, mem
);
791 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
797 static void kvm_region_add(MemoryListener
*listener
,
798 MemoryRegionSection
*section
)
800 memory_region_ref(section
->mr
);
801 kvm_set_phys_mem(section
, true);
804 static void kvm_region_del(MemoryListener
*listener
,
805 MemoryRegionSection
*section
)
807 kvm_set_phys_mem(section
, false);
808 memory_region_unref(section
->mr
);
811 static void kvm_log_sync(MemoryListener
*listener
,
812 MemoryRegionSection
*section
)
816 r
= kvm_physical_sync_dirty_bitmap(section
);
822 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
823 MemoryRegionSection
*section
,
824 bool match_data
, uint64_t data
,
827 int fd
= event_notifier_get_fd(e
);
830 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
831 data
, true, int128_get64(section
->size
),
834 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
835 __func__
, strerror(-r
));
840 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
841 MemoryRegionSection
*section
,
842 bool match_data
, uint64_t data
,
845 int fd
= event_notifier_get_fd(e
);
848 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
849 data
, false, int128_get64(section
->size
),
856 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
857 MemoryRegionSection
*section
,
858 bool match_data
, uint64_t data
,
861 int fd
= event_notifier_get_fd(e
);
864 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
865 data
, true, int128_get64(section
->size
),
868 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
869 __func__
, strerror(-r
));
874 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
875 MemoryRegionSection
*section
,
876 bool match_data
, uint64_t data
,
880 int fd
= event_notifier_get_fd(e
);
883 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
884 data
, false, int128_get64(section
->size
),
891 static MemoryListener kvm_memory_listener
= {
892 .region_add
= kvm_region_add
,
893 .region_del
= kvm_region_del
,
894 .log_start
= kvm_log_start
,
895 .log_stop
= kvm_log_stop
,
896 .log_sync
= kvm_log_sync
,
897 .eventfd_add
= kvm_mem_ioeventfd_add
,
898 .eventfd_del
= kvm_mem_ioeventfd_del
,
899 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
900 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
904 static MemoryListener kvm_io_listener
= {
905 .eventfd_add
= kvm_io_ioeventfd_add
,
906 .eventfd_del
= kvm_io_ioeventfd_del
,
910 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
912 cpu
->interrupt_request
|= mask
;
914 if (!qemu_cpu_is_self(cpu
)) {
919 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
921 struct kvm_irq_level event
;
924 assert(kvm_async_interrupts_enabled());
928 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
930 perror("kvm_set_irq");
934 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
937 #ifdef KVM_CAP_IRQ_ROUTING
938 typedef struct KVMMSIRoute
{
939 struct kvm_irq_routing_entry kroute
;
940 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
943 static void set_gsi(KVMState
*s
, unsigned int gsi
)
945 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
948 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
950 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
953 void kvm_init_irq_routing(KVMState
*s
)
957 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
) - 1;
959 unsigned int gsi_bits
, i
;
961 /* Round up so we can search ints using ffs */
962 gsi_bits
= ALIGN(gsi_count
, 32);
963 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
964 s
->gsi_count
= gsi_count
;
966 /* Mark any over-allocated bits as already in use */
967 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
972 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
973 s
->nr_allocated_irq_routes
= 0;
975 if (!s
->direct_msi
) {
976 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
977 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
981 kvm_arch_init_irq_routing(s
);
984 void kvm_irqchip_commit_routes(KVMState
*s
)
988 s
->irq_routes
->flags
= 0;
989 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
993 static void kvm_add_routing_entry(KVMState
*s
,
994 struct kvm_irq_routing_entry
*entry
)
996 struct kvm_irq_routing_entry
*new;
999 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1000 n
= s
->nr_allocated_irq_routes
* 2;
1004 size
