Revert "x86: Save/restore PAT MSR"
[qemu.git] / block / qed.c
blob75ae2440ee44ce7c9a69b1fc3095ae112cb21a1d
1 /*
2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
6 * Authors:
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "trace.h"
16 #include "qed.h"
17 #include "qerror.h"
19 static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
21 QEDAIOCB *acb = (QEDAIOCB *)blockacb;
22 bool finished = false;
24 /* Wait for the request to finish */
25 acb->finished = &finished;
26 while (!finished) {
27 qemu_aio_wait();
31 static AIOPool qed_aio_pool = {
32 .aiocb_size = sizeof(QEDAIOCB),
33 .cancel = qed_aio_cancel,
36 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
37 const char *filename)
39 const QEDHeader *header = (const QEDHeader *)buf;
41 if (buf_size < sizeof(*header)) {
42 return 0;
44 if (le32_to_cpu(header->magic) != QED_MAGIC) {
45 return 0;
47 return 100;
50 /**
51 * Check whether an image format is raw
53 * @fmt: Backing file format, may be NULL
55 static bool qed_fmt_is_raw(const char *fmt)
57 return fmt && strcmp(fmt, "raw") == 0;
60 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
62 cpu->magic = le32_to_cpu(le->magic);
63 cpu->cluster_size = le32_to_cpu(le->cluster_size);
64 cpu->table_size = le32_to_cpu(le->table_size);
65 cpu->header_size = le32_to_cpu(le->header_size);
66 cpu->features = le64_to_cpu(le->features);
67 cpu->compat_features = le64_to_cpu(le->compat_features);
68 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
69 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
70 cpu->image_size = le64_to_cpu(le->image_size);
71 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
72 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
77 le->magic = cpu_to_le32(cpu->magic);
78 le->cluster_size = cpu_to_le32(cpu->cluster_size);
79 le->table_size = cpu_to_le32(cpu->table_size);
80 le->header_size = cpu_to_le32(cpu->header_size);
81 le->features = cpu_to_le64(cpu->features);
82 le->compat_features = cpu_to_le64(cpu->compat_features);
83 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
84 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
85 le->image_size = cpu_to_le64(cpu->image_size);
86 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
87 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90 static int qed_write_header_sync(BDRVQEDState *s)
92 QEDHeader le;
93 int ret;
95 qed_header_cpu_to_le(&s->header, &le);
96 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
97 if (ret != sizeof(le)) {
98 return ret;
100 return 0;
103 typedef struct {
104 GenericCB gencb;
105 BDRVQEDState *s;
106 struct iovec iov;
107 QEMUIOVector qiov;
108 int nsectors;
109 uint8_t *buf;
110 } QEDWriteHeaderCB;
112 static void qed_write_header_cb(void *opaque, int ret)
114 QEDWriteHeaderCB *write_header_cb = opaque;
116 qemu_vfree(write_header_cb->buf);
117 gencb_complete(write_header_cb, ret);
120 static void qed_write_header_read_cb(void *opaque, int ret)
122 QEDWriteHeaderCB *write_header_cb = opaque;
123 BDRVQEDState *s = write_header_cb->s;
124 BlockDriverAIOCB *acb;
126 if (ret) {
127 qed_write_header_cb(write_header_cb, ret);
128 return;
131 /* Update header */
132 qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134 acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
135 write_header_cb->nsectors, qed_write_header_cb,
136 write_header_cb);
137 if (!acb) {
138 qed_write_header_cb(write_header_cb, -EIO);
143 * Update header in-place (does not rewrite backing filename or other strings)
145 * This function only updates known header fields in-place and does not affect
146 * extra data after the QED header.
148 static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
149 void *opaque)
151 /* We must write full sectors for O_DIRECT but cannot necessarily generate
152 * the data following the header if an unrecognized compat feature is
153 * active. Therefore, first read the sectors containing the header, update
154 * them, and write back.
