qapi: Move exprs checking from parse_schema() to check_exprs()
[qemu.git] / hw / ppc / spapr_pci.c
blob4df3a33db4c5aa61a8ca9321c0e86439bbb9f102
1 /*
2 * QEMU sPAPR PCI host originated from Uninorth PCI host
4 * Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
5 * Copyright (C) 2011 David Gibson, IBM Corporation.
7 * Permission is hereby granted, free of charge, to any person obtaining a copy
8 * of this software and associated documentation files (the "Software"), to deal
9 * in the Software without restriction, including without limitation the rights
10 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11 * copies of the Software, and to permit persons to whom the Software is
12 * furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23 * THE SOFTWARE.
25 #include "hw/hw.h"
26 #include "hw/pci/pci.h"
27 #include "hw/pci/msi.h"
28 #include "hw/pci/msix.h"
29 #include "hw/pci/pci_host.h"
30 #include "hw/ppc/spapr.h"
31 #include "hw/pci-host/spapr.h"
32 #include "exec/address-spaces.h"
33 #include <libfdt.h>
34 #include "trace.h"
35 #include "qemu/error-report.h"
36 #include "qapi/qmp/qerror.h"
38 #include "hw/pci/pci_bus.h"
39 #include "hw/ppc/spapr_drc.h"
40 #include "sysemu/device_tree.h"
42 /* Copied from the kernel arch/powerpc/platforms/pseries/msi.c */
43 #define RTAS_QUERY_FN 0
44 #define RTAS_CHANGE_FN 1
45 #define RTAS_RESET_FN 2
46 #define RTAS_CHANGE_MSI_FN 3
47 #define RTAS_CHANGE_MSIX_FN 4
49 /* Interrupt types to return on RTAS_CHANGE_* */
50 #define RTAS_TYPE_MSI 1
51 #define RTAS_TYPE_MSIX 2
53 #define _FDT(exp) \
54 do { \
55 int ret = (exp); \
56 if (ret < 0) { \
57 return ret; \
58 } \
59 } while (0)
61 sPAPRPHBState *spapr_pci_find_phb(sPAPREnvironment *spapr, uint64_t buid)
63 sPAPRPHBState *sphb;
65 QLIST_FOREACH(sphb, &spapr->phbs, list) {
66 if (sphb->buid != buid) {
67 continue;
69 return sphb;
72 return NULL;
75 PCIDevice *spapr_pci_find_dev(sPAPREnvironment *spapr, uint64_t buid,
76 uint32_t config_addr)
78 sPAPRPHBState *sphb = spapr_pci_find_phb(spapr, buid);
79 PCIHostState *phb = PCI_HOST_BRIDGE(sphb);
80 int bus_num = (config_addr >> 16) & 0xFF;
81 int devfn = (config_addr >> 8) & 0xFF;
83 if (!phb) {
84 return NULL;
87 return pci_find_device(phb->bus, bus_num, devfn);
90 static uint32_t rtas_pci_cfgaddr(uint32_t arg)
92 /* This handles the encoding of extended config space addresses */
93 return ((arg >> 20) & 0xf00) | (arg & 0xff);
96 static void finish_read_pci_config(sPAPREnvironment *spapr, uint64_t buid,
97 uint32_t addr, uint32_t size,
98 target_ulong rets)
100 PCIDevice *pci_dev;
101 uint32_t val;
103 if ((size != 1) && (size != 2) && (size != 4)) {
104 /* access must be 1, 2 or 4 bytes */
105 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
106 return;
109 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
110 addr = rtas_pci_cfgaddr(addr);
112 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
113 /* Access must be to a valid device, within bounds and
114 * naturally aligned */
115 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
116 return;
119 val = pci_host_config_read_common(pci_dev, addr,
120 pci_config_size(pci_dev), size);
122 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
123 rtas_st(rets, 1, val);
126 static void rtas_ibm_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
127 uint32_t token, uint32_t nargs,
128 target_ulong args,
129 uint32_t nret, target_ulong rets)
131 uint64_t buid;
132 uint32_t size, addr;
134 if ((nargs != 4) || (nret != 2)) {
135 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
136 return;
139 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
140 size = rtas_ld(args, 3);
141 addr = rtas_ld(args, 0);
143 finish_read_pci_config(spapr, buid, addr, size, rets);
146 static void rtas_read_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
147 uint32_t token, uint32_t nargs,
148 target_ulong args,
149 uint32_t nret, target_ulong rets)
151 uint32_t size, addr;
153 if ((nargs != 2) || (nret != 2)) {
154 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
155 return;
158 size = rtas_ld(args, 1);
159 addr = rtas_ld(args, 0);
161 finish_read_pci_config(spapr, 0, addr, size, rets);
164 static void finish_write_pci_config(sPAPREnvironment *spapr, uint64_t buid,
165 uint32_t addr, uint32_t size,
166 uint32_t val, target_ulong rets)
168 PCIDevice *pci_dev;
170 if ((size != 1) && (size != 2) && (size != 4)) {
171 /* access must be 1, 2 or 4 bytes */
172 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
173 return;
176 pci_dev = spapr_pci_find_dev(spapr, buid, addr);
177 addr = rtas_pci_cfgaddr(addr);
179 if (!pci_dev || (addr % size) || (addr >= pci_config_size(pci_dev))) {
180 /* Access must be to a valid device, within bounds and
181 * naturally aligned */
182 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
183 return;
186 pci_host_config_write_common(pci_dev, addr, pci_config_size(pci_dev),
187 val, size);
189 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
192 static void rtas_ibm_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
193 uint32_t token, uint32_t nargs,
194 target_ulong args,
195 uint32_t nret, target_ulong rets)
197 uint64_t buid;
198 uint32_t val, size, addr;
200 if ((nargs != 5) || (nret != 1)) {
201 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
202 return;
205 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
206 val = rtas_ld(args, 4);
207 size = rtas_ld(args, 3);
208 addr = rtas_ld(args, 0);
210 finish_write_pci_config(spapr, buid, addr, size, val, rets);
213 static void rtas_write_pci_config(PowerPCCPU *cpu, sPAPREnvironment *spapr,
214 uint32_t token, uint32_t nargs,
215 target_ulong args,
216 uint32_t nret, target_ulong rets)
218 uint32_t val, size, addr;
220 if ((nargs != 3) || (nret != 1)) {
221 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
222 return;
226 val = rtas_ld(args, 2);
227 size = rtas_ld(args, 1);
228 addr = rtas_ld(args, 0);
230 finish_write_pci_config(spapr, 0, addr, size, val, rets);
234 * Set MSI/MSIX message data.
235 * This is required for msi_notify()/msix_notify() which
236 * will write at the addresses via spapr_msi_write().
238 * If hwaddr == 0, all entries will have .data == first_irq i.e.
239 * table will be reset.