= sizeof(struct kvm_irq_routing
);
1005 size
+= n
* sizeof(*new);
1006 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1007 s
->nr_allocated_irq_routes
= n
;
1009 n
= s
->irq_routes
->nr
++;
1010 new = &s
->irq_routes
->entries
[n
];
1014 set_gsi(s
, entry
->gsi
);
1017 static int kvm_update_routing_entry(KVMState
*s
,
1018 struct kvm_irq_routing_entry
*new_entry
)
1020 struct kvm_irq_routing_entry
*entry
;
1023 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1024 entry
= &s
->irq_routes
->entries
[n
];
1025 if (entry
->gsi
!= new_entry
->gsi
) {
1029 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1033 *entry
= *new_entry
;
1035 kvm_irqchip_commit_routes(s
);
1043 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1045 struct kvm_irq_routing_entry e
= {};
1047 assert(pin
< s
->gsi_count
);
1050 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1052 e
.u
.irqchip
.irqchip
= irqchip
;
1053 e
.u
.irqchip
.pin
= pin
;
1054 kvm_add_routing_entry(s
, &e
);
1057 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1059 struct kvm_irq_routing_entry
*e
;
1062 if (kvm_gsi_direct_mapping()) {
1066 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1067 e
= &s
->irq_routes
->entries
[i
];
1068 if (e
->gsi
== virq
) {
1069 s
->irq_routes
->nr
--;
1070 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1076 static unsigned int kvm_hash_msi(uint32_t data
)
1078 /* This is optimized for IA32 MSI layout. However, no other arch shall
1079 * repeat the mistake of not providing a direct MSI injection API. */
1083 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1085 KVMMSIRoute
*route
, *next
;
1088 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1089 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1090 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1091 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1097 static int kvm_irqchip_get_virq(KVMState
*s
)
1099 uint32_t *word
= s
->used_gsi_bitmap
;
1100 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1105 /* Return the lowest unused GSI in the bitmap */
1106 for (i
= 0; i
< max_words
; i
++) {
1107 zeroes
= ctz32(~word
[i
]);
1112 return zeroes
+ i
* 32;
1114 if (!s
->direct_msi
&& retry
) {
1116 kvm_flush_dynamic_msi_routes(s
);
1123 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1125 unsigned int hash
= kvm_hash_msi(msg
.data
);
1128 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1129 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1130 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1131 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1138 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1143 if (s
->direct_msi
) {
1144 msi
.address_lo
= (uint32_t)msg
.address
;
1145 msi
.address_hi
= msg
.address
>> 32;
1146 msi
.data
= le32_to_cpu(msg
.data
);
1148 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1150 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1153 route
= kvm_lookup_msi_route(s
, msg
);
1157 virq
= kvm_irqchip_get_virq(s
);
1162 route
= g_malloc0(sizeof(KVMMSIRoute
));
1163 route
->kroute
.gsi
= virq
;
1164 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1165 route
->kroute
.flags
= 0;
1166 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1167 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1168 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1170 kvm_add_routing_entry(s
, &route
->kroute
);
1171 kvm_irqchip_commit_routes(s
);
1173 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1177 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1179 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1182 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1184 struct kvm_irq_routing_entry kroute
= {};
1187 if (kvm_gsi_direct_mapping()) {
1188 return kvm_arch_msi_data_to_gsi(msg
.data
);
1191 if (!kvm_gsi_routing_enabled()) {
1195 virq
= kvm_irqchip_get_virq(s
);
1201 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1203 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1204 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1205 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1206 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1207 kvm_irqchip_release_virq(s
, virq
);
1211 kvm_add_routing_entry(s
, &kroute
);
1212 kvm_irqchip_commit_routes(s
);
