2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu-timer.h"
20 static void qed_aio_cancel(BlockDriverAIOCB
*blockacb
)
22 QEDAIOCB
*acb
= (QEDAIOCB
*)blockacb
;
23 bool finished
= false;
25 /* Wait for the request to finish */
26 acb
->finished
= &finished
;
32 static AIOPool qed_aio_pool
= {
33 .aiocb_size
= sizeof(QEDAIOCB
),
34 .cancel
= qed_aio_cancel
,
37 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
40 const QEDHeader
*header
= (const QEDHeader
*)buf
;
42 if (buf_size
< sizeof(*header
)) {
45 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
52 * Check whether an image format is raw
54 * @fmt: Backing file format, may be NULL
56 static bool qed_fmt_is_raw(const char *fmt
)
58 return fmt
&& strcmp(fmt
, "raw") == 0;
61 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
63 cpu
->magic
= le32_to_cpu(le
->magic
);
64 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
65 cpu
->table_size
= le32_to_cpu(le
->table_size
);
66 cpu
->header_size
= le32_to_cpu(le
->header_size
);
67 cpu
->features
= le64_to_cpu(le
->features
);
68 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
69 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
70 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
71 cpu
->image_size
= le64_to_cpu(le
->image_size
);
72 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
73 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
76 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
78 le
->magic
= cpu_to_le32(cpu
->magic
);
79 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
80 le
->table_size
= cpu_to_le32(cpu
->table_size
);
81 le
->header_size
= cpu_to_le32(cpu
->header_size
);
82 le
->features
= cpu_to_le64(cpu
->features
);
83 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
84 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
85 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
86 le
->image_size
= cpu_to_le64(cpu
->image_size
);
87 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
88 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
91 static int qed_write_header_sync(BDRVQEDState
*s
)
96 qed_header_cpu_to_le(&s
->header
, &le
);
97 ret
= bdrv_pwrite(s
->bs
->file
, 0, &le
, sizeof(le
));
98 if (ret
!= sizeof(le
)) {
113 static void qed_write_header_cb(void *opaque
, int ret
)
115 QEDWriteHeaderCB
*write_header_cb
= opaque
;
117 qemu_vfree(write_header_cb
->buf
);
118 gencb_complete(write_header_cb
, ret
);
121 static void qed_write_header_read_cb(void *opaque
, int ret
)
123 QEDWriteHeaderCB
*write_header_cb
= opaque
;
124 BDRVQEDState
*s
= write_header_cb
->s
;
125 BlockDriverAIOCB
*acb
;
128 qed_write_header_cb(write_header_cb
, ret
);
133 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*)write_header_cb
->buf
);
135 acb
= bdrv_aio_writev(s
->bs
->file
, 0, &write_header_cb
->qiov
,
136 write_header_cb
->nsectors
, qed_write_header_cb
,
139 qed_write_header_cb(write_header_cb
, -EIO
);
144 * Update header in-place (does not rewrite backing filename or other strings)
146 * This function only updates known header fields in-place and does not affect
147 * extra data after the QED header.
149 static void qed_write_header(BDRVQEDState
*s
, BlockDriverCompletionFunc cb
,
152 /* We must write full sectors for O_DIRECT but cannot necessarily generate
153 * the data following the header if an unrecognized compat feature is
154 * active. Therefore, first read the sectors containing the header, update
155 * them, and write back.
158 BlockDriverAIOCB
*acb
;
159 int nsectors
= (sizeof(QEDHeader
) + BDRV_SECTOR_SIZE
- 1) /
161 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
162 QEDWriteHeaderCB
*write_header_cb
= gencb_alloc(sizeof(*write_header_cb
),
165 write_header_cb
->s
= s
;
166 write_header_cb
->nsectors
= nsectors
;
167 write_header_cb
->buf
= qemu_blockalign(s
->bs
, len
);
168 write_header_cb
->iov
.iov_base
= write_header_cb
->buf
;
169 write_header_cb
->iov
.iov_len
= len
;
170 qemu_iovec_init_external(&write_header_cb
->qiov
, &write_header_cb
->iov
, 1);
172 acb
= bdrv_aio_readv(s
->bs
->file
, 0, &write_header_cb
->qiov
, nsectors
,
173 qed_write_header_read_cb
, write_header_cb
);
175 qed_write_header_cb(write_header_cb
, -EIO
);
179 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
181 uint64_t table_entries
;
184 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
185 l2_size
= table_entries
* cluster_size
;
187 return l2_size
* table_entries
;
190 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
192 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
193 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
196 if (cluster_size
& (cluster_size
- 1)) {
197 return false; /* not power of 2 */
202 static bool qed_is_table_size_valid(uint32_t table_size
)
204 if (table_size
< QED_MIN_TABLE_SIZE
||
205 table_size
> QED_MAX_TABLE_SIZE
) {
208 if (table_size
& (table_size
- 1)) {
209 return false; /* not power of 2 */
214 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
217 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
218 return false; /* not multiple of sector size */
220 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
221 return false; /* image is too large */
227 * Read a string of known length from the image file
230 * @offset: File offset to start of string, in bytes
231 * @n: String length in bytes
232 * @buf: Destination buffer
233 * @buflen: Destination buffer length in bytes
234 * @ret: 0 on success, -errno on failure
236 * The string is NUL-terminated.
