Merge remote-tracking branch 'remotes/vivier/tags/m68k-for-2.12-pull-request' into...
[qemu.git] / block / io.c
blob89d0745e952f39d431d9df794af62766d90f3323
1 /*
2 * Block layer I/O functions
4 * Copyright (c) 2003 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "qemu/osdep.h"
26 #include "trace.h"
27 #include "sysemu/block-backend.h"
28 #include "block/blockjob.h"
29 #include "block/blockjob_int.h"
30 #include "block/block_int.h"
31 #include "qemu/cutils.h"
32 #include "qapi/error.h"
33 #include "qemu/error-report.h"
35 #define NOT_DONE 0x7fffffff /* used while emulated sync operation in progress */
37 /* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
38 #define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
40 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
41 int64_t offset, int bytes, BdrvRequestFlags flags);
43 void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
45 BdrvChild *c, *next;
47 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
48 if (c == ignore) {
49 continue;
51 if (c->role->drained_begin) {
52 c->role->drained_begin(c);
57 void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
59 BdrvChild *c, *next;
61 QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
62 if (c == ignore) {
63 continue;
65 if (c->role->drained_end) {
66 c->role->drained_end(c);
71 static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
73 dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
74 dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
75 dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
76 src->opt_mem_alignment);
77 dst->min_mem_alignment = MAX(dst->min_mem_alignment,
78 src->min_mem_alignment);
79 dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
82 void bdrv_refresh_limits(BlockDriverState *bs, Error **errp)
84 BlockDriver *drv = bs->drv;
85 Error *local_err = NULL;
87 memset(&bs->bl, 0, sizeof(bs->bl));
89 if (!drv) {
90 return;
93 /* Default alignment based on whether driver has byte interface */
94 bs->bl.request_alignment = drv->bdrv_co_preadv ? 1 : 512;
96 /* Take some limits from the children as a default */
97 if (bs->file) {
98 bdrv_refresh_limits(bs->file->bs, &local_err);
99 if (local_err) {
100 error_propagate(errp, local_err);
101 return;
103 bdrv_merge_limits(&bs->bl, &bs->file->bs->bl);
104 } else {
105 bs->bl.min_mem_alignment = 512;
106 bs->bl.opt_mem_alignment = getpagesize();
108 /* Safe default since most protocols use readv()/writev()/etc */
109 bs->bl.max_iov = IOV_MAX;
112 if (bs->backing) {
113 bdrv_refresh_limits(bs->backing->bs, &local_err);
114 if (local_err) {
115 error_propagate(errp, local_err);
116 return;
118 bdrv_merge_limits(&bs->bl, &bs->backing->bs->bl);
121 /* Then let the driver override it */
122 if (drv->bdrv_refresh_limits) {
123 drv->bdrv_refresh_limits(bs, errp);
128 * The copy-on-read flag is actually a reference count so multiple users may
129 * use the feature without worrying about clobbering its previous state.
130 * Copy-on-read stays enabled until all users have called to disable it.
132 void bdrv_enable_copy_on_read(BlockDriverState *bs)
134 atomic_inc(&bs->copy_on_read);
137 void bdrv_disable_copy_on_read(BlockDriverState *bs)
139 int old = atomic_fetch_dec(&bs->copy_on_read);
140 assert(old >= 1);
143 typedef struct {
144 Coroutine *co;
145 BlockDriverState *bs;
146 bool done;
147 bool begin;
148 bool recursive;
149 BdrvChild *parent;
150 } BdrvCoDrainData;
152 static void coroutine_fn bdrv_drain_invoke_entry(void *opaque)
154 BdrvCoDrainData *data = opaque;
155 BlockDriverState *bs = data->bs;
157 if (data->begin) {
158 bs->drv->bdrv_co_drain_begin(bs);
159 } else {
160 bs->drv->bdrv_co_drain_end(bs);
163 /* Set data->done before reading bs->wakeup. */
164 atomic_mb_set(&data->done, true);
165 bdrv_wakeup(bs);
168 /* Recursively call BlockDriver.bdrv_co_drain_begin/end callbacks */
169 static void bdrv_drain_invoke(BlockDriverState *bs, bool begin, bool recursive)
171 BdrvChild *child, *tmp;
172 BdrvCoDrainData data = { .bs = bs, .done = false, .begin = begin};
174 if (!bs->drv || (begin && !bs->drv->bdrv_co_drain_begin) ||
175 (!begin && !bs->drv->bdrv_co_drain_end)) {
176 return;
179 data.co = qemu_coroutine_create(bdrv_drain_invoke_entry, &data);
180 bdrv_coroutine_enter(bs, data.co);
181 BDRV_POLL_WHILE(bs, !data.done);
183 if (recursive) {
184 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
185 bdrv_drain_invoke(child->bs, begin, true);
190 static bool bdrv_drain_recurse(BlockDriverState *bs)
192 BdrvChild *child, *tmp;
193 bool waited;
195 /* Wait for drained requests to finish */
196 waited = BDRV_POLL_WHILE(bs, atomic_read(&bs->in_flight) > 0);
198 QLIST_FOREACH_SAFE(child, &bs->children, next, tmp) {
199 BlockDriverState *bs = child->bs;
200 bool in_main_loop =
201 qemu_get_current_aio_context() == qemu_get_aio_context();
202 assert(bs->refcnt > 0);
203 if (in_main_loop) {
204 /* In case the recursive bdrv_drain_recurse processes a
205 * block_job_defer_to_main_loop BH and modifies the graph,
206 * let's hold a reference to bs until we are done.
208 * IOThread doesn't have such a BH, and it is not safe to call
209 * bdrv_unref without BQL, so skip doing it there.