157 BlockDriverAIOCB *acb;
158 int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
159 BDRV_SECTOR_SIZE;
160 size_t len = nsectors * BDRV_SECTOR_SIZE;
161 QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
162 cb, opaque);
164 write_header_cb->s = s;
165 write_header_cb->nsectors = nsectors;
166 write_header_cb->buf = qemu_blockalign(s->bs, len);
167 write_header_cb->iov.iov_base = write_header_cb->buf;
168 write_header_cb->iov.iov_len = len;
169 qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
171 acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
172 qed_write_header_read_cb, write_header_cb);
173 if (!acb) {
174 qed_write_header_cb(write_header_cb, -EIO);
178 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
180 uint64_t table_entries;
181 uint64_t l2_size;
183 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
184 l2_size = table_entries * cluster_size;
186 return l2_size * table_entries;
189 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
191 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
192 cluster_size > QED_MAX_CLUSTER_SIZE) {
193 return false;
195 if (cluster_size & (cluster_size - 1)) {
196 return false; /* not power of 2 */
198 return true;
201 static bool qed_is_table_size_valid(uint32_t table_size)
203 if (table_size < QED_MIN_TABLE_SIZE ||
204 table_size > QED_MAX_TABLE_SIZE) {
205 return false;
207 if (table_size & (table_size - 1)) {
208 return false; /* not power of 2 */
210 return true;
213 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
214 uint32_t table_size)
216 if (image_size % BDRV_SECTOR_SIZE != 0) {
217 return false; /* not multiple of sector size */
219 if (image_size > qed_max_image_size(cluster_size, table_size)) {
220 return false; /* image is too large */
222 return true;
226 * Read a string of known length from the image file
228 * @file: Image file
229 * @offset: File offset to start of string, in bytes
230 * @n: String length in bytes
231 * @buf: Destination buffer
232 * @buflen: Destination buffer length in bytes
233 * @ret: 0 on success, -errno on failure
235 * The string is NUL-terminated.
237 static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
238 char *buf, size_t buflen)
240 int ret;
241 if (n >= buflen) {
242 return -EINVAL;
244 ret = bdrv_pread(file, offset, buf, n);
245 if (ret < 0) {
246 return ret;
248 buf[n] = '\0';
249 return 0;
253 * Allocate new clusters
255 * @s: QED state
256 * @n: Number of contiguous clusters to allocate
257 * @ret: Offset of first allocated cluster
259 * This function only produces the offset where the new clusters should be
260 * written. It updates BDRVQEDState but does not make any changes to the image
261 * file.
263 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
265 uint64_t offset = s->file_size;
266 s->file_size += n * s->header.cluster_size;
267 return offset;
270 QEDTable *qed_alloc_table(BDRVQEDState *s)
272 /* Honor O_DIRECT memory alignment requirements */
273 return qemu_blockalign(s->bs,
274 s->header.cluster_size * s->header.table_size);
278 * Allocate a new zeroed L2 table
280 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
282 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
284 l2_table->table = qed_alloc_table(s);
285 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
287 memset(l2_table->table->offsets, 0,
288 s->header.cluster_size * s->header.table_size);
289 return l2_table;
292 static void qed_aio_next_io(void *opaque, int ret);
294 static int bdrv_qed_open(BlockDriverState *bs, int flags)
296 BDRVQEDState *s = bs->opaque;
297 QEDHeader le_header;
298 int64_t file_size;
299 int ret;
301 s->bs = bs;
302 QSIMPLEQ_INIT(&s->allocating_write_reqs);
304 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
305 if (ret < 0) {
306 return ret;
308 ret = 0; /* ret should always be 0 or -errno */
309 qed_header_le_to_cpu(&le_header, &s->header);
311 if (s->header.magic != QED_MAGIC) {
312 return -EINVAL;
314 if (s->header.features & ~QED_FEATURE_MASK) {
315 /* image uses unsupported feature bits */
316 char buf[64];
317 snprintf(buf, sizeof(buf), "%" PRIx64,
318 s->header.features & ~QED_FEATURE_MASK);
319 qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
320 bs->device_name, "QED", buf);
321 return -ENOTSUP;
323 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
324 return -EINVAL;
327 /* Round down file size to the last cluster */
328 file_size = bdrv_getlength(bs->file);
329 if (file_size < 0) {
330 return file_size;
332 s->file_size = qed_start_of_cluster(s, file_size);
334 if (!qed_is_table_size_valid(s->header.table_size)) {
335 return -EINVAL;
337 if (!qed_is_image_size_valid(s->header.image_size,
338 s->header.cluster_size,
339 s->header.table_size)) {
340 return -EINVAL;
342 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
343 return -EINVAL;
346 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
347 sizeof(uint64_t);
348 s->l2_shift = ffs(s->header.cluster_size) - 1;
349 s->l2_mask = s->table_nelems - 1;
350 s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
352 if ((s->header.features & QED_F_BACKING_FILE)) {
353 if ((uint64_t)s->header.backing_filename_offset +
354 s->header.backing_filename_size >
355 s->header.cluster_size * s->header.header_size) {
356 return -EINVAL;
359 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
360 s->header.backing_filename_size, bs->backing_file,
361 sizeof(bs->backing_file));
362 if (ret < 0) {
363 return ret;
366 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
367 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
371 /* Reset unknown autoclear feature bits. This is a backwards
372 * compatibility mechanism that allows images to be opened by older
373 * programs, which "knock out" unknown feature bits. When an image is
374 * opened by a newer program again it can detect that the autoclear
375 * feature is no longer valid.
