2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
36 #include "qemu-common.h"
41 #include "qemu-timer.h"
42 #if defined(CONFIG_USER_ONLY)
45 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
46 #include <sys/param.h>
47 #if __FreeBSD_version >= 700104
48 #define HAVE_KINFO_GETVMMAP
49 #define sigqueue sigqueue_freebsd /* avoid redefinition */
52 #include <machine/profile.h>
62 //#define DEBUG_TB_INVALIDATE
65 //#define DEBUG_UNASSIGNED
67 /* make various TB consistency checks */
68 //#define DEBUG_TB_CHECK
69 //#define DEBUG_TLB_CHECK
71 //#define DEBUG_IOPORT
72 //#define DEBUG_SUBPAGE
74 #if !defined(CONFIG_USER_ONLY)
75 /* TB consistency checks only implemented for usermode emulation. */
79 #define SMC_BITMAP_USE_THRESHOLD 10
81 static TranslationBlock
*tbs
;
82 int code_gen_max_blocks
;
83 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
85 /* any access to the tbs or the page table must use this lock */
86 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
88 #if defined(__arm__) || defined(__sparc_v9__)
89 /* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
91 section close to code segment. */
92 #define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
96 /* Maximum alignment for Win32 is 16. */
97 #define code_gen_section \
98 __attribute__((aligned (16)))
100 #define code_gen_section \
101 __attribute__((aligned (32)))
104 uint8_t code_gen_prologue
[1024] code_gen_section
;
105 static uint8_t *code_gen_buffer
;
106 static unsigned long code_gen_buffer_size
;
107 /* threshold to flush the translated code buffer */
108 static unsigned long code_gen_buffer_max_size
;
109 uint8_t *code_gen_ptr
;
111 #if !defined(CONFIG_USER_ONLY)
113 uint8_t *phys_ram_dirty
;
114 static int in_migration
;
116 typedef struct RAMBlock
{
120 struct RAMBlock
*next
;
123 static RAMBlock
*ram_blocks
;
124 /* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
125 then we can no longer assume contiguous ram offsets, and external uses
126 of this variable will break. */
127 ram_addr_t last_ram_offset
;
131 /* current CPU in the current thread. It is only valid inside
133 CPUState
*cpu_single_env
;
134 /* 0 = Do not count executed instructions.
135 1 = Precise instruction counting.
136 2 = Adaptive rate instruction counting. */
138 /* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
142 typedef struct PageDesc
{
143 /* list of TBs intersecting this ram page */
144 TranslationBlock
*first_tb
;
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count
;
148 uint8_t *code_bitmap
;
149 #if defined(CONFIG_USER_ONLY)
154 /* In system mode we want L1_MAP to be based on ram offsets,
155 while in user mode we want it to be based on virtual addresses. */
156 #if !defined(CONFIG_USER_ONLY)
157 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
158 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
160 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
163 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
166 /* Size of the L2 (and L3, etc) page tables. */
168 #define L2_SIZE (1 << L2_BITS)
170 /* The bits remaining after N lower levels of page tables. */
171 #define P_L1_BITS_REM \
172 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
173 #define V_L1_BITS_REM \
174 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
176 /* Size of the L1 page table. Avoid silly small sizes. */
177 #if P_L1_BITS_REM < 4
178 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
180 #define P_L1_BITS P_L1_BITS_REM
183 #if V_L1_BITS_REM < 4
184 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
186 #define V_L1_BITS V_L1_BITS_REM
189 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
190 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
192 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
193 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
195 unsigned long qemu_real_host_page_size
;
196 unsigned long qemu_host_page_bits
;
197 unsigned long qemu_host_page_size
;
198 unsigned long qemu_host_page_mask
;
200 /* This is a multi-level map on the virtual address space.
201 The bottom level has pointers to PageDesc. */
202 static void *l1_map
[V_L1_SIZE
];
204 #if !defined(CONFIG_USER_ONLY)
205 typedef struct PhysPageDesc
{
206 /* offset in host memory of the page + io_index in the low bits */
207 ram_addr_t phys_offset
;
208 ram_addr_t region_offset
;
211 /* This is a multi-level map on the physical address space.
212 The bottom level has pointers to PhysPageDesc. */
213 static void *l1_phys_map
[P_L1_SIZE
];
215 static void io_mem_init(void);
217 /* io memory support */
218 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
219 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
220 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
221 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
222 static int io_mem_watch
;
227 static const char *logfilename
= "qemu.log";
229 static const char *logfilename
= "/tmp/qemu.log";
233 static int log_append
= 0;
236 #if !defined(CONFIG_USER_ONLY)
237 static int tlb_flush_count
;
239 static int tb_flush_count
;
240 static int tb_phys_invalidate_count
;
243 static void map_exec(void *addr
, long size
)
246 VirtualProtect(addr
, size
,
247 PAGE_EXECUTE_READWRITE
, &old_protect
);
251 static void map_exec(void *addr
, long size
)
253 unsigned long start
, end
, page_size
;
255 page_size
= getpagesize();
256 start
= (unsigned long)addr
;
257 start
&= ~(page_size
- 1);
259 end
= (unsigned long)addr
+ size
;
260 end
+= page_size
- 1;
261 end
&= ~(page_size
- 1);
263 mprotect((void *)start
, end
- start
,
264 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
268 static void page_init(void)
270 /* NOTE: we can always suppose that qemu_host_page_size >=
274 SYSTEM_INFO system_info
;
276 GetSystemInfo(&system_info
);
277 qemu_real_host_page_size
= system_info
.dwPageSize
;
280 qemu_real_host_page_size
= getpagesize();
282 if (qemu_host_page_size
== 0)
283 qemu_host_page_size
= qemu_real_host_page_size
;
284 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
285 qemu_host_page_size
= TARGET_PAGE_SIZE
;
286 qemu_host_page_bits
= 0;
287 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
288 qemu_host_page_bits
++;
289 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
291 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
293 #ifdef HAVE_KINFO_GETVMMAP
294 struct kinfo_vmentry
*freep
;
297 freep
= kinfo_getvmmap(getpid(), &cnt
);
300 for (i
= 0; i
< cnt
; i
++) {
301 unsigned long startaddr
, endaddr
;
303 startaddr
= freep
[i
].kve_start
;
304 endaddr
= freep
[i
].kve_end
;
305 if (h2g_valid(startaddr
)) {
306 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
308 if (h2g_valid(endaddr
)) {
309 endaddr
= h2g(endaddr
);
310 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
312 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
314 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
325 last_brk
= (unsigned long)sbrk(0);
327 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
328 f
= fopen("/compat/linux/proc/self/maps", "r");
330 f
= fopen("/proc/self/maps", "r");
336 unsigned long startaddr
, endaddr
;
339 n
= fscanf (f
, "%lx-%lx %*[^\n]\n", &startaddr
, &endaddr
);
341 if (n
== 2 && h2g_valid(startaddr
)) {
342 startaddr
= h2g(startaddr
) & TARGET_PAGE_MASK
;
344 if (h2g_valid(endaddr
)) {
345 endaddr
= h2g(endaddr
);
349 page_set_flags(startaddr
, endaddr
, PAGE_RESERVED
);
361 static PageDesc
*page_find_alloc(tb_page_addr_t index
, int alloc
)
367 #if defined(CONFIG_USER_ONLY)
368 /* We can't use qemu_malloc because it may recurse into a locked mutex.
369 Neither can we record the new pages we reserve while allocating a
370 given page because that may recurse into an unallocated page table
371 entry. Stuff the allocations we do make into a queue and process
372 them after having completed one entire page table allocation. */
374 unsigned long reserve
[2 * (V_L1_SHIFT
/ L2_BITS
)];
377 # define ALLOC(P, SIZE) \
379 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
380 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
381 if (h2g_valid(P)) { \
382 reserve[reserve_idx] = h2g(P); \
383 reserve[reserve_idx + 1] = SIZE; \
388 # define ALLOC(P, SIZE) \
389 do { P = qemu_mallocz(SIZE); } while (0)
392 /* Level 1. Always allocated. */
393 lp
= l1_map
+ ((index
>> V_L1_SHIFT
) & (V_L1_SIZE
- 1));
396 for (i
= V_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
403 ALLOC(p
, sizeof(void *) * L2_SIZE
);
407 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
415 ALLOC(pd
, sizeof(PageDesc
) * L2_SIZE
);
420 #if defined(CONFIG_USER_ONLY)
421 for (i
= 0; i
< reserve_idx
; i
+= 2) {
422 unsigned long addr
= reserve
[i
];
423 unsigned long len
= reserve
[i
+ 1];
425 page_set_flags(addr
& TARGET_PAGE_MASK
,
426 TARGET_PAGE_ALIGN(addr
+ len
),
431 return pd
+ (index
& (L2_SIZE
- 1));
434 static inline PageDesc
*page_find(tb_page_addr_t index
)
436 return page_find_alloc(index
, 0);
439 #if !defined(CONFIG_USER_ONLY)
440 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
446 /* Level 1. Always allocated. */
447 lp
= l1_phys_map
+ ((index
>> P_L1_SHIFT
) & (P_L1_SIZE
- 1));
450 for (i
= P_L1_SHIFT
/ L2_BITS
- 1; i
> 0; i
--) {
456 *lp
= p
= qemu_mallocz(sizeof(void *) * L2_SIZE
);
458 lp
= p
+ ((index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1));
469 *lp
= pd
= qemu_malloc(sizeof(PhysPageDesc
) * L2_SIZE
);
471 for (i
= 0; i
< L2_SIZE
; i
++) {
472 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
473 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
477 return pd
+ (index
& (L2_SIZE
- 1));
480 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
482 return phys_page_find_alloc(index
, 0);
485 static void tlb_protect_code(ram_addr_t ram_addr
);
486 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
488 #define mmap_lock() do { } while(0)
489 #define mmap_unlock() do { } while(0)
492 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
494 #if defined(CONFIG_USER_ONLY)
495 /* Currently it is not recommended to allocate big chunks of data in
496 user mode. It will change when a dedicated libc will be used */
497 #define USE_STATIC_CODE_GEN_BUFFER
500 #ifdef USE_STATIC_CODE_GEN_BUFFER
501 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
]
502 __attribute__((aligned (CODE_GEN_ALIGN
)));
505 static void code_gen_alloc(unsigned long tb_size
)
507 #ifdef USE_STATIC_CODE_GEN_BUFFER
508 code_gen_buffer
= static_code_gen_buffer
;