211 bdrv_ref(bs);
213 waited |= bdrv_drain_recurse(bs);
214 if (in_main_loop) {
215 bdrv_unref(bs);
219 return waited;
222 static void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
223 BdrvChild *parent);
224 static void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
225 BdrvChild *parent);
227 static void bdrv_co_drain_bh_cb(void *opaque)
229 BdrvCoDrainData *data = opaque;
230 Coroutine *co = data->co;
231 BlockDriverState *bs = data->bs;
233 bdrv_dec_in_flight(bs);
234 if (data->begin) {
235 bdrv_do_drained_begin(bs, data->recursive, data->parent);
236 } else {
237 bdrv_do_drained_end(bs, data->recursive, data->parent);
240 data->done = true;
241 aio_co_wake(co);
244 static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
245 bool begin, bool recursive,
246 BdrvChild *parent)
248 BdrvCoDrainData data;
250 /* Calling bdrv_drain() from a BH ensures the current coroutine yields and
251 * other coroutines run if they were queued from
252 * qemu_co_queue_run_restart(). */
254 assert(qemu_in_coroutine());
255 data = (BdrvCoDrainData) {
256 .co = qemu_coroutine_self(),
257 .bs = bs,
258 .done = false,
259 .begin = begin,
260 .recursive = recursive,
261 .parent = parent,
263 bdrv_inc_in_flight(bs);
264 aio_bh_schedule_oneshot(bdrv_get_aio_context(bs),
265 bdrv_co_drain_bh_cb, &data);
267 qemu_coroutine_yield();
268 /* If we are resumed from some other event (such as an aio completion or a
269 * timer callback), it is a bug in the caller that should be fixed. */
270 assert(data.done);
273 void bdrv_do_drained_begin(BlockDriverState *bs, bool recursive,
274 BdrvChild *parent)
276 BdrvChild *child, *next;
278 if (qemu_in_coroutine()) {
279 bdrv_co_yield_to_drain(bs, true, recursive, parent);
280 return;
283 /* Stop things in parent-to-child order */
284 if (atomic_fetch_inc(&bs->quiesce_counter) == 0) {
285 aio_disable_external(bdrv_get_aio_context(bs));
288 bdrv_parent_drained_begin(bs, parent);
289 bdrv_drain_invoke(bs, true, false);
290 bdrv_drain_recurse(bs);
292 if (recursive) {
293 bs->recursive_quiesce_counter++;
294 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
295 bdrv_do_drained_begin(child->bs, true, child);
300 void bdrv_drained_begin(BlockDriverState *bs)
302 bdrv_do_drained_begin(bs, false, NULL);
305 void bdrv_subtree_drained_begin(BlockDriverState *bs)
307 bdrv_do_drained_begin(bs, true, NULL);
310 void bdrv_do_drained_end(BlockDriverState *bs, bool recursive,
311 BdrvChild *parent)
313 BdrvChild *child, *next;
314 int old_quiesce_counter;
316 if (qemu_in_coroutine()) {
317 bdrv_co_yield_to_drain(bs, false, recursive, parent);
318 return;
320 assert(bs->quiesce_counter > 0);
321 old_quiesce_counter = atomic_fetch_dec(&bs->quiesce_counter);
323 /* Re-enable things in child-to-parent order */
324 bdrv_drain_invoke(bs, false, false);
325 bdrv_parent_drained_end(bs, parent);
326 if (old_quiesce_counter == 1) {
327 aio_enable_external(bdrv_get_aio_context(bs));
330 if (recursive) {
331 bs->recursive_quiesce_counter--;
332 QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
333 bdrv_do_drained_end(child->bs, true, child);
338 void bdrv_drained_end(BlockDriverState *bs)
340 bdrv_do_drained_end(bs, false, NULL);
343 void bdrv_subtree_drained_end(BlockDriverState *bs)
345 bdrv_do_drained_end(bs, true, NULL);
348 void bdrv_apply_subtree_drain(BdrvChild *child, BlockDriverState *new_parent)
350 int i;
352 for (i = 0; i < new_parent->recursive_quiesce_counter; i++) {
353 bdrv_do_drained_begin(child->bs, true, child);
357 void bdrv_unapply_subtree_drain(BdrvChild *child, BlockDriverState *old_parent)
359 int i;
361 for (i = 0; i < old_parent->recursive_quiesce_counter; i++) {
362 bdrv_do_drained_end(child->bs, true, child);
367 * Wait for pending requests to complete on a single BlockDriverState subtree,
368 * and suspend block driver's internal I/O until next request arrives.
370 * Note that unlike bdrv_drain_all(), the caller must hold the BlockDriverState
371 * AioContext.
373 * Only this BlockDriverState's AioContext is run, so in-flight requests must
374 * not depend on events in other AioContexts. In that case, use
375 * bdrv_drain_all() instead.
377 void coroutine_fn bdrv_co_drain(BlockDriverState *bs)
379 assert(qemu_in_coroutine());
380 bdrv_drained_begin(bs);
381 bdrv_drained_end(bs);
384 void bdrv_drain(BlockDriverState *bs)
386 bdrv_drained_begin(bs);
387 bdrv_drained_end(bs);
391 * Wait for pending requests to complete across all BlockDriverStates
393 * This function does not flush data to disk, use bdrv_flush_all() for that
394 * after calling this function.
396 * This pauses all block jobs and disables external clients. It must
397 * be paired with bdrv_drain_all_end().
399 * NOTE: no new block jobs or BlockDriverStates can be created between
400 * the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
402 void bdrv_drain_all_begin(void)
404 /* Always run first iteration so any pending completion BHs run */
405 bool waited = true;
406 BlockDriverState *bs;
407 BdrvNextIterator it;
408 GSList *aio_ctxs = NULL, *ctx;
410 /* BDRV_POLL_WHILE() for a node can only be called from its own I/O thread
411 * or the main loop AioContext. We potentially use BDRV_POLL_WHILE() on
412 * nodes in several different AioContexts, so make sure we're in the main
413 * context. */
414 assert(qemu_get_current_aio_context() == qemu_get_aio_context());
416 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
417 AioContext *aio_context = bdrv_get_aio_context(bs);
419 /* Stop things in parent-to-child order */
420 aio_context_acquire(aio_context);
421 aio_disable_external(aio_context);
422 bdrv_parent_drained_begin(bs, NULL);
423 bdrv_drain_invoke(bs, true, true);
424 aio_context_release(aio_context);
426 if (!g_slist_find(aio_ctxs, aio_context)) {
427 aio_ctxs = g_slist_prepend(aio_ctxs, aio_context);
431 /* Note that completion of an asynchronous I/O operation can trigger any
432 * number of other I/O operations on other devices---for example a
433 * coroutine can submit an I/O request to another device in response to
434 * request completion. Therefore we must keep looping until there was no
435 * more activity rather than simply draining each device independently.
437 while (waited) {
438 waited = false;
440 for (ctx = aio_ctxs; ctx != NULL; ctx = ctx->next) {
441 AioContext *aio_context = ctx->data;
443 aio_context_acquire(aio_context);
444 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
445 if (aio_context == bdrv_get_aio_context(bs)) {
446 waited |= bdrv_drain_recurse(bs);
449 aio_context_release(aio_context);
453 g_slist_free(aio_ctxs);
456 void bdrv_drain_all_end(void)
458 BlockDriverState *bs;
459 BdrvNextIterator it;
461 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
462 AioContext *aio_context = bdrv_get_aio_context(bs);
464 /* Re-enable things in child-to-parent order */
465 aio_context_acquire(aio_context);
466 bdrv_drain_invoke(bs, false, true);
467 bdrv_parent_drained_end(bs, NULL);
468 aio_enable_external(aio_context);
469 aio_context_release(aio_context);
473 void bdrv_drain_all(void)
475 bdrv_drain_all_begin();
476 bdrv_drain_all_end();
480 * Remove an active request from the tracked requests list
482 * This function should be called when a tracked request is completing.