238 static int qed_read_string(BlockDriverState
*file
, uint64_t offset
, size_t n
,
239 char *buf
, size_t buflen
)
245 ret
= bdrv_pread(file
, offset
, buf
, n
);
254 * Allocate new clusters
257 * @n: Number of contiguous clusters to allocate
258 * @ret: Offset of first allocated cluster
260 * This function only produces the offset where the new clusters should be
261 * written. It updates BDRVQEDState but does not make any changes to the image
264 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
266 uint64_t offset
= s
->file_size
;
267 s
->file_size
+= n
* s
->header
.cluster_size
;
271 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
273 /* Honor O_DIRECT memory alignment requirements */
274 return qemu_blockalign(s
->bs
,
275 s
->header
.cluster_size
* s
->header
.table_size
);
279 * Allocate a new zeroed L2 table
281 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
283 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
285 l2_table
->table
= qed_alloc_table(s
);
286 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
288 memset(l2_table
->table
->offsets
, 0,
289 s
->header
.cluster_size
* s
->header
.table_size
);
293 static void qed_aio_next_io(void *opaque
, int ret
);
295 static void qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
297 assert(!s
->allocating_write_reqs_plugged
);
299 s
->allocating_write_reqs_plugged
= true;
302 static void qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
306 assert(s
->allocating_write_reqs_plugged
);
308 s
->allocating_write_reqs_plugged
= false;
310 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
312 qed_aio_next_io(acb
, 0);
316 static void qed_finish_clear_need_check(void *opaque
, int ret
)
321 static void qed_flush_after_clear_need_check(void *opaque
, int ret
)
323 BDRVQEDState
*s
= opaque
;
325 bdrv_aio_flush(s
->bs
, qed_finish_clear_need_check
, s
);
327 /* No need to wait until flush completes */
328 qed_unplug_allocating_write_reqs(s
);
331 static void qed_clear_need_check(void *opaque
, int ret
)
333 BDRVQEDState
*s
= opaque
;
336 qed_unplug_allocating_write_reqs(s
);
340 s
->header
.features
&= ~QED_F_NEED_CHECK
;
341 qed_write_header(s
, qed_flush_after_clear_need_check
, s
);
344 static void qed_need_check_timer_cb(void *opaque
)
346 BDRVQEDState
*s
= opaque
;
348 /* The timer should only fire when allocating writes have drained */
349 assert(!QSIMPLEQ_FIRST(&s
->allocating_write_reqs
));
351 trace_qed_need_check_timer_cb(s
);
353 qed_plug_allocating_write_reqs(s
);
355 /* Ensure writes are on disk before clearing flag */
356 bdrv_aio_flush(s
->bs
, qed_clear_need_check
, s
);
359 static void qed_start_need_check_timer(BDRVQEDState
*s
)
361 trace_qed_start_need_check_timer(s
);
363 /* Use vm_clock so we don't alter the image file while suspended for
366 qemu_mod_timer(s
->need_check_timer
, qemu_get_clock_ns(vm_clock
) +
367 get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT
);
370 /* It's okay to call this multiple times or when no timer is started */
371 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
373 trace_qed_cancel_need_check_timer(s
);
374 qemu_del_timer(s
->need_check_timer
);
377 static int bdrv_qed_open(BlockDriverState
*bs
, int flags
)
379 BDRVQEDState
*s
= bs
->opaque
;
385 QSIMPLEQ_INIT(&s
->allocating_write_reqs
);
387 ret
= bdrv_pread(bs
->file
, 0, &le_header
, sizeof(le_header
));
391 ret
= 0; /* ret should always be 0 or -errno */
392 qed_header_le_to_cpu(&le_header
, &s
->header
);
394 if (s
->header
.magic
!= QED_MAGIC
) {
397 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
398 /* image uses unsupported feature bits */
400 snprintf(buf
, sizeof(buf
), "%" PRIx64
,
401 s
->header
.features
& ~QED_FEATURE_MASK
);
402 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE
,
403 bs
->device_name
, "QED", buf
);
406 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
410 /* Round down file size to the last cluster */
411 file_size
= bdrv_getlength(bs
->file
);
415 s
->file_size
= qed_start_of_cluster(s
, file_size
);
417 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
420 if (!qed_is_image_size_valid(s
->header
.image_size
,
421 s
->header
.cluster_size
,
422 s
->header
.table_size
)) {
425 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
429 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
431 s
->l2_shift
= ffs(s
->header
.cluster_size
) - 1;
432 s
->l2_mask
= s
->table_nelems
- 1;
433 s
->l1_shift
= s
->l2_shift
+ ffs(s
->table_nelems
) - 1;
435 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
436 if ((uint64_t)s
->header
.backing_filename_offset
+
437 s
->header
.backing_filename_size
>
438 s
->header
.cluster_size
* s
->header
.header_size
) {
442 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
443 s
->header
.backing_filename_size
, bs
->backing_file
,
444 sizeof(bs
->backing_file
));
449 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
450 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
454 /* Reset unknown autoclear feature bits. This is a backwards
455 * compatibility mechanism that allows images to be opened by older
456 * programs, which "knock out" unknown feature bits. When an image is
457 * opened by a newer program again it can detect that the autoclear
458 * feature is no longer valid.