377 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
378 !bdrv_is_read_only(bs->file)) {
379 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
381 ret = qed_write_header_sync(s);
382 if (ret) {
383 return ret;
386 /* From here on only known autoclear feature bits are valid */
387 bdrv_flush(bs->file);
390 s->l1_table = qed_alloc_table(s);
391 qed_init_l2_cache(&s->l2_cache);
393 ret = qed_read_l1_table_sync(s);
394 if (ret) {
395 goto out;
398 /* If image was not closed cleanly, check consistency */
399 if (s->header.features & QED_F_NEED_CHECK) {
400 /* Read-only images cannot be fixed. There is no risk of corruption
401 * since write operations are not possible. Therefore, allow
402 * potentially inconsistent images to be opened read-only. This can
403 * aid data recovery from an otherwise inconsistent image.
405 if (!bdrv_is_read_only(bs->file)) {
406 BdrvCheckResult result = {0};
408 ret = qed_check(s, &result, true);
409 if (!ret && !result.corruptions && !result.check_errors) {
410 /* Ensure fixes reach storage before clearing check bit */
411 bdrv_flush(s->bs);
413 s->header.features &= ~QED_F_NEED_CHECK;
414 qed_write_header_sync(s);
419 out:
420 if (ret) {
421 qed_free_l2_cache(&s->l2_cache);
422 qemu_vfree(s->l1_table);
424 return ret;
427 static void bdrv_qed_close(BlockDriverState *bs)
429 BDRVQEDState *s = bs->opaque;
431 /* Ensure writes reach stable storage */
432 bdrv_flush(bs->file);
434 /* Clean shutdown, no check required on next open */
435 if (s->header.features & QED_F_NEED_CHECK) {
436 s->header.features &= ~QED_F_NEED_CHECK;
437 qed_write_header_sync(s);
440 qed_free_l2_cache(&s->l2_cache);
441 qemu_vfree(s->l1_table);
444 static int bdrv_qed_flush(BlockDriverState *bs)
446 return bdrv_flush(bs->file);
449 static int qed_create(const char *filename, uint32_t cluster_size,
450 uint64_t image_size, uint32_t table_size,
451 const char *backing_file, const char *backing_fmt)
453 QEDHeader header = {
454 .magic = QED_MAGIC,
455 .cluster_size = cluster_size,
456 .table_size = table_size,
457 .header_size = 1,
458 .features = 0,
459 .compat_features = 0,
460 .l1_table_offset = cluster_size,
461 .image_size = image_size,
463 QEDHeader le_header;
464 uint8_t *l1_table = NULL;
465 size_t l1_size = header.cluster_size * header.table_size;
466 int ret = 0;
467 BlockDriverState *bs = NULL;
469 ret = bdrv_create_file(filename, NULL);
470 if (ret < 0) {
471 return ret;
474 ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
475 if (ret < 0) {
476 return ret;
479 /* File must start empty and grow, check truncate is supported */
480 ret = bdrv_truncate(bs, 0);
481 if (ret < 0) {
482 goto out;
485 if (backing_file) {
486 header.features |= QED_F_BACKING_FILE;
487 header.backing_filename_offset = sizeof(le_header);
488 header.backing_filename_size = strlen(backing_file);
490 if (qed_fmt_is_raw(backing_fmt)) {
491 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
495 qed_header_cpu_to_le(&header, &le_header);
496 ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
497 if (ret < 0) {
498 goto out;
500 ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
501 header.backing_filename_size);
502 if (ret < 0) {
503 goto out;
506 l1_table = qemu_mallocz(l1_size);
507 ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
508 if (ret < 0) {
509 goto out;
512 ret = 0; /* success */
513 out:
514 qemu_free(l1_table);
515 bdrv_delete(bs);
516 return ret;
519 static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
521 uint64_t image_size = 0;
522 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
523 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
524 const char *backing_file = NULL;
525 const char *backing_fmt = NULL;
527 while (options && options->name) {
528 if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
529 image_size = options->value.n;
530 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
531 backing_file = options->value.s;
532 } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
533 backing_fmt = options->value.s;
534 } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
535 if (options->value.n) {
536 cluster_size = options->value.n;
538 } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
539 if (options->value.n) {
540 table_size = options->value.n;
543 options++;
546 if (!qed_is_cluster_size_valid(cluster_size)) {
547 fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
548 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
549 return -EINVAL;
551 if (!qed_is_table_size_valid(table_size)) {