484 static void tracked_request_end(BdrvTrackedRequest *req)
486 if (req->serialising) {
487 atomic_dec(&req->bs->serialising_in_flight);
490 qemu_co_mutex_lock(&req->bs->reqs_lock);
491 QLIST_REMOVE(req, list);
492 qemu_co_queue_restart_all(&req->wait_queue);
493 qemu_co_mutex_unlock(&req->bs->reqs_lock);
497 * Add an active request to the tracked requests list
499 static void tracked_request_begin(BdrvTrackedRequest *req,
500 BlockDriverState *bs,
501 int64_t offset,
502 unsigned int bytes,
503 enum BdrvTrackedRequestType type)
505 *req = (BdrvTrackedRequest){
506 .bs = bs,
507 .offset = offset,
508 .bytes = bytes,
509 .type = type,
510 .co = qemu_coroutine_self(),
511 .serialising = false,
512 .overlap_offset = offset,
513 .overlap_bytes = bytes,
516 qemu_co_queue_init(&req->wait_queue);
518 qemu_co_mutex_lock(&bs->reqs_lock);
519 QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
520 qemu_co_mutex_unlock(&bs->reqs_lock);
523 static void mark_request_serialising(BdrvTrackedRequest *req, uint64_t align)
525 int64_t overlap_offset = req->offset & ~(align - 1);
526 unsigned int overlap_bytes = ROUND_UP(req->offset + req->bytes, align)
527 - overlap_offset;
529 if (!req->serialising) {
530 atomic_inc(&req->bs->serialising_in_flight);
531 req->serialising = true;
534 req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
535 req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
539 * Round a region to cluster boundaries
541 void bdrv_round_to_clusters(BlockDriverState *bs,
542 int64_t offset, int64_t bytes,
543 int64_t *cluster_offset,
544 int64_t *cluster_bytes)
546 BlockDriverInfo bdi;
548 if (bdrv_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
549 *cluster_offset = offset;
550 *cluster_bytes = bytes;
551 } else {
552 int64_t c = bdi.cluster_size;
553 *cluster_offset = QEMU_ALIGN_DOWN(offset, c);
554 *cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
558 static int bdrv_get_cluster_size(BlockDriverState *bs)
560 BlockDriverInfo bdi;
561 int ret;
563 ret = bdrv_get_info(bs, &bdi);
564 if (ret < 0 || bdi.cluster_size == 0) {
565 return bs->bl.request_alignment;
566 } else {
567 return bdi.cluster_size;
571 static bool tracked_request_overlaps(BdrvTrackedRequest *req,
572 int64_t offset, unsigned int bytes)
574 /* aaaa bbbb */
575 if (offset >= req->overlap_offset + req->overlap_bytes) {
576 return false;
578 /* bbbb aaaa */
579 if (req->overlap_offset >= offset + bytes) {
580 return false;
582 return true;
585 void bdrv_inc_in_flight(BlockDriverState *bs)
587 atomic_inc(&bs->in_flight);
590 static void dummy_bh_cb(void *opaque)
594 void bdrv_wakeup(BlockDriverState *bs)
596 /* The barrier (or an atomic op) is in the caller. */
597 if (atomic_read(&bs->wakeup)) {
598 aio_bh_schedule_oneshot(qemu_get_aio_context(), dummy_bh_cb, NULL);
602 void bdrv_dec_in_flight(BlockDriverState *bs)
604 atomic_dec(&bs->in_flight);
605 bdrv_wakeup(bs);
608 static bool coroutine_fn wait_serialising_requests(BdrvTrackedRequest *self)
610 BlockDriverState *bs = self->bs;
611 BdrvTrackedRequest *req;
612 bool retry;
613 bool waited = false;
615 if (!atomic_read(&bs->serialising_in_flight)) {
616 return false;
619 do {
620 retry = false;
621 qemu_co_mutex_lock(&bs->reqs_lock);
622 QLIST_FOREACH(req, &bs->tracked_requests, list) {
623 if (req == self || (!req->serialising && !self->serialising)) {
624 continue;
626 if (tracked_request_overlaps(req, self->overlap_offset,
627 self->overlap_bytes))
629 /* Hitting this means there was a reentrant request, for
630 * example, a block driver issuing nested requests. This must
631 * never happen since it means deadlock.
633 assert(qemu_coroutine_self() != req->co);
635 /* If the request is already (indirectly) waiting for us, or
636 * will wait for us as soon as it wakes up, then just go on
637 * (instead of producing a deadlock in the former case). */
638 if (!req->waiting_for) {
639 self->waiting_for = req;
640 qemu_co_queue_wait(&req->wait_queue, &bs->reqs_lock);
641 self->waiting_for = NULL;
642 retry = true;
643 waited = true;
644 break;
648 qemu_co_mutex_unlock(&bs->reqs_lock);
649 } while (retry);
651 return waited;
654 static int bdrv_check_byte_request(BlockDriverState *bs, int64_t offset,
655 size_t size)
657 if (size > BDRV_REQUEST_MAX_SECTORS << BDRV_SECTOR_BITS) {
658 return -EIO;
661 if (!bdrv_is_inserted(bs)) {
662 return -ENOMEDIUM;
665 if (offset < 0) {
666 return -EIO;
669 return 0;
672 typedef struct RwCo {
673 BdrvChild *child;
674 int64_t offset;
675 QEMUIOVector *qiov;
676 bool is_write;
677 int ret;
678 BdrvRequestFlags flags;
679 } RwCo;
681 static void coroutine_fn bdrv_rw_co_entry(void *opaque)
683 RwCo *rwco = opaque;
685 if (!rwco->is_write) {
686 rwco->ret = bdrv_co_preadv(rwco->child, rwco->offset,
687 rwco->qiov->size, rwco->qiov,
688 rwco->flags);
689 } else {
690 rwco->ret = bdrv_co_pwritev(rwco->child, rwco->offset,
691 rwco->qiov->size, rwco->qiov,
692 rwco->flags);
697 * Process a vectored synchronous request using coroutines
699 static int bdrv_prwv_co(BdrvChild *child, int64_t offset,
700 QEMUIOVector *qiov, bool is_write,
701 BdrvRequestFlags flags)
703 Coroutine *co;
704 RwCo rwco = {
705 .child = child,
706 .offset = offset,
707 .qiov = qiov,
708 .is_write = is_write,
709 .ret = NOT_DONE,
710 .flags = flags,
713 if (qemu_in_coroutine()) {
714 /* Fast-path if already in coroutine context */
715 bdrv_rw_co_entry(&rwco);
716 } else {
717 co = qemu_coroutine_create(bdrv_rw_co_entry, &rwco);
718 bdrv_coroutine_enter(child->bs, co);
719 BDRV_POLL_WHILE(child->bs, rwco.ret == NOT_DONE);
721 return rwco.ret;
725 * Process a synchronous request using coroutines
727 static int bdrv_rw_co(BdrvChild *child, int64_t sector_num, uint8_t *buf,
728 int nb_sectors, bool is_write, BdrvRequestFlags flags)
730 QEMUIOVector qiov;
731 struct iovec iov = {
732 .iov_base = (void *)buf,
733 .iov_len = nb_sectors * BDRV_SECTOR_SIZE,
736 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
737 return -EINVAL;
740 qemu_iovec_init_external(&qiov, &iov, 1);
741 return bdrv_prwv_co(child, sector_num << BDRV_SECTOR_BITS,
742 &qiov, is_write, flags);
745 /* return < 0 if error. See bdrv_write() for the return codes */
746 int bdrv_read(BdrvChild *child, int64_t sector_num,
747 uint8_t *buf, int nb_sectors)
749 return bdrv_rw_co(child, sector_num, buf, nb_sectors, false, 0);
752 /* Return < 0 if error. Important errors are:
753 -EIO generic I/O error (may happen for all errors)
754 -ENOMEDIUM No media inserted.