241 static void spapr_msi_setmsg(PCIDevice *pdev, hwaddr addr, bool msix,
242 unsigned first_irq, unsigned req_num)
244 unsigned i;
245 MSIMessage msg = { .address = addr, .data = first_irq };
247 if (!msix) {
248 msi_set_message(pdev, msg);
249 trace_spapr_pci_msi_setup(pdev->name, 0, msg.address);
250 return;
253 for (i = 0; i < req_num; ++i) {
254 msix_set_message(pdev, i, msg);
255 trace_spapr_pci_msi_setup(pdev->name, i, msg.address);
256 if (addr) {
257 ++msg.data;
262 static void rtas_ibm_change_msi(PowerPCCPU *cpu, sPAPREnvironment *spapr,
263 uint32_t token, uint32_t nargs,
264 target_ulong args, uint32_t nret,
265 target_ulong rets)
267 uint32_t config_addr = rtas_ld(args, 0);
268 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
269 unsigned int func = rtas_ld(args, 3);
270 unsigned int req_num = rtas_ld(args, 4); /* 0 == remove all */
271 unsigned int seq_num = rtas_ld(args, 5);
272 unsigned int ret_intr_type;
273 unsigned int irq, max_irqs = 0, num = 0;
274 sPAPRPHBState *phb = NULL;
275 PCIDevice *pdev = NULL;
276 spapr_pci_msi *msi;
277 int *config_addr_key;
279 switch (func) {
280 case RTAS_CHANGE_MSI_FN:
281 case RTAS_CHANGE_FN:
282 ret_intr_type = RTAS_TYPE_MSI;
283 break;
284 case RTAS_CHANGE_MSIX_FN:
285 ret_intr_type = RTAS_TYPE_MSIX;
286 break;
287 default:
288 error_report("rtas_ibm_change_msi(%u) is not implemented", func);
289 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
290 return;
293 /* Fins sPAPRPHBState */
294 phb = spapr_pci_find_phb(spapr, buid);
295 if (phb) {
296 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
298 if (!phb || !pdev) {
299 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
300 return;
303 /* Releasing MSIs */
304 if (!req_num) {
305 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
306 if (!msi) {
307 trace_spapr_pci_msi("Releasing wrong config", config_addr);
308 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
309 return;
312 xics_free(spapr->icp, msi->first_irq, msi->num);
313 if (msi_present(pdev)) {
314 spapr_msi_setmsg(pdev, 0, false, 0, num);
316 if (msix_present(pdev)) {
317 spapr_msi_setmsg(pdev, 0, true, 0, num);
319 g_hash_table_remove(phb->msi, &config_addr);
321 trace_spapr_pci_msi("Released MSIs", config_addr);
322 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
323 rtas_st(rets, 1, 0);
324 return;
327 /* Enabling MSI */
329 /* Check if the device supports as many IRQs as requested */
330 if (ret_intr_type == RTAS_TYPE_MSI) {
331 max_irqs = msi_nr_vectors_allocated(pdev);
332 } else if (ret_intr_type == RTAS_TYPE_MSIX) {
333 max_irqs = pdev->msix_entries_nr;
335 if (!max_irqs) {
336 error_report("Requested interrupt type %d is not enabled for device %x",
337 ret_intr_type, config_addr);
338 rtas_st(rets, 0, -1); /* Hardware error */
339 return;
341 /* Correct the number if the guest asked for too many */
342 if (req_num > max_irqs) {
343 trace_spapr_pci_msi_retry(config_addr, req_num, max_irqs);
344 req_num = max_irqs;
345 irq = 0; /* to avoid misleading trace */
346 goto out;
349 /* Allocate MSIs */
350 irq = xics_alloc_block(spapr->icp, 0, req_num, false,
351 ret_intr_type == RTAS_TYPE_MSI);
352 if (!irq) {
353 error_report("Cannot allocate MSIs for device %x", config_addr);
354 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
355 return;
358 /* Setup MSI/MSIX vectors in the device (via cfgspace or MSIX BAR) */
359 spapr_msi_setmsg(pdev, SPAPR_PCI_MSI_WINDOW, ret_intr_type == RTAS_TYPE_MSIX,
360 irq, req_num);
362 /* Add MSI device to cache */
363 msi = g_new(spapr_pci_msi, 1);
364 msi->first_irq = irq;
365 msi->num = req_num;
366 config_addr_key = g_new(int, 1);
367 *config_addr_key = config_addr;
368 g_hash_table_insert(phb->msi, config_addr_key, msi);
370 out:
371 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
372 rtas_st(rets, 1, req_num);
373 rtas_st(rets, 2, ++seq_num);
374 rtas_st(rets, 3, ret_intr_type);
376 trace_spapr_pci_rtas_ibm_change_msi(config_addr, func, req_num, irq);
379 static void rtas_ibm_query_interrupt_source_number(PowerPCCPU *cpu,
380 sPAPREnvironment *spapr,
381 uint32_t token,
382 uint32_t nargs,
383 target_ulong args,
384 uint32_t nret,
385 target_ulong rets)
387 uint32_t config_addr = rtas_ld(args, 0);
388 uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
389 unsigned int intr_src_num = -1, ioa_intr_num = rtas_ld(args, 3);
390 sPAPRPHBState *phb = NULL;
391 PCIDevice *pdev = NULL;
392 spapr_pci_msi *msi;
394 /* Find sPAPRPHBState */
395 phb = spapr_pci_find_phb(spapr, buid);
396 if (phb) {
397 pdev = spapr_pci_find_dev(spapr, buid, config_addr);
399 if (!phb || !pdev) {
400 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
401 return;
404 /* Find device descriptor and start IRQ */
405 msi = (spapr_pci_msi *) g_hash_table_lookup(phb->msi, &config_addr);
406 if (!msi || !msi->first_irq || !msi->num || (ioa_intr_num >= msi->num)) {
407 trace_spapr_pci_msi("Failed to return vector", config_addr);
408 rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
409 return;
411 intr_src_num = msi->first_irq + ioa_intr_num;
412 trace_spapr_pci_rtas_ibm_query_interrupt_source_number(ioa_intr_num,
413 intr_src_num);
415 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
416 rtas_st(rets, 1, intr_src_num);
417 rtas_st(rets, 2, 1);/* 0 == level; 1 == edge */
420 static void rtas_ibm_set_eeh_option(PowerPCCPU *cpu,
421 sPAPREnvironment *spapr,
422 uint32_t token, uint32_t nargs,
423 target_ulong args, uint32_t nret,
424 target_ulong rets)
426 sPAPRPHBState *sphb;
427 sPAPRPHBClass *spc;
428 uint32_t addr, option;
429 uint64_t buid;
430 int ret;
432 if ((nargs != 4) || (nret != 1)) {
433 goto param_error_exit;
436 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
437 addr = rtas_ld(args, 0);
438 option = rtas_ld(args, 3);
440 sphb = spapr_pci_find_phb(spapr, buid);
441 if (!sphb) {
442 goto param_error_exit;
445 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
446 if (!spc->eeh_set_option) {
447 goto param_error_exit;
450 ret = spc->eeh_set_option(sphb, addr, option);
451 rtas_st(rets, 0, ret);
452 return;
454 param_error_exit:
455 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
458 static void rtas_ibm_get_config_addr_info2(PowerPCCPU *cpu,
459 sPAPREnvironment *spapr,
460 uint32_t token, uint32_t nargs,
461 target_ulong args, uint32_t nret,
462 target_ulong rets)
464 sPAPRPHBState *sphb;
465 sPAPRPHBClass *spc;
466 PCIDevice *pdev;
467 uint32_t addr, option;
468 uint64_t buid;
470 if ((nargs != 4) || (nret != 2)) {
471 goto param_error_exit;
474 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
475 sphb = spapr_pci_find_phb(spapr, buid);
476 if (!sphb) {
477 goto param_error_exit;
480 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
481 if (!spc->eeh_set_option) {
482 goto param_error_exit;
486 * We always have PE address of form "00BB0001". "BB"
487 * represents the bus number of PE's primary bus.