509 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
510 map_exec(code_gen_buffer
, code_gen_buffer_size
);
512 code_gen_buffer_size
= tb_size
;
513 if (code_gen_buffer_size
== 0) {
514 #if defined(CONFIG_USER_ONLY)
515 /* in user mode, phys_ram_size is not meaningful */
516 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
518 /* XXX: needs adjustments */
519 code_gen_buffer_size
= (unsigned long)(ram_size
/ 4);
522 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
523 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
524 /* The code gen buffer location may have constraints depending on
525 the host cpu and OS */
526 #if defined(__linux__)
531 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
532 #if defined(__x86_64__)
534 /* Cannot map more than that */
535 if (code_gen_buffer_size
> (800 * 1024 * 1024))
536 code_gen_buffer_size
= (800 * 1024 * 1024);
537 #elif defined(__sparc_v9__)
538 // Map the buffer below 2G, so we can use direct calls and branches
540 start
= (void *) 0x60000000UL
;
541 if (code_gen_buffer_size
> (512 * 1024 * 1024))
542 code_gen_buffer_size
= (512 * 1024 * 1024);
543 #elif defined(__arm__)
544 /* Map the buffer below 32M, so we can use direct calls and branches */
546 start
= (void *) 0x01000000UL
;
547 if (code_gen_buffer_size
> 16 * 1024 * 1024)
548 code_gen_buffer_size
= 16 * 1024 * 1024;
550 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
551 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
553 if (code_gen_buffer
== MAP_FAILED
) {
554 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
558 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
562 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
563 #if defined(__x86_64__)
564 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
565 * 0x40000000 is free */
567 addr
= (void *)0x40000000;
568 /* Cannot map more than that */
569 if (code_gen_buffer_size
> (800 * 1024 * 1024))
570 code_gen_buffer_size
= (800 * 1024 * 1024);
572 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
573 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
575 if (code_gen_buffer
== MAP_FAILED
) {
576 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
581 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
582 map_exec(code_gen_buffer
, code_gen_buffer_size
);
584 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
585 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
586 code_gen_buffer_max_size
= code_gen_buffer_size
-
587 code_gen_max_block_size();
588 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
589 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
592 /* Must be called before using the QEMU cpus. 'tb_size' is the size
593 (in bytes) allocated to the translation buffer. Zero means default
595 void cpu_exec_init_all(unsigned long tb_size
)
598 code_gen_alloc(tb_size
);
599 code_gen_ptr
= code_gen_buffer
;
601 #if !defined(CONFIG_USER_ONLY)
606 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
608 static int cpu_common_post_load(void *opaque
, int version_id
)
610 CPUState
*env
= opaque
;
612 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
613 version_id is increased. */
614 env
->interrupt_request
&= ~0x01;
620 static const VMStateDescription vmstate_cpu_common
= {
621 .name
= "cpu_common",
623 .minimum_version_id
= 1,
624 .minimum_version_id_old
= 1,
625 .post_load
= cpu_common_post_load
,
626 .fields
= (VMStateField
[]) {
627 VMSTATE_UINT32(halted
, CPUState
),
628 VMSTATE_UINT32(interrupt_request
, CPUState
),
629 VMSTATE_END_OF_LIST()
634 CPUState
*qemu_get_cpu(int cpu
)
636 CPUState
*env
= first_cpu
;
639 if (env
->cpu_index
== cpu
)
647 void cpu_exec_init(CPUState
*env
)
652 #if defined(CONFIG_USER_ONLY)
655 env
->next_cpu
= NULL
;
658 while (*penv
!= NULL
) {
659 penv
= &(*penv
)->next_cpu
;
662 env
->cpu_index
= cpu_index
;
664 QTAILQ_INIT(&env
->breakpoints
);
665 QTAILQ_INIT(&env
->watchpoints
);
667 #if defined(CONFIG_USER_ONLY)
670 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
671 vmstate_register(cpu_index
, &vmstate_cpu_common
, env
);
672 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
673 cpu_save
, cpu_load
, env
);
677 static inline void invalidate_page_bitmap(PageDesc
*p
)
679 if (p
->code_bitmap
) {
680 qemu_free(p
->code_bitmap
);
681 p
->code_bitmap
= NULL
;
683 p
->code_write_count
= 0;
686 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
688 static void page_flush_tb_1 (int level
, void **lp
)
697 for (i
= 0; i
< L2_SIZE
; ++i
) {
698 pd
[i
].first_tb
= NULL
;
699 invalidate_page_bitmap(pd
+ i
);
703 for (i
= 0; i
< L2_SIZE
; ++i
) {
704 page_flush_tb_1 (level
- 1, pp
+ i
);
709 static void page_flush_tb(void)
712 for (i
= 0; i
< V_L1_SIZE
; i
++) {
713 page_flush_tb_1(V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
717 /* flush all the translation blocks */
718 /* XXX: tb_flush is currently not thread safe */
719 void tb_flush(CPUState
*env1
)
722 #if defined(DEBUG_FLUSH)
723 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
724 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
726 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
728 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
729 cpu_abort(env1
, "Internal error: code buffer overflow\n");
733 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
734 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
737 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
740 code_gen_ptr
= code_gen_buffer
;
741 /* XXX: flush processor icache at this point if cache flush is
746 #ifdef DEBUG_TB_CHECK
748 static void tb_invalidate_check(target_ulong address
)
750 TranslationBlock
*tb
;
752 address
&= TARGET_PAGE_MASK
;
753 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
754 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
755 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
756 address
>= tb
->pc
+ tb
->size
)) {
757 printf("ERROR invalidate: address=" TARGET_FMT_lx
758 " PC=%08lx size=%04x\n",
759 address
, (long)tb
->pc
, tb
->size
);
765 /* verify that all the pages have correct rights for code */
766 static void tb_page_check(void)
768 TranslationBlock
*tb
;
769 int i
, flags1
, flags2
;
771 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
772 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
773 flags1
= page_get_flags(tb
->pc
);
774 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
775 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
776 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
777 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
785 /* invalidate one TB */
786 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
789 TranslationBlock
*tb1
;
793 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
796 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
800 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
802 TranslationBlock
*tb1
;
808 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
810 *ptb
= tb1
->page_next
[n1
];
813 ptb
= &tb1
->page_next
[n1
];
817 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
819 TranslationBlock
*tb1
, **ptb
;
822 ptb
= &tb
->jmp_next
[n
];
825 /* find tb(n) in circular list */
829 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
830 if (n1
== n
&& tb1
== tb
)
833 ptb
= &tb1
->jmp_first
;
835 ptb
= &tb1
->jmp_next
[n1
];
838 /* now we can suppress tb(n) from the list */
839 *ptb
= tb
->jmp_next
[n
];
841 tb
->jmp_next
[n
] = NULL
;
845 /* reset the jump entry 'n' of a TB so that it is not chained to
847 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
849 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
852 void tb_phys_invalidate(TranslationBlock
*tb
, tb_page_addr_t page_addr
)
857 tb_page_addr_t phys_pc
;
858 TranslationBlock
*tb1
, *tb2
;
860 /* remove the TB from the hash list */
861 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
862 h
= tb_phys_hash_func(phys_pc
);
863 tb_remove(&tb_phys_hash
[h
], tb
,
864 offsetof(TranslationBlock
, phys_hash_next
));
866 /* remove the TB from the page list */
867 if (tb
->page_addr
[0] != page_addr
) {
868 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
869 tb_page_remove(&p
->first_tb
, tb
);
870 invalidate_page_bitmap(p
);
872 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
873 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
874 tb_page_remove(&p
->first_tb
, tb
);
875 invalidate_page_bitmap(p
);
878 tb_invalidated_flag
= 1;
880 /* remove the TB from the hash list */
881 h
= tb_jmp_cache_hash_func(tb
->pc
);
882 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
883 if (env
->tb_jmp_cache
[h
] == tb
)
884 env
->tb_jmp_cache
[h
] = NULL
;
887 /* suppress this TB from the two jump lists */
888 tb_jmp_remove(tb
, 0);
889 tb_jmp_remove(tb
, 1);
891 /* suppress any remaining jumps to this TB */
897 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
898 tb2
= tb1
->jmp_next
[n1
];
899 tb_reset_jump(tb1
, n1
);
900 tb1
->jmp_next
[n1
] = NULL
;
903 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
905 tb_phys_invalidate_count
++;
908 static inline void set_bits(uint8_t *tab
, int start
, int len
)
914 mask
= 0xff << (start
& 7);
915 if ((start
& ~7) == (end
& ~7)) {
917 mask
&= ~(0xff << (end
& 7));
922 start
= (start
+ 8) & ~7;
924 while (start
< end1
) {
929 mask
= ~(0xff << (end
& 7));
935 static void build_page_bitmap(PageDesc
*p
)
937 int n
, tb_start
, tb_end
;
938 TranslationBlock
*tb
;
940 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
945 tb
= (TranslationBlock
*)((long)tb
& ~3);
946 /* NOTE: this is subtle as a TB may span two physical pages */
948 /* NOTE: tb_end may be after the end of the page, but
949 it is not a problem */
950 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
951 tb_end
= tb_start
+ tb
->size
;
952 if (tb_end
> TARGET_PAGE_SIZE
)
953 tb_end
= TARGET_PAGE_SIZE
;
956 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
958 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
959 tb
= tb
->page_next
[n
];
963 TranslationBlock
*tb_gen_code(CPUState
*env
,
964 target_ulong pc
, target_ulong cs_base
,
965 int flags
, int cflags
)
967 TranslationBlock
*tb
;
969 tb_page_addr_t phys_pc
, phys_page2
;
970 target_ulong virt_page2
;
973 phys_pc
= get_page_addr_code(env
, pc
);
976 /* flush must be done */
978 /* cannot fail at this point */
980 /* Don't forget to invalidate previous TB info. */
981 tb_invalidated_flag
= 1;
983 tc_ptr
= code_gen_ptr
;
985 tb
->cs_base
= cs_base
;
988 cpu_gen_code(env
, tb