755 -EINVAL Invalid sector number or nb_sectors
756 -EACCES Trying to write a read-only device
758 int bdrv_write(BdrvChild *child, int64_t sector_num,
759 const uint8_t *buf, int nb_sectors)
761 return bdrv_rw_co(child, sector_num, (uint8_t *)buf, nb_sectors, true, 0);
764 int bdrv_pwrite_zeroes(BdrvChild *child, int64_t offset,
765 int bytes, BdrvRequestFlags flags)
767 QEMUIOVector qiov;
768 struct iovec iov = {
769 .iov_base = NULL,
770 .iov_len = bytes,
773 qemu_iovec_init_external(&qiov, &iov, 1);
774 return bdrv_prwv_co(child, offset, &qiov, true,
775 BDRV_REQ_ZERO_WRITE | flags);
779 * Completely zero out a block device with the help of bdrv_pwrite_zeroes.
780 * The operation is sped up by checking the block status and only writing
781 * zeroes to the device if they currently do not return zeroes. Optional
782 * flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
783 * BDRV_REQ_FUA).
785 * Returns < 0 on error, 0 on success. For error codes see bdrv_write().
787 int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
789 int ret;
790 int64_t target_size, bytes, offset = 0;
791 BlockDriverState *bs = child->bs;
793 target_size = bdrv_getlength(bs);
794 if (target_size < 0) {
795 return target_size;
798 for (;;) {
799 bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
800 if (bytes <= 0) {
801 return 0;
803 ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
804 if (ret < 0) {
805 error_report("error getting block status at offset %" PRId64 ": %s",
806 offset, strerror(-ret));
807 return ret;
809 if (ret & BDRV_BLOCK_ZERO) {
810 offset += bytes;
811 continue;
813 ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
814 if (ret < 0) {
815 error_report("error writing zeroes at offset %" PRId64 ": %s",
816 offset, strerror(-ret));
817 return ret;
819 offset += bytes;
823 int bdrv_preadv(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
825 int ret;
827 ret = bdrv_prwv_co(child, offset, qiov, false, 0);
828 if (ret < 0) {
829 return ret;
832 return qiov->size;
835 int bdrv_pread(BdrvChild *child, int64_t offset, void *buf, int bytes)
837 QEMUIOVector qiov;
838 struct iovec iov = {
839 .iov_base = (void *)buf,
840 .iov_len = bytes,
843 if (bytes < 0) {
844 return -EINVAL;
847 qemu_iovec_init_external(&qiov, &iov, 1);
848 return bdrv_preadv(child, offset, &qiov);
851 int bdrv_pwritev(BdrvChild *child, int64_t offset, QEMUIOVector *qiov)
853 int ret;
855 ret = bdrv_prwv_co(child, offset, qiov, true, 0);
856 if (ret < 0) {
857 return ret;
860 return qiov->size;
863 int bdrv_pwrite(BdrvChild *child, int64_t offset, const void *buf, int bytes)
865 QEMUIOVector qiov;
866 struct iovec iov = {
867 .iov_base = (void *) buf,
868 .iov_len = bytes,
871 if (bytes < 0) {
872 return -EINVAL;
875 qemu_iovec_init_external(&qiov, &iov, 1);
876 return bdrv_pwritev(child, offset, &qiov);
880 * Writes to the file and ensures that no writes are reordered across this
881 * request (acts as a barrier)
883 * Returns 0 on success, -errno in error cases.
885 int bdrv_pwrite_sync(BdrvChild *child, int64_t offset,
886 const void *buf, int count)
888 int ret;
890 ret = bdrv_pwrite(child, offset, buf, count);
891 if (ret < 0) {
892 return ret;
895 ret = bdrv_flush(child->bs);
896 if (ret < 0) {
897 return ret;
900 return 0;
903 typedef struct CoroutineIOCompletion {
904 Coroutine *coroutine;
905 int ret;
906 } CoroutineIOCompletion;
908 static void bdrv_co_io_em_complete(void *opaque, int ret)
910 CoroutineIOCompletion *co = opaque;
912 co->ret = ret;
913 aio_co_wake(co->coroutine);
916 static int coroutine_fn bdrv_driver_preadv(BlockDriverState *bs,
917 uint64_t offset, uint64_t bytes,
918 QEMUIOVector *qiov, int flags)
920 BlockDriver *drv = bs->drv;
921 int64_t sector_num;
922 unsigned int nb_sectors;
924 assert(!(flags & ~BDRV_REQ_MASK));
926 if (!drv) {
927 return -ENOMEDIUM;
930 if (drv->bdrv_co_preadv) {
931 return drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
934 sector_num = offset >> BDRV_SECTOR_BITS;
935 nb_sectors = bytes >> BDRV_SECTOR_BITS;
937 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
938 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
939 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
941 if (drv->bdrv_co_readv) {
942 return drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
943 } else {
944 BlockAIOCB *acb;
945 CoroutineIOCompletion co = {
946 .coroutine = qemu_coroutine_self(),
949 acb = bs->drv->bdrv_aio_readv(bs, sector_num, qiov, nb_sectors,
950 bdrv_co_io_em_complete, &co);
951 if (acb == NULL) {
952 return -EIO;
953 } else {
954 qemu_coroutine_yield();
955 return co.ret;
960 static int coroutine_fn bdrv_driver_pwritev(BlockDriverState *bs,
961 uint64_t offset, uint64_t bytes,
962 QEMUIOVector *qiov, int flags)
964 BlockDriver *drv = bs->drv;
965 int64_t sector_num;
966 unsigned int nb_sectors;
967 int ret;
969 assert(!(flags & ~BDRV_REQ_MASK));
971 if (!drv) {
972 return -ENOMEDIUM;
975 if (drv->bdrv_co_pwritev) {
976 ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov,
977 flags & bs->supported_write_flags);
978 flags &= ~bs->supported_write_flags;
979 goto emulate_flags;
982 sector_num = offset >> BDRV_SECTOR_BITS;
983 nb_sectors = bytes >> BDRV_SECTOR_BITS;
985 assert((offset & (BDRV_SECTOR_SIZE - 1)) == 0);
986 assert((bytes & (BDRV_SECTOR_SIZE - 1)) == 0);
987 assert((bytes >> BDRV_SECTOR_BITS) <= BDRV_REQUEST_MAX_SECTORS);
989 if (drv->bdrv_co_writev_flags) {
990 ret = drv->bdrv_co_writev_flags(bs, sector_num, nb_sectors, qiov,