460 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
461 !bdrv_is_read_only(bs
->file
)) {
462 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
464 ret
= qed_write_header_sync(s
);
469 /* From here on only known autoclear feature bits are valid */
470 bdrv_flush(bs
->file
);
473 s
->l1_table
= qed_alloc_table(s
);
474 qed_init_l2_cache(&s
->l2_cache
);
476 ret
= qed_read_l1_table_sync(s
);
481 /* If image was not closed cleanly, check consistency */
482 if (s
->header
.features
& QED_F_NEED_CHECK
) {
483 /* Read-only images cannot be fixed. There is no risk of corruption
484 * since write operations are not possible. Therefore, allow
485 * potentially inconsistent images to be opened read-only. This can
486 * aid data recovery from an otherwise inconsistent image.
488 if (!bdrv_is_read_only(bs
->file
)) {
489 BdrvCheckResult result
= {0};
491 ret
= qed_check(s
, &result
, true);
495 if (!result
.corruptions
&& !result
.check_errors
) {
496 /* Ensure fixes reach storage before clearing check bit */
499 s
->header
.features
&= ~QED_F_NEED_CHECK
;
500 qed_write_header_sync(s
);
505 s
->need_check_timer
= qemu_new_timer_ns(vm_clock
,
506 qed_need_check_timer_cb
, s
);
510 qed_free_l2_cache(&s
->l2_cache
);
511 qemu_vfree(s
->l1_table
);
516 static void bdrv_qed_close(BlockDriverState
*bs
)
518 BDRVQEDState
*s
= bs
->opaque
;
520 qed_cancel_need_check_timer(s
);
521 qemu_free_timer(s
->need_check_timer
);
523 /* Ensure writes reach stable storage */
524 bdrv_flush(bs
->file
);
526 /* Clean shutdown, no check required on next open */
527 if (s
->header
.features
& QED_F_NEED_CHECK
) {
528 s
->header
.features
&= ~QED_F_NEED_CHECK
;
529 qed_write_header_sync(s
);
532 qed_free_l2_cache(&s
->l2_cache
);
533 qemu_vfree(s
->l1_table
);
536 static int bdrv_qed_flush(BlockDriverState
*bs
)
538 return bdrv_flush(bs
->file
);
541 static int qed_create(const char *filename
, uint32_t cluster_size
,
542 uint64_t image_size
, uint32_t table_size
,
543 const char *backing_file
, const char *backing_fmt
)
547 .cluster_size
= cluster_size
,
548 .table_size
= table_size
,
551 .compat_features
= 0,
552 .l1_table_offset
= cluster_size
,
553 .image_size
= image_size
,
556 uint8_t *l1_table
= NULL
;
557 size_t l1_size
= header
.cluster_size
* header
.table_size
;
559 BlockDriverState
*bs
= NULL
;
561 ret
= bdrv_create_file(filename
, NULL
);
566 ret
= bdrv_file_open(&bs
, filename
, BDRV_O_RDWR
| BDRV_O_CACHE_WB
);
571 /* File must start empty and grow, check truncate is supported */
572 ret
= bdrv_truncate(bs
, 0);
578 header
.features
|= QED_F_BACKING_FILE
;
579 header
.backing_filename_offset
= sizeof(le_header
);
580 header
.backing_filename_size
= strlen(backing_file
);
582 if (qed_fmt_is_raw(backing_fmt
)) {
583 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
587 qed_header_cpu_to_le(&header
, &le_header
);
588 ret
= bdrv_pwrite(bs
, 0, &le_header
, sizeof(le_header
));
592 ret
= bdrv_pwrite(bs
, sizeof(le_header
), backing_file
,
593 header
.backing_filename_size
);
598 l1_table
= g_malloc0(l1_size
);
599 ret
= bdrv_pwrite(bs
, header
.l1_table_offset
, l1_table
, l1_size
);
604 ret
= 0; /* success */
611 static int bdrv_qed_create(const char *filename
, QEMUOptionParameter
*options
)
613 uint64_t image_size
= 0;
614 uint32_t cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
615 uint32_t table_size
= QED_DEFAULT_TABLE_SIZE
;
616 const char *backing_file
= NULL
;
617 const char *backing_fmt
= NULL
;
619 while (options
&& options
->name
) {
620 if (!strcmp(options
->name
, BLOCK_OPT_SIZE
)) {
621 image_size
= options
->value
.n
;
622 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FILE
)) {
623 backing_file
= options
->value
.s
;
624 } else if (!strcmp(options
->name
, BLOCK_OPT_BACKING_FMT
)) {
625 backing_fmt
= options
->value
.s
;
626 } else if (!strcmp(options
->name
, BLOCK_OPT_CLUSTER_SIZE
)) {
627 if (options
->value
.n
) {
628 cluster_size
= options
->value
.n
;
630 } else if (!strcmp(options
->name
, BLOCK_OPT_TABLE_SIZE
)) {
631 if (options
->value
.n
) {
632 table_size
= options
->value
.n
;
638 if (!qed_is_cluster_size_valid(cluster_size
)) {
639 fprintf(stderr
, "QED cluster size must be within range [%u, %u] and power of 2\n",
640 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
643 if (!qed_is_table_size_valid(table_size
)) {
644 fprintf(stderr