552 fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
553 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
554 return -EINVAL;
556 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
557 fprintf(stderr, "QED image size must be a non-zero multiple of "
558 "cluster size and less than %" PRIu64 " bytes\n",
559 qed_max_image_size(cluster_size, table_size));
560 return -EINVAL;
563 return qed_create(filename, cluster_size, image_size, table_size,
564 backing_file, backing_fmt);
567 typedef struct {
568 int is_allocated;
569 int *pnum;
570 } QEDIsAllocatedCB;
572 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
574 QEDIsAllocatedCB *cb = opaque;
575 *cb->pnum = len / BDRV_SECTOR_SIZE;
576 cb->is_allocated = ret == QED_CLUSTER_FOUND;
579 static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
580 int nb_sectors, int *pnum)
582 BDRVQEDState *s = bs->opaque;
583 uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
584 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
585 QEDIsAllocatedCB cb = {
586 .is_allocated = -1,
587 .pnum = pnum,
589 QEDRequest request = { .l2_table = NULL };
591 async_context_push();
593 qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
595 while (cb.is_allocated == -1) {
596 qemu_aio_wait();
599 async_context_pop();
601 qed_unref_l2_cache_entry(request.l2_table);
603 return cb.is_allocated;
606 static int bdrv_qed_make_empty(BlockDriverState *bs)
608 return -ENOTSUP;
611 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
613 return acb->common.bs->opaque;
617 * Read from the backing file or zero-fill if no backing file
619 * @s: QED state
620 * @pos: Byte position in device
621 * @qiov: Destination I/O vector
622 * @cb: Completion function
623 * @opaque: User data for completion function
625 * This function reads qiov->size bytes starting at pos from the backing file.
626 * If there is no backing file then zeroes are read.
628 static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
629 QEMUIOVector *qiov,
630 BlockDriverCompletionFunc *cb, void *opaque)
632 BlockDriverAIOCB *aiocb;
633 uint64_t backing_length = 0;
634 size_t size;
636 /* If there is a backing file, get its length. Treat the absence of a
637 * backing file like a zero length backing file.
639 if (s->bs->backing_hd) {
640 int64_t l = bdrv_getlength(s->bs->backing_hd);
641 if (l < 0) {
642 cb(opaque, l);
643 return;
645 backing_length = l;
648 /* Zero all sectors if reading beyond the end of the backing file */
649 if (pos >= backing_length ||
650 pos + qiov->size > backing_length) {
651 qemu_iovec_memset(qiov, 0, qiov->size);
654 /* Complete now if there are no backing file sectors to read */
655 if (pos >= backing_length) {
656 cb(opaque, 0);
657 return;
660 /* If the read straddles the end of the backing file, shorten it */
661 size = MIN((uint64_t)backing_length - pos, qiov->size);
663 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
664 aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
665 qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
666 if (!aiocb) {
667 cb(opaque, -EIO);
671 typedef struct {
672 GenericCB gencb;
673 BDRVQEDState *s;
674 QEMUIOVector qiov;
675 struct iovec iov;
676 uint64_t offset;
677 } CopyFromBackingFileCB;
679 static void qed_copy_from_backing_file_cb(void *opaque, int ret)
681 CopyFromBackingFileCB *copy_cb = opaque;
682 qemu_vfree(copy_cb->iov.iov_base);
683 gencb_complete(&copy_cb->gencb, ret);
686 static void qed_copy_from_backing_file_write(void *opaque, int ret)
688 CopyFromBackingFileCB *copy_cb = opaque;
689 BDRVQEDState *s = copy_cb->s;
690 BlockDriverAIOCB *aiocb;
692 if (ret) {
693 qed_copy_from_backing_file_cb(copy_cb, ret);
694 return;
697 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
698 aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
699 &copy_cb->qiov,
700 copy_cb->qiov.size / BDRV_SECTOR_SIZE,
701 qed_copy_from_backing_file_cb, copy_cb);
702 if (!aiocb) {
703 qed_copy_from_backing_file_cb(copy_cb, -EIO);
708 * Copy data from backing file into the image
710 * @s: QED state
711 * @pos: Byte position in device
712 * @len: Number of bytes
713 * @offset: Byte offset in image file
714 * @cb: Completion function
715 * @opaque: User data for completion function
717 static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
718 uint64_t len, uint64_t offset,
719 BlockDriverCompletionFunc *cb,
720 void *opaque)
722 CopyFromBackingFileCB *copy_cb;
724 /* Skip copy entirely if there is no work to do */
725 if (len == 0) {
726 cb(opaque, 0);
727 return;
730 copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