991 flags & bs->supported_write_flags);
992 flags &= ~bs->supported_write_flags;
993 } else if (drv->bdrv_co_writev) {
994 assert(!bs->supported_write_flags);
995 ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov);
996 } else {
997 BlockAIOCB *acb;
998 CoroutineIOCompletion co = {
999 .coroutine = qemu_coroutine_self(),
1002 acb = bs->drv->bdrv_aio_writev(bs, sector_num, qiov, nb_sectors,
1003 bdrv_co_io_em_complete, &co);
1004 if (acb == NULL) {
1005 ret = -EIO;
1006 } else {
1007 qemu_coroutine_yield();
1008 ret = co.ret;
1012 emulate_flags:
1013 if (ret == 0 && (flags & BDRV_REQ_FUA)) {
1014 ret = bdrv_co_flush(bs);
1017 return ret;
1020 static int coroutine_fn
1021 bdrv_driver_pwritev_compressed(BlockDriverState *bs, uint64_t offset,
1022 uint64_t bytes, QEMUIOVector *qiov)
1024 BlockDriver *drv = bs->drv;
1026 if (!drv) {
1027 return -ENOMEDIUM;
1030 if (!drv->bdrv_co_pwritev_compressed) {
1031 return -ENOTSUP;
1034 return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
1037 static int coroutine_fn bdrv_co_do_copy_on_readv(BdrvChild *child,
1038 int64_t offset, unsigned int bytes, QEMUIOVector *qiov)
1040 BlockDriverState *bs = child->bs;
1042 /* Perform I/O through a temporary buffer so that users who scribble over
1043 * their read buffer while the operation is in progress do not end up
1044 * modifying the image file. This is critical for zero-copy guest I/O
1045 * where anything might happen inside guest memory.
1047 void *bounce_buffer;
1049 BlockDriver *drv = bs->drv;
1050 struct iovec iov;
1051 QEMUIOVector local_qiov;
1052 int64_t cluster_offset;
1053 int64_t cluster_bytes;
1054 size_t skip_bytes;
1055 int ret;
1056 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
1057 BDRV_REQUEST_MAX_BYTES);
1058 unsigned int progress = 0;
1060 if (!drv) {
1061 return -ENOMEDIUM;
1064 /* FIXME We cannot require callers to have write permissions when all they
1065 * are doing is a read request. If we did things right, write permissions
1066 * would be obtained anyway, but internally by the copy-on-read code. As
1067 * long as it is implemented here rather than in a separate filter driver,
1068 * the copy-on-read code doesn't have its own BdrvChild, however, for which
1069 * it could request permissions. Therefore we have to bypass the permission
1070 * system for the moment. */
1071 // assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
1073 /* Cover entire cluster so no additional backing file I/O is required when
1074 * allocating cluster in the image file. Note that this value may exceed
1075 * BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
1076 * is one reason we loop rather than doing it all at once.
1078 bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
1079 skip_bytes = offset - cluster_offset;
1081 trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
1082 cluster_offset, cluster_bytes);
1084 bounce_buffer = qemu_try_blockalign(bs,
1085 MIN(MIN(max_transfer, cluster_bytes),
1086 MAX_BOUNCE_BUFFER));
1087 if (bounce_buffer == NULL) {
1088 ret = -ENOMEM;
1089 goto err;
1092 while (cluster_bytes) {
1093 int64_t pnum;
1095 ret = bdrv_is_allocated(bs, cluster_offset,
1096 MIN(cluster_bytes, max_transfer), &pnum);
1097 if (ret < 0) {
1098 /* Safe to treat errors in querying allocation as if
1099 * unallocated; we'll probably fail again soon on the
1100 * read, but at least that will set a decent errno.
1102 pnum = MIN(cluster_bytes, max_transfer);
1105 assert(skip_bytes < pnum);
1107 if (ret <= 0) {
1108 /* Must copy-on-read; use the bounce buffer */
1109 iov.iov_base = bounce_buffer;
1110 iov.iov_len = pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
1111 qemu_iovec_init_external(&local_qiov, &iov, 1);
1113 ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
1114 &local_qiov, 0);
1115 if (ret < 0) {
1116 goto err;
1119 bdrv_debug_event(bs, BLKDBG_COR_WRITE);
1120 if (drv->bdrv_co_pwrite_zeroes &&
1121 buffer_is_zero(bounce_buffer, pnum)) {
1122 /* FIXME: Should we (perhaps conditionally) be setting
1123 * BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
1124 * that still correctly reads as zero? */
1125 ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum, 0);
1126 } else {
1127 /* This does not change the data on the disk, it is not
1128 * necessary to flush even in cache=writethrough mode.
1130 ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
1131 &local_qiov, 0);
1134 if (ret < 0) {
1135 /* It might be okay to ignore write errors for guest
1136 * requests. If this is a deliberate copy-on-read
1137 * then we don't want to ignore the error. Simply
1138 * report it in all cases.
1140 goto err;
1143 qemu_iovec_from_buf(qiov, progress, bounce_buffer + skip_bytes,
1144 pnum - skip_bytes);
1145 } else {
1146 /* Read directly into the destination */
1147 qemu_iovec_init(&local_qiov, qiov->niov);
1148 qemu_iovec_concat(&local_qiov, qiov, progress, pnum - skip_bytes);
1149 ret = bdrv_driver_preadv(bs, offset + progress, local_qiov.size,
1150 &local_qiov, 0);
1151 qemu_iovec_destroy(&local_qiov);
1152 if (ret < 0) {
1153 goto err;
1157 cluster_offset += pnum;
1158 cluster_bytes -= pnum;
1159 progress += pnum - skip_bytes;
1160 skip_bytes = 0;
1162 ret = 0;
1164 err:
1165 qemu_vfree(bounce_buffer);
1166 return ret;
1170 * Forwards an already correctly aligned request to the BlockDriver. This
1171 * handles copy on read, zeroing after EOF, and fragmentation of large
1172 * reads; any other features must be implemented by the caller.