, &code_gen_size
);
989 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
991 /* check next page if needed */
992 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
994 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
995 phys_page2
= get_page_addr_code(env
, virt_page2
);
997 tb_link_page(tb
, phys_pc
, phys_page2
);
1001 /* invalidate all TBs which intersect with the target physical page
1002 starting in range [start;end[. NOTE: start and end must refer to
1003 the same physical page. 'is_cpu_write_access' should be true if called
1004 from a real cpu write access: the virtual CPU will exit the current
1005 TB if code is modified inside this TB. */
1006 void tb_invalidate_phys_page_range(tb_page_addr_t start
, tb_page_addr_t end
,
1007 int is_cpu_write_access
)
1009 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
1010 CPUState
*env
= cpu_single_env
;
1011 tb_page_addr_t tb_start
, tb_end
;
1014 #ifdef TARGET_HAS_PRECISE_SMC
1015 int current_tb_not_found
= is_cpu_write_access
;
1016 TranslationBlock
*current_tb
= NULL
;
1017 int current_tb_modified
= 0;
1018 target_ulong current_pc
= 0;
1019 target_ulong current_cs_base
= 0;
1020 int current_flags
= 0;
1021 #endif /* TARGET_HAS_PRECISE_SMC */
1023 p
= page_find(start
>> TARGET_PAGE_BITS
);
1026 if (!p
->code_bitmap
&&
1027 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
1028 is_cpu_write_access
) {
1029 /* build code bitmap */
1030 build_page_bitmap(p
);
1033 /* we remove all the TBs in the range [start, end[ */
1034 /* XXX: see if in some cases it could be faster to invalidate all the code */
1036 while (tb
!= NULL
) {
1038 tb
= (TranslationBlock
*)((long)tb
& ~3);
1039 tb_next
= tb
->page_next
[n
];
1040 /* NOTE: this is subtle as a TB may span two physical pages */
1042 /* NOTE: tb_end may be after the end of the page, but
1043 it is not a problem */
1044 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
1045 tb_end
= tb_start
+ tb
->size
;
1047 tb_start
= tb
->page_addr
[1];
1048 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
1050 if (!(tb_end
<= start
|| tb_start
>= end
)) {
1051 #ifdef TARGET_HAS_PRECISE_SMC
1052 if (current_tb_not_found
) {
1053 current_tb_not_found
= 0;
1055 if (env
->mem_io_pc
) {
1056 /* now we have a real cpu fault */
1057 current_tb
= tb_find_pc(env
->mem_io_pc
);
1060 if (current_tb
== tb
&&
1061 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1062 /* If we are modifying the current TB, we must stop
1063 its execution. We could be more precise by checking
1064 that the modification is after the current PC, but it
1065 would require a specialized function to partially
1066 restore the CPU state */
1068 current_tb_modified
= 1;
1069 cpu_restore_state(current_tb
, env
,
1070 env
->mem_io_pc
, NULL
);
1071 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1074 #endif /* TARGET_HAS_PRECISE_SMC */
1075 /* we need to do that to handle the case where a signal
1076 occurs while doing tb_phys_invalidate() */
1079 saved_tb
= env
->current_tb
;
1080 env
->current_tb
= NULL
;
1082 tb_phys_invalidate(tb
, -1);
1084 env
->current_tb
= saved_tb
;
1085 if (env
->interrupt_request
&& env
->current_tb
)
1086 cpu_interrupt(env
, env
->interrupt_request
);
1091 #if !defined(CONFIG_USER_ONLY)
1092 /* if no code remaining, no need to continue to use slow writes */
1094 invalidate_page_bitmap(p
);
1095 if (is_cpu_write_access
) {
1096 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
1100 #ifdef TARGET_HAS_PRECISE_SMC
1101 if (current_tb_modified
) {
1102 /* we generate a block containing just the instruction
1103 modifying the memory. It will ensure that it cannot modify
1105 env
->current_tb
= NULL
;
1106 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1107 cpu_resume_from_signal(env
, NULL
);
1112 /* len must be <= 8 and start must be a multiple of len */
1113 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start
, int len
)
1119 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1120 cpu_single_env
->mem_io_vaddr
, len
,
1121 cpu_single_env
->eip
,
1122 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1125 p
= page_find(start
>> TARGET_PAGE_BITS
);
1128 if (p
->code_bitmap
) {
1129 offset
= start
& ~TARGET_PAGE_MASK
;
1130 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1131 if (b
& ((1 << len
) - 1))
1135 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1139 #if !defined(CONFIG_SOFTMMU)
1140 static void tb_invalidate_phys_page(tb_page_addr_t addr
,
1141 unsigned long pc
, void *puc
)
1143 TranslationBlock
*tb
;
1146 #ifdef TARGET_HAS_PRECISE_SMC
1147 TranslationBlock
*current_tb
= NULL
;
1148 CPUState
*env
= cpu_single_env
;
1149 int current_tb_modified
= 0;
1150 target_ulong current_pc
= 0;
1151 target_ulong current_cs_base
= 0;
1152 int current_flags
= 0;
1155 addr
&= TARGET_PAGE_MASK
;
1156 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1160 #ifdef TARGET_HAS_PRECISE_SMC
1161 if (tb
&& pc
!= 0) {
1162 current_tb
= tb_find_pc(pc
);
1165 while (tb
!= NULL
) {
1167 tb
= (TranslationBlock
*)((long)tb
& ~3);
1168 #ifdef TARGET_HAS_PRECISE_SMC
1169 if (current_tb
== tb
&&
1170 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1171 /* If we are modifying the current TB, we must stop
1172 its execution. We could be more precise by checking
1173 that the modification is after the current PC, but it
1174 would require a specialized function to partially
1175 restore the CPU state */
1177 current_tb_modified
= 1;
1178 cpu_restore_state(current_tb
, env
, pc
, puc
);
1179 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1182 #endif /* TARGET_HAS_PRECISE_SMC */
1183 tb_phys_invalidate(tb
, addr
);
1184 tb
= tb
->page_next
[n
];
1187 #ifdef TARGET_HAS_PRECISE_SMC
1188 if (current_tb_modified
) {
1189 /* we generate a block containing just the instruction
1190 modifying the memory. It will ensure that it cannot modify
1192 env
->current_tb
= NULL
;
1193 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1194 cpu_resume_from_signal(env
, puc
);
1200 /* add the tb in the target page and protect it if necessary */
1201 static inline void tb_alloc_page(TranslationBlock
*tb
,
1202 unsigned int n
, tb_page_addr_t page_addr
)
1205 TranslationBlock
*last_first_tb
;
1207 tb
->page_addr
[n
] = page_addr
;
1208 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
, 1);
1209 tb
->page_next
[n
] = p
->first_tb
;
1210 last_first_tb
= p
->first_tb
;
1211 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1212 invalidate_page_bitmap(p
);
1214 #if defined(TARGET_HAS_SMC) || 1
1216 #if defined(CONFIG_USER_ONLY)
1217 if (p
->flags
& PAGE_WRITE
) {
1222 /* force the host page as non writable (writes will have a
1223 page fault + mprotect overhead) */
1224 page_addr
&= qemu_host_page_mask
;
1226 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1227 addr
+= TARGET_PAGE_SIZE
) {
1229 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1233 p2
->flags
&= ~PAGE_WRITE
;
1235 mprotect(g2h(page_addr
), qemu_host_page_size
,
1236 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1237 #ifdef DEBUG_TB_INVALIDATE
1238 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1243 /* if some code is already present, then the pages are already
1244 protected. So we handle the case where only the first TB is
1245 allocated in a physical page */
1246 if (!last_first_tb
) {
1247 tlb_protect_code(page_addr
);
1251 #endif /* TARGET_HAS_SMC */
1254 /* Allocate a new translation block. Flush the translation buffer if
1255 too many translation blocks or too much generated code. */
1256 TranslationBlock
*tb_alloc(target_ulong pc
)
1258 TranslationBlock
*tb
;
1260 if (nb_tbs
>= code_gen_max_blocks
||
1261 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1263 tb
= &tbs
[nb_tbs
++];
1269 void tb_free(TranslationBlock
*tb
)
1271 /* In practice this is mostly used for single use temporary TB
1272 Ignore the hard cases and just back up if this TB happens to
1273 be the last one generated. */
1274 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1275 code_gen_ptr
= tb
->tc_ptr
;
1280 /* add a new TB and link it to the physical page tables. phys_page2 is
1281 (-1) to indicate that only one page contains the TB. */
1282 void tb_link_page(TranslationBlock
*tb
,
1283 tb_page_addr_t phys_pc
, tb_page_addr_t phys_page2
)
1286 TranslationBlock
**ptb
;
1288 /* Grab the mmap lock to stop another thread invalidating this TB
1289 before we are done. */
1291 /* add in the physical hash table */
1292 h
= tb_phys_hash_func(phys_pc
);
1293 ptb
= &tb_phys_hash
[h
];
1294 tb
->phys_hash_next
= *ptb
;
1297 /* add in the page list */
1298 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1299 if (phys_page2
!= -1)
1300 tb_alloc_page(tb
, 1, phys_page2
);
1302 tb
->page_addr
[1] = -1;
1304 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1305 tb
->jmp_next
[0] = NULL
;
1306 tb
->jmp_next
[1] = NULL
;
1308 /* init original jump addresses */
1309 if (tb
->tb_next_offset
[0] != 0xffff)
1310 tb_reset_jump(tb
, 0);
1311 if (tb
->tb_next_offset
[1] != 0xffff)
1312 tb_reset_jump(tb
, 1);
1314 #ifdef DEBUG_TB_CHECK
1320 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1321 tb[1].tc_ptr. Return NULL if not found */
1322 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1324 int m_min
, m_max
, m
;
1326 TranslationBlock
*tb
;
1330 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1331 tc_ptr
>= (unsigned long)code_gen_ptr
)
1333 /* binary search (cf Knuth) */
1336 while (m_min
<= m_max
) {
1337 m
= (m_min
+ m_max
) >> 1;
1339 v
= (unsigned long)tb
->tc_ptr
;
1342 else if (tc_ptr
< v
) {
1351 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1353 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1355 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1358 tb1
= tb
->jmp_next
[n
];
1360 /* find head of list */
1363 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1366 tb1
= tb1
->jmp_next
[n1
];
1368 /* we are now sure now that tb jumps to tb1 */
1371 /* remove tb from the jmp_first list */
1372 ptb
= &tb_next
->jmp_first
;
1376 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1377 if (n1
== n
&& tb1
== tb
)
1379 ptb
= &tb1
->jmp_next
[n1
];
1381 *ptb
= tb
->jmp_next
[n
];
1382 tb
->jmp_next
[n
] = NULL
;
1384 /* suppress the jump to next tb in generated code */
1385 tb_reset_jump(tb
, n
);
1387 /* suppress jumps in the tb on which we could have jumped */
1388 tb_reset_jump_recursive(tb_next
);
1392 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1394 tb_reset_jump_recursive2(tb