1217 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1219 struct kvm_irq_routing_entry kroute
= {};
1221 if (kvm_gsi_direct_mapping()) {
1225 if (!kvm_irqchip_in_kernel()) {
1230 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1232 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1233 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1234 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1235 if (kvm_arch_fixup_msi_route(&kroute
, msg
.address
, msg
.data
)) {
1239 return kvm_update_routing_entry(s
, &kroute
);
1242 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1245 struct kvm_irqfd irqfd
= {
1248 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1252 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1253 irqfd
.resamplefd
= rfd
;
1256 if (!kvm_irqfds_enabled()) {
1260 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1263 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1265 struct kvm_irq_routing_entry kroute
= {};
1268 if (!kvm_gsi_routing_enabled()) {
1272 virq
= kvm_irqchip_get_virq(s
);
1278 kroute
.type
= KVM_IRQ_ROUTING_S390_ADAPTER
;
1280 kroute
.u
.adapter
.summary_addr
= adapter
->summary_addr
;
1281 kroute
.u
.adapter
.ind_addr
= adapter
->ind_addr
;
1282 kroute
.u
.adapter
.summary_offset
= adapter
->summary_offset
;
1283 kroute
.u
.adapter
.ind_offset
= adapter
->ind_offset
;
1284 kroute
.u
.adapter
.adapter_id
= adapter
->adapter_id
;
1286 kvm_add_routing_entry(s
, &kroute
);
1287 kvm_irqchip_commit_routes(s
);
1292 #else /* !KVM_CAP_IRQ_ROUTING */
1294 void kvm_init_irq_routing(KVMState
*s
)
1298 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1302 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1307 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1312 int kvm_irqchip_add_adapter_route(KVMState
*s
, AdapterInfo
*adapter
)
1317 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1322 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1326 #endif /* !KVM_CAP_IRQ_ROUTING */
1328 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1329 EventNotifier
*rn
, int virq
)
1331 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1332 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1335 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1337 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1341 static int kvm_irqchip_create(MachineState
*machine
, KVMState
*s
)
1345 if (!machine_kernel_irqchip_allowed(machine
) ||
1346 (!kvm_check_extension(s
, KVM_CAP_IRQCHIP
) &&
1347 (kvm_vm_enable_cap(s
, KVM_CAP_S390_IRQCHIP
, 0) < 0))) {
1351 /* First probe and see if there's a arch-specific hook to create the
1352 * in-kernel irqchip for us */
1353 ret
= kvm_arch_irqchip_create(s
);
1356 } else if (ret
== 0) {
1357 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1359 fprintf(stderr
, "Create kernel irqchip failed\n");
1364 kvm_kernel_irqchip
= true;
1365 /* If we have an in-kernel IRQ chip then we must have asynchronous
1366 * interrupt delivery (though the reverse is not necessarily true)
1368 kvm_async_interrupts_allowed
= true;
1369 kvm_halt_in_kernel_allowed
= true;
1371 kvm_init_irq_routing(s
);
1376 /* Find number of supported CPUs using the recommended
1377 * procedure from the kernel API documentation to cope with
1378 * older kernels that may be missing capabilities.
1380 static int kvm_recommended_vcpus(KVMState
*s
)
1382 int ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1383 return (ret
) ? ret
: 4;
1386 static int kvm_max_vcpus(KVMState
*s
)
1388 int ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1389 return (ret
) ? ret
: kvm_recommended_vcpus(s
);
1392 static int kvm_init(MachineState
*ms
)
1394 MachineClass
*mc
= MACHINE_GET_CLASS(ms
);
1395 static const char upgrade_note
[] =
1396 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1397 "(see http://sourceforge.net/projects/kvm).\n";
1402 { "SMP", smp_cpus
},
1403 { "hotpluggable", max_cpus
},
1406 int soft_vcpus_limit
, hard_vcpus_limit
;
1408 const KVMCapabilityInfo
*missing_cap
;
1411 const char *kvm_type
;
1413 s
= KVM_STATE(ms
->accelerator
);
1416 * On systems where the kernel can support different base page
1417 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1418 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1419 * page size for the system though.