1174 static int coroutine_fn bdrv_aligned_preadv(BdrvChild *child,
1175 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1176 int64_t align, QEMUIOVector *qiov, int flags)
1178 BlockDriverState *bs = child->bs;
1179 int64_t total_bytes, max_bytes;
1180 int ret = 0;
1181 uint64_t bytes_remaining = bytes;
1182 int max_transfer;
1184 assert(is_power_of_2(align));
1185 assert((offset & (align - 1)) == 0);
1186 assert((bytes & (align - 1)) == 0);
1187 assert(!qiov || bytes == qiov->size);
1188 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1189 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1190 align);
1192 /* TODO: We would need a per-BDS .supported_read_flags and
1193 * potential fallback support, if we ever implement any read flags
1194 * to pass through to drivers. For now, there aren't any
1195 * passthrough flags. */
1196 assert(!(flags & ~(BDRV_REQ_NO_SERIALISING | BDRV_REQ_COPY_ON_READ)));
1198 /* Handle Copy on Read and associated serialisation */
1199 if (flags & BDRV_REQ_COPY_ON_READ) {
1200 /* If we touch the same cluster it counts as an overlap. This
1201 * guarantees that allocating writes will be serialized and not race
1202 * with each other for the same cluster. For example, in copy-on-read
1203 * it ensures that the CoR read and write operations are atomic and
1204 * guest writes cannot interleave between them. */
1205 mark_request_serialising(req, bdrv_get_cluster_size(bs));
1208 if (!(flags & BDRV_REQ_NO_SERIALISING)) {
1209 wait_serialising_requests(req);
1212 if (flags & BDRV_REQ_COPY_ON_READ) {
1213 int64_t pnum;
1215 ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
1216 if (ret < 0) {
1217 goto out;
1220 if (!ret || pnum != bytes) {
1221 ret = bdrv_co_do_copy_on_readv(child, offset, bytes, qiov);
1222 goto out;
1226 /* Forward the request to the BlockDriver, possibly fragmenting it */
1227 total_bytes = bdrv_getlength(bs);
1228 if (total_bytes < 0) {
1229 ret = total_bytes;
1230 goto out;
1233 max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
1234 if (bytes <= max_bytes && bytes <= max_transfer) {
1235 ret = bdrv_driver_preadv(bs, offset, bytes, qiov, 0);
1236 goto out;
1239 while (bytes_remaining) {
1240 int num;
1242 if (max_bytes) {
1243 QEMUIOVector local_qiov;
1245 num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
1246 assert(num);
1247 qemu_iovec_init(&local_qiov, qiov->niov);
1248 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1250 ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
1251 num, &local_qiov, 0);
1252 max_bytes -= num;
1253 qemu_iovec_destroy(&local_qiov);
1254 } else {
1255 num = bytes_remaining;
1256 ret = qemu_iovec_memset(qiov, bytes - bytes_remaining, 0,
1257 bytes_remaining);
1259 if (ret < 0) {
1260 goto out;
1262 bytes_remaining -= num;
1265 out:
1266 return ret < 0 ? ret : 0;
1270 * Handle a read request in coroutine context
1272 int coroutine_fn bdrv_co_preadv(BdrvChild *child,
1273 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1274 BdrvRequestFlags flags)
1276 BlockDriverState *bs = child->bs;
1277 BlockDriver *drv = bs->drv;
1278 BdrvTrackedRequest req;
1280 uint64_t align = bs->bl.request_alignment;
1281 uint8_t *head_buf = NULL;
1282 uint8_t *tail_buf = NULL;
1283 QEMUIOVector local_qiov;
1284 bool use_local_qiov = false;
1285 int ret;
1287 trace_bdrv_co_preadv(child->bs, offset, bytes, flags);
1289 if (!drv) {
1290 return -ENOMEDIUM;
1293 ret = bdrv_check_byte_request(bs, offset, bytes);
1294 if (ret < 0) {
1295 return ret;
1298 bdrv_inc_in_flight(bs);
1300 /* Don't do copy-on-read if we read data before write operation */
1301 if (atomic_read(&bs->copy_on_read) && !(flags & BDRV_REQ_NO_SERIALISING)) {
1302 flags |= BDRV_REQ_COPY_ON_READ;
1305 /* Align read if necessary by padding qiov */
1306 if (offset & (align - 1)) {
1307 head_buf = qemu_blockalign(bs, align);
1308 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1309 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1310 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1311 use_local_qiov = true;
1313 bytes += offset & (align - 1);
1314 offset = offset & ~(align - 1);
1317 if ((offset + bytes) & (align - 1)) {
1318 if (!use_local_qiov) {
1319 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1320 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1321 use_local_qiov = true;
1323 tail_buf = qemu_blockalign(bs, align);
1324 qemu_iovec_add(&local_qiov, tail_buf,
1325 align - ((offset + bytes) & (align - 1)));
1327 bytes = ROUND_UP(bytes, align);
1330 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
1331 ret = bdrv_aligned_preadv(child, &req, offset, bytes, align,
1332 use_local_qiov ? &local_qiov : qiov,
1333 flags);
1334 tracked_request_end(&req);
1335 bdrv_dec_in_flight(bs);
1337 if (use_local_qiov) {
1338 qemu_iovec_destroy(&local_qiov);
1339 qemu_vfree(head_buf);
1340 qemu_vfree(tail_buf);
1343 return ret;
1346 static int coroutine_fn bdrv_co_do_readv(BdrvChild *child,
1347 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1348 BdrvRequestFlags flags)
1350 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1351 return -EINVAL;
1354 return bdrv_co_preadv(child, sector_num << BDRV_SECTOR_BITS,
1355 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1358 int coroutine_fn bdrv_co_readv(BdrvChild *child, int64_t sector_num,
1359 int nb_sectors, QEMUIOVector *qiov)
1361 return bdrv_co_do_readv(child, sector_num, nb_sectors, qiov, 0);
1364 static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
1365 int64_t offset, int bytes, BdrvRequestFlags flags)
1367 BlockDriver *drv = bs->drv;
1368 QEMUIOVector qiov;
1369 struct iovec iov = {0};
1370 int ret = 0;
1371 bool need_flush = false;
1372 int head = 0;
1373 int tail = 0;
1375 int max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes, INT_MAX);
1376 int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
1377 bs->bl.request_alignment);
1378 int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
1380 if (!drv) {
1381 return -ENOMEDIUM;
1384 assert(alignment % bs->bl.request_alignment == 0);
1385 head = offset % alignment;
1386 tail = (offset + bytes) % alignment;
1387 max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
1388 assert(max_write_zeroes >= bs->bl.request_alignment);
1390 while (bytes > 0 && !ret) {
1391 int num = bytes;
1393 /* Align request. Block drivers can expect the "bulk" of the request
1394 * to be aligned, and that unaligned requests do not cross cluster
1395 * boundaries.