, 0);
1395 tb_reset_jump_recursive2(tb
, 1);
1398 #if defined(TARGET_HAS_ICE)
1399 #if defined(CONFIG_USER_ONLY)
1400 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1402 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
1405 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1407 target_phys_addr_t addr
;
1409 ram_addr_t ram_addr
;
1412 addr
= cpu_get_phys_page_debug(env
, pc
);
1413 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1415 pd
= IO_MEM_UNASSIGNED
;
1417 pd
= p
->phys_offset
;
1419 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1420 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1423 #endif /* TARGET_HAS_ICE */
1425 #if defined(CONFIG_USER_ONLY)
1426 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1431 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1432 int flags
, CPUWatchpoint
**watchpoint
)
1437 /* Add a watchpoint. */
1438 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1439 int flags
, CPUWatchpoint
**watchpoint
)
1441 target_ulong len_mask
= ~(len
- 1);
1444 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1445 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1446 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1447 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1450 wp
= qemu_malloc(sizeof(*wp
));
1453 wp
->len_mask
= len_mask
;
1456 /* keep all GDB-injected watchpoints in front */
1458 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1460 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1462 tlb_flush_page(env
, addr
);
1469 /* Remove a specific watchpoint. */
1470 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1473 target_ulong len_mask
= ~(len
- 1);
1476 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1477 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1478 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1479 cpu_watchpoint_remove_by_ref(env
, wp
);
1486 /* Remove a specific watchpoint by reference. */
1487 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1489 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1491 tlb_flush_page(env
, watchpoint
->vaddr
);
1493 qemu_free(watchpoint
);
1496 /* Remove all matching watchpoints. */
1497 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1499 CPUWatchpoint
*wp
, *next
;
1501 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1502 if (wp
->flags
& mask
)
1503 cpu_watchpoint_remove_by_ref(env
, wp
);
1508 /* Add a breakpoint. */
1509 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1510 CPUBreakpoint
**breakpoint
)
1512 #if defined(TARGET_HAS_ICE)
1515 bp
= qemu_malloc(sizeof(*bp
));
1520 /* keep all GDB-injected breakpoints in front */
1522 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1524 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1526 breakpoint_invalidate(env
, pc
);
1536 /* Remove a specific breakpoint. */
1537 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1539 #if defined(TARGET_HAS_ICE)
1542 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1543 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1544 cpu_breakpoint_remove_by_ref(env
, bp
);
1554 /* Remove a specific breakpoint by reference. */
1555 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1557 #if defined(TARGET_HAS_ICE)
1558 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1560 breakpoint_invalidate(env
, breakpoint
->pc
);
1562 qemu_free(breakpoint
);
1566 /* Remove all matching breakpoints. */
1567 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1569 #if defined(TARGET_HAS_ICE)
1570 CPUBreakpoint
*bp
, *next
;
1572 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1573 if (bp
->flags
& mask
)
1574 cpu_breakpoint_remove_by_ref(env
, bp
);
1579 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1580 CPU loop after each instruction */
1581 void cpu_single_step(CPUState
*env
, int enabled
)
1583 #if defined(TARGET_HAS_ICE)
1584 if (env
->singlestep_enabled
!= enabled
) {
1585 env
->singlestep_enabled
= enabled
;
1587 kvm_update_guest_debug(env
, 0);
1589 /* must flush all the translated code to avoid inconsistencies */
1590 /* XXX: only flush what is necessary */
1597 /* enable or disable low levels log */
1598 void cpu_set_log(int log_flags
)
1600 loglevel
= log_flags
;
1601 if (loglevel
&& !logfile
) {
1602 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1604 perror(logfilename
);
1607 #if !defined(CONFIG_SOFTMMU)
1608 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1610 static char logfile_buf
[4096];
1611 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1613 #elif !defined(_WIN32)
1614 /* Win32 doesn't support line-buffering and requires size >= 2 */
1615 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1619 if (!loglevel
&& logfile
) {
1625 void cpu_set_log_filename(const char *filename
)
1627 logfilename
= strdup(filename
);
1632 cpu_set_log(loglevel
);
1635 static void cpu_unlink_tb(CPUState
*env
)
1637 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1638 problem and hope the cpu will stop of its own accord. For userspace
1639 emulation this often isn't actually as bad as it sounds. Often
1640 signals are used primarily to interrupt blocking syscalls. */
1641 TranslationBlock
*tb
;
1642 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1644 spin_lock(&interrupt_lock
);
1645 tb
= env
->current_tb
;
1646 /* if the cpu is currently executing code, we must unlink it and
1647 all the potentially executing TB */
1649 env
->current_tb
= NULL
;
1650 tb_reset_jump_recursive(tb
);
1652 spin_unlock(&interrupt_lock
);
1655 /* mask must never be zero, except for A20 change call */
1656 void cpu_interrupt(CPUState
*env
, int mask
)
1660 old_mask
= env
->interrupt_request
;
1661 env
->interrupt_request
|= mask
;
1663 #ifndef CONFIG_USER_ONLY
1665 * If called from iothread context, wake the target cpu in
1668 if (!qemu_cpu_self(env
)) {
1675 env
->icount_decr
.u16
.high
= 0xffff;
1676 #ifndef CONFIG_USER_ONLY
1678 && (mask
& ~old_mask
) != 0) {
1679 cpu_abort(env
, "Raised interrupt while not in I/O function");
1687 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1689 env
->interrupt_request
&= ~mask
;
1692 void cpu_exit(CPUState
*env
)
1694 env
->exit_request
= 1;
1698 const CPULogItem cpu_log_items
[] = {
1699 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1700 "show generated host assembly code for each compiled TB" },
1701 { CPU_LOG_TB_IN_ASM
, "in_asm",
1702 "show target assembly code for each compiled TB" },
1703 { CPU_LOG_TB_OP
, "op",
1704 "show micro ops for each compiled TB" },
1705 { CPU_LOG_TB_OP_OPT
, "op_opt",
1708 "before eflags optimization and "
1710 "after liveness analysis" },
1711 { CPU_LOG_INT
, "int",
1712 "show interrupts/exceptions in short format" },
1713 { CPU_LOG_EXEC
, "exec",
1714 "show trace before each executed TB (lots of logs)" },
1715 { CPU_LOG_TB_CPU
, "cpu",
1716 "show CPU state before block translation" },
1718 { CPU_LOG_PCALL
, "pcall",
1719 "show protected mode far calls/returns/exceptions" },
1720 { CPU_LOG_RESET
, "cpu_reset",
1721 "show CPU state before CPU resets" },
1724 { CPU_LOG_IOPORT
, "ioport",
1725 "show all i/o ports accesses" },
1730 #ifndef CONFIG_USER_ONLY
1731 static QLIST_HEAD(memory_client_list
, CPUPhysMemoryClient
) memory_client_list
1732 = QLIST_HEAD_INITIALIZER(memory_client_list
);
1734 static void cpu_notify_set_memory(target_phys_addr_t start_addr
,
1736 ram_addr_t phys_offset
)
1738 CPUPhysMemoryClient
*client
;
1739 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1740 client
->set_memory(client
, start_addr
, size
, phys_offset
);
1744 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start
,
1745 target_phys_addr_t end
)
1747 CPUPhysMemoryClient
*client
;
1748 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1749 int r
= client
->sync_dirty_bitmap(client
, start
, end
);
1756 static int cpu_notify_migration_log(int enable
)
1758 CPUPhysMemoryClient
*client
;
1759 QLIST_FOREACH(client
, &memory_client_list
, list
) {
1760 int r
= client
->migration_log(client
, enable
);
1767 static void phys_page_for_each_1(CPUPhysMemoryClient
*client
,
1768 int level
, void **lp
)
1776 PhysPageDesc
*pd
= *lp
;
1777 for (i
= 0; i
< L2_SIZE
; ++i
) {
1778 if (pd
[i
].phys_offset
!= IO_MEM_UNASSIGNED
) {
1779 client
->set_memory(client
, pd
[i
].region_offset
,
1780 TARGET_PAGE_SIZE
, pd
[i
].phys_offset
);
1785 for (i
= 0; i
< L2_SIZE
; ++i
) {
1786 phys_page_for_each_1(client
, level
- 1, pp
+ i
);
1791 static void phys_page_for_each(CPUPhysMemoryClient
*client
)
1794 for (i
= 0; i
< P_L1_SIZE
; ++i
) {
1795 phys_page_for_each_1(client
, P_L1_SHIFT
/ L2_BITS
- 1,
1800 void cpu_register_phys_memory_client(CPUPhysMemoryClient
*client
)
1802 QLIST_INSERT_HEAD(&memory_client_list
, client
, list
);
1803 phys_page_for_each(client
);
1806 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient
*client
)
1808 QLIST_REMOVE(client
, list
);
1812 static int cmp1(const char *s1
, int n
, const char *s2
)
1814 if (strlen(s2
) != n
)
1816 return memcmp(s1
, s2
, n
) == 0;
1819 /* takes a comma separated list of log masks. Return 0 if error. */
1820 int cpu_str_to_log_mask(const char *str
)
1822 const CPULogItem
*item
;
1829 p1
= strchr(p
, ',');
1832 if(cmp1(p
,p1
-p
,"all")) {
1833 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1837 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1838 if (cmp1(p
, p1
- p
, item
->name
))
1852 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1859 fprintf(stderr
, "qemu: fatal: ");
1860 vfprintf(stderr
, fmt
, ap
);
1861 fprintf(stderr
, "\n");
1863 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1865 cpu_dump_state(env
, stderr
, fprintf
, 0);
1867 if (qemu_log_enabled()) {
1868 qemu_log("qemu: fatal: ");
1869 qemu_log_vprintf(fmt
, ap2
);
1872 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1874 log_cpu_state(env
, 0);
1881 #if defined(CONFIG_USER_ONLY)
1883 struct sigaction act
;
1884 sigfillset(&act
.sa_mask
);
1885 act
.sa_handler
= SIG_DFL
;
1886 sigaction(SIGABRT
, &act
, NULL
);
1892 CPUState
*cpu_copy(CPUState
*env
)
1894 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1895 CPUState
*next_cpu
= new_env
->next_cpu
;
1896 int cpu_index
= new_env
->cpu_index
;
1897 #if defined(TARGET_HAS_ICE)
1902 memcpy(new_env
, env
, sizeof(CPUState
));
1904 /* Preserve chaining and index. */
1905 new_env
->next_cpu
= next_cpu
;
1906 new_env
->cpu_index
= cpu_index
;
1908 /* Clone all break/watchpoints.