1421 assert(TARGET_PAGE_SIZE
<= getpagesize());
1426 #ifdef KVM_CAP_SET_GUEST_DEBUG
1427 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1430 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1432 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1437 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1438 if (ret
< KVM_API_VERSION
) {
1442 fprintf(stderr
, "kvm version too old\n");
1446 if (ret
> KVM_API_VERSION
) {
1448 fprintf(stderr
, "kvm version not supported\n");
1452 s
->nr_slots
= kvm_check_extension(s
, KVM_CAP_NR_MEMSLOTS
);
1454 /* If unspecified, use the default value */
1459 s
->slots
= g_malloc0(s
->nr_slots
* sizeof(KVMSlot
));
1461 for (i
= 0; i
< s
->nr_slots
; i
++) {
1462 s
->slots
[i
].slot
= i
;
1465 /* check the vcpu limits */
1466 soft_vcpus_limit
= kvm_recommended_vcpus(s
);
1467 hard_vcpus_limit
= kvm_max_vcpus(s
);
1470 if (nc
->num
> soft_vcpus_limit
) {
1472 "Warning: Number of %s cpus requested (%d) exceeds "
1473 "the recommended cpus supported by KVM (%d)\n",
1474 nc
->name
, nc
->num
, soft_vcpus_limit
);
1476 if (nc
->num
> hard_vcpus_limit
) {
1477 fprintf(stderr
, "Number of %s cpus requested (%d) exceeds "
1478 "the maximum cpus supported by KVM (%d)\n",
1479 nc
->name
, nc
->num
, hard_vcpus_limit
);
1486 kvm_type
= qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1488 type
= mc
->kvm_type(kvm_type
);
1489 } else if (kvm_type
) {
1491 fprintf(stderr
, "Invalid argument kvm-type=%s\n", kvm_type
);
1496 ret
= kvm_ioctl(s
, KVM_CREATE_VM
, type
);
1497 } while (ret
== -EINTR
);
1500 fprintf(stderr
, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret
,
1504 if (ret
== -EINVAL
) {
1506 "Host kernel setup problem detected. Please verify:\n");
1507 fprintf(stderr
, "- for kernels supporting the switch_amode or"
1508 " user_mode parameters, whether\n");
1510 " user space is running in primary address space\n");
1512 "- for kernels supporting the vm.allocate_pgste sysctl, "
1513 "whether it is enabled\n");
1520 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1523 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1527 fprintf(stderr
, "kvm does not support %s\n%s",
1528 missing_cap
->name
, upgrade_note
);
1532 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1534 s
->broken_set_mem_region
= 1;
1535 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1537 s
->broken_set_mem_region
= 0;
1540 #ifdef KVM_CAP_VCPU_EVENTS
1541 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1544 s
->robust_singlestep
=
1545 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1547 #ifdef KVM_CAP_DEBUGREGS
1548 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1551 #ifdef KVM_CAP_XSAVE
1552 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1556 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1559 #ifdef KVM_CAP_PIT_STATE2
1560 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1563 #ifdef KVM_CAP_IRQ_ROUTING
1564 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1567 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1569 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1570 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1571 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1574 #ifdef KVM_CAP_READONLY_MEM
1575 kvm_readonly_mem_allowed
=
1576 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1579 kvm_eventfds_allowed
=
1580 (kvm_check_extension(s
, KVM_CAP_IOEVENTFD
) > 0);
1582 kvm_irqfds_allowed
=
1583 (kvm_check_extension(s
, KVM_CAP_IRQFD
) > 0);
1585 kvm_resamplefds_allowed
=
1586 (kvm_check_extension(s
, KVM_CAP_IRQFD_RESAMPLE
) > 0);
1588 kvm_vm_attributes_allowed
=
1589 (kvm_check_extension(s
, KVM_CAP_VM_ATTRIBUTES
) > 0);
1591 ret
= kvm_arch_init(ms
, s
);
1596 ret
= kvm_irqchip_create(ms
, s
);
1602 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1603 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1605 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1607 cpu_interrupt_handler
= kvm_handle_interrupt
;
1624 void kvm_set_sigmask_len(KVMState
*s
, unsigned int sigmask_len
)
1626 s
->sigmask_len
= sigmask_len
;
1629 static void kvm_handle_io(uint16_t port
, MemTxAttrs attrs
, void *data
, int direction
,
1630 int size
, uint32_t count
)
1633 uint8_t *ptr
= data
;
1635 for (i
= 0; i
< count
; i
++) {
1636 address_space_rw(&address_space_io
, port
, attrs
,
1638 direction
== KVM_EXIT_IO_OUT
);
1643 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1645 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
1646 run
->internal
.suberror
);
1648 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1651 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1652 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1653 i
, (uint64_t)run
->internal
.data
[i
]);
1656 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1657 fprintf(stderr
, "emulation failure\n");
1658 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1659 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1660 return EXCP_INTERRUPT
;
1663 /* FIXME: Should trigger a qmp message to let management know
1664 * something went wrong.