489 option = rtas_ld(args, 3);
490 switch (option) {
491 case RTAS_GET_PE_ADDR:
492 addr = rtas_ld(args, 0);
493 pdev = spapr_pci_find_dev(spapr, buid, addr);
494 if (!pdev) {
495 goto param_error_exit;
498 rtas_st(rets, 1, (pci_bus_num(pdev->bus) << 16) + 1);
499 break;
500 case RTAS_GET_PE_MODE:
501 rtas_st(rets, 1, RTAS_PE_MODE_SHARED);
502 break;
503 default:
504 goto param_error_exit;
507 rtas_st(rets, 0, RTAS_OUT_SUCCESS);
508 return;
510 param_error_exit:
511 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
514 static void rtas_ibm_read_slot_reset_state2(PowerPCCPU *cpu,
515 sPAPREnvironment *spapr,
516 uint32_t token, uint32_t nargs,
517 target_ulong args, uint32_t nret,
518 target_ulong rets)
520 sPAPRPHBState *sphb;
521 sPAPRPHBClass *spc;
522 uint64_t buid;
523 int state, ret;
525 if ((nargs != 3) || (nret != 4 && nret != 5)) {
526 goto param_error_exit;
529 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
530 sphb = spapr_pci_find_phb(spapr, buid);
531 if (!sphb) {
532 goto param_error_exit;
535 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
536 if (!spc->eeh_get_state) {
537 goto param_error_exit;
540 ret = spc->eeh_get_state(sphb, &state);
541 rtas_st(rets, 0, ret);
542 if (ret != RTAS_OUT_SUCCESS) {
543 return;
546 rtas_st(rets, 1, state);
547 rtas_st(rets, 2, RTAS_EEH_SUPPORT);
548 rtas_st(rets, 3, RTAS_EEH_PE_UNAVAIL_INFO);
549 if (nret >= 5) {
550 rtas_st(rets, 4, RTAS_EEH_PE_RECOVER_INFO);
552 return;
554 param_error_exit:
555 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
558 static void rtas_ibm_set_slot_reset(PowerPCCPU *cpu,
559 sPAPREnvironment *spapr,
560 uint32_t token, uint32_t nargs,
561 target_ulong args, uint32_t nret,
562 target_ulong rets)
564 sPAPRPHBState *sphb;
565 sPAPRPHBClass *spc;
566 uint32_t option;
567 uint64_t buid;
568 int ret;
570 if ((nargs != 4) || (nret != 1)) {
571 goto param_error_exit;
574 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
575 option = rtas_ld(args, 3);
576 sphb = spapr_pci_find_phb(spapr, buid);
577 if (!sphb) {
578 goto param_error_exit;
581 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
582 if (!spc->eeh_reset) {
583 goto param_error_exit;
586 ret = spc->eeh_reset(sphb, option);
587 rtas_st(rets, 0, ret);
588 return;
590 param_error_exit:
591 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
594 static void rtas_ibm_configure_pe(PowerPCCPU *cpu,
595 sPAPREnvironment *spapr,
596 uint32_t token, uint32_t nargs,
597 target_ulong args, uint32_t nret,
598 target_ulong rets)
600 sPAPRPHBState *sphb;
601 sPAPRPHBClass *spc;
602 uint64_t buid;
603 int ret;
605 if ((nargs != 3) || (nret != 1)) {
606 goto param_error_exit;
609 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
610 sphb = spapr_pci_find_phb(spapr, buid);
611 if (!sphb) {
612 goto param_error_exit;
615 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
616 if (!spc->eeh_configure) {
617 goto param_error_exit;
620 ret = spc->eeh_configure(sphb);
621 rtas_st(rets, 0, ret);
622 return;
624 param_error_exit:
625 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
628 /* To support it later */
629 static void rtas_ibm_slot_error_detail(PowerPCCPU *cpu,
630 sPAPREnvironment *spapr,
631 uint32_t token, uint32_t nargs,
632 target_ulong args, uint32_t nret,
633 target_ulong rets)
635 sPAPRPHBState *sphb;
636 sPAPRPHBClass *spc;
637 int option;
638 uint64_t buid;
640 if ((nargs != 8) || (nret != 1)) {
641 goto param_error_exit;
644 buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
645 sphb = spapr_pci_find_phb(spapr, buid);
646 if (!sphb) {
647 goto param_error_exit;
650 spc = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(sphb);
651 if (!spc->eeh_set_option) {
652 goto param_error_exit;
655 option = rtas_ld(args, 7);
656 switch (option) {
657 case RTAS_SLOT_TEMP_ERR_LOG:
658 case RTAS_SLOT_PERM_ERR_LOG:
659 break;
660 default:
661 goto param_error_exit;
664 /* We don't have error log yet */
665 rtas_st(rets, 0, RTAS_OUT_NO_ERRORS_FOUND);
666 return;
668 param_error_exit:
669 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
672 static int pci_spapr_swizzle(int slot, int pin)
674 return (slot + pin) % PCI_NUM_PINS;
677 static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
680 * Here we need to convert pci_dev + irq_num to some unique value
681 * which is less than number of IRQs on the specific bus (4). We
682 * use standard PCI swizzling, that is (slot number + pin number)
683 * % 4.
685 return pci_spapr_swizzle(PCI_SLOT(pci_dev->devfn), irq_num);
688 static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
691 * Here we use the number returned by pci_spapr_map_irq to find a
692 * corresponding qemu_irq.
694 sPAPRPHBState *phb = opaque;
696 trace_spapr_pci_lsi_set(phb->dtbusname, irq_num, phb->lsi_table[irq_num].irq);
697 qemu_set_irq(spapr_phb_lsi_qirq(phb, irq_num), level);
700 static PCIINTxRoute spapr_route_intx_pin_to_irq(void *opaque, int pin)
702 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(opaque);
703 PCIINTxRoute route;
705 route.mode = PCI_INTX_ENABLED;
706 route.irq = sphb->lsi_table[pin].irq;
708 return route;
712 * MSI/MSIX memory region implementation.
713 * The handler handles both MSI and MSIX.
714 * For MSI-X, the vector number is encoded as a part of the address,
715 * data is set to 0.
716 * For MSI, the vector number is encoded in least bits in data.
718 static void spapr_msi_write(void *opaque, hwaddr addr,
719 uint64_t data, unsigned size)
721 uint32_t irq = data;
723 trace_spapr_pci_msi_write(addr, data, irq);
725 qemu_irq_pulse(xics_get_qirq(spapr->icp, irq));
728 static const MemoryRegionOps spapr_msi_ops = {
729 /* There is no .read as the read result is undefined by PCI spec */
730 .read = NULL,
731 .write = spapr_msi_write,
732 .endianness = DEVICE_LITTLE_ENDIAN
736 * PHB PCI device
738 static AddressSpace *spapr_pci_dma_iommu(PCIBus *bus, void *opaque, int devfn)
740 sPAPRPHBState *phb = opaque;
742 return &phb->iommu_as;
745 /* Macros to operate with address in OF binding to PCI */
746 #define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
747 #define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
748 #define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
749 #define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
750 #define b_ss(x) b_x((x), 24, 2) /* the space code */
751 #define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
752 #define b_ddddd(x) b_x((x), 11, 5) /* device number */
753 #define b_fff(x) b_x((x), 8, 3) /* function number */
754 #define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
756 /* for 'reg'/'assigned-addresses' OF properties */
757 #define RESOURCE_CELLS_SIZE 2
758 #define RESOURCE_CELLS_ADDRESS 3
760 typedef struct ResourceFields {
761 uint32_t phys_hi;
762 uint32_t phys_mid;
763 uint32_t phys_lo;
764 uint32_t size_hi;
765 uint32_t size_lo;
766 } QEMU_PACKED ResourceFields;
768 typedef struct ResourceProps {
769 ResourceFields reg[8];
770 ResourceFields assigned[7];
771 uint32_t reg_len;
772 uint32_t assigned_len;
773 } ResourceProps;
775 /* fill in the 'reg'/'assigned-resources' OF properties for
776 * a PCI device. 'reg' describes resource requirements for a
777 * device's IO/MEM regions, 'assigned-addresses' describes the
778 * actual resource assignments.