1909 Note: Once we support ptrace with hw-debug register access, make sure
1910 BP_CPU break/watchpoints are handled correctly on clone. */
1911 QTAILQ_INIT(&env
->breakpoints
);
1912 QTAILQ_INIT(&env
->watchpoints
);
1913 #if defined(TARGET_HAS_ICE)
1914 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1915 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1917 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1918 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1926 #if !defined(CONFIG_USER_ONLY)
1928 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1932 /* Discard jump cache entries for any tb which might potentially
1933 overlap the flushed page. */
1934 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1935 memset (&env
->tb_jmp_cache
[i
], 0,
1936 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1938 i
= tb_jmp_cache_hash_page(addr
);
1939 memset (&env
->tb_jmp_cache
[i
], 0,
1940 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1943 static CPUTLBEntry s_cputlb_empty_entry
= {
1950 /* NOTE: if flush_global is true, also flush global entries (not
1952 void tlb_flush(CPUState
*env
, int flush_global
)
1956 #if defined(DEBUG_TLB)
1957 printf("tlb_flush:\n");
1959 /* must reset current TB so that interrupts cannot modify the
1960 links while we are modifying them */
1961 env
->current_tb
= NULL
;
1963 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1965 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
1966 env
->tlb_table
[mmu_idx
][i
] = s_cputlb_empty_entry
;
1970 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1972 env
->tlb_flush_addr
= -1;
1973 env
->tlb_flush_mask
= 0;
1977 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1979 if (addr
== (tlb_entry
->addr_read
&
1980 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1981 addr
== (tlb_entry
->addr_write
&
1982 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1983 addr
== (tlb_entry
->addr_code
&
1984 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1985 *tlb_entry
= s_cputlb_empty_entry
;
1989 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1994 #if defined(DEBUG_TLB)
1995 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1997 /* Check if we need to flush due to large pages. */
1998 if ((addr
& env
->tlb_flush_mask
) == env
->tlb_flush_addr
) {
1999 #if defined(DEBUG_TLB)
2000 printf("tlb_flush_page: forced full flush ("
2001 TARGET_FMT_lx
"/" TARGET_FMT_lx
")\n",
2002 env
->tlb_flush_addr
, env
->tlb_flush_mask
);
2007 /* must reset current TB so that interrupts cannot modify the
2008 links while we are modifying them */
2009 env
->current_tb
= NULL
;
2011 addr
&= TARGET_PAGE_MASK
;
2012 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2013 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2014 tlb_flush_entry(&env
->tlb_table
[mmu_idx
][i
], addr
);
2016 tlb_flush_jmp_cache(env
, addr
);
2019 /* update the TLBs so that writes to code in the virtual page 'addr'
2021 static void tlb_protect_code(ram_addr_t ram_addr
)
2023 cpu_physical_memory_reset_dirty(ram_addr
,
2024 ram_addr
+ TARGET_PAGE_SIZE
,
2028 /* update the TLB so that writes in physical page 'phys_addr' are no longer
2029 tested for self modifying code */
2030 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
2033 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
2036 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
2037 unsigned long start
, unsigned long length
)
2040 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2041 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
2042 if ((addr
- start
) < length
) {
2043 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
2048 /* Note: start and end must be within the same ram block. */
2049 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
2053 unsigned long length
, start1
;
2057 start
&= TARGET_PAGE_MASK
;
2058 end
= TARGET_PAGE_ALIGN(end
);
2060 length
= end
- start
;
2063 len
= length
>> TARGET_PAGE_BITS
;
2064 mask
= ~dirty_flags
;
2065 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
2066 for(i
= 0; i
< len
; i
++)
2069 /* we modify the TLB cache so that the dirty bit will be set again
2070 when accessing the range */
2071 start1
= (unsigned long)qemu_get_ram_ptr(start
);
2072 /* Chek that we don't span multiple blocks - this breaks the
2073 address comparisons below. */
2074 if ((unsigned long)qemu_get_ram_ptr(end
- 1) - start1
2075 != (end
- 1) - start
) {
2079 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2081 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2082 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2083 tlb_reset_dirty_range(&env
->tlb_table
[mmu_idx
][i
],
2089 int cpu_physical_memory_set_dirty_tracking(int enable
)
2092 in_migration
= enable
;
2093 ret
= cpu_notify_migration_log(!!enable
);
2097 int cpu_physical_memory_get_dirty_tracking(void)
2099 return in_migration
;
2102 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
2103 target_phys_addr_t end_addr
)
2107 ret
= cpu_notify_sync_dirty_bitmap(start_addr
, end_addr
);
2111 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
2113 ram_addr_t ram_addr
;
2116 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
2117 p
= (void *)(unsigned long)((tlb_entry
->addr_write
& TARGET_PAGE_MASK
)
2118 + tlb_entry
->addend
);
2119 ram_addr
= qemu_ram_addr_from_host(p
);
2120 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
2121 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
2126 /* update the TLB according to the current state of the dirty bits */
2127 void cpu_tlb_update_dirty(CPUState
*env
)
2131 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++) {
2132 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
2133 tlb_update_dirty(&env
->tlb_table
[mmu_idx
][i
]);
2137 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
2139 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
2140 tlb_entry
->addr_write
= vaddr
;
2143 /* update the TLB corresponding to virtual page vaddr
2144 so that it is no longer dirty */
2145 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
2150 vaddr
&= TARGET_PAGE_MASK
;
2151 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2152 for (mmu_idx
= 0; mmu_idx
< NB_MMU_MODES
; mmu_idx
++)
2153 tlb_set_dirty1(&env
->tlb_table
[mmu_idx
][i
], vaddr
);
2156 /* Our TLB does not support large pages, so remember the area covered by
2157 large pages and trigger a full TLB flush if these are invalidated. */
2158 static void tlb_add_large_page(CPUState
*env
, target_ulong vaddr
,
2161 target_ulong mask
= ~(size
- 1);
2163 if (env
->tlb_flush_addr
== (target_ulong
)-1) {
2164 env
->tlb_flush_addr
= vaddr
& mask
;
2165 env
->tlb_flush_mask
= mask
;
2168 /* Extend the existing region to include the new page.
2169 This is a compromise between unnecessary flushes and the cost
2170 of maintaining a full variable size TLB. */
2171 mask
&= env
->tlb_flush_mask
;
2172 while (((env
->tlb_flush_addr
^ vaddr
) & mask
) != 0) {
2175 env
->tlb_flush_addr
&= mask
;
2176 env
->tlb_flush_mask
= mask
;
2179 /* Add a new TLB entry. At most one entry for a given virtual address
2180 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2181 supplied size is only used by tlb_flush_page. */
2182 void tlb_set_page(CPUState
*env
, target_ulong vaddr
,
2183 target_phys_addr_t paddr
, int prot
,
2184 int mmu_idx
, target_ulong size
)
2189 target_ulong address
;
2190 target_ulong code_address
;
2191 target_phys_addr_t addend
;
2194 target_phys_addr_t iotlb
;
2196 assert(size
>= TARGET_PAGE_SIZE
);
2197 if (size
!= TARGET_PAGE_SIZE
) {
2198 tlb_add_large_page(env
, vaddr
, size
);
2200 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
2202 pd
= IO_MEM_UNASSIGNED
;
2204 pd
= p
->phys_offset
;
2206 #if defined(DEBUG_TLB)
2207 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2208 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
2212 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
2213 /* IO memory case (romd handled later) */
2214 address
|= TLB_MMIO
;
2216 addend
= (unsigned long)qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
);
2217 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
2219 iotlb
= pd
& TARGET_PAGE_MASK
;
2220 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
2221 iotlb
|= IO_MEM_NOTDIRTY
;
2223 iotlb
|= IO_MEM_ROM
;
2225 /* IO handlers are currently passed a physical address.
2226 It would be nice to pass an offset from the base address
2227 of that region. This would avoid having to special case RAM,
2228 and avoid full address decoding in every device.
2229 We can't use the high bits of pd for this because
2230 IO_MEM_ROMD uses these as a ram address. */
2231 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2233 iotlb
+= p
->region_offset
;
2239 code_address
= address
;
2240 /* Make accesses to pages with watchpoints go via the
2241 watchpoint trap routines. */
2242 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2243 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2244 iotlb
= io_mem_watch
+ paddr
;
2245 /* TODO: The memory case can be optimized by not trapping
2246 reads of pages with a write breakpoint. */
2247 address
|= TLB_MMIO
;
2251 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2252 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2253 te
= &env
->tlb_table
[mmu_idx
][index
];
2254 te
->addend
= addend
- vaddr
;
2255 if (prot
& PAGE_READ
) {
2256 te
->addr_read
= address
;
2261 if (prot
& PAGE_EXEC
) {
2262 te
->addr_code
= code_address
;
2266 if (prot
& PAGE_WRITE
) {
2267 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2268 (pd
& IO_MEM_ROMD
)) {
2269 /* Write access calls the I/O callback. */
2270 te
->addr_write
= address
| TLB_MMIO
;
2271 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2272 !cpu_physical_memory_is_dirty(pd
)) {
2273 te
->addr_write
= address
| TLB_NOTDIRTY
;
2275 te
->addr_write
= address
;
2278 te
->addr_write
= -1;
2284 void tlb_flush(CPUState
*env
, int flush_global
)
2288 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2293 * Walks guest process memory "regions" one by one
2294 * and calls callback function 'fn' for each region.
2297 struct walk_memory_regions_data
2299 walk_memory_regions_fn fn
;
2301 unsigned long start
;
2305 static int walk_memory_regions_end(struct walk_memory_regions_data
*data
,
2306 abi_ulong end
, int new_prot
)
2308 if (data
->start
!= -1ul) {
2309 int rc
= data
->fn(data
->priv
, data
->start
, end
, data
->prot
);
2315 data
->start
= (new_prot
? end
: -1ul);
2316 data
->prot
= new_prot
;
2321 static int walk_memory_regions_1(struct walk_memory_regions_data
*data
,
2322 abi_ulong base
, int level
, void **lp
)
2328 return walk_memory_regions_end(data
, base
, 0);
2333 for (i
= 0; i
< L2_SIZE
; ++i
) {
2334 int prot
= pd
[i
].flags
;
2336 pa
= base
| (i
<< TARGET_PAGE_BITS
);
2337 if (prot
!= data
->prot
) {
2338 rc
= walk_memory_regions_end(data
, pa
, prot
);
2346 for (i
= 0; i
< L2_SIZE
; ++i
) {
2347 pa
= base
| ((abi_ulong
)i
<<
2348 (TARGET_PAGE_BITS
+ L2_BITS
* level
));
2349 rc
= walk_memory_regions_1(data
, pa
, level
- 1, pp
+ i
);
2359 int walk_memory_regions(void *priv
, walk_memory_regions_fn fn
)
2361 struct walk_memory_regions_data data
;
2369 for (i
= 0; i
< V_L1_SIZE
; i
++) {
2370 int rc
= walk_memory_regions_1(&data
, (abi_ulong
)i
<< V_L1_SHIFT
,
2371 V_L1_SHIFT
/ L2_BITS
- 1, l1_map
+ i
);
2377 return walk_memory_regions_end(&data
, 0, 0);
2380 static int dump_region(void *priv
, abi_ulong start
,
2381 abi_ulong end
, unsigned long prot
)
2383 FILE *f
= (FILE *)priv
;
2385 (void) fprintf(f
, TARGET_ABI_FMT_lx
"-"TARGET_ABI_FMT_lx
2386 " "TARGET_ABI_FMT_lx
" %c%c%c\n",
2387 start
, end
, end
- start
,
2388 ((prot
& PAGE_READ
) ? 'r' : '-'),
2389 ((prot
& PAGE_WRITE
) ? 'w' : '-'),
2390 ((prot
& PAGE_EXEC
) ? 'x' : '-'));
2395 /* dump memory mappings */
2396 void page_dump(FILE *f
)
2398 (void) fprintf(f
, "%-8s %-8s %-8s %s\n",
2399 "start", "end", "size", "prot");
2400 walk_memory_regions(f
, dump_region
);
2403 int page_get_flags(target_ulong address
)
2407 p
= page_find(address
>> TARGET_PAGE_BITS
);
2413 /* Modify the flags of a page and invalidate the code if necessary.