1669 void kvm_flush_coalesced_mmio_buffer(void)
1671 KVMState
*s
= kvm_state
;
1673 if (s
->coalesced_flush_in_progress
) {
1677 s
->coalesced_flush_in_progress
= true;
1679 if (s
->coalesced_mmio_ring
) {
1680 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1681 while (ring
->first
!= ring
->last
) {
1682 struct kvm_coalesced_mmio
*ent
;
1684 ent
= &ring
->coalesced_mmio
[ring
->first
];
1686 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1688 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1692 s
->coalesced_flush_in_progress
= false;
1695 static void do_kvm_cpu_synchronize_state(void *arg
)
1697 CPUState
*cpu
= arg
;
1699 if (!cpu
->kvm_vcpu_dirty
) {
1700 kvm_arch_get_registers(cpu
);
1701 cpu
->kvm_vcpu_dirty
= true;
1705 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1707 if (!cpu
->kvm_vcpu_dirty
) {
1708 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1712 static void do_kvm_cpu_synchronize_post_reset(void *arg
)
1714 CPUState
*cpu
= arg
;
1716 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1717 cpu
->kvm_vcpu_dirty
= false;
1720 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1722 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_reset
, cpu
);
1725 static void do_kvm_cpu_synchronize_post_init(void *arg
)
1727 CPUState
*cpu
= arg
;
1729 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1730 cpu
->kvm_vcpu_dirty
= false;
1733 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1735 run_on_cpu(cpu
, do_kvm_cpu_synchronize_post_init
, cpu
);
1738 void kvm_cpu_clean_state(CPUState
*cpu
)
1740 cpu
->kvm_vcpu_dirty
= false;
1743 int kvm_cpu_exec(CPUState
*cpu
)
1745 struct kvm_run
*run
= cpu
->kvm_run
;
1748 DPRINTF("kvm_cpu_exec()\n");
1750 if (kvm_arch_process_async_events(cpu
)) {
1751 cpu
->exit_request
= 0;
1758 if (cpu
->kvm_vcpu_dirty
) {
1759 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1760 cpu
->kvm_vcpu_dirty
= false;
1763 kvm_arch_pre_run(cpu
, run
);
1764 if (cpu
->exit_request
) {
1765 DPRINTF("interrupt exit requested\n");
1767 * KVM requires us to reenter the kernel after IO exits to complete
1768 * instruction emulation. This self-signal will ensure that we
1771 qemu_cpu_kick_self();
1773 qemu_mutex_unlock_iothread();
1775 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1777 qemu_mutex_lock_iothread();
1778 attrs
= kvm_arch_post_run(cpu
, run
);
1781 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1782 DPRINTF("io window exit\n");
1783 ret
= EXCP_INTERRUPT
;
1786 fprintf(stderr
, "error: kvm run failed %s\n",
1787 strerror(-run_ret
));
1789 if (run_ret
== -EBUSY
) {
1791 "This is probably because your SMT is enabled.\n"
1792 "VCPU can only run on primary threads with all "
1793 "secondary threads offline.\n");
1800 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1801 switch (run
->exit_reason
) {
1803 DPRINTF("handle_io\n");
1804 kvm_handle_io(run
->io
.port
, attrs
,
1805 (uint8_t *)run
+ run
->io
.data_offset
,
1812 DPRINTF("handle_mmio\n");
1813 address_space_rw(&address_space_memory
,
1814 run
->mmio
.phys_addr
, attrs
,
1817 run
->mmio
.is_write
);
1820 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1821 DPRINTF("irq_window_open\n");
1822 ret
= EXCP_INTERRUPT
;
1824 case KVM_EXIT_SHUTDOWN
:
1825 DPRINTF("shutdown\n");
1826 qemu_system_reset_request();
1827 ret
= EXCP_INTERRUPT
;
1829 case KVM_EXIT_UNKNOWN
:
1830 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1831 (uint64_t)run
->hw
.hardware_exit_reason
);
1834 case KVM_EXIT_INTERNAL_ERROR
:
1835 ret
= kvm_handle_internal_error(cpu
, run
);
1837 case KVM_EXIT_SYSTEM_EVENT
:
1838 switch (run
->system_event
.type
) {
1839 case KVM_SYSTEM_EVENT_SHUTDOWN