, "QED table size must be within range [%u, %u] and power of 2\n",
645 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
648 if (!qed_is_image_size_valid(image_size
, cluster_size
, table_size
)) {
649 fprintf(stderr
, "QED image size must be a non-zero multiple of "
650 "cluster size and less than %" PRIu64
" bytes\n",
651 qed_max_image_size(cluster_size
, table_size
));
655 return qed_create(filename
, cluster_size
, image_size
, table_size
,
656 backing_file
, backing_fmt
);
664 static void qed_is_allocated_cb(void *opaque
, int ret
, uint64_t offset
, size_t len
)
666 QEDIsAllocatedCB
*cb
= opaque
;
667 *cb
->pnum
= len
/ BDRV_SECTOR_SIZE
;
668 cb
->is_allocated
= (ret
== QED_CLUSTER_FOUND
|| ret
== QED_CLUSTER_ZERO
);
671 static int bdrv_qed_is_allocated(BlockDriverState
*bs
, int64_t sector_num
,
672 int nb_sectors
, int *pnum
)
674 BDRVQEDState
*s
= bs
->opaque
;
675 uint64_t pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
676 size_t len
= (size_t)nb_sectors
* BDRV_SECTOR_SIZE
;
677 QEDIsAllocatedCB cb
= {
681 QEDRequest request
= { .l2_table
= NULL
};
683 qed_find_cluster(s
, &request
, pos
, len
, qed_is_allocated_cb
, &cb
);
685 while (cb
.is_allocated
== -1) {
689 qed_unref_l2_cache_entry(request
.l2_table
);
691 return cb
.is_allocated
;
694 static int bdrv_qed_make_empty(BlockDriverState
*bs
)
699 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
701 return acb
->common
.bs
->opaque
;
705 * Read from the backing file or zero-fill if no backing file
708 * @pos: Byte position in device
709 * @qiov: Destination I/O vector
710 * @cb: Completion function
711 * @opaque: User data for completion function
713 * This function reads qiov->size bytes starting at pos from the backing file.
714 * If there is no backing file then zeroes are read.
716 static void qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
718 BlockDriverCompletionFunc
*cb
, void *opaque
)
720 BlockDriverAIOCB
*aiocb
;
721 uint64_t backing_length
= 0;
724 /* If there is a backing file, get its length. Treat the absence of a
725 * backing file like a zero length backing file.
727 if (s
->bs
->backing_hd
) {
728 int64_t l
= bdrv_getlength(s
->bs
->backing_hd
);
736 /* Zero all sectors if reading beyond the end of the backing file */
737 if (pos
>= backing_length
||
738 pos
+ qiov
->size
> backing_length
) {
739 qemu_iovec_memset(qiov
, 0, qiov
->size
);
742 /* Complete now if there are no backing file sectors to read */
743 if (pos
>= backing_length
) {
748 /* If the read straddles the end of the backing file, shorten it */
749 size
= MIN((uint64_t)backing_length
- pos
, qiov
->size
);
751 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING
);
752 aiocb
= bdrv_aio_readv(s
->bs
->backing_hd
, pos
/ BDRV_SECTOR_SIZE
,
753 qiov
, size
/ BDRV_SECTOR_SIZE
, cb
, opaque
);
765 } CopyFromBackingFileCB
;
767 static void qed_copy_from_backing_file_cb(void *opaque
, int ret
)
769 CopyFromBackingFileCB
*copy_cb
= opaque
;
770 qemu_vfree(copy_cb
->iov
.iov_base
);
771 gencb_complete(©_cb
->gencb
, ret
);
774 static void qed_copy_from_backing_file_write(void *opaque
, int ret
)
776 CopyFromBackingFileCB
*copy_cb
= opaque
;
777 BDRVQEDState
*s
= copy_cb
->s
;
778 BlockDriverAIOCB
*aiocb
;
781 qed_copy_from_backing_file_cb(copy_cb
, ret
);
785 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
786 aiocb
= bdrv_aio_writev(s
->bs
->file
, copy_cb
->offset
/ BDRV_SECTOR_SIZE
,
788 copy_cb
->qiov
.size
/ BDRV_SECTOR_SIZE
,
789 qed_copy_from_backing_file_cb
, copy_cb
);
791 qed_copy_from_backing_file_cb(copy_cb
, -EIO
);
796 * Copy data from backing file into the image
799 * @pos: Byte position in device
800 * @len: Number of bytes
801 * @offset: Byte offset in image file
802 * @cb: Completion function
803 * @opaque: User data for completion function
805 static void qed_copy_from_backing_file(BDRVQEDState
*s
, uint64_t pos
,
806 uint64_t len
, uint64_t offset
,
807 BlockDriverCompletionFunc
*cb
,
810 CopyFromBackingFileCB
*copy_cb
;
812 /* Skip copy entirely if there is no work to do */
818 copy_cb
= gencb_alloc(sizeof(*copy_cb
), cb
, opaque
);
820 copy_cb
->offset
= offset
;
821 copy_cb
->iov
.iov_base
= qemu_blockalign(s
->bs
, len
);
822 copy_cb
->iov
.iov_len
= len
;
823 qemu_iovec_init_external(©_cb
->qiov
, ©_cb
->iov
, 1);
825 qed_read_backing_file(s
, pos
, ©_cb
->qiov
,
