qapi: Move exprs checking from parse_schema() to check_exprs()
[qemu.git] / hw / timer / hpet.c
blobb50071ef93193a04addbc5ca48360659238e5412
1 /*
2 * High Precision Event Timer emulation
4 * Copyright (c) 2007 Alexander Graf
5 * Copyright (c) 2008 IBM Corporation
7 * Authors: Beth Kon <bkon@us.ibm.com>
9 * This library is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2 of the License, or (at your option) any later version.
14 * This library is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 * *****************************************************************
24 * This driver attempts to emulate an HPET device in software.
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "ui/console.h"
30 #include "qemu/timer.h"
31 #include "hw/timer/hpet.h"
32 #include "hw/sysbus.h"
33 #include "hw/timer/mc146818rtc.h"
34 #include "hw/timer/i8254.h"
36 //#define HPET_DEBUG
37 #ifdef HPET_DEBUG
38 #define DPRINTF printf
39 #else
40 #define DPRINTF(...)
41 #endif
43 #define HPET_MSI_SUPPORT 0
45 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
47 struct HPETState;
48 typedef struct HPETTimer { /* timers */
49 uint8_t tn; /*timer number*/
50 QEMUTimer *qemu_timer;
51 struct HPETState *state;
52 /* Memory-mapped, software visible timer registers */
53 uint64_t config; /* configuration/cap */
54 uint64_t cmp; /* comparator */
55 uint64_t fsb; /* FSB route */
56 /* Hidden register state */
57 uint64_t period; /* Last value written to comparator */
58 uint8_t wrap_flag; /* timer pop will indicate wrap for one-shot 32-bit
59 * mode. Next pop will be actual timer expiration.
61 } HPETTimer;
63 typedef struct HPETState {
64 /*< private >*/
65 SysBusDevice parent_obj;
66 /*< public >*/
68 MemoryRegion iomem;
69 uint64_t hpet_offset;
70 qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
71 uint32_t flags;
72 uint8_t rtc_irq_level;
73 qemu_irq pit_enabled;
74 uint8_t num_timers;
75 uint32_t intcap;
76 HPETTimer timer[HPET_MAX_TIMERS];
78 /* Memory-mapped, software visible registers */
79 uint64_t capability; /* capabilities */
80 uint64_t config; /* configuration */
81 uint64_t isr; /* interrupt status reg */
82 uint64_t hpet_counter; /* main counter */
83 uint8_t hpet_id; /* instance id */
84 } HPETState;
86 static uint32_t hpet_in_legacy_mode(HPETState *s)
88 return s->config & HPET_CFG_LEGACY;
91 static uint32_t timer_int_route(struct HPETTimer *timer)
93 return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
96 static uint32_t timer_fsb_route(HPETTimer *t)
98 return t->config & HPET_TN_FSB_ENABLE;
101 static uint32_t hpet_enabled(HPETState *s)
103 return s->config & HPET_CFG_ENABLE;
106 static uint32_t timer_is_periodic(HPETTimer *t)
108 return t->config & HPET_TN_PERIODIC;
111 static uint32_t timer_enabled(HPETTimer *t)
113 return t->config & HPET_TN_ENABLE;
116 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
118 return ((int32_t)(b) - (int32_t)(a) < 0);
121 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
123 return ((int64_t)(b) - (int64_t)(a) < 0);
126 static uint64_t ticks_to_ns(uint64_t value)
128 return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
131 static uint64_t ns_to_ticks(uint64_t value)
133 return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
136 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
138 new &= mask;
139 new |= old & ~mask;
140 return new;
143 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
145 return (!(old & mask) && (new & mask));
148 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
150 return ((old & mask) && !(new & mask));
153 static uint64_t hpet_get_ticks(HPETState *s)
155 return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
159 * calculate diff between comparator value and current ticks
161 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
164 if (t->config & HPET_TN_32BIT) {
165 uint32_t diff, cmp;
167 cmp = (uint32_t)t->cmp;
168 diff = cmp - (uint32_t)current;
169 diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
170 return (uint64_t)diff;
171 } else {
172 uint64_t diff, cmp;
174 cmp = t->cmp;
175 diff = cmp - current;
176 diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
177 return diff;