731 copy_cb->s = s;
732 copy_cb->offset = offset;
733 copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
734 copy_cb->iov.iov_len = len;
735 qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
737 qed_read_backing_file(s, pos, &copy_cb->qiov,
738 qed_copy_from_backing_file_write, copy_cb);
742 * Link one or more contiguous clusters into a table
744 * @s: QED state
745 * @table: L2 table
746 * @index: First cluster index
747 * @n: Number of contiguous clusters
748 * @cluster: First cluster byte offset in image file
750 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
751 unsigned int n, uint64_t cluster)
753 int i;
754 for (i = index; i < index + n; i++) {
755 table->offsets[i] = cluster;
756 cluster += s->header.cluster_size;
760 static void qed_aio_complete_bh(void *opaque)
762 QEDAIOCB *acb = opaque;
763 BlockDriverCompletionFunc *cb = acb->common.cb;
764 void *user_opaque = acb->common.opaque;
765 int ret = acb->bh_ret;
766 bool *finished = acb->finished;
768 qemu_bh_delete(acb->bh);
769 qemu_aio_release(acb);
771 /* Invoke callback */
772 cb(user_opaque, ret);
774 /* Signal cancel completion */
775 if (finished) {
776 *finished = true;
780 static void qed_aio_complete(QEDAIOCB *acb, int ret)
782 BDRVQEDState *s = acb_to_s(acb);
784 trace_qed_aio_complete(s, acb, ret);
786 /* Free resources */
787 qemu_iovec_destroy(&acb->cur_qiov);
788 qed_unref_l2_cache_entry(acb->request.l2_table);
790 /* Arrange for a bh to invoke the completion function */
791 acb->bh_ret = ret;
792 acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
793 qemu_bh_schedule(acb->bh);
795 /* Start next allocating write request waiting behind this one. Note that
796 * requests enqueue themselves when they first hit an unallocated cluster
797 * but they wait until the entire request is finished before waking up the
798 * next request in the queue. This ensures that we don't cycle through
799 * requests multiple times but rather finish one at a time completely.
801 if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
802 QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
803 acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
804 if (acb) {
805 qed_aio_next_io(acb, 0);
811 * Commit the current L2 table to the cache
813 static void qed_commit_l2_update(void *opaque, int ret)
815 QEDAIOCB *acb = opaque;
816 BDRVQEDState *s = acb_to_s(acb);
817 CachedL2Table *l2_table = acb->request.l2_table;
819 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
821 /* This is guaranteed to succeed because we just committed the entry to the
822 * cache.
824 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache,
825 l2_table->offset);
826 assert(acb->request.l2_table != NULL);
828 qed_aio_next_io(opaque, ret);
832 * Update L1 table with new L2 table offset and write it out
834 static void qed_aio_write_l1_update(void *opaque, int ret)
836 QEDAIOCB *acb = opaque;
837 BDRVQEDState *s = acb_to_s(acb);
838 int index;
840 if (ret) {
841 qed_aio_complete(acb, ret);
842 return;
845 index = qed_l1_index(s, acb->cur_pos);
846 s->l1_table->offsets[index] = acb->request.l2_table->offset;
848 qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
852 * Update L2 table with new cluster offsets and write them out
854 static void qed_aio_write_l2_update(void *opaque, int ret)
856 QEDAIOCB *acb = opaque;
857 BDRVQEDState *s = acb_to_s(acb);
858 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
859 int index;
861 if (ret) {
862 goto err;
865 if (need_alloc) {
866 qed_unref_l2_cache_entry(acb->request.l2_table);
867 acb->request.l2_table = qed_new_l2_table(s);
870 index = qed_l2_index(s, acb->cur_pos);
871 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
872 acb->cur_cluster);
874 if (need_alloc) {
875 /* Write out the whole new L2 table */
876 qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
877 qed_aio_write_l1_update, acb);
878 } else {
879 /* Write out only the updated part of the L2 table */
880 qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
881 qed_aio_next_io, acb);
883 return;
885 err:
886 qed_aio_complete(acb, ret);
890 * Flush new data clusters before updating the L2 table
892 * This flush is necessary when a backing file is in use. A crash during an
893 * allocating write could result in empty clusters in the image. If the write
894 * only touched a subregion of the cluster, then backing image sectors have
895 * been lost in the untouched region. The solution is to flush after writing a
896 * new data cluster and before updating the L2 table.