826 qed_copy_from_backing_file_write
, copy_cb
);
830 * Link one or more contiguous clusters into a table
834 * @index: First cluster index
835 * @n: Number of contiguous clusters
836 * @cluster: First cluster offset
838 * The cluster offset may be an allocated byte offset in the image file, the
839 * zero cluster marker, or the unallocated cluster marker.
841 static void qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
, int index
,
842 unsigned int n
, uint64_t cluster
)
845 for (i
= index
; i
< index
+ n
; i
++) {
846 table
->offsets
[i
] = cluster
;
847 if (!qed_offset_is_unalloc_cluster(cluster
) &&
848 !qed_offset_is_zero_cluster(cluster
)) {
849 cluster
+= s
->header
.cluster_size
;
854 static void qed_aio_complete_bh(void *opaque
)
856 QEDAIOCB
*acb
= opaque
;
857 BlockDriverCompletionFunc
*cb
= acb
->common
.cb
;
858 void *user_opaque
= acb
->common
.opaque
;
859 int ret
= acb
->bh_ret
;
860 bool *finished
= acb
->finished
;
862 qemu_bh_delete(acb
->bh
);
863 qemu_aio_release(acb
);
865 /* Invoke callback */
866 cb(user_opaque
, ret
);
868 /* Signal cancel completion */
874 static void qed_aio_complete(QEDAIOCB
*acb
, int ret
)
876 BDRVQEDState
*s
= acb_to_s(acb
);
878 trace_qed_aio_complete(s
, acb
, ret
);
881 qemu_iovec_destroy(&acb
->cur_qiov
);
882 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
884 /* Arrange for a bh to invoke the completion function */
886 acb
->bh
= qemu_bh_new(qed_aio_complete_bh
, acb
);
887 qemu_bh_schedule(acb
->bh
);
889 /* Start next allocating write request waiting behind this one. Note that
890 * requests enqueue themselves when they first hit an unallocated cluster
891 * but they wait until the entire request is finished before waking up the
892 * next request in the queue. This ensures that we don't cycle through
893 * requests multiple times but rather finish one at a time completely.
895 if (acb
== QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
896 QSIMPLEQ_REMOVE_HEAD(&s
->allocating_write_reqs
, next
);
897 acb
= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
);
899 qed_aio_next_io(acb
, 0);
900 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
901 qed_start_need_check_timer(s
);
907 * Commit the current L2 table to the cache
909 static void qed_commit_l2_update(void *opaque
, int ret
)
911 QEDAIOCB
*acb
= opaque
;
912 BDRVQEDState
*s
= acb_to_s(acb
);
913 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
915 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
917 /* This is guaranteed to succeed because we just committed the entry to the
920 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
,
922 assert(acb
->request
.l2_table
!= NULL
);
924 qed_aio_next_io(opaque
, ret
);
928 * Update L1 table with new L2 table offset and write it out
930 static void qed_aio_write_l1_update(void *opaque
, int ret
)
932 QEDAIOCB
*acb
= opaque
;
933 BDRVQEDState
*s
= acb_to_s(acb
);
937 qed_aio_complete(acb
, ret
);
941 index
= qed_l1_index(s
, acb
->cur_pos
);
942 s
->l1_table
->offsets
[index
] = acb
->request
.l2_table
->offset
;
944 qed_write_l1_table(s
, index
, 1, qed_commit_l2_update
, acb
);
948 * Update L2 table with new cluster offsets and write them out
950 static void qed_aio_write_l2_update(void *opaque
, int ret
)
952 QEDAIOCB
*acb
= opaque
;
953 BDRVQEDState
*s
= acb_to_s(acb
);
954 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
962 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
963 acb
->request
.l2_table
= qed_new_l2_table(s
);
966 index
= qed_l2_index(s
, acb
->cur_pos
);
967 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
971 /* Write out the whole new L2 table */
972 qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true,
973 qed_aio_write_l1_update
, acb
);
975 /* Write out only the updated part of the L2 table */
976 qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
, false,
977 qed_aio_next_io
, acb
);
982 qed_aio_complete(acb
, ret
);
986 * Flush new data clusters before updating the L2 table
988 * This flush is necessary when a backing file is in use. A crash during an
989 * allocating write could result in empty clusters in the image. If the write
990 * only touched a subregion of the cluster, then backing image sectors have
991 * been lost in the untouched region. The solution is to flush after writing a
992 * new data cluster and before updating the L2 table.