780 * the properties are arrays of ('phys-addr', 'size') pairs describing
781 * the addressable regions of the PCI device, where 'phys-addr' is a
782 * RESOURCE_CELLS_ADDRESS-tuple of 32-bit integers corresponding to
783 * (phys.hi, phys.mid, phys.lo), and 'size' is a
784 * RESOURCE_CELLS_SIZE-tuple corresponding to (size.hi, size.lo).
786 * phys.hi = 0xYYXXXXZZ, where:
787 * 0xYY = npt000ss
788 * ||| |
789 * ||| +-- space code: 1 if IO region, 2 if MEM region
790 * ||+------ for non-relocatable IO: 1 if aliased
791 * || for relocatable IO: 1 if below 64KB
792 * || for MEM: 1 if below 1MB
793 * |+------- 1 if region is prefetchable
794 * +-------- 1 if region is non-relocatable
795 * 0xXXXX = bbbbbbbb dddddfff, encoding bus, slot, and function
796 * bits respectively
797 * 0xZZ = rrrrrrrr, the register number of the BAR corresponding
798 * to the region
800 * phys.mid and phys.lo correspond respectively to the hi/lo portions
801 * of the actual address of the region.
803 * how the phys-addr/size values are used differ slightly between
804 * 'reg' and 'assigned-addresses' properties. namely, 'reg' has
805 * an additional description for the config space region of the
806 * device, and in the case of QEMU has n=0 and phys.mid=phys.lo=0
807 * to describe the region as relocatable, with an address-mapping
808 * that corresponds directly to the PHB's address space for the
809 * resource. 'assigned-addresses' always has n=1 set with an absolute
810 * address assigned for the resource. in general, 'assigned-addresses'
811 * won't be populated, since addresses for PCI devices are generally
812 * unmapped initially and left to the guest to assign.
814 * note also that addresses defined in these properties are, at least
815 * for PAPR guests, relative to the PHBs IO/MEM windows, and
816 * correspond directly to the addresses in the BARs.
818 * in accordance with PCI Bus Binding to Open Firmware,
819 * IEEE Std 1275-1994, section 4.1.1, as implemented by PAPR+ v2.7,
820 * Appendix C.
822 static void populate_resource_props(PCIDevice *d, ResourceProps *rp)
824 int bus_num = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(d))));
825 uint32_t dev_id = (b_bbbbbbbb(bus_num) |
826 b_ddddd(PCI_SLOT(d->devfn)) |
827 b_fff(PCI_FUNC(d->devfn)));
828 ResourceFields *reg, *assigned;
829 int i, reg_idx = 0, assigned_idx = 0;
831 /* config space region */
832 reg = &rp->reg[reg_idx++];
833 reg->phys_hi = cpu_to_be32(dev_id);
834 reg->phys_mid = 0;
835 reg->phys_lo = 0;
836 reg->size_hi = 0;
837 reg->size_lo = 0;
839 for (i = 0; i < PCI_NUM_REGIONS; i++) {
840 if (!d->io_regions[i].size) {
841 continue;
844 reg = &rp->reg[reg_idx++];
846 reg->phys_hi = cpu_to_be32(dev_id | b_rrrrrrrr(pci_bar(d, i)));
847 if (d->io_regions[i].type & PCI_BASE_ADDRESS_SPACE_IO) {
848 reg->phys_hi |= cpu_to_be32(b_ss(1));
849 } else {
850 reg->phys_hi |= cpu_to_be32(b_ss(2));
852 reg->phys_mid = 0;
853 reg->phys_lo = 0;
854 reg->size_hi = cpu_to_be32(d->io_regions[i].size >> 32);
855 reg->size_lo = cpu_to_be32(d->io_regions[i].size);
857 if (d->io_regions[i].addr == PCI_BAR_UNMAPPED) {
858 continue;
861 assigned = &rp->assigned[assigned_idx++];
862 assigned->phys_hi = cpu_to_be32(reg->phys_hi | b_n(1));
863 assigned->phys_mid = cpu_to_be32(d->io_regions[i].addr >> 32);
864 assigned->phys_lo = cpu_to_be32(d->io_regions[i].addr);
865 assigned->size_hi = reg->size_hi;
866 assigned->size_lo = reg->size_lo;
869 rp->reg_len = reg_idx * sizeof(ResourceFields);
870 rp->assigned_len = assigned_idx * sizeof(ResourceFields);
873 static int spapr_populate_pci_child_dt(PCIDevice *dev, void *fdt, int offset,
874 int phb_index, int drc_index,
875 const char *drc_name)
877 ResourceProps rp;
878 bool is_bridge = false;
879 int pci_status;
881 if (pci_default_read_config(dev, PCI_HEADER_TYPE, 1) ==
882 PCI_HEADER_TYPE_BRIDGE) {
883 is_bridge = true;
886 /* in accordance with PAPR+ v2.7 13.6.3, Table 181 */
887 _FDT(fdt_setprop_cell(fdt, offset, "vendor-id",
888 pci_default_read_config(dev, PCI_VENDOR_ID, 2)));
889 _FDT(fdt_setprop_cell(fdt, offset, "device-id",
890 pci_default_read_config(dev, PCI_DEVICE_ID, 2)));
891 _FDT(fdt_setprop_cell(fdt, offset, "revision-id",
892 pci_default_read_config(dev, PCI_REVISION_ID, 1)));
893 _FDT(fdt_setprop_cell(fdt, offset, "class-code",
894 pci_default_read_config(dev, PCI_CLASS_DEVICE, 2)
895 << 8));
896 if (pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)) {
897 _FDT(fdt_setprop_cell(fdt, offset, "interrupts",
898 pci_default_read_config(dev, PCI_INTERRUPT_PIN, 1)));
901 if (!is_bridge) {
902 _FDT(fdt_setprop_cell(fdt, offset, "min-grant",
903 pci_default_read_config(dev, PCI_MIN_GNT, 1)));
904 _FDT(fdt_setprop_cell(fdt, offset, "max-latency",
905 pci_default_read_config(dev, PCI_MAX_LAT, 1)));
908 if (pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)) {
909 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-id",
910 pci_default_read_config(dev, PCI_SUBSYSTEM_ID, 2)));
913 if (pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)) {
914 _FDT(fdt_setprop_cell(fdt, offset, "subsystem-vendor-id",
915 pci_default_read_config(dev, PCI_SUBSYSTEM_VENDOR_ID, 2)));
918 _FDT(fdt_setprop_cell(fdt, offset, "cache-line-size",
919 pci_default_read_config(dev, PCI_CACHE_LINE_SIZE, 1)));
921 /* the following fdt cells are masked off the pci status register */
922 pci_status = pci_default_read_config(dev, PCI_STATUS, 2);
923 _FDT(fdt_setprop_cell(fdt, offset, "devsel-speed",
924 PCI_STATUS_DEVSEL_MASK & pci_status));
926 if (pci_status & PCI_STATUS_FAST_BACK) {
927 _FDT(fdt_setprop(fdt, offset, "fast-back-to-back", NULL, 0));