2414 The flag PAGE_WRITE_ORG is positioned automatically depending
2415 on PAGE_WRITE. The mmap_lock should already be held. */
2416 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2418 target_ulong addr
, len
;
2420 /* This function should never be called with addresses outside the
2421 guest address space. If this assert fires, it probably indicates
2422 a missing call to h2g_valid. */
2423 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2424 assert(end
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2426 assert(start
< end
);
2428 start
= start
& TARGET_PAGE_MASK
;
2429 end
= TARGET_PAGE_ALIGN(end
);
2431 if (flags
& PAGE_WRITE
) {
2432 flags
|= PAGE_WRITE_ORG
;
2435 for (addr
= start
, len
= end
- start
;
2437 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2438 PageDesc
*p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2440 /* If the write protection bit is set, then we invalidate
2442 if (!(p
->flags
& PAGE_WRITE
) &&
2443 (flags
& PAGE_WRITE
) &&
2445 tb_invalidate_phys_page(addr
, 0, NULL
);
2451 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2457 /* This function should never be called with addresses outside the
2458 guest address space. If this assert fires, it probably indicates
2459 a missing call to h2g_valid. */
2460 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2461 assert(start
< ((abi_ulong
)1 << L1_MAP_ADDR_SPACE_BITS
));
2464 if (start
+ len
- 1 < start
) {
2465 /* We've wrapped around. */
2469 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2470 start
= start
& TARGET_PAGE_MASK
;
2472 for (addr
= start
, len
= end
- start
;
2474 len
-= TARGET_PAGE_SIZE
, addr
+= TARGET_PAGE_SIZE
) {
2475 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2478 if( !(p
->flags
& PAGE_VALID
) )
2481 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2483 if (flags
& PAGE_WRITE
) {
2484 if (!(p
->flags
& PAGE_WRITE_ORG
))
2486 /* unprotect the page if it was put read-only because it
2487 contains translated code */
2488 if (!(p
->flags
& PAGE_WRITE
)) {
2489 if (!page_unprotect(addr
, 0, NULL
))
2498 /* called from signal handler: invalidate the code and unprotect the
2499 page. Return TRUE if the fault was successfully handled. */
2500 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2504 target_ulong host_start
, host_end
, addr
;
2506 /* Technically this isn't safe inside a signal handler. However we
2507 know this only ever happens in a synchronous SEGV handler, so in
2508 practice it seems to be ok. */
2511 p
= page_find(address
>> TARGET_PAGE_BITS
);
2517 /* if the page was really writable, then we change its
2518 protection back to writable */
2519 if ((p
->flags
& PAGE_WRITE_ORG
) && !(p
->flags
& PAGE_WRITE
)) {
2520 host_start
= address
& qemu_host_page_mask
;
2521 host_end
= host_start
+ qemu_host_page_size
;
2524 for (addr
= host_start
; addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2525 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2526 p
->flags
|= PAGE_WRITE
;
2529 /* and since the content will be modified, we must invalidate
2530 the corresponding translated code. */
2531 tb_invalidate_phys_page(addr
, pc
, puc
);
2532 #ifdef DEBUG_TB_CHECK
2533 tb_invalidate_check(addr
);
2536 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2546 static inline void tlb_set_dirty(CPUState
*env
,
2547 unsigned long addr
, target_ulong vaddr
)
2550 #endif /* defined(CONFIG_USER_ONLY) */
2552 #if !defined(CONFIG_USER_ONLY)
2554 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2555 typedef struct subpage_t
{
2556 target_phys_addr_t base
;
2557 CPUReadMemoryFunc
* const *mem_read
[TARGET_PAGE_SIZE
][4];
2558 CPUWriteMemoryFunc
* const *mem_write
[TARGET_PAGE_SIZE
][4];
2559 void *opaque
[TARGET_PAGE_SIZE
][2][4];
2560 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
2563 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2564 ram_addr_t memory
, ram_addr_t region_offset
);
2565 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2566 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2567 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2570 if (addr > start_addr) \
2573 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2574 if (start_addr2 > 0) \
2578 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2579 end_addr2 = TARGET_PAGE_SIZE - 1; \
2581 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2582 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2587 /* register physical memory.
2588 For RAM, 'size' must be a multiple of the target page size.
2589 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2590 io memory page. The address used when calling the IO function is
2591 the offset from the start of the region, plus region_offset. Both
2592 start_addr and region_offset are rounded down to a page boundary
2593 before calculating this offset. This should not be a problem unless
2594 the low bits of start_addr and region_offset differ. */
2595 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2597 ram_addr_t phys_offset
,
2598 ram_addr_t region_offset
)
2600 target_phys_addr_t addr
, end_addr
;
2603 ram_addr_t orig_size
= size
;
2606 cpu_notify_set_memory(start_addr
, size
, phys_offset
);
2608 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2609 region_offset
= start_addr
;
2611 region_offset
&= TARGET_PAGE_MASK
;
2612 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2613 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2614 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2615 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2616 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2617 ram_addr_t orig_memory
= p
->phys_offset
;
2618 target_phys_addr_t start_addr2
, end_addr2
;
2619 int need_subpage
= 0;
2621 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2623 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2624 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2625 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2626 &p
->phys_offset
, orig_memory
,
2629 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2632 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2634 p
->region_offset
= 0;
2636 p
->phys_offset
= phys_offset
;
2637 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2638 (phys_offset
& IO_MEM_ROMD
))
2639 phys_offset
+= TARGET_PAGE_SIZE
;
2642 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2643 p
->phys_offset
= phys_offset
;
2644 p
->region_offset
= region_offset
;
2645 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2646 (phys_offset
& IO_MEM_ROMD
)) {
2647 phys_offset
+= TARGET_PAGE_SIZE
;
2649 target_phys_addr_t start_addr2
, end_addr2
;
2650 int need_subpage
= 0;
2652 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2653 end_addr2
, need_subpage
);
2655 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2656 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2657 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2658 addr
& TARGET_PAGE_MASK
);
2659 subpage_register(subpage
, start_addr2
, end_addr2
,
2660 phys_offset
, region_offset
);
2661 p
->region_offset
= 0;
2665 region_offset
+= TARGET_PAGE_SIZE
;
2668 /* since each CPU stores ram addresses in its TLB cache, we must
2669 reset the modified entries */
2671 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2676 /* XXX: temporary until new memory mapping API */
2677 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2681 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2683 return IO_MEM_UNASSIGNED
;
2684 return p
->phys_offset
;
2687 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2690 kvm_coalesce_mmio_region(addr
, size
);
2693 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2696 kvm_uncoalesce_mmio_region(addr
, size
);
2699 void qemu_flush_coalesced_mmio_buffer(void)
2702 kvm_flush_coalesced_mmio_buffer();
2705 #if defined(__linux__) && !defined(TARGET_S390X)
2707 #include <sys/vfs.h>
2709 #define HUGETLBFS_MAGIC 0x958458f6
2711 static long gethugepagesize(const char *path
)
2717 ret
= statfs(path
, &fs
);
2718 } while (ret
!= 0 && errno
== EINTR
);
2725 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
2726 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
2731 static void *file_ram_alloc(ram_addr_t memory
, const char *path
)
2739 unsigned long hpagesize
;
2741 hpagesize
= gethugepagesize(path
);
2746 if (memory
< hpagesize
) {
2750 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2751 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2755 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
2759 fd
= mkstemp(filename
);
2761 perror("unable to create backing store for hugepages");
2768 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
2771 * ftruncate is not supported by hugetlbfs in older
2772 * hosts, so don't bother bailing out on errors.
2773 * If anything goes wrong with it under other filesystems,
2776 if (ftruncate(fd
, memory
))
2777 perror("ftruncate");
2780 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2781 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2782 * to sidestep this quirk.
2784 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
2785 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
2787 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
2789 if (area
== MAP_FAILED
) {
2790 perror("file_ram_alloc: can't mmap RAM pages");
2798 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2800 RAMBlock
*new_block
;
2802 size
= TARGET_PAGE_ALIGN(size
);
2803 new_block
= qemu_malloc(sizeof(*new_block
));
2806 #if defined (__linux__) && !defined(TARGET_S390X)
2807 new_block
->host
= file_ram_alloc(size
, mem_path
);
2808 if (!new_block
->host
)
2811 fprintf(stderr
, "-mem-path option unsupported\n");
2815 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2816 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2817 new_block
->host
= mmap((void*)0x1000000, size
,
2818 PROT_EXEC
|PROT_READ
|PROT_WRITE
,
2819 MAP_SHARED
| MAP_ANONYMOUS
, -1, 0);
2821 new_block
->host
= qemu_vmalloc(size
);
2823 #ifdef MADV_MERGEABLE
2824 madvise(new_block
->host
, size
, MADV_MERGEABLE
);
2827 new_block
->offset
= last_ram_offset
;
2828 new_block
->length
= size
;
2830 new_block
->next
= ram_blocks
;
2831 ram_blocks
= new_block
;
2833 phys_ram_dirty
= qemu_realloc(phys_ram_dirty
,
2834 (last_ram_offset
+ size
) >> TARGET_PAGE_BITS
);
2835 memset(phys_ram_dirty
+ (last_ram_offset
>> TARGET_PAGE_BITS
),
2836 0xff, size
>> TARGET_PAGE_BITS
);
2838 last_ram_offset
+= size
;
2841 kvm_setup_guest_memory(new_block
->host
, size
);
2843 return new_block
->offset
;
2846 void qemu_ram_free(ram_addr_t addr
)
2848 /* TODO: implement this. */
2851 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2852 With the exception of the softmmu code in this file, this should
2853 only be used for local memory (e.g. video ram) that the device owns,
2854 and knows it isn't going to access beyond the end of the block.