994 static void qed_aio_write_flush_before_l2_update(void *opaque
, int ret
)
996 QEDAIOCB
*acb
= opaque
;
997 BDRVQEDState
*s
= acb_to_s(acb
);
999 if (!bdrv_aio_flush(s
->bs
->file
, qed_aio_write_l2_update
, opaque
)) {
1000 qed_aio_complete(acb
, -EIO
);
1005 * Write data to the image file
1007 static void qed_aio_write_main(void *opaque
, int ret
)
1009 QEDAIOCB
*acb
= opaque
;
1010 BDRVQEDState
*s
= acb_to_s(acb
);
1011 uint64_t offset
= acb
->cur_cluster
+
1012 qed_offset_into_cluster(s
, acb
->cur_pos
);
1013 BlockDriverCompletionFunc
*next_fn
;
1014 BlockDriverAIOCB
*file_acb
;
1016 trace_qed_aio_write_main(s
, acb
, ret
, offset
, acb
->cur_qiov
.size
);
1019 qed_aio_complete(acb
, ret
);
1023 if (acb
->find_cluster_ret
== QED_CLUSTER_FOUND
) {
1024 next_fn
= qed_aio_next_io
;
1026 if (s
->bs
->backing_hd
) {
1027 next_fn
= qed_aio_write_flush_before_l2_update
;
1029 next_fn
= qed_aio_write_l2_update
;
1033 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1034 file_acb
= bdrv_aio_writev(s
->bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1036 acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1039 qed_aio_complete(acb
, -EIO
);
1044 * Populate back untouched region of new data cluster
1046 static void qed_aio_write_postfill(void *opaque
, int ret
)
1048 QEDAIOCB
*acb
= opaque
;
1049 BDRVQEDState
*s
= acb_to_s(acb
);
1050 uint64_t start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1052 qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1053 uint64_t offset
= acb
->cur_cluster
+
1054 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1058 qed_aio_complete(acb
, ret
);
1062 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1063 qed_copy_from_backing_file(s
, start
, len
, offset
,
1064 qed_aio_write_main
, acb
);
1068 * Populate front untouched region of new data cluster
1070 static void qed_aio_write_prefill(void *opaque
, int ret
)
1072 QEDAIOCB
*acb
= opaque
;
1073 BDRVQEDState
*s
= acb_to_s(acb
);
1074 uint64_t start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1075 uint64_t len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1077 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1078 qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
,
1079 qed_aio_write_postfill
, acb
);
1083 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1085 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1087 /* The flush before L2 update path ensures consistency */
1088 if (s
->bs
->backing_hd
) {
1092 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1096 * Write new data cluster
1098 * @acb: Write request
1099 * @len: Length in bytes
1101 * This path is taken when writing to previously unallocated clusters.
1103 static void qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1105 BDRVQEDState
*s
= acb_to_s(acb
);
1107 /* Cancel timer when the first allocating request comes in */
1108 if (QSIMPLEQ_EMPTY(&s
->allocating_write_reqs
)) {
1109 qed_cancel_need_check_timer(s
);
1112 /* Freeze this request if another allocating write is in progress */
1113 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
)) {
1114 QSIMPLEQ_INSERT_TAIL(&s
->allocating_write_reqs
, acb
, next
);
1116 if (acb
!= QSIMPLEQ_FIRST(&s
->allocating_write_reqs
) ||
1117 s
->allocating_write_reqs_plugged
) {
1118 return; /* wait for existing request to finish */
1121 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1122 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1123 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1124 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1126 if (qed_should_set_need_check(s
)) {
1127 s
->header
.features
|= QED_F_NEED_CHECK
;
1128 qed_write_header(s
, qed_aio_write_prefill
, acb
);
1130 qed_aio_write_prefill(acb
, 0);
1135 * Write data cluster in place
1137 * @acb: Write request
1138 * @offset: Cluster offset in bytes
1139 * @len: Length in bytes
1141 * This path is taken when writing to already allocated clusters.
1143 static void qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
, size_t len
)
1145 /* Calculate the I/O vector */
1146 acb
->cur_cluster
= offset
;
1147 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1149 /* Do the actual write */
1150 qed_aio_write_main(acb
, 0);
1154 * Write data cluster
1156 * @opaque: Write request
1157 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1159 * @offset: Cluster offset in bytes
1160 * @len: Length in bytes
1162 * Callback from qed_find_cluster().