929 if (pci_status & PCI_STATUS_66MHZ) {
930 _FDT(fdt_setprop(fdt, offset, "66mhz-capable", NULL, 0));
932 if (pci_status & PCI_STATUS_UDF) {
933 _FDT(fdt_setprop(fdt, offset, "udf-supported", NULL, 0));
936 /* NOTE: this is normally generated by firmware via path/unit name,
937 * but in our case we must set it manually since it does not get
938 * processed by OF beforehand
940 _FDT(fdt_setprop_string(fdt, offset, "name", "pci"));
941 _FDT(fdt_setprop(fdt, offset, "ibm,loc-code", drc_name, strlen(drc_name)));
942 _FDT(fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index));
944 _FDT(fdt_setprop_cell(fdt, offset, "#address-cells",
945 RESOURCE_CELLS_ADDRESS));
946 _FDT(fdt_setprop_cell(fdt, offset, "#size-cells",
947 RESOURCE_CELLS_SIZE));
948 _FDT(fdt_setprop_cell(fdt, offset, "ibm,req#msi-x",
949 RESOURCE_CELLS_SIZE));
951 populate_resource_props(dev, &rp);
952 _FDT(fdt_setprop(fdt, offset, "reg", (uint8_t *)rp.reg, rp.reg_len));
953 _FDT(fdt_setprop(fdt, offset, "assigned-addresses",
954 (uint8_t *)rp.assigned, rp.assigned_len));
956 return 0;
959 /* create OF node for pci device and required OF DT properties */
960 static void *spapr_create_pci_child_dt(sPAPRPHBState *phb, PCIDevice *dev,
961 int drc_index, const char *drc_name,
962 int *dt_offset)
964 void *fdt;
965 int offset, ret, fdt_size;
966 int slot = PCI_SLOT(dev->devfn);
967 int func = PCI_FUNC(dev->devfn);
968 char nodename[512];
970 fdt = create_device_tree(&fdt_size);
971 if (func != 0) {
972 sprintf(nodename, "pci@%d,%d", slot, func);
973 } else {
974 sprintf(nodename, "pci@%d", slot);
976 offset = fdt_add_subnode(fdt, 0, nodename);
977 ret = spapr_populate_pci_child_dt(dev, fdt, offset, phb->index, drc_index,
978 drc_name);
979 g_assert(!ret);
981 *dt_offset = offset;
982 return fdt;
985 static void spapr_phb_add_pci_device(sPAPRDRConnector *drc,
986 sPAPRPHBState *phb,
987 PCIDevice *pdev,
988 Error **errp)
990 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
991 DeviceState *dev = DEVICE(pdev);
992 int drc_index = drck->get_index(drc);
993 const char *drc_name = drck->get_name(drc);
994 void *fdt = NULL;
995 int fdt_start_offset = 0;
997 /* boot-time devices get their device tree node created by SLOF, but for
998 * hotplugged devices we need QEMU to generate it so the guest can fetch
999 * it via RTAS
1001 if (dev->hotplugged) {
1002 fdt = spapr_create_pci_child_dt(phb, pdev, drc_index, drc_name,
1003 &fdt_start_offset);
1006 drck->attach(drc, DEVICE(pdev),
1007 fdt, fdt_start_offset, !dev->hotplugged, errp);
1008 if (*errp) {
1009 g_free(fdt);
1013 static void spapr_phb_remove_pci_device_cb(DeviceState *dev, void *opaque)
1015 /* some version guests do not wait for completion of a device
1016 * cleanup (generally done asynchronously by the kernel) before
1017 * signaling to QEMU that the device is safe, but instead sleep
1018 * for some 'safe' period of time. unfortunately on a busy host
1019 * this sleep isn't guaranteed to be long enough, resulting in
1020 * bad things like IRQ lines being left asserted during final
1021 * device removal. to deal with this we call reset just prior
1022 * to finalizing the device, which will put the device back into
1023 * an 'idle' state, as the device cleanup code expects.
1025 pci_device_reset(PCI_DEVICE(dev));
1026 object_unparent(OBJECT(dev));
1029 static void spapr_phb_remove_pci_device(sPAPRDRConnector *drc,
1030 sPAPRPHBState *phb,
1031 PCIDevice *pdev,
1032 Error **errp)
1034 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1036 drck->detach(drc, DEVICE(pdev), spapr_phb_remove_pci_device_cb, phb, errp);
1039 static sPAPRDRConnector *spapr_phb_get_pci_drc(sPAPRPHBState *phb,
1040 PCIDevice *pdev)
1042 uint32_t busnr = pci_bus_num(PCI_BUS(qdev_get_parent_bus(DEVICE(pdev))));
1043 return spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_PCI,
1044 (phb->index << 16) |
1045 (busnr << 8) |
1046 pdev->devfn);
1049 static void spapr_phb_hot_plug_child(HotplugHandler *plug_handler,
1050 DeviceState *plugged_dev, Error **errp)
1052 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1053 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1054 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1055 Error *local_err = NULL;
1057 /* if DR is disabled we don't need to do anything in the case of
1058 * hotplug or coldplug callbacks
1060 if (!phb->dr_enabled) {
1061 /* if this is a hotplug operation initiated by the user
1062 * we need to let them know it's not enabled
1064 if (plugged_dev->hotplugged) {
1065 error_set(errp, QERR_BUS_NO_HOTPLUG,
1066 object_get_typename(OBJECT(phb)));
1068 return;
1071 g_assert(drc);
1073 spapr_phb_add_pci_device(drc, phb, pdev, &local_err);
1074 if (local_err) {
1075 error_propagate(errp, local_err);
1076 return;
1078 if (plugged_dev->hotplugged) {
1079 spapr_hotplug_req_add_event(drc);
1083 static void spapr_phb_hot_unplug_child(HotplugHandler *plug_handler,
1084 DeviceState *plugged_dev, Error **errp)
1086 sPAPRPHBState *phb = SPAPR_PCI_HOST_BRIDGE(DEVICE(plug_handler));
1087 PCIDevice *pdev = PCI_DEVICE(plugged_dev);
1088 sPAPRDRConnectorClass *drck;
1089 sPAPRDRConnector *drc = spapr_phb_get_pci_drc(phb, pdev);
1090 Error *local_err = NULL;
1092 if (!phb->dr_enabled) {
1093 error_set(errp, QERR_BUS_NO_HOTPLUG,
1094 object_get_typename(OBJECT(phb)));
1095 return;
1098 g_assert(drc);
1100 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1101 if (!drck->release_pending(drc)) {
1102 spapr_phb_remove_pci_device(drc, phb, pdev, &local_err);
1103 if (local_err) {
1104 error_propagate(errp, local_err);
1105 return;
1107 spapr_hotplug_req_remove_event(drc);