2856 It should not be used for general purpose DMA.
2857 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2859 void *qemu_get_ram_ptr(ram_addr_t addr
)
2866 prevp
= &ram_blocks
;
2868 while (block
&& (block
->offset
> addr
2869 || block
->offset
+ block
->length
<= addr
)) {
2871 prevp
= &prev
->next
;
2873 block
= block
->next
;
2876 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
2879 /* Move this entry to to start of the list. */
2881 prev
->next
= block
->next
;
2882 block
->next
= *prevp
;
2885 return block
->host
+ (addr
- block
->offset
);
2888 /* Some of the softmmu routines need to translate from a host pointer
2889 (typically a TLB entry) back to a ram offset. */
2890 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2894 uint8_t *host
= ptr
;
2898 while (block
&& (block
->host
> host
2899 || block
->host
+ block
->length
<= host
)) {
2901 block
= block
->next
;
2904 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
2907 return block
->offset
+ (host
- block
->host
);
2910 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2912 #ifdef DEBUG_UNASSIGNED
2913 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2915 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2916 do_unassigned_access(addr
, 0, 0, 0, 1);
2921 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2923 #ifdef DEBUG_UNASSIGNED
2924 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2926 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2927 do_unassigned_access(addr
, 0, 0, 0, 2);
2932 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2934 #ifdef DEBUG_UNASSIGNED
2935 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2937 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2938 do_unassigned_access(addr
, 0, 0, 0, 4);
2943 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2945 #ifdef DEBUG_UNASSIGNED
2946 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2948 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2949 do_unassigned_access(addr
, 1, 0, 0, 1);
2953 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2955 #ifdef DEBUG_UNASSIGNED
2956 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2958 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2959 do_unassigned_access(addr
, 1, 0, 0, 2);
2963 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2965 #ifdef DEBUG_UNASSIGNED
2966 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2968 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2969 do_unassigned_access(addr
, 1, 0, 0, 4);
2973 static CPUReadMemoryFunc
* const unassigned_mem_read
[3] = {
2974 unassigned_mem_readb
,
2975 unassigned_mem_readw
,
2976 unassigned_mem_readl
,
2979 static CPUWriteMemoryFunc
* const unassigned_mem_write
[3] = {
2980 unassigned_mem_writeb
,
2981 unassigned_mem_writew
,
2982 unassigned_mem_writel
,
2985 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2989 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2990 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2991 #if !defined(CONFIG_USER_ONLY)
2992 tb_invalidate_phys_page_fast(ram_addr
, 1);
2993 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2996 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
2997 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2998 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2999 /* we remove the notdirty callback only if the code has been
3001 if (dirty_flags
== 0xff)
3002 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3005 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
3009 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
3010 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3011 #if !defined(CONFIG_USER_ONLY)
3012 tb_invalidate_phys_page_fast(ram_addr
, 2);
3013 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
3016 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
3017 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3018 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
3019 /* we remove the notdirty callback only if the code has been
3021 if (dirty_flags
== 0xff)
3022 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3025 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
3029 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
3030 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
3031 #if !defined(CONFIG_USER_ONLY)
3032 tb_invalidate_phys_page_fast(ram_addr
, 4);
3033 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
3036 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
3037 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
3038 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
3039 /* we remove the notdirty callback only if the code has been
3041 if (dirty_flags
== 0xff)
3042 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
3045 static CPUReadMemoryFunc
* const error_mem_read
[3] = {
3046 NULL
, /* never used */
3047 NULL
, /* never used */
3048 NULL
, /* never used */
3051 static CPUWriteMemoryFunc
* const notdirty_mem_write
[3] = {
3052 notdirty_mem_writeb
,
3053 notdirty_mem_writew
,
3054 notdirty_mem_writel
,
3057 /* Generate a debug exception if a watchpoint has been hit. */
3058 static void check_watchpoint(int offset
, int len_mask
, int flags
)
3060 CPUState
*env
= cpu_single_env
;
3061 target_ulong pc
, cs_base
;
3062 TranslationBlock
*tb
;
3067 if (env
->watchpoint_hit
) {
3068 /* We re-entered the check after replacing the TB. Now raise
3069 * the debug interrupt so that is will trigger after the
3070 * current instruction. */
3071 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
3074 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
3075 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
3076 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
3077 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
3078 wp
->flags
|= BP_WATCHPOINT_HIT
;
3079 if (!env
->watchpoint_hit
) {
3080 env
->watchpoint_hit
= wp
;
3081 tb
= tb_find_pc(env
->mem_io_pc
);
3083 cpu_abort(env
, "check_watchpoint: could not find TB for "
3084 "pc=%p", (void *)env
->mem_io_pc
);
3086 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
3087 tb_phys_invalidate(tb
, -1);
3088 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
3089 env
->exception_index
= EXCP_DEBUG
;
3091 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
3092 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
3094 cpu_resume_from_signal(env
, NULL
);
3097 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
3102 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3103 so these check for a hit then pass through to the normal out-of-line
3105 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
3107 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
3108 return ldub_phys(addr
);
3111 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
3113 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
3114 return lduw_phys(addr
);
3117 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
3119 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
3120 return ldl_phys(addr
);
3123 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
3126 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
3127 stb_phys(addr
, val
);
3130 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
3133 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
3134 stw_phys(addr
, val
);
3137 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
3140 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
3141 stl_phys(addr
, val
);
3144 static CPUReadMemoryFunc
* const watch_mem_read
[3] = {
3150 static CPUWriteMemoryFunc
* const watch_mem_write
[3] = {
3156 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
3162 idx
= SUBPAGE_IDX(addr
);
3163 #if defined(DEBUG_SUBPAGE)
3164 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
3165 mmio
, len
, addr
, idx
);
3167 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
3168 addr
+ mmio
->region_offset
[idx
][0][len
]);
3173 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
3174 uint32_t value
, unsigned int len
)
3178 idx
= SUBPAGE_IDX(addr
);
3179 #if defined(DEBUG_SUBPAGE)
3180 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
3181 mmio
, len
, addr
, idx
, value
);
3183 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
3184 addr
+ mmio
->region_offset
[idx
][1][len
],
3188 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
3190 #if defined(DEBUG_SUBPAGE)
3191 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
3194 return subpage_readlen(opaque
, addr
, 0);
3197 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
3200 #if defined(DEBUG_SUBPAGE)
3201 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
3203 subpage_writelen(opaque
, addr
, value
, 0);
3206 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
3208 #if defined(DEBUG_SUBPAGE)
3209 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
3212 return subpage_readlen(opaque
, addr
, 1);
3215 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
3218 #if defined(DEBUG_SUBPAGE)
3219 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
3221 subpage_writelen(opaque
, addr
, value
, 1);
3224 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
3226 #if defined(DEBUG_SUBPAGE)
3227 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
3230 return subpage_readlen(opaque
, addr
, 2);
3233 static void subpage_writel (void *opaque
,
3234 target_phys_addr_t addr
, uint32_t value
)
3236 #if defined(DEBUG_SUBPAGE)
3237 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
3239 subpage_writelen(opaque
, addr
, value
, 2);
3242 static CPUReadMemoryFunc
* const subpage_read
[] = {
3248 static CPUWriteMemoryFunc
* const subpage_write
[] = {
3254 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
3255 ram_addr_t memory
, ram_addr_t region_offset
)
3260 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
3262 idx
= SUBPAGE_IDX(start
);
3263 eidx
= SUBPAGE_IDX(end
);
3264 #if defined(DEBUG_SUBPAGE)
3265 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
3266 mmio
, start
, end
, idx
, eidx
, memory
);
3268 memory
>>= IO_MEM_SHIFT
;
3269 for (; idx
<= eidx
; idx
++) {
3270 for (i
= 0; i
< 4; i
++) {
3271 if (io_mem_read
[memory
][i
]) {
3272 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
3273 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
3274 mmio
->region_offset
[idx
][0][i
] = region_offset
;
3276 if (io_mem_write
[memory
][i
]) {
3277 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
3278 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
3279 mmio
->region_offset
[idx
][1][i
] = region_offset
;
3287 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
3288 ram_addr_t orig_memory
, ram_addr_t region_offset
)
3293 mmio
= qemu_mallocz(sizeof(subpage_t
));
3296 subpage_memory
= cpu_register_io_memory(subpage_read
, subpage_write
, mmio
);
3297 #if defined(DEBUG_SUBPAGE)
3298 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
3299 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
3301 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
3302 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
3308 static int get_free_io_mem_idx(void)
3312 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
3313 if (!io_mem_used
[i
]) {
3317 fprintf(stderr
, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES
);
3321 /* mem_read and mem_write are arrays of functions containing the
3322 function to access byte (index 0), word (index 1) and dword (index
3323 2). Functions can be omitted with a NULL function pointer.
3324 If io_index is non zero, the corresponding io zone is
3325 modified. If it is zero, a new io zone is allocated. The return
3326 value can be used with cpu_register_physical_memory(). (-1) is
3327 returned if error. */
3328 static int cpu_register_io_memory_fixed(int io_index
,
3329 CPUReadMemoryFunc
* const *mem_read
,
3330 CPUWriteMemoryFunc
* const *mem_write
,
3333 int i
, subwidth
= 0;
3335 if (io_index
<= 0) {
3336 io_index
= get_free_io_mem_idx();
3340 io_index
>>= IO_MEM_SHIFT
;
3341 if (io_index
>= IO_MEM_NB_ENTRIES
)
3345 for(i
= 0;i
< 3; i
++) {
3346 if (!mem_read
[i
] || !mem_write
[i
])
3347 subwidth
= IO_MEM_SUBWIDTH
;
3348 io_mem_read
[io_index
][i
] = mem_read
[i
];
3349 io_mem_write
[io_index
][i
] = mem_write
[i
];
3351 io_mem_opaque
[io_index
] = opaque
;
3352 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
3355 int cpu_register_io_memory(CPUReadMemoryFunc
* const *mem_read
,
3356 CPUWriteMemoryFunc
* const *mem_write
,
3359 return cpu_register_io_memory_fixed(0, mem_read
, mem_write
, opaque
);
3362 void cpu_unregister_io_memory(int io_table_address
)
3365 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
3367 for (i
=0;i
< 3; i
++) {
3368 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
3369 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
3371 io_mem_opaque
[io_index
] = NULL
;
3372 io_mem_used
[io_index
] = 0;
3375 static void io_mem_init(void)
3379 cpu_register_io_memory_fixed(IO_MEM_ROM
, error_mem_read
, unassigned_mem_write
, NULL
);
3380 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
3381 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY
, error_mem_read
, notdirty_mem_write
, NULL
);
3385 io_mem_watch
= cpu_register_io_memory(watch_mem_read
,
3386 watch_mem_write
, NULL
);
3389 #endif /* !defined(CONFIG_USER_ONLY) */
3391 /* physical memory access (slow version, mainly for debug) */
3392 #if defined(CONFIG_USER_ONLY)
3393 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3394 uint8_t *buf
, int len
, int is_write
)
3401 page
= addr
& TARGET_PAGE_MASK
;
3402 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3405 flags
= page_get_flags(page
);
3406 if (!(flags
& PAGE_VALID
))
3409 if (!(flags
& PAGE_WRITE
))
3411 /* XXX: this code should not depend on lock_user */
3412 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
3415 unlock_user(p
, addr
, l
);
3417 if (!(flags
& PAGE_READ
))
3419 /* XXX: this code should not depend on lock_user */
3420 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
3423 unlock_user(p
, addr
, 0);
3433 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
3434 int len
, int is_write
)
3439 target_phys_addr_t page
;
3444 page
= addr
& TARGET_PAGE_MASK
;
3445 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3448 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3450 pd
= IO_MEM_UNASSIGNED
;
3452 pd
= p
->phys_offset
;
3456 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3457 target_phys_addr_t addr1
= addr
;
3458 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3460 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3461 /* XXX: could force cpu_single_env to NULL to avoid
3463 if (l
>= 4 && ((addr1
& 3) == 0)) {
3464 /* 32 bit write access */
3466 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
3468 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3469 /* 16 bit write access */
3471 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
3474 /* 8 bit write access */
3476 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3480 unsigned long addr1
;
3481 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3483 ptr
= qemu_get_ram_ptr(addr1
);
3484 memcpy(ptr
, buf
, l
);
3485 if (!cpu_physical_memory_is_dirty(addr1
)) {
3486 /* invalidate code */
3487 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3489 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3490 (0xff & ~CODE_DIRTY_FLAG
);
3494 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3495 !(pd
& IO_MEM_ROMD
)) {
3496 target_phys_addr_t addr1
= addr
;
3498 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3500 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3501 if (l
>= 4 && ((addr1
& 3) == 0)) {
3502 /* 32 bit read access */
3503 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3506 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3507 /* 16 bit read access */
3508 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3512 /* 8 bit read access */
3513 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3519 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3520 (addr
& ~TARGET_PAGE_MASK
);
3521 memcpy(buf
, ptr
, l
);
3530 /* used for ROM loading : can write in RAM and ROM */
3531 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3532 const uint8_t *buf
, int len
)
3536 target_phys_addr_t page
;
3541 page
= addr
& TARGET_PAGE_MASK
;
3542 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3545 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3547 pd
= IO_MEM_UNASSIGNED
;
3549 pd
= p
->phys_offset
;
3552 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3553 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3554 !(pd
& IO_MEM_ROMD
)) {
3557 unsigned long addr1
;
3558 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3560 ptr
= qemu_get_ram_ptr(addr1
);
3561 memcpy(ptr
, buf
, l
);
3571 target_phys_addr_t addr
;
3572 target_phys_addr_t len
;
3575 static BounceBuffer bounce
;
3577 typedef struct MapClient
{
3579 void (*callback
)(void *opaque
);
3580 QLIST_ENTRY(MapClient
) link
;
3583 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
3584 = QLIST_HEAD_INITIALIZER(map_client_list
);
3586 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3588 MapClient
*client
= qemu_malloc(sizeof(*client
));
3590 client
->opaque
= opaque
;
3591 client
->callback
= callback
;
3592 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
3596 void cpu_unregister_map_client(void *_client
)
3598 MapClient
*client
= (MapClient
*)_client
;
3600 QLIST_REMOVE(client
, link
);
3604 static void cpu_notify_map_clients(void)
3608 while (!QLIST_EMPTY(&map_client_list
)) {
3609 client
= QLIST_FIRST(&map_client_list
);
3610 client
->callback(client
->opaque
);
3611 cpu_unregister_map_client(client
);
3615 /* Map a physical memory region into a host virtual address.