1164 static void qed_aio_write_data(void *opaque
, int ret
,
1165 uint64_t offset
, size_t len
)
1167 QEDAIOCB
*acb
= opaque
;
1169 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1171 acb
->find_cluster_ret
= ret
;
1174 case QED_CLUSTER_FOUND
:
1175 qed_aio_write_inplace(acb
, offset
, len
);
1178 case QED_CLUSTER_L2
:
1179 case QED_CLUSTER_L1
:
1180 case QED_CLUSTER_ZERO
:
1181 qed_aio_write_alloc(acb
, len
);
1185 qed_aio_complete(acb
, ret
);
1193 * @opaque: Read request
1194 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1196 * @offset: Cluster offset in bytes
1197 * @len: Length in bytes
1199 * Callback from qed_find_cluster().
1201 static void qed_aio_read_data(void *opaque
, int ret
,
1202 uint64_t offset
, size_t len
)
1204 QEDAIOCB
*acb
= opaque
;
1205 BDRVQEDState
*s
= acb_to_s(acb
);
1206 BlockDriverState
*bs
= acb
->common
.bs
;
1207 BlockDriverAIOCB
*file_acb
;
1209 /* Adjust offset into cluster */
1210 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1212 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1218 qemu_iovec_copy(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1220 /* Handle zero cluster and backing file reads */
1221 if (ret
== QED_CLUSTER_ZERO
) {
1222 qemu_iovec_memset(&acb
->cur_qiov
, 0, acb
->cur_qiov
.size
);
1223 qed_aio_next_io(acb
, 0);
1225 } else if (ret
!= QED_CLUSTER_FOUND
) {
1226 qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
,
1227 qed_aio_next_io
, acb
);
1231 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1232 file_acb
= bdrv_aio_readv(bs
->file
, offset
/ BDRV_SECTOR_SIZE
,
1234 acb
->cur_qiov
.size
/ BDRV_SECTOR_SIZE
,
1235 qed_aio_next_io
, acb
);
1243 qed_aio_complete(acb
, ret
);
1247 * Begin next I/O or complete the request
1249 static void qed_aio_next_io(void *opaque
, int ret
)
1251 QEDAIOCB
*acb
= opaque
;
1252 BDRVQEDState
*s
= acb_to_s(acb
);
1253 QEDFindClusterFunc
*io_fn
=
1254 acb
->is_write
? qed_aio_write_data
: qed_aio_read_data
;
1256 trace_qed_aio_next_io(s
, acb
, ret
, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1258 /* Handle I/O error */
1260 qed_aio_complete(acb
, ret
);
1264 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1265 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1266 qemu_iovec_reset(&acb
->cur_qiov
);
1268 /* Complete request */
1269 if (acb
->cur_pos
>= acb
->end_pos
) {
1270 qed_aio_complete(acb
, 0);
1274 /* Find next cluster and start I/O */
1275 qed_find_cluster(s
, &acb
->request
,
1276 acb
->cur_pos
, acb
->end_pos
- acb
->cur_pos
,
1280 static BlockDriverAIOCB
*qed_aio_setup(BlockDriverState
*bs
,
1282 QEMUIOVector
*qiov
, int nb_sectors
,
1283 BlockDriverCompletionFunc
*cb
,
1284 void *opaque
, bool is_write
)
1286 QEDAIOCB
*acb
= qemu_aio_get(&qed_aio_pool
, bs
, cb
, opaque
);
1288 trace_qed_aio_setup(bs
->opaque
, acb
, sector_num
, nb_sectors
,
1291 acb
->is_write
= is_write
;
1292 acb
->finished
= NULL
;
1294 acb
->qiov_offset
= 0;
1295 acb
->cur_pos
= (uint64_t)sector_num
* BDRV_SECTOR_SIZE
;
1296 acb
->end_pos
= acb
->cur_pos
+ nb_sectors
* BDRV_SECTOR_SIZE
;
1297 acb
->request
.l2_table
= NULL
;
1298 qemu_iovec_init(&acb
->cur_qiov
, qiov
->niov
);
1301 qed_aio_next_io(acb
, 0);
1302 return &acb
->common
;
1305 static BlockDriverAIOCB
*bdrv_qed_aio_readv(BlockDriverState
*bs
,
1307 QEMUIOVector
*qiov
, int nb_sectors
,
1308 BlockDriverCompletionFunc
*cb
,
1311 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, false);
1314 static BlockDriverAIOCB
*bdrv_qed_aio_writev(BlockDriverState
*bs
,
1316 QEMUIOVector
*qiov
, int nb_sectors
,
1317 BlockDriverCompletionFunc
*cb
,
1320 return qed_aio_setup(bs
, sector_num
, qiov
, nb_sectors
, cb
, opaque
, true);
1323 static BlockDriverAIOCB
*bdrv_qed_aio_flush(BlockDriverState
*bs
,
1324 BlockDriverCompletionFunc
*cb
,
1327 return bdrv_aio_flush(bs
->file
, cb
, opaque
);
1330 static int bdrv_qed_truncate(BlockDriverState
*bs
, int64_t offset
)
1332 BDRVQEDState
*s
= bs
->opaque
;
1333 uint64_t old_image_size
;
1336 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1337 s