1111 static void spapr_phb_realize(DeviceState *dev, Error **errp)
1113 SysBusDevice *s = SYS_BUS_DEVICE(dev);
1114 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(s);
1115 PCIHostState *phb = PCI_HOST_BRIDGE(s);
1116 sPAPRPHBClass *info = SPAPR_PCI_HOST_BRIDGE_GET_CLASS(s);
1117 char *namebuf;
1118 int i;
1119 PCIBus *bus;
1120 uint64_t msi_window_size = 4096;
1122 if (sphb->index != (uint32_t)-1) {
1123 hwaddr windows_base;
1125 if ((sphb->buid != (uint64_t)-1) || (sphb->dma_liobn != (uint32_t)-1)
1126 || (sphb->mem_win_addr != (hwaddr)-1)
1127 || (sphb->io_win_addr != (hwaddr)-1)) {
1128 error_setg(errp, "Either \"index\" or other parameters must"
1129 " be specified for PAPR PHB, not both");
1130 return;
1133 if (sphb->index > SPAPR_PCI_MAX_INDEX) {
1134 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
1135 SPAPR_PCI_MAX_INDEX);
1136 return;
1139 sphb->buid = SPAPR_PCI_BASE_BUID + sphb->index;
1140 sphb->dma_liobn = SPAPR_PCI_LIOBN(sphb->index, 0);
1142 windows_base = SPAPR_PCI_WINDOW_BASE
1143 + sphb->index * SPAPR_PCI_WINDOW_SPACING;
1144 sphb->mem_win_addr = windows_base + SPAPR_PCI_MMIO_WIN_OFF;
1145 sphb->io_win_addr = windows_base + SPAPR_PCI_IO_WIN_OFF;
1148 if (sphb->buid == (uint64_t)-1) {
1149 error_setg(errp, "BUID not specified for PHB");
1150 return;
1153 if (sphb->dma_liobn == (uint32_t)-1) {
1154 error_setg(errp, "LIOBN not specified for PHB");
1155 return;
1158 if (sphb->mem_win_addr == (hwaddr)-1) {
1159 error_setg(errp, "Memory window address not specified for PHB");
1160 return;
1163 if (sphb->io_win_addr == (hwaddr)-1) {
1164 error_setg(errp, "IO window address not specified for PHB");
1165 return;
1168 if (spapr_pci_find_phb(spapr, sphb->buid)) {
1169 error_setg(errp, "PCI host bridges must have unique BUIDs");
1170 return;
1173 sphb->dtbusname = g_strdup_printf("pci@%" PRIx64, sphb->buid);
1175 namebuf = alloca(strlen(sphb->dtbusname) + 32);
1177 /* Initialize memory regions */
1178 sprintf(namebuf, "%s.mmio", sphb->dtbusname);
1179 memory_region_init(&sphb->memspace, OBJECT(sphb), namebuf, UINT64_MAX);
1181 sprintf(namebuf, "%s.mmio-alias", sphb->dtbusname);
1182 memory_region_init_alias(&sphb->memwindow, OBJECT(sphb),
1183 namebuf, &sphb->memspace,
1184 SPAPR_PCI_MEM_WIN_BUS_OFFSET, sphb->mem_win_size);
1185 memory_region_add_subregion(get_system_memory(), sphb->mem_win_addr,
1186 &sphb->memwindow);
1188 /* Initialize IO regions */
1189 sprintf(namebuf, "%s.io", sphb->dtbusname);
1190 memory_region_init(&sphb->iospace, OBJECT(sphb),
1191 namebuf, SPAPR_PCI_IO_WIN_SIZE);
1193 sprintf(namebuf, "%s.io-alias", sphb->dtbusname);
1194 memory_region_init_alias(&sphb->iowindow, OBJECT(sphb), namebuf,
1195 &sphb->iospace, 0, SPAPR_PCI_IO_WIN_SIZE);
1196 memory_region_add_subregion(get_system_memory(), sphb->io_win_addr,
1197 &sphb->iowindow);
1199 bus = pci_register_bus(dev, NULL,
1200 pci_spapr_set_irq, pci_spapr_map_irq, sphb,
1201 &sphb->memspace, &sphb->iospace,
1202 PCI_DEVFN(0, 0), PCI_NUM_PINS, TYPE_PCI_BUS);
1203 phb->bus = bus;
1204 qbus_set_hotplug_handler(BUS(phb->bus), DEVICE(sphb), NULL);
1207 * Initialize PHB address space.
1208 * By default there will be at least one subregion for default
1209 * 32bit DMA window.
1210 * Later the guest might want to create another DMA window
1211 * which will become another memory subregion.
1213 sprintf(namebuf, "%s.iommu-root", sphb->dtbusname);
1215 memory_region_init(&sphb->iommu_root, OBJECT(sphb),
1216 namebuf, UINT64_MAX);
1217 address_space_init(&sphb->iommu_as, &sphb->iommu_root,
1218 sphb->dtbusname);
1221 * As MSI/MSIX interrupts trigger by writing at MSI/MSIX vectors,
1222 * we need to allocate some memory to catch those writes coming
1223 * from msi_notify()/msix_notify().
1224 * As MSIMessage:addr is going to be the same and MSIMessage:data
1225 * is going to be a VIRQ number, 4 bytes of the MSI MR will only
1226 * be used.
1228 * For KVM we want to ensure that this memory is a full page so that
1229 * our memory slot is of page size granularity.
1231 #ifdef CONFIG_KVM
1232 if (kvm_enabled()) {
1233 msi_window_size = getpagesize();
1235 #endif
1237 memory_region_init_io(&sphb->msiwindow, NULL, &spapr_msi_ops, spapr,
1238 "msi", msi_window_size);
1239 memory_region_add_subregion(&sphb->iommu_root, SPAPR_PCI_MSI_WINDOW,
1240 &sphb->msiwindow);
1242 pci_setup_iommu(bus, spapr_pci_dma_iommu, sphb);
1244 pci_bus_set_route_irq_fn(bus, spapr_route_intx_pin_to_irq);
1246 QLIST_INSERT_HEAD(&spapr->phbs, sphb, list);
1248 /* Initialize the LSI table */
1249 for (i = 0; i < PCI_NUM_PINS; i++) {
1250 uint32_t irq;
1252 irq = xics_alloc_block(spapr->icp, 0, 1, true, false);
1253 if (!irq) {
1254 error_setg(errp, "spapr_allocate_lsi failed");
1255 return;
1258 sphb->lsi_table[i].irq = irq;
1261 /* allocate connectors for child PCI devices */
1262 if (sphb->dr_enabled) {
1263 for (i = 0; i < PCI_SLOT_MAX * 8; i++) {
1264 spapr_dr_connector_new(OBJECT(phb),
1265 SPAPR_DR_CONNECTOR_TYPE_PCI,
1266 (sphb->index << 16) | i);
1270 if (!info->finish_realize) {
1271 error_setg(errp, "finish_realize not defined");
1272 return;
1275 info->finish_realize(sphb, errp);
1277 sphb->msi = g_hash_table_new_full(g_int_hash, g_int_equal, g_free, g_free);
1280 static void spapr_phb_finish_realize(sPAPRPHBState *sphb, Error **errp)
1282 sPAPRTCETable *tcet;
1283 uint32_t nb_table;
1285 nb_table = SPAPR_PCI_DMA32_SIZE >> SPAPR_TCE_PAGE_SHIFT;
1286 tcet = spapr_tce_new_table(DEVICE(sphb), sphb->dma_liobn,
1287 0, SPAPR_TCE_PAGE_SHIFT, nb_table, false);
1288 if (!tcet) {
1289 error_setg(errp, "Unable to create TCE table for %s",
1290 sphb->dtbusname);