898 static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
900 QEDAIOCB *acb = opaque;
901 BDRVQEDState *s = acb_to_s(acb);
903 if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
904 qed_aio_complete(acb, -EIO);
909 * Write data to the image file
911 static void qed_aio_write_main(void *opaque, int ret)
913 QEDAIOCB *acb = opaque;
914 BDRVQEDState *s = acb_to_s(acb);
915 uint64_t offset = acb->cur_cluster +
916 qed_offset_into_cluster(s, acb->cur_pos);
917 BlockDriverCompletionFunc *next_fn;
918 BlockDriverAIOCB *file_acb;
920 trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
922 if (ret) {
923 qed_aio_complete(acb, ret);
924 return;
927 if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
928 next_fn = qed_aio_next_io;
929 } else {
930 if (s->bs->backing_hd) {
931 next_fn = qed_aio_write_flush_before_l2_update;
932 } else {
933 next_fn = qed_aio_write_l2_update;
937 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
938 file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
939 &acb->cur_qiov,
940 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
941 next_fn, acb);
942 if (!file_acb) {
943 qed_aio_complete(acb, -EIO);
948 * Populate back untouched region of new data cluster
950 static void qed_aio_write_postfill(void *opaque, int ret)
952 QEDAIOCB *acb = opaque;
953 BDRVQEDState *s = acb_to_s(acb);
954 uint64_t start = acb->cur_pos + acb->cur_qiov.size;
955 uint64_t len =
956 qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
957 uint64_t offset = acb->cur_cluster +
958 qed_offset_into_cluster(s, acb->cur_pos) +
959 acb->cur_qiov.size;
961 if (ret) {
962 qed_aio_complete(acb, ret);
963 return;
966 trace_qed_aio_write_postfill(s, acb, start, len, offset);
967 qed_copy_from_backing_file(s, start, len, offset,
968 qed_aio_write_main, acb);
972 * Populate front untouched region of new data cluster
974 static void qed_aio_write_prefill(void *opaque, int ret)
976 QEDAIOCB *acb = opaque;
977 BDRVQEDState *s = acb_to_s(acb);
978 uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
979 uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
981 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
982 qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
983 qed_aio_write_postfill, acb);
987 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
989 static bool qed_should_set_need_check(BDRVQEDState *s)
991 /* The flush before L2 update path ensures consistency */
992 if (s->bs->backing_hd) {
993 return false;
996 return !(s->header.features & QED_F_NEED_CHECK);
1000 * Write new data cluster
1002 * @acb: Write request
1003 * @len: Length in bytes
1005 * This path is taken when writing to previously unallocated clusters.
1007 static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1009 BDRVQEDState *s = acb_to_s(acb);
1011 /* Freeze this request if another allocating write is in progress */
1012 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1013 QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1015 if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1016 return; /* wait for existing request to finish */
1019 acb->cur_nclusters = qed_bytes_to_clusters(s,
1020 qed_offset_into_cluster(s, acb->cur_pos) + len);
1021 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1022 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1024 if (qed_should_set_need_check(s)) {
1025 s->header.features |= QED_F_NEED_CHECK;
1026 qed_write_header(s, qed_aio_write_prefill, acb);
1027 } else {
1028 qed_aio_write_prefill(acb, 0);
1033 * Write data cluster in place
1035 * @acb: Write request
1036 * @offset: Cluster offset in bytes
1037 * @len: Length in bytes
1039 * This path is taken when writing to already allocated clusters.
1041 static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1043 /* Calculate the I/O vector */
1044 acb->cur_cluster = offset;
1045 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1047 /* Do the actual write */
1048 qed_aio_write_main(acb, 0);
1052 * Write data cluster
1054 * @opaque: Write request
1055 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1056 * or -errno
1057 * @offset: Cluster offset in bytes
1058 * @len: Length in bytes
1060 * Callback from qed_find_cluster().