181 static void update_irq(struct HPETTimer *timer, int set)
183 uint64_t mask;
184 HPETState *s;
185 int route;
187 if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
188 /* if LegacyReplacementRoute bit is set, HPET specification requires
189 * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
190 * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
192 route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
193 } else {
194 route = timer_int_route(timer);
196 s = timer->state;
197 mask = 1 << timer->tn;
198 if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
199 s->isr &= ~mask;
200 if (!timer_fsb_route(timer)) {
201 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
202 if (route >= ISA_NUM_IRQS) {
203 qemu_irq_raise(s->irqs[route]);
204 } else {
205 qemu_irq_lower(s->irqs[route]);
208 } else if (timer_fsb_route(timer)) {
209 address_space_stl_le(&address_space_memory, timer->fsb >> 32,
210 timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
211 NULL);
212 } else if (timer->config & HPET_TN_TYPE_LEVEL) {
213 s->isr |= mask;
214 /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
215 if (route >= ISA_NUM_IRQS) {
216 qemu_irq_lower(s->irqs[route]);
217 } else {
218 qemu_irq_raise(s->irqs[route]);
220 } else {
221 s->isr &= ~mask;
222 qemu_irq_pulse(s->irqs[route]);
226 static void hpet_pre_save(void *opaque)
228 HPETState *s = opaque;
230 /* save current counter value */
231 s->hpet_counter = hpet_get_ticks(s);
234 static int hpet_pre_load(void *opaque)
236 HPETState *s = opaque;
238 /* version 1 only supports 3, later versions will load the actual value */
239 s->num_timers = HPET_MIN_TIMERS;
240 return 0;
243 static bool hpet_validate_num_timers(void *opaque, int version_id)
245 HPETState *s = opaque;
247 if (s->num_timers < HPET_MIN_TIMERS) {
248 return false;
249 } else if (s->num_timers > HPET_MAX_TIMERS) {
250 return false;
252 return true;
255 static int hpet_post_load(void *opaque, int version_id)
257 HPETState *s = opaque;
259 /* Recalculate the offset between the main counter and guest time */
260 s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
262 /* Push number of timers into capability returned via HPET_ID */
263 s->capability &= ~HPET_ID_NUM_TIM_MASK;
264 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
265 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
267 /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
268 s->flags &= ~(1 << HPET_MSI_SUPPORT);
269 if (s->timer[0].config & HPET_TN_FSB_CAP) {
270 s->flags |= 1 << HPET_MSI_SUPPORT;
272 return 0;
275 static bool hpet_rtc_irq_level_needed(void *opaque)
277 HPETState *s = opaque;
279 return s->rtc_irq_level != 0;
282 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
283 .name = "hpet/rtc_irq_level",
284 .version_id = 1,
285 .minimum_version_id = 1,
286 .needed = hpet_rtc_irq_level_needed,
287 .fields = (VMStateField[]) {
288 VMSTATE_UINT8(rtc_irq_level, HPETState),
289 VMSTATE_END_OF_LIST()
293 static const VMStateDescription vmstate_hpet_timer = {
294 .name = "hpet_timer",
295 .version_id = 1,
296 .minimum_version_id = 1,
297 .fields = (VMStateField[]) {
298 VMSTATE_UINT8(tn, HPETTimer),
299 VMSTATE_UINT64(config, HPETTimer),
300 VMSTATE_UINT64(cmp, HPETTimer),
301 VMSTATE_UINT64(fsb, HPETTimer),
302 VMSTATE_UINT64(period, HPETTimer),
303 VMSTATE_UINT8(wrap_flag, HPETTimer),
304 VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
305 VMSTATE_END_OF_LIST()
309 static const VMStateDescription vmstate_hpet = {
310 .name = "hpet",
311 .version_id = 2,
312 .minimum_version_id = 1,
313 .pre_save = hpet_pre_save,
314 .pre_load = hpet_pre_load,
315 .post_load = hpet_post_load,
316 .fields = (VMStateField[]) {
317 VMSTATE_UINT64(config, HPETState),
318 VMSTATE_UINT64(isr, HPETState),
319 VMSTATE_UINT64(hpet_counter, HPETState),
320 VMSTATE_UINT8_V(num_timers, HPETState, 2),
321 VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
322 VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
323 vmstate_hpet_timer, HPETTimer),
324 VMSTATE_END_OF_LIST()
326 .subsections = (const VMStateDescription*[]) {
327 &vmstate_hpet_rtc_irq_level,
328 NULL
333 * timer expiration callback
335 static void hpet_timer(void *opaque)