1291 return ;
1294 /* Register default 32bit DMA window */
1295 memory_region_add_subregion(&sphb->iommu_root, 0,
1296 spapr_tce_get_iommu(tcet));
1299 static int spapr_phb_children_reset(Object *child, void *opaque)
1301 DeviceState *dev = (DeviceState *) object_dynamic_cast(child, TYPE_DEVICE);
1303 if (dev) {
1304 device_reset(dev);
1307 return 0;
1310 static void spapr_phb_reset(DeviceState *qdev)
1312 /* Reset the IOMMU state */
1313 object_child_foreach(OBJECT(qdev), spapr_phb_children_reset, NULL);
1316 static Property spapr_phb_properties[] = {
1317 DEFINE_PROP_UINT32("index", sPAPRPHBState, index, -1),
1318 DEFINE_PROP_UINT64("buid", sPAPRPHBState, buid, -1),
1319 DEFINE_PROP_UINT32("liobn", sPAPRPHBState, dma_liobn, -1),
1320 DEFINE_PROP_UINT64("mem_win_addr", sPAPRPHBState, mem_win_addr, -1),
1321 DEFINE_PROP_UINT64("mem_win_size", sPAPRPHBState, mem_win_size,
1322 SPAPR_PCI_MMIO_WIN_SIZE),
1323 DEFINE_PROP_UINT64("io_win_addr", sPAPRPHBState, io_win_addr, -1),
1324 DEFINE_PROP_UINT64("io_win_size", sPAPRPHBState, io_win_size,
1325 SPAPR_PCI_IO_WIN_SIZE),
1326 DEFINE_PROP_BOOL("dynamic-reconfiguration", sPAPRPHBState, dr_enabled,
1327 true),
1328 DEFINE_PROP_END_OF_LIST(),
1331 static const VMStateDescription vmstate_spapr_pci_lsi = {
1332 .name = "spapr_pci/lsi",
1333 .version_id = 1,
1334 .minimum_version_id = 1,
1335 .fields = (VMStateField[]) {
1336 VMSTATE_UINT32_EQUAL(irq, struct spapr_pci_lsi),
1338 VMSTATE_END_OF_LIST()
1342 static const VMStateDescription vmstate_spapr_pci_msi = {
1343 .name = "spapr_pci/msi",
1344 .version_id = 1,
1345 .minimum_version_id = 1,
1346 .fields = (VMStateField []) {
1347 VMSTATE_UINT32(key, spapr_pci_msi_mig),
1348 VMSTATE_UINT32(value.first_irq, spapr_pci_msi_mig),
1349 VMSTATE_UINT32(value.num, spapr_pci_msi_mig),
1350 VMSTATE_END_OF_LIST()
1354 static void spapr_pci_fill_msi_devs(gpointer key, gpointer value,
1355 gpointer opaque)
1357 sPAPRPHBState *sphb = opaque;
1359 sphb->msi_devs[sphb->msi_devs_num].key = *(uint32_t *)key;
1360 sphb->msi_devs[sphb->msi_devs_num].value = *(spapr_pci_msi *)value;
1361 sphb->msi_devs_num++;
1364 static void spapr_pci_pre_save(void *opaque)
1366 sPAPRPHBState *sphb = opaque;
1367 int msi_devs_num;
1369 if (sphb->msi_devs) {
1370 g_free(sphb->msi_devs);
1371 sphb->msi_devs = NULL;
1373 sphb->msi_devs_num = 0;
1374 msi_devs_num = g_hash_table_size(sphb->msi);
1375 if (!msi_devs_num) {
1376 return;
1378 sphb->msi_devs = g_malloc(msi_devs_num * sizeof(spapr_pci_msi_mig));
1380 g_hash_table_foreach(sphb->msi, spapr_pci_fill_msi_devs, sphb);
1381 assert(sphb->msi_devs_num == msi_devs_num);
1384 static int spapr_pci_post_load(void *opaque, int version_id)
1386 sPAPRPHBState *sphb = opaque;
1387 gpointer key, value;
1388 int i;
1390 for (i = 0; i < sphb->msi_devs_num; ++i) {
1391 key = g_memdup(&sphb->msi_devs[i].key,
1392 sizeof(sphb->msi_devs[i].key));
1393 value = g_memdup(&sphb->msi_devs[i].value,
1394 sizeof(sphb->msi_devs[i].value));
1395 g_hash_table_insert(sphb->msi, key, value);
1397 if (sphb->msi_devs) {
1398 g_free(sphb->msi_devs);
1399 sphb->msi_devs = NULL;
1401 sphb->msi_devs_num = 0;
1403 return 0;
1406 static const VMStateDescription vmstate_spapr_pci = {
1407 .name = "spapr_pci",
1408 .version_id = 2,
1409 .minimum_version_id = 2,
1410 .pre_save = spapr_pci_pre_save,
1411 .post_load = spapr_pci_post_load,
1412 .fields = (VMStateField[]) {
1413 VMSTATE_UINT64_EQUAL(buid, sPAPRPHBState),
1414 VMSTATE_UINT32_EQUAL(dma_liobn, sPAPRPHBState),
1415 VMSTATE_UINT64_EQUAL(mem_win_addr, sPAPRPHBState),
1416 VMSTATE_UINT64_EQUAL(mem_win_size, sPAPRPHBState),
1417 VMSTATE_UINT64_EQUAL(io_win_addr, sPAPRPHBState),
1418 VMSTATE_UINT64_EQUAL(io_win_size, sPAPRPHBState),
1419 VMSTATE_STRUCT_ARRAY(lsi_table, sPAPRPHBState, PCI_NUM_PINS, 0,
1420 vmstate_spapr_pci_lsi, struct spapr_pci_lsi),
1421 VMSTATE_INT32(msi_devs_num, sPAPRPHBState),
1422 VMSTATE_STRUCT_VARRAY_ALLOC(msi_devs, sPAPRPHBState, msi_devs_num, 0,
1423 vmstate_spapr_pci_msi, spapr_pci_msi_mig),
1424 VMSTATE_END_OF_LIST()
1428 static const char *spapr_phb_root_bus_path(PCIHostState *host_bridge,
1429 PCIBus *rootbus)
1431 sPAPRPHBState *sphb = SPAPR_PCI_HOST_BRIDGE(host_bridge);
1433 return sphb->dtbusname;
1436 static void spapr_phb_class_init(ObjectClass *klass, void *data)
1438 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_CLASS(klass);
1439 DeviceClass *dc = DEVICE_CLASS(klass);
1440 sPAPRPHBClass *spc = SPAPR_PCI_HOST_BRIDGE_CLASS(klass);
1441 HotplugHandlerClass *hp = HOTPLUG_HANDLER_CLASS(klass);
1443 hc->root_bus_path = spapr_phb_root_bus_path;
1444 dc->realize = spapr_phb_realize;
1445 dc->props = spapr_phb_properties;
1446 dc->reset = spapr_phb_reset;
1447 dc->vmsd = &vmstate_spapr_pci;
1448 set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
1449 dc->cannot_instantiate_with_device_add_yet = false;
1450 spc->finish_realize = spapr_phb_finish_realize;
1451 hp->plug = spapr_phb_hot_plug_child;
1452 hp->unplug = spapr_phb_hot_unplug_child;
1455 static const TypeInfo spapr_phb_info = {
1456 .name = TYPE_SPAPR_PCI_HOST_BRIDGE,
1457 .parent = TYPE_PCI_HOST_BRIDGE,
1458 .instance_size = sizeof(sPAPRPHBState),
1459 .class_init = spapr_phb_class_init,
1460 .class_size = sizeof(sPAPRPHBClass),
1461 .interfaces = (InterfaceInfo[]) {
1462 { TYPE_HOTPLUG_HANDLER },
1467 PCIHostState *spapr_create_phb(sPAPREnvironment *spapr, int index)
1469 DeviceState *dev;
1471 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
1472 qdev_prop_set_uint32(dev, "index", index);
1473 qdev_init_nofail(dev);
1475 return PCI_HOST_BRIDGE(dev);
1478 int spapr_populate_pci_dt(sPAPRPHBState *phb,