1062 static void qed_aio_write_data(void *opaque, int ret,
1063 uint64_t offset, size_t len)
1065 QEDAIOCB *acb = opaque;
1067 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1069 acb->find_cluster_ret = ret;
1071 switch (ret) {
1072 case QED_CLUSTER_FOUND:
1073 qed_aio_write_inplace(acb, offset, len);
1074 break;
1076 case QED_CLUSTER_L2:
1077 case QED_CLUSTER_L1:
1078 qed_aio_write_alloc(acb, len);
1079 break;
1081 default:
1082 qed_aio_complete(acb, ret);
1083 break;
1088 * Read data cluster
1090 * @opaque: Read request
1091 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1092 * or -errno
1093 * @offset: Cluster offset in bytes
1094 * @len: Length in bytes
1096 * Callback from qed_find_cluster().
1098 static void qed_aio_read_data(void *opaque, int ret,
1099 uint64_t offset, size_t len)
1101 QEDAIOCB *acb = opaque;
1102 BDRVQEDState *s = acb_to_s(acb);
1103 BlockDriverState *bs = acb->common.bs;
1104 BlockDriverAIOCB *file_acb;
1106 /* Adjust offset into cluster */
1107 offset += qed_offset_into_cluster(s, acb->cur_pos);
1109 trace_qed_aio_read_data(s, acb, ret, offset, len);
1111 if (ret < 0) {
1112 goto err;
1115 qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1117 /* Handle backing file and unallocated sparse hole reads */
1118 if (ret != QED_CLUSTER_FOUND) {
1119 qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1120 qed_aio_next_io, acb);
1121 return;
1124 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1125 file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1126 &acb->cur_qiov,
1127 acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1128 qed_aio_next_io, acb);
1129 if (!file_acb) {
1130 ret = -EIO;
1131 goto err;
1133 return;
1135 err:
1136 qed_aio_complete(acb, ret);
1140 * Begin next I/O or complete the request
1142 static void qed_aio_next_io(void *opaque, int ret)
1144 QEDAIOCB *acb = opaque;
1145 BDRVQEDState *s = acb_to_s(acb);
1146 QEDFindClusterFunc *io_fn =
1147 acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1149 trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1151 /* Handle I/O error */
1152 if (ret) {
1153 qed_aio_complete(acb, ret);
1154 return;
1157 acb->qiov_offset += acb->cur_qiov.size;
1158 acb->cur_pos += acb->cur_qiov.size;
1159 qemu_iovec_reset(&acb->cur_qiov);
1161 /* Complete request */
1162 if (acb->cur_pos >= acb->end_pos) {
1163 qed_aio_complete(acb, 0);
1164 return;
1167 /* Find next cluster and start I/O */
1168 qed_find_cluster(s, &acb->request,
1169 acb->cur_pos, acb->end_pos - acb->cur_pos,
1170 io_fn, acb);
1173 static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1174 int64_t sector_num,
1175 QEMUIOVector *qiov, int nb_sectors,
1176 BlockDriverCompletionFunc *cb,
1177 void *opaque, bool is_write)
1179 QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1181 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1182 opaque, is_write);
1184 acb->is_write = is_write;
1185 acb->finished = NULL;
1186 acb->qiov = qiov;
1187 acb->qiov_offset = 0;
1188 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1189 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1190 acb->request.l2_table = NULL;
1191 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1193 /* Start request */
1194 qed_aio_next_io(acb, 0);
1195 return &acb->common;
1198 static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1199 int64_t sector_num,
1200 QEMUIOVector *qiov, int nb_sectors,
1201 BlockDriverCompletionFunc *cb,
1202 void *opaque)
1204 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1207 static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1208 int64_t sector_num,
1209 QEMUIOVector *qiov, int nb_sectors,
1210 BlockDriverCompletionFunc *cb,
1211 void *opaque)
1213 return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1216 static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1217 BlockDriverCompletionFunc *cb,
1218 void *opaque)
1220 return bdrv_aio_flush(bs->file, cb, opaque);
1223 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1225 return -ENOTSUP;
1228 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1230 BDRVQEDState *s = bs->opaque;
1231 return s->header.image_size;
1234 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1236 BDRVQEDState *s = bs->opaque;
1238 memset(bdi, 0, sizeof(*bdi));
1239 bdi->cluster_size = s->header.cluster_size;
1240 return 0;
1243 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1244 const char *backing_file,
1245 const char *backing_fmt)
1247 BDRVQEDState *s = bs->opaque;
1248 QEDHeader new_header, le_header;
1249 void *buffer;
1250 size_t buffer_len, backing_file_len;
1251 int ret;
1253 /* Refuse to set backing filename if unknown compat feature bits are
1254 * active. If the image uses an unknown compat feature then we may not
1255 * know the layout of data following the header structure and cannot safely
1256 * add a new string.