:
1840 qemu_system_shutdown_request();
1841 ret
= EXCP_INTERRUPT
;
1843 case KVM_SYSTEM_EVENT_RESET
:
1844 qemu_system_reset_request();
1845 ret
= EXCP_INTERRUPT
;
1848 DPRINTF("kvm_arch_handle_exit\n");
1849 ret
= kvm_arch_handle_exit(cpu
, run
);
1854 DPRINTF("kvm_arch_handle_exit\n");
1855 ret
= kvm_arch_handle_exit(cpu
, run
);
1861 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1862 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1865 cpu
->exit_request
= 0;
1869 int kvm_ioctl(KVMState
*s
, int type
, ...)
1876 arg
= va_arg(ap
, void *);
1879 trace_kvm_ioctl(type
, arg
);
1880 ret
= ioctl(s
->fd
, type
, arg
);
1887 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1894 arg
= va_arg(ap
, void *);
1897 trace_kvm_vm_ioctl(type
, arg
);
1898 ret
= ioctl(s
->vmfd
, type
, arg
);
1905 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1912 arg
= va_arg(ap
, void *);
1915 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1916 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1923 int kvm_device_ioctl(int fd
, int type
, ...)
1930 arg
= va_arg(ap
, void *);
1933 trace_kvm_device_ioctl(fd
, type
, arg
);
1934 ret
= ioctl(fd
, type
, arg
);
1941 int kvm_vm_check_attr(KVMState
*s
, uint32_t group
, uint64_t attr
)
1944 struct kvm_device_attr attribute
= {
1949 if (!kvm_vm_attributes_allowed
) {
1953 ret
= kvm_vm_ioctl(s
, KVM_HAS_DEVICE_ATTR
, &attribute
);
1954 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
1958 int kvm_has_sync_mmu(void)
1960 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1963 int kvm_has_vcpu_events(void)
1965 return kvm_state
->vcpu_events
;
1968 int kvm_has_robust_singlestep(void)
1970 return kvm_state
->robust_singlestep
;
1973 int kvm_has_debugregs(void)
1975 return kvm_state
->debugregs
;
1978 int kvm_has_xsave(void)
1980 return kvm_state
->xsave
;
1983 int kvm_has_xcrs(void)
1985 return kvm_state
->xcrs
;
1988 int kvm_has_pit_state2(void)
1990 return kvm_state
->pit_state2
;
1993 int kvm_has_many_ioeventfds(void)
1995 if (!kvm_enabled()) {
1998 return kvm_state
->many_ioeventfds
;
2001 int kvm_has_gsi_routing(void)
2003 #ifdef KVM_CAP_IRQ_ROUTING
2004 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
2010 int kvm_has_intx_set_mask(void)
2012 return kvm_state
->intx_set_mask
;
2015 void kvm_setup_guest_memory(void *start
, size_t size
)
2017 if (!kvm_has_sync_mmu()) {
2018 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
2021 perror("qemu_madvise");
2023 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
2029 #ifdef KVM_CAP_SET_GUEST_DEBUG
2030 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
2033 struct kvm_sw_breakpoint
*bp
;
2035 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
2043 int kvm_sw_breakpoints_active(CPUState
*cpu
)
2045 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
2048 struct kvm_set_guest_debug_data
{
2049 struct kvm_guest_debug dbg
;
2054 static void kvm_invoke_set_guest_debug(void *data
)
2056 struct kvm_set_guest_debug_data
*dbg_data
= data
;
2058 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
2062 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2064 struct kvm_set_guest_debug_data data
;
2066 data
.dbg
.control
= reinject_trap
;
2068 if (cpu
->singlestep_enabled
) {
2069 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
2071 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
2074 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
2078 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2079 target_ulong len
, int type
)
2081 struct kvm_sw_breakpoint
*bp
;
2084 if (type
== GDB_BREAKPOINT_SW
) {
2085 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2091 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