->header
.table_size
)) {
1341 /* Shrinking is currently not supported */
1342 if ((uint64_t)offset
< s
->header
.image_size
) {
1346 old_image_size
= s
->header
.image_size
;
1347 s
->header
.image_size
= offset
;
1348 ret
= qed_write_header_sync(s
);
1350 s
->header
.image_size
= old_image_size
;
1355 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1357 BDRVQEDState
*s
= bs
->opaque
;
1358 return s
->header
.image_size
;
1361 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1363 BDRVQEDState
*s
= bs
->opaque
;
1365 memset(bdi
, 0, sizeof(*bdi
));
1366 bdi
->cluster_size
= s
->header
.cluster_size
;
1370 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1371 const char *backing_file
,
1372 const char *backing_fmt
)
1374 BDRVQEDState
*s
= bs
->opaque
;
1375 QEDHeader new_header
, le_header
;
1377 size_t buffer_len
, backing_file_len
;
1380 /* Refuse to set backing filename if unknown compat feature bits are
1381 * active. If the image uses an unknown compat feature then we may not
1382 * know the layout of data following the header structure and cannot safely
1385 if (backing_file
&& (s
->header
.compat_features
&
1386 ~QED_COMPAT_FEATURE_MASK
)) {
1390 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1392 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1393 QED_F_BACKING_FORMAT_NO_PROBE
);
1395 /* Adjust feature flags */
1397 new_header
.features
|= QED_F_BACKING_FILE
;
1399 if (qed_fmt_is_raw(backing_fmt
)) {
1400 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1404 /* Calculate new header size */
1405 backing_file_len
= 0;
1408 backing_file_len
= strlen(backing_file
);
1411 buffer_len
= sizeof(new_header
);
1412 new_header
.backing_filename_offset
= buffer_len
;
1413 new_header
.backing_filename_size
= backing_file_len
;
1414 buffer_len
+= backing_file_len
;
1416 /* Make sure we can rewrite header without failing */
1417 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1421 /* Prepare new header */
1422 buffer
= g_malloc(buffer_len
);
1424 qed_header_cpu_to_le(&new_header
, &le_header
);
1425 memcpy(buffer
, &le_header
, sizeof(le_header
));
1426 buffer_len
= sizeof(le_header
);
1428 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1429 buffer_len
+= backing_file_len
;
1431 /* Write new header */
1432 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer
, buffer_len
);
1435 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1440 static int bdrv_qed_check(BlockDriverState
*bs
, BdrvCheckResult
*result
)
1442 BDRVQEDState
*s
= bs
->opaque
;
1444 return qed_check(s
, result
, false);
1447 static QEMUOptionParameter qed_create_options
[] = {
1449 .name
= BLOCK_OPT_SIZE
,
1451 .help
= "Virtual disk size (in bytes)"
1453 .name
= BLOCK_OPT_BACKING_FILE
,
1455 .help
= "File name of a base image"
1457 .name
= BLOCK_OPT_BACKING_FMT
,
1459 .help
= "Image format of the base image"
1461 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1463 .help
= "Cluster size (in bytes)",
1464 .value
= { .n
= QED_DEFAULT_CLUSTER_SIZE
},
1466 .name
= BLOCK_OPT_TABLE_SIZE
,
1468 .help
= "L1/L2 table size (in clusters)"
1470 { /* end of list */ }
1473 static BlockDriver bdrv_qed
= {
1474 .format_name
= "qed",
1475 .instance_size
= sizeof(BDRVQEDState
),
1476 .create_options
= qed_create_options
,
1478 .bdrv_probe
= bdrv_qed_probe
,
1479 .bdrv_open
= bdrv_qed_open
,
1480 .bdrv_close
= bdrv_qed_close
,
1481 .bdrv_create
= bdrv_qed_create
,
1482 .bdrv_flush
= bdrv_qed_flush
,
1483 .bdrv_is_allocated
= bdrv_qed_is_allocated
,
1484 .bdrv_make_empty
= bdrv_qed_make_empty
,
1485 .bdrv_aio_readv
= bdrv_qed_aio_readv
,
1486 .bdrv_aio_writev
= bdrv_qed_aio_writev
,
1487 .bdrv_aio_flush
= bdrv_qed_aio_flush
,
1488 .bdrv_truncate
= bdrv_qed_truncate
,
1489 .bdrv_getlength
= bdrv_qed_getlength
,
1490 .bdrv_get_info
= bdrv_qed_get_info
,
1491 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1492 .bdrv_check
= bdrv_qed_check
,
1495 static void bdrv_qed_init(void)
1497 bdrv_register(&bdrv_qed
);
1500 block_init(bdrv_qed_init
);