1258 if (backing_file && (s->header.compat_features &
1259 ~QED_COMPAT_FEATURE_MASK)) {
1260 return -ENOTSUP;
1263 memcpy(&new_header, &s->header, sizeof(new_header));
1265 new_header.features &= ~(QED_F_BACKING_FILE |
1266 QED_F_BACKING_FORMAT_NO_PROBE);
1268 /* Adjust feature flags */
1269 if (backing_file) {
1270 new_header.features |= QED_F_BACKING_FILE;
1272 if (qed_fmt_is_raw(backing_fmt)) {
1273 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1277 /* Calculate new header size */
1278 backing_file_len = 0;
1280 if (backing_file) {
1281 backing_file_len = strlen(backing_file);
1284 buffer_len = sizeof(new_header);
1285 new_header.backing_filename_offset = buffer_len;
1286 new_header.backing_filename_size = backing_file_len;
1287 buffer_len += backing_file_len;
1289 /* Make sure we can rewrite header without failing */
1290 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1291 return -ENOSPC;
1294 /* Prepare new header */
1295 buffer = qemu_malloc(buffer_len);
1297 qed_header_cpu_to_le(&new_header, &le_header);
1298 memcpy(buffer, &le_header, sizeof(le_header));
1299 buffer_len = sizeof(le_header);
1301 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1302 buffer_len += backing_file_len;
1304 /* Write new header */
1305 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1306 qemu_free(buffer);
1307 if (ret == 0) {
1308 memcpy(&s->header, &new_header, sizeof(new_header));
1310 return ret;
1313 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1315 BDRVQEDState *s = bs->opaque;
1317 return qed_check(s, result, false);
1320 static QEMUOptionParameter qed_create_options[] = {
1322 .name = BLOCK_OPT_SIZE,
1323 .type = OPT_SIZE,
1324 .help = "Virtual disk size (in bytes)"
1325 }, {
1326 .name = BLOCK_OPT_BACKING_FILE,
1327 .type = OPT_STRING,
1328 .help = "File name of a base image"
1329 }, {
1330 .name = BLOCK_OPT_BACKING_FMT,
1331 .type = OPT_STRING,
1332 .help = "Image format of the base image"
1333 }, {
1334 .name = BLOCK_OPT_CLUSTER_SIZE,
1335 .type = OPT_SIZE,
1336 .help = "Cluster size (in bytes)"
1337 }, {
1338 .name = BLOCK_OPT_TABLE_SIZE,
1339 .type = OPT_SIZE,
1340 .help = "L1/L2 table size (in clusters)"
1342 { /* end of list */ }
1345 static BlockDriver bdrv_qed = {
1346 .format_name = "qed",
1347 .instance_size = sizeof(BDRVQEDState),
1348 .create_options = qed_create_options,
1350 .bdrv_probe = bdrv_qed_probe,
1351 .bdrv_open = bdrv_qed_open,
1352 .bdrv_close = bdrv_qed_close,
1353 .bdrv_create = bdrv_qed_create,
1354 .bdrv_flush = bdrv_qed_flush,
1355 .bdrv_is_allocated = bdrv_qed_is_allocated,
1356 .bdrv_make_empty = bdrv_qed_make_empty,
1357 .bdrv_aio_readv = bdrv_qed_aio_readv,
1358 .bdrv_aio_writev = bdrv_qed_aio_writev,
1359 .bdrv_aio_flush = bdrv_qed_aio_flush,
1360 .bdrv_truncate = bdrv_qed_truncate,
1361 .bdrv_getlength = bdrv_qed_getlength,
1362 .bdrv_get_info = bdrv_qed_get_info,
1363 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1364 .bdrv_check = bdrv_qed_check,
1367 static void bdrv_qed_init(void)
1369 bdrv_register(&bdrv_qed);
1372 block_init(bdrv_qed_init);