3616 * May map a subset of the requested range, given by and returned in *plen.
3617 * May return NULL if resources needed to perform the mapping are exhausted.
3618 * Use only for reads OR writes - not for read-modify-write operations.
3619 * Use cpu_register_map_client() to know when retrying the map operation is
3620 * likely to succeed.
3622 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3623 target_phys_addr_t
*plen
,
3626 target_phys_addr_t len
= *plen
;
3627 target_phys_addr_t done
= 0;
3629 uint8_t *ret
= NULL
;
3631 target_phys_addr_t page
;
3634 unsigned long addr1
;
3637 page
= addr
& TARGET_PAGE_MASK
;
3638 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3641 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3643 pd
= IO_MEM_UNASSIGNED
;
3645 pd
= p
->phys_offset
;
3648 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3649 if (done
|| bounce
.buffer
) {
3652 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3656 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3658 ptr
= bounce
.buffer
;
3660 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3661 ptr
= qemu_get_ram_ptr(addr1
);
3665 } else if (ret
+ done
!= ptr
) {
3677 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3678 * Will also mark the memory as dirty if is_write == 1. access_len gives
3679 * the amount of memory that was actually read or written by the caller.
3681 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3682 int is_write
, target_phys_addr_t access_len
)
3684 if (buffer
!= bounce
.buffer
) {
3686 ram_addr_t addr1
= qemu_ram_addr_from_host(buffer
);
3687 while (access_len
) {
3689 l
= TARGET_PAGE_SIZE
;
3692 if (!cpu_physical_memory_is_dirty(addr1
)) {
3693 /* invalidate code */
3694 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3696 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3697 (0xff & ~CODE_DIRTY_FLAG
);
3706 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3708 qemu_vfree(bounce
.buffer
);
3709 bounce
.buffer
= NULL
;
3710 cpu_notify_map_clients();
3713 /* warning: addr must be aligned */
3714 uint32_t ldl_phys(target_phys_addr_t addr
)
3722 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3724 pd
= IO_MEM_UNASSIGNED
;
3726 pd
= p
->phys_offset
;
3729 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3730 !(pd
& IO_MEM_ROMD
)) {
3732 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3734 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3735 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3738 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3739 (addr
& ~TARGET_PAGE_MASK
);
3745 /* warning: addr must be aligned */
3746 uint64_t ldq_phys(target_phys_addr_t addr
)
3754 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3756 pd
= IO_MEM_UNASSIGNED
;
3758 pd
= p
->phys_offset
;
3761 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3762 !(pd
& IO_MEM_ROMD
)) {
3764 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3766 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3767 #ifdef TARGET_WORDS_BIGENDIAN
3768 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3769 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3771 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3772 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3776 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3777 (addr
& ~TARGET_PAGE_MASK
);
3784 uint32_t ldub_phys(target_phys_addr_t addr
)
3787 cpu_physical_memory_read(addr
, &val
, 1);
3792 uint32_t lduw_phys(target_phys_addr_t addr
)
3795 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3796 return tswap16(val
);
3799 /* warning: addr must be aligned. The ram page is not masked as dirty
3800 and the code inside is not invalidated. It is useful if the dirty
3801 bits are used to track modified PTEs */
3802 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3809 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3811 pd
= IO_MEM_UNASSIGNED
;
3813 pd
= p
->phys_offset
;
3816 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3817 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3819 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3820 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3822 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3823 ptr
= qemu_get_ram_ptr(addr1
);
3826 if (unlikely(in_migration
)) {
3827 if (!cpu_physical_memory_is_dirty(addr1
)) {
3828 /* invalidate code */
3829 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3831 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3832 (0xff & ~CODE_DIRTY_FLAG
);
3838 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3845 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3847 pd
= IO_MEM_UNASSIGNED
;
3849 pd
= p
->phys_offset
;
3852 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3853 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3855 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3856 #ifdef TARGET_WORDS_BIGENDIAN
3857 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3858 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3860 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3861 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3864 ptr
= qemu_get_ram_ptr(pd
& TARGET_PAGE_MASK
) +
3865 (addr
& ~TARGET_PAGE_MASK
);
3870 /* warning: addr must be aligned */
3871 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3878 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3880 pd
= IO_MEM_UNASSIGNED
;
3882 pd
= p
->phys_offset
;
3885 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3886 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3888 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3889 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3891 unsigned long addr1
;
3892 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3894 ptr
= qemu_get_ram_ptr(addr1
);
3896 if (!cpu_physical_memory_is_dirty(addr1
)) {
3897 /* invalidate code */
3898 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3900 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3901 (0xff & ~CODE_DIRTY_FLAG
);
3907 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3910 cpu_physical_memory_write(addr
, &v
, 1);
3914 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3916 uint16_t v
= tswap16(val
);
3917 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3921 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3924 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3927 /* virtual memory access for debug (includes writing to ROM) */
3928 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3929 uint8_t *buf
, int len
, int is_write
)
3932 target_phys_addr_t phys_addr
;
3936 page
= addr
& TARGET_PAGE_MASK
;
3937 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3938 /* if no physical page mapped, return an error */
3939 if (phys_addr
== -1)
3941 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3944 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3946 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
3948 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
3957 /* in deterministic execution mode, instructions doing device I/Os
3958 must be at the end of the TB */
3959 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3961 TranslationBlock
*tb
;
3963 target_ulong pc
, cs_base
;
3966 tb
= tb_find_pc((unsigned long)retaddr
);
3968 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3971 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3972 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3973 /* Calculate how many instructions had been executed before the fault
3975 n
= n
- env
->icount_decr
.u16
.low
;
3976 /* Generate a new TB ending on the I/O insn. */
3978 /* On MIPS and SH, delay slot instructions can only be restarted if
3979 they were already the first instruction in the TB. If this is not
3980 the first instruction in a TB then re-execute the preceding
3982 #if defined(TARGET_MIPS)
3983 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3984 env
->active_tc
.PC
-= 4;
3985 env
->icount_decr
.u16
.low
++;
3986 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3988 #elif defined(TARGET_SH4)
3989 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3992 env
->icount_decr
.u16
.low
++;
3993 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3996 /* This should never happen. */
3997 if (n
> CF_COUNT_MASK
)
3998 cpu_abort(env
, "TB too big during recompile");
4000 cflags
= n
| CF_LAST_IO
;
4002 cs_base
= tb
->cs_base
;
4004 tb_phys_invalidate(tb
, -1);
4005 /* FIXME: In theory this could raise an exception. In practice
4006 we have already translated the block once so it's probably ok. */
4007 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
4008 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4009 the first in the TB) then we end up generating a whole new TB and
4010 repeating the fault, which is horribly inefficient.
4011 Better would be to execute just this insn uncached, or generate a
4013 cpu_resume_from_signal(env
, NULL
);
4016 #if !defined(CONFIG_USER_ONLY)
4018 void dump_exec_info(FILE *f
,
4019 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
4021 int i
, target_code_size
, max_target_code_size
;
4022 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
4023 TranslationBlock
*tb
;
4025 target_code_size
= 0;
4026 max_target_code_size
= 0;
4028 direct_jmp_count
= 0;
4029 direct_jmp2_count
= 0;
4030 for(i
= 0; i
< nb_tbs
; i
++) {
4032 target_code_size
+= tb
->size
;
4033 if (tb
->size
> max_target_code_size
)
4034 max_target_code_size
= tb
->size
;
4035 if (tb
->page_addr
[1] != -1)
4037 if (tb
->tb_next_offset
[0] != 0xffff) {
4039 if (tb
->tb_next_offset
[1] != 0xffff) {
4040 direct_jmp2_count
++;
4044 /* XXX: avoid using doubles ? */
4045 cpu_fprintf(f
, "Translation buffer state:\n");
4046 cpu_fprintf(f
, "gen code size %ld/%ld\n",
4047 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
4048 cpu_fprintf(f
, "TB count %d/%d\n",
4049 nb_tbs
, code_gen_max_blocks
);
4050 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
4051 nb_tbs
? target_code_size
/ nb_tbs
: 0,
4052 max_target_code_size
);
4053 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
4054 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
4055 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
4056 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
4058 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
4059 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4061 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
4063 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
4064 cpu_fprintf(f
, "\nStatistics:\n");
4065 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
4066 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
4067 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
4068 tcg_dump_info(f
, cpu_fprintf
);
4071 #define MMUSUFFIX _cmmu
4072 #define GETPC() NULL
4073 #define env cpu_single_env
4074 #define SOFTMMU_CODE_ACCESS
4077 #include "softmmu_template.h"
4080 #include "softmmu_template.h"
4083 #include "softmmu_template.h"
4086 #include "softmmu_template.h"