1397 if (head) {
1398 /* Make a small request up to the first aligned sector. For
1399 * convenience, limit this request to max_transfer even if
1400 * we don't need to fall back to writes. */
1401 num = MIN(MIN(bytes, max_transfer), alignment - head);
1402 head = (head + num) % alignment;
1403 assert(num < max_write_zeroes);
1404 } else if (tail && num > alignment) {
1405 /* Shorten the request to the last aligned sector. */
1406 num -= tail;
1409 /* limit request size */
1410 if (num > max_write_zeroes) {
1411 num = max_write_zeroes;
1414 ret = -ENOTSUP;
1415 /* First try the efficient write zeroes operation */
1416 if (drv->bdrv_co_pwrite_zeroes) {
1417 ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
1418 flags & bs->supported_zero_flags);
1419 if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
1420 !(bs->supported_zero_flags & BDRV_REQ_FUA)) {
1421 need_flush = true;
1423 } else {
1424 assert(!bs->supported_zero_flags);
1427 if (ret == -ENOTSUP) {
1428 /* Fall back to bounce buffer if write zeroes is unsupported */
1429 BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
1431 if ((flags & BDRV_REQ_FUA) &&
1432 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1433 /* No need for bdrv_driver_pwrite() to do a fallback
1434 * flush on each chunk; use just one at the end */
1435 write_flags &= ~BDRV_REQ_FUA;
1436 need_flush = true;
1438 num = MIN(num, max_transfer);
1439 iov.iov_len = num;
1440 if (iov.iov_base == NULL) {
1441 iov.iov_base = qemu_try_blockalign(bs, num);
1442 if (iov.iov_base == NULL) {
1443 ret = -ENOMEM;
1444 goto fail;
1446 memset(iov.iov_base, 0, num);
1448 qemu_iovec_init_external(&qiov, &iov, 1);
1450 ret = bdrv_driver_pwritev(bs, offset, num, &qiov, write_flags);
1452 /* Keep bounce buffer around if it is big enough for all
1453 * all future requests.
1455 if (num < max_transfer) {
1456 qemu_vfree(iov.iov_base);
1457 iov.iov_base = NULL;
1461 offset += num;
1462 bytes -= num;
1465 fail:
1466 if (ret == 0 && need_flush) {
1467 ret = bdrv_co_flush(bs);
1469 qemu_vfree(iov.iov_base);
1470 return ret;
1474 * Forwards an already correctly aligned write request to the BlockDriver,
1475 * after possibly fragmenting it.
1477 static int coroutine_fn bdrv_aligned_pwritev(BdrvChild *child,
1478 BdrvTrackedRequest *req, int64_t offset, unsigned int bytes,
1479 int64_t align, QEMUIOVector *qiov, int flags)
1481 BlockDriverState *bs = child->bs;
1482 BlockDriver *drv = bs->drv;
1483 bool waited;
1484 int ret;
1486 int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
1487 uint64_t bytes_remaining = bytes;
1488 int max_transfer;
1490 if (!drv) {
1491 return -ENOMEDIUM;
1494 if (bdrv_has_readonly_bitmaps(bs)) {
1495 return -EPERM;
1498 assert(is_power_of_2(align));
1499 assert((offset & (align - 1)) == 0);
1500 assert((bytes & (align - 1)) == 0);
1501 assert(!qiov || bytes == qiov->size);
1502 assert((bs->open_flags & BDRV_O_NO_IO) == 0);
1503 assert(!(flags & ~BDRV_REQ_MASK));
1504 max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
1505 align);
1507 waited = wait_serialising_requests(req);
1508 assert(!waited || !req->serialising);
1509 assert(req->overlap_offset <= offset);
1510 assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
1511 assert(child->perm & BLK_PERM_WRITE);
1512 assert(end_sector <= bs->total_sectors || child->perm & BLK_PERM_RESIZE);
1514 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, req);
1516 if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
1517 !(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
1518 qemu_iovec_is_zero(qiov)) {
1519 flags |= BDRV_REQ_ZERO_WRITE;
1520 if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
1521 flags |= BDRV_REQ_MAY_UNMAP;
1525 if (ret < 0) {
1526 /* Do nothing, write notifier decided to fail this request */
1527 } else if (flags & BDRV_REQ_ZERO_WRITE) {
1528 bdrv_debug_event(bs, BLKDBG_PWRITEV_ZERO);
1529 ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
1530 } else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
1531 ret = bdrv_driver_pwritev_compressed(bs, offset, bytes, qiov);
1532 } else if (bytes <= max_transfer) {
1533 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1534 ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, flags);
1535 } else {
1536 bdrv_debug_event(bs, BLKDBG_PWRITEV);
1537 while (bytes_remaining) {
1538 int num = MIN(bytes_remaining, max_transfer);
1539 QEMUIOVector local_qiov;
1540 int local_flags = flags;
1542 assert(num);
1543 if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
1544 !(bs->supported_write_flags & BDRV_REQ_FUA)) {
1545 /* If FUA is going to be emulated by flush, we only
1546 * need to flush on the last iteration */
1547 local_flags &= ~BDRV_REQ_FUA;
1549 qemu_iovec_init(&local_qiov, qiov->niov);
1550 qemu_iovec_concat(&local_qiov, qiov, bytes - bytes_remaining, num);
1552 ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
1553 num, &local_qiov, local_flags);
1554 qemu_iovec_destroy(&local_qiov);
1555 if (ret < 0) {
1556 break;
1558 bytes_remaining -= num;
1561 bdrv_debug_event(bs, BLKDBG_PWRITEV_DONE);
1563 atomic_inc(&bs->write_gen);
1564 bdrv_set_dirty(bs, offset, bytes);
1566 stat64_max(&bs->wr_highest_offset, offset + bytes);
1568 if (ret >= 0) {
1569 bs->total_sectors = MAX(bs->total_sectors, end_sector);
1570 ret = 0;
1573 return ret;
1576 static int coroutine_fn bdrv_co_do_zero_pwritev(BdrvChild *child,
1577 int64_t offset,
1578 unsigned int bytes,
1579 BdrvRequestFlags flags,
1580 BdrvTrackedRequest *req)
1582 BlockDriverState *bs = child->bs;
1583 uint8_t *buf = NULL;
1584 QEMUIOVector local_qiov;
1585 struct iovec iov;
1586 uint64_t align = bs->bl.request_alignment;
1587 unsigned int head_padding_bytes, tail_padding_bytes;
1588 int ret = 0;
1590 head_padding_bytes = offset & (align - 1);
1591 tail_padding_bytes = (align - (offset + bytes)) & (align - 1);
1594 assert(flags & BDRV_REQ_ZERO_WRITE);