337 HPETTimer *t = opaque;
338 uint64_t diff;
340 uint64_t period = t->period;
341 uint64_t cur_tick = hpet_get_ticks(t->state);
343 if (timer_is_periodic(t) && period != 0) {
344 if (t->config & HPET_TN_32BIT) {
345 while (hpet_time_after(cur_tick, t->cmp)) {
346 t->cmp = (uint32_t)(t->cmp + t->period);
348 } else {
349 while (hpet_time_after64(cur_tick, t->cmp)) {
350 t->cmp += period;
353 diff = hpet_calculate_diff(t, cur_tick);
354 timer_mod(t->qemu_timer,
355 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
356 } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
357 if (t->wrap_flag) {
358 diff = hpet_calculate_diff(t, cur_tick);
359 timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
360 (int64_t)ticks_to_ns(diff));
361 t->wrap_flag = 0;
364 update_irq(t, 1);
367 static void hpet_set_timer(HPETTimer *t)
369 uint64_t diff;
370 uint32_t wrap_diff; /* how many ticks until we wrap? */
371 uint64_t cur_tick = hpet_get_ticks(t->state);
373 /* whenever new timer is being set up, make sure wrap_flag is 0 */
374 t->wrap_flag = 0;
375 diff = hpet_calculate_diff(t, cur_tick);
377 /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
378 * counter wraps in addition to an interrupt with comparator match.
380 if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
381 wrap_diff = 0xffffffff - (uint32_t)cur_tick;
382 if (wrap_diff < (uint32_t)diff) {
383 diff = wrap_diff;
384 t->wrap_flag = 1;
387 timer_mod(t->qemu_timer,
388 qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
391 static void hpet_del_timer(HPETTimer *t)
393 timer_del(t->qemu_timer);
394 update_irq(t, 0);
397 #ifdef HPET_DEBUG
398 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
400 printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
401 return 0;
404 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
406 printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
407 return 0;
409 #endif
411 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
412 unsigned size)
414 HPETState *s = opaque;
415 uint64_t cur_tick, index;
417 DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
418 index = addr;
419 /*address range of all TN regs*/
420 if (index >= 0x100 && index <= 0x3ff) {
421 uint8_t timer_id = (addr - 0x100) / 0x20;
422 HPETTimer *timer = &s->timer[timer_id];
424 if (timer_id > s->num_timers) {
425 DPRINTF("qemu: timer id out of range\n");
426 return 0;
429 switch ((addr - 0x100) % 0x20) {
430 case HPET_TN_CFG:
431 return timer->config;
432 case HPET_TN_CFG + 4: // Interrupt capabilities
433 return timer->config >> 32;
434 case HPET_TN_CMP: // comparator register
435 return timer->cmp;
436 case HPET_TN_CMP + 4:
437 return timer->cmp >> 32;
438 case HPET_TN_ROUTE:
439 return timer->fsb;
440 case HPET_TN_ROUTE + 4:
441 return timer->fsb >> 32;
442 default:
443 DPRINTF("qemu: invalid hpet_ram_readl\n");
444 break;
446 } else {
447 switch (index) {
448 case HPET_ID:
449 return s->capability;
450 case HPET_PERIOD:
451 return s->capability >> 32;
452 case HPET_CFG:
453 return s->config;
454 case HPET_CFG + 4:
455 DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
456 return 0;
457 case HPET_COUNTER:
458 if (hpet_enabled(s)) {
459 cur_tick = hpet_get_ticks(s);
460 } else {
461 cur_tick = s->hpet_counter;
463 DPRINTF("qemu: reading counter = %" PRIx64 "\n", cur_tick);
464 return cur_tick;
465 case HPET_COUNTER + 4:
466 if (hpet_enabled(s)) {
467 cur_tick = hpet_get_ticks(s);
468 } else {
469 cur_tick = s->hpet_counter;
471 DPRINTF("qemu: reading counter + 4 = %" PRIx64 "\n", cur_tick);
472 return cur_tick >> 32;
473 case HPET_STATUS:
474 return s->isr;
475 default:
476 DPRINTF("qemu: invalid hpet_ram_readl\n");
477 break;
480 return 0;
483 static void hpet_ram_write(void *opaque, hwaddr addr,
484 uint64_t value, unsigned size)
486 int i;
487 HPETState *s = opaque;
488 uint64_t old_val, new_val, val, index;
490 DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
491 index = addr;
492 old_val = hpet_ram_read(opaque, addr, 4);
493 new_val = value;
495 /*address range of all TN regs*/
496 if (index >= 0x100 && index <= 0x3ff) {
497 uint8_t timer_id = (addr - 0x100) / 0x20;
498 HPETTimer *timer = &s->timer[timer_id];