1479 uint32_t xics_phandle,
1480 void *fdt)
1482 int bus_off, i, j, ret;
1483 char nodename[256];
1484 uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
1485 const uint64_t mmiosize = memory_region_size(&phb->memwindow);
1486 const uint64_t w32max = (1ULL << 32) - SPAPR_PCI_MEM_WIN_BUS_OFFSET;
1487 const uint64_t w32size = MIN(w32max, mmiosize);
1488 const uint64_t w64size = (mmiosize > w32size) ? (mmiosize - w32size) : 0;
1489 struct {
1490 uint32_t hi;
1491 uint64_t child;
1492 uint64_t parent;
1493 uint64_t size;
1494 } QEMU_PACKED ranges[] = {
1496 cpu_to_be32(b_ss(1)), cpu_to_be64(0),
1497 cpu_to_be64(phb->io_win_addr),
1498 cpu_to_be64(memory_region_size(&phb->iospace)),
1501 cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
1502 cpu_to_be64(phb->mem_win_addr),
1503 cpu_to_be64(w32size),
1506 cpu_to_be32(b_ss(3)), cpu_to_be64(1ULL << 32),
1507 cpu_to_be64(phb->mem_win_addr + w32size),
1508 cpu_to_be64(w64size)
1511 const unsigned sizeof_ranges = (w64size ? 3 : 2) * sizeof(ranges[0]);
1512 uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
1513 uint32_t interrupt_map_mask[] = {
1514 cpu_to_be32(b_ddddd(-1)|b_fff(0)), 0x0, 0x0, cpu_to_be32(-1)};
1515 uint32_t interrupt_map[PCI_SLOT_MAX * PCI_NUM_PINS][7];
1516 sPAPRTCETable *tcet;
1518 /* Start populating the FDT */
1519 sprintf(nodename, "pci@%" PRIx64, phb->buid);
1520 bus_off = fdt_add_subnode(fdt, 0, nodename);
1521 if (bus_off < 0) {
1522 return bus_off;
1525 /* Write PHB properties */
1526 _FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
1527 _FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
1528 _FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
1529 _FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
1530 _FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
1531 _FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
1532 _FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
1533 _FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof_ranges));
1534 _FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
1535 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pci-config-space-type", 0x1));
1536 _FDT(fdt_setprop_cell(fdt, bus_off, "ibm,pe-total-#msi", XICS_IRQS));
1538 /* Build the interrupt-map, this must matches what is done
1539 * in pci_spapr_map_irq
1541 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
1542 &interrupt_map_mask, sizeof(interrupt_map_mask)));
1543 for (i = 0; i < PCI_SLOT_MAX; i++) {
1544 for (j = 0; j < PCI_NUM_PINS; j++) {
1545 uint32_t *irqmap = interrupt_map[i*PCI_NUM_PINS + j];
1546 int lsi_num = pci_spapr_swizzle(i, j);
1548 irqmap[0] = cpu_to_be32(b_ddddd(i)|b_fff(0));
1549 irqmap[1] = 0;
1550 irqmap[2] = 0;
1551 irqmap[3] = cpu_to_be32(j+1);
1552 irqmap[4] = cpu_to_be32(xics_phandle);
1553 irqmap[5] = cpu_to_be32(phb->lsi_table[lsi_num].irq);
1554 irqmap[6] = cpu_to_be32(0x8);
1557 /* Write interrupt map */
1558 _FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
1559 sizeof(interrupt_map)));
1561 tcet = spapr_tce_find_by_liobn(SPAPR_PCI_LIOBN(phb->index, 0));
1562 spapr_dma_dt(fdt, bus_off, "ibm,dma-window",
1563 tcet->liobn, tcet->bus_offset,
1564 tcet->nb_table << tcet->page_shift);
1566 ret = spapr_drc_populate_dt(fdt, bus_off, OBJECT(phb),
1567 SPAPR_DR_CONNECTOR_TYPE_PCI);
1568 if (ret) {
1569 return ret;
1572 return 0;
1575 void spapr_pci_rtas_init(void)
1577 spapr_rtas_register(RTAS_READ_PCI_CONFIG, "read-pci-config",
1578 rtas_read_pci_config);
1579 spapr_rtas_register(RTAS_WRITE_PCI_CONFIG, "write-pci-config",
1580 rtas_write_pci_config);
1581 spapr_rtas_register(RTAS_IBM_READ_PCI_CONFIG, "ibm,read-pci-config",
1582 rtas_ibm_read_pci_config);
1583 spapr_rtas_register(RTAS_IBM_WRITE_PCI_CONFIG, "ibm,write-pci-config",
1584 rtas_ibm_write_pci_config);
1585 if (msi_supported) {
1586 spapr_rtas_register(RTAS_IBM_QUERY_INTERRUPT_SOURCE_NUMBER,
1587 "ibm,query-interrupt-source-number",
1588 rtas_ibm_query_interrupt_source_number);
1589 spapr_rtas_register(RTAS_IBM_CHANGE_MSI, "ibm,change-msi",
1590 rtas_ibm_change_msi);
1593 spapr_rtas_register(RTAS_IBM_SET_EEH_OPTION,
1594 "ibm,set-eeh-option",
1595 rtas_ibm_set_eeh_option);
1596 spapr_rtas_register(RTAS_IBM_GET_CONFIG_ADDR_INFO2,
1597 "ibm,get-config-addr-info2",
1598 rtas_ibm_get_config_addr_info2);
1599 spapr_rtas_register(RTAS_IBM_READ_SLOT_RESET_STATE2,
1600 "ibm,read-slot-reset-state2",
1601 rtas_ibm_read_slot_reset_state2);
1602 spapr_rtas_register(RTAS_IBM_SET_SLOT_RESET,
1603 "ibm,set-slot-reset",
1604 rtas_ibm_set_slot_reset);
1605 spapr_rtas_register(RTAS_IBM_CONFIGURE_PE,
1606 "ibm,configure-pe",
1607 rtas_ibm_configure_pe);
1608 spapr_rtas_register(RTAS_IBM_SLOT_ERROR_DETAIL,
1609 "ibm,slot-error-detail",
1610 rtas_ibm_slot_error_detail);
1613 static void spapr_pci_register_types(void)
1615 type_register_static(&spapr_phb_info);
1618 type_init(spapr_pci_register_types)
1620 static int spapr_switch_one_vga(DeviceState *dev, void *opaque)
1622 bool be = *(bool *)opaque;
1624 if (object_dynamic_cast(OBJECT(dev), "VGA")
1625 || object_dynamic_cast(OBJECT(dev), "secondary-vga")) {
1626 object_property_set_bool(OBJECT(dev), be, "big-endian-framebuffer",
1627 &error_abort);
1629 return 0;
1632 void spapr_pci_switch_vga(bool big_endian)
1634 sPAPRPHBState *sphb;
1637 * For backward compatibility with existing guests, we switch
1638 * the endianness of the VGA controller when changing the guest
1639 * interrupt mode
1641 QLIST_FOREACH(sphb, &spapr->phbs, list) {
1642 BusState *bus = &PCI_HOST_BRIDGE(sphb)->bus->qbus;
1643 qbus_walk_children(bus, spapr_switch_one_vga, NULL, NULL, NULL,
1644 &big_endian);