2094 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
2100 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2102 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
2109 err
= kvm_update_guest_debug(cpu
, 0);
2117 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2118 target_ulong len
, int type
)
2120 struct kvm_sw_breakpoint
*bp
;
2123 if (type
== GDB_BREAKPOINT_SW
) {
2124 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
2129 if (bp
->use_count
> 1) {
2134 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
2139 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
2142 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
2149 err
= kvm_update_guest_debug(cpu
, 0);
2157 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2159 struct kvm_sw_breakpoint
*bp
, *next
;
2160 KVMState
*s
= cpu
->kvm_state
;
2163 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
2164 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
2165 /* Try harder to find a CPU that currently sees the breakpoint. */
2166 CPU_FOREACH(tmpcpu
) {
2167 if (kvm_arch_remove_sw_breakpoint(tmpcpu
, bp
) == 0) {
2172 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
2175 kvm_arch_remove_all_hw_breakpoints();
2178 kvm_update_guest_debug(cpu
, 0);
2182 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2184 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2189 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2190 target_ulong len
, int type
)
2195 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2196 target_ulong len
, int type
)
2201 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2204 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2206 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2208 KVMState
*s
= kvm_state
;
2209 struct kvm_signal_mask
*sigmask
;
2213 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2216 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2218 sigmask
->len
= s
->sigmask_len
;
2219 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2220 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2225 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2227 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2230 int kvm_on_sigbus(int code
, void *addr
)
2232 return kvm_arch_on_sigbus(code
, addr
);
2235 int kvm_create_device(KVMState
*s
, uint64_t type
, bool test
)
2238 struct kvm_create_device create_dev
;
2240 create_dev
.type
= type
;
2242 create_dev
.flags
= test
? KVM_CREATE_DEVICE_TEST
: 0;
2244 if (!kvm_check_extension(s
, KVM_CAP_DEVICE_CTRL
)) {
2248 ret
= kvm_vm_ioctl(s
, KVM_CREATE_DEVICE
, &create_dev
);
2253 return test
? 0 : create_dev
.fd
;
2256 int kvm_set_one_reg(CPUState
*cs
, uint64_t id
, void *source
)
2258 struct kvm_one_reg reg
;
2262 reg
.addr
= (uintptr_t) source
;
2263 r
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, ®
);
2265 trace_kvm_failed_reg_set(id
, strerror(r
));
2270 int kvm_get_one_reg(CPUState
*cs
, uint64_t id
, void *target
)
2272 struct kvm_one_reg reg
;
2276 reg
.addr
= (uintptr_t) target
;
2277 r
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, ®
);
2279 trace_kvm_failed_reg_get(id
, strerror(r
));
2284 static void kvm_accel_class_init(ObjectClass
*oc
, void *data
)
2286 AccelClass
*ac
= ACCEL_CLASS(oc
);
2288 ac
->init_machine
= kvm_init
;
2289 ac
->allowed
= &kvm_allowed
;
2292 static const TypeInfo kvm_accel_type
= {
2293 .name
= TYPE_KVM_ACCEL
,
2294 .parent
= TYPE_ACCEL
,
2295 .class_init
= kvm_accel_class_init
,
2296 .instance_size
= sizeof(KVMState
),
2299 static void kvm_type_init(void)
2301 type_register_static(&kvm_accel_type
);
2304 type_init(kvm_type_init
);