500 DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
501 if (timer_id > s->num_timers) {
502 DPRINTF("qemu: timer id out of range\n");
503 return;
505 switch ((addr - 0x100) % 0x20) {
506 case HPET_TN_CFG:
507 DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
508 if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
509 update_irq(timer, 0);
511 val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
512 timer->config = (timer->config & 0xffffffff00000000ULL) | val;
513 if (new_val & HPET_TN_32BIT) {
514 timer->cmp = (uint32_t)timer->cmp;
515 timer->period = (uint32_t)timer->period;
517 if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
518 hpet_enabled(s)) {
519 hpet_set_timer(timer);
520 } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
521 hpet_del_timer(timer);
523 break;
524 case HPET_TN_CFG + 4: // Interrupt capabilities
525 DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
526 break;
527 case HPET_TN_CMP: // comparator register
528 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
529 if (timer->config & HPET_TN_32BIT) {
530 new_val = (uint32_t)new_val;
532 if (!timer_is_periodic(timer)
533 || (timer->config & HPET_TN_SETVAL)) {
534 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
536 if (timer_is_periodic(timer)) {
538 * FIXME: Clamp period to reasonable min value?
539 * Clamp period to reasonable max value
541 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
542 timer->period =
543 (timer->period & 0xffffffff00000000ULL) | new_val;
545 timer->config &= ~HPET_TN_SETVAL;
546 if (hpet_enabled(s)) {
547 hpet_set_timer(timer);
549 break;
550 case HPET_TN_CMP + 4: // comparator register high order
551 DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
552 if (!timer_is_periodic(timer)
553 || (timer->config & HPET_TN_SETVAL)) {
554 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
555 } else {
557 * FIXME: Clamp period to reasonable min value?
558 * Clamp period to reasonable max value
560 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
561 timer->period =
562 (timer->period & 0xffffffffULL) | new_val << 32;
564 timer->config &= ~HPET_TN_SETVAL;
565 if (hpet_enabled(s)) {
566 hpet_set_timer(timer);
568 break;
569 case HPET_TN_ROUTE:
570 timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
571 break;
572 case HPET_TN_ROUTE + 4:
573 timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
574 break;
575 default:
576 DPRINTF("qemu: invalid hpet_ram_writel\n");
577 break;
579 return;
580 } else {
581 switch (index) {
582 case HPET_ID:
583 return;
584 case HPET_CFG:
585 val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
586 s->config = (s->config & 0xffffffff00000000ULL) | val;
587 if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
588 /* Enable main counter and interrupt generation. */
589 s->hpet_offset =
590 ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
591 for (i = 0; i < s->num_timers; i++) {
592 if ((&s->timer[i])->cmp != ~0ULL) {
593 hpet_set_timer(&s->timer[i]);
596 } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
597 /* Halt main counter and disable interrupt generation. */
598 s->hpet_counter = hpet_get_ticks(s);
599 for (i = 0; i < s->num_timers; i++) {
600 hpet_del_timer(&s->timer[i]);
603 /* i8254 and RTC output pins are disabled
604 * when HPET is in legacy mode */
605 if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
606 qemu_set_irq(s->pit_enabled, 0);
607 qemu_irq_lower(s->irqs[0]);
608 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
609 } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
610 qemu_irq_lower(s->irqs[0]);
611 qemu_set_irq(s->pit_enabled, 1);
612 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
614 break;
615 case HPET_CFG + 4:
616 DPRINTF("qemu: invalid HPET_CFG+4 write\n");
617 break;
618 case HPET_STATUS:
619 val = new_val & s->isr;
620 for (i = 0; i < s->num_timers; i++) {
621 if (val & (1 << i)) {
622 update_irq(&s->timer[i], 0);
625 break;
626 case HPET_COUNTER:
627 if (hpet_enabled(s)) {
628 DPRINTF("qemu: Writing counter while HPET enabled!\n");
630 s->hpet_counter =
631 (s->hpet_counter & 0xffffffff00000000ULL) | value;
632 DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
633 value, s->hpet_counter);
634 break;
635 case HPET_COUNTER + 4:
636 if (hpet_enabled(s)) {
637 DPRINTF("qemu: Writing counter while HPET enabled!\n");
639 s->hpet_counter =
640 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
641 DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
642 value, s->hpet_counter);
643 break;
644 default:
645 DPRINTF("qemu: invalid hpet_ram_writel\n");
646 break;
651 static const MemoryRegionOps hpet_ram_ops = {
652 .read = hpet_ram_read,
653 .write = hpet_ram_write,
654 .valid = {
655 .min_access_size = 4,
656 .max_access_size = 4,
658 .endianness = DEVICE_NATIVE_ENDIAN,
661 static void hpet_reset(DeviceState *d)
663 HPETState *s = HPET(d);
664 SysBusDevice *sbd = SYS_BUS_DEVICE(d);
665 int i;
667 for (i = 0; i < s->num_timers; i++) {
668 HPETTimer *timer = &s->timer[i];
670 hpet_del_timer(timer);
671 timer->cmp = ~0ULL;
672 timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
673 if (s->flags & (1 << HPET_MSI_SUPPORT)) {
674 timer->config |= HPET_TN_FSB_CAP;
676 /* advertise availability of ioapic int */
677 timer->config |= (uint64_t)s->intcap << 32;
678 timer->period = 0ULL;
679 timer->wrap_flag = 0;
682 qemu_set_irq(s->pit_enabled, 1);
683 s->hpet_counter = 0ULL;
684 s->hpet_offset = 0ULL;
685 s->config = 0ULL;
686 hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
687 hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
689 /* to document that the RTC lowers its output on reset as well */
690 s->rtc_irq_level = 0;
693 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
695 HPETState *s = HPET(opaque);
697 if (n == HPET_LEGACY_PIT_INT) {
698 if (!hpet_in_legacy_mode(s)) {
699 qemu_set_irq(s->irqs[0], level);
701 } else {
702 s->rtc_irq_level = level;
703 if (!hpet_in_legacy_mode(s)) {
704 qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
709 static void hpet_init(Object *obj)
711 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
712 HPETState *s = HPET(obj);
714 /* HPET Area */
715 memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", 0x400);
716 sysbus_init_mmio(sbd, &s->iomem);
719 static void hpet_realize(DeviceState *dev, Error **errp)
721 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
722 HPETState *s = HPET(dev);
723 int i;
724 HPETTimer *timer;
726 if (!s->intcap) {
727 error_printf("Hpet's intcap not initialized.\n");
729 if (hpet_cfg.count == UINT8_MAX) {
730 /* first instance */
731 hpet_cfg.count = 0;
734 if (hpet_cfg.count == 8) {
735 error_setg(errp, "Only 8 instances of HPET is allowed");
736 return;
739 s->hpet_id = hpet_cfg.count++;
741 for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
742 sysbus_init_irq(sbd, &s->irqs[i]);
745 if (s->num_timers < HPET_MIN_TIMERS) {
746 s->num_timers = HPET_MIN_TIMERS;
747 } else if (s->num_timers > HPET_MAX_TIMERS) {
748 s->num_timers = HPET_MAX_TIMERS;
750 for (i = 0; i < HPET_MAX_TIMERS; i++) {
751 timer = &s->timer[i];
752 timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
753 timer->tn = i;
754 timer->state = s;
757 /* 64-bit main counter; LegacyReplacementRoute. */
758 s->capability = 0x8086a001ULL;
759 s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
760 s->capability |= ((HPET_CLK_PERIOD) << 32);
762 qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
763 qdev_init_gpio_out(dev, &s->pit_enabled, 1);
766 static Property hpet_device_properties[] = {
767 DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
768 DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
769 DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
770 DEFINE_PROP_END_OF_LIST(),
773 static void hpet_device_class_init(ObjectClass *klass, void *data)
775 DeviceClass *dc = DEVICE_CLASS(klass);
777 dc->realize = hpet_realize;
778 dc->reset = hpet_reset;
779 dc->vmsd = &vmstate_hpet;
780 dc->props = hpet_device_properties;
783 static const TypeInfo hpet_device_info = {
784 .name = TYPE_HPET,
785 .parent = TYPE_SYS_BUS_DEVICE,
786 .instance_size = sizeof(HPETState),
787 .instance_init = hpet_init,
788 .class_init = hpet_device_class_init,
791 static void hpet_register_types(void)
793 type_register_static(&hpet_device_info);
796 type_init(hpet_register_types)