1595 if (head_padding_bytes || tail_padding_bytes) {
1596 buf = qemu_blockalign(bs, align);
1597 iov = (struct iovec) {
1598 .iov_base = buf,
1599 .iov_len = align,
1601 qemu_iovec_init_external(&local_qiov, &iov, 1);
1603 if (head_padding_bytes) {
1604 uint64_t zero_bytes = MIN(bytes, align - head_padding_bytes);
1606 /* RMW the unaligned part before head. */
1607 mark_request_serialising(req, align);
1608 wait_serialising_requests(req);
1609 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1610 ret = bdrv_aligned_preadv(child, req, offset & ~(align - 1), align,
1611 align, &local_qiov, 0);
1612 if (ret < 0) {
1613 goto fail;
1615 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1617 memset(buf + head_padding_bytes, 0, zero_bytes);
1618 ret = bdrv_aligned_pwritev(child, req, offset & ~(align - 1), align,
1619 align, &local_qiov,
1620 flags & ~BDRV_REQ_ZERO_WRITE);
1621 if (ret < 0) {
1622 goto fail;
1624 offset += zero_bytes;
1625 bytes -= zero_bytes;
1628 assert(!bytes || (offset & (align - 1)) == 0);
1629 if (bytes >= align) {
1630 /* Write the aligned part in the middle. */
1631 uint64_t aligned_bytes = bytes & ~(align - 1);
1632 ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
1633 NULL, flags);
1634 if (ret < 0) {
1635 goto fail;
1637 bytes -= aligned_bytes;
1638 offset += aligned_bytes;
1641 assert(!bytes || (offset & (align - 1)) == 0);
1642 if (bytes) {
1643 assert(align == tail_padding_bytes + bytes);
1644 /* RMW the unaligned part after tail. */
1645 mark_request_serialising(req, align);
1646 wait_serialising_requests(req);
1647 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1648 ret = bdrv_aligned_preadv(child, req, offset, align,
1649 align, &local_qiov, 0);
1650 if (ret < 0) {
1651 goto fail;
1653 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1655 memset(buf, 0, bytes);
1656 ret = bdrv_aligned_pwritev(child, req, offset, align, align,
1657 &local_qiov, flags & ~BDRV_REQ_ZERO_WRITE);
1659 fail:
1660 qemu_vfree(buf);
1661 return ret;
1666 * Handle a write request in coroutine context
1668 int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
1669 int64_t offset, unsigned int bytes, QEMUIOVector *qiov,
1670 BdrvRequestFlags flags)
1672 BlockDriverState *bs = child->bs;
1673 BdrvTrackedRequest req;
1674 uint64_t align = bs->bl.request_alignment;
1675 uint8_t *head_buf = NULL;
1676 uint8_t *tail_buf = NULL;
1677 QEMUIOVector local_qiov;
1678 bool use_local_qiov = false;
1679 int ret;
1681 trace_bdrv_co_pwritev(child->bs, offset, bytes, flags);
1683 if (!bs->drv) {
1684 return -ENOMEDIUM;
1686 if (bs->read_only) {
1687 return -EPERM;
1689 assert(!(bs->open_flags & BDRV_O_INACTIVE));
1691 ret = bdrv_check_byte_request(bs, offset, bytes);
1692 if (ret < 0) {
1693 return ret;
1696 bdrv_inc_in_flight(bs);
1698 * Align write if necessary by performing a read-modify-write cycle.
1699 * Pad qiov with the read parts and be sure to have a tracked request not
1700 * only for bdrv_aligned_pwritev, but also for the reads of the RMW cycle.
1702 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
1704 if (!qiov) {
1705 ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
1706 goto out;
1709 if (offset & (align - 1)) {
1710 QEMUIOVector head_qiov;
1711 struct iovec head_iov;
1713 mark_request_serialising(&req, align);
1714 wait_serialising_requests(&req);
1716 head_buf = qemu_blockalign(bs, align);
1717 head_iov = (struct iovec) {
1718 .iov_base = head_buf,
1719 .iov_len = align,
1721 qemu_iovec_init_external(&head_qiov, &head_iov, 1);
1723 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
1724 ret = bdrv_aligned_preadv(child, &req, offset & ~(align - 1), align,
1725 align, &head_qiov, 0);
1726 if (ret < 0) {
1727 goto fail;
1729 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
1731 qemu_iovec_init(&local_qiov, qiov->niov + 2);
1732 qemu_iovec_add(&local_qiov, head_buf, offset & (align - 1));
1733 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1734 use_local_qiov = true;
1736 bytes += offset & (align - 1);
1737 offset = offset & ~(align - 1);
1739 /* We have read the tail already if the request is smaller
1740 * than one aligned block.
1742 if (bytes < align) {
1743 qemu_iovec_add(&local_qiov, head_buf + bytes, align - bytes);
1744 bytes = align;
1748 if ((offset + bytes) & (align - 1)) {
1749 QEMUIOVector tail_qiov;
1750 struct iovec tail_iov;
1751 size_t tail_bytes;
1752 bool waited;
1754 mark_request_serialising(&req, align);
1755 waited = wait_serialising_requests(&req);
1756 assert(!waited || !use_local_qiov);
1758 tail_buf = qemu_blockalign(bs, align);
1759 tail_iov = (struct iovec) {
1760 .iov_base = tail_buf,
1761 .iov_len = align,
1763 qemu_iovec_init_external(&tail_qiov, &tail_iov, 1);
1765 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
1766 ret = bdrv_aligned_preadv(child, &req, (offset + bytes) & ~(align - 1),
1767 align, align, &tail_qiov, 0);
1768 if (ret < 0) {
1769 goto fail;
1771 bdrv_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
1773 if (!use_local_qiov) {
1774 qemu_iovec_init(&local_qiov, qiov->niov + 1);
1775 qemu_iovec_concat(&local_qiov, qiov, 0, qiov->size);
1776 use_local_qiov = true;
1779 tail_bytes = (offset + bytes) & (align - 1);
1780 qemu_iovec_add(&local_qiov, tail_buf + tail_bytes, align - tail_bytes);
1782 bytes = ROUND_UP(bytes, align);
1785 ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
1786 use_local_qiov ? &local_qiov : qiov,
1787 flags);
1789 fail:
1791 if (use_local_qiov) {
1792 qemu_iovec_destroy(&local_qiov);
1794 qemu_vfree(head_buf);
1795 qemu_vfree(tail_buf);
1796 out:
1797 tracked_request_end(&req);
1798 bdrv_dec_in_flight(bs);
1799 return ret;
1802 static int coroutine_fn bdrv_co_do_writev(BdrvChild *child,
1803 int64_t sector_num, int nb_sectors, QEMUIOVector *qiov,
1804 BdrvRequestFlags flags)
1806 if (nb_sectors < 0 || nb_sectors > BDRV_REQUEST_MAX_SECTORS) {
1807 return -EINVAL;
1810 return bdrv_co_pwritev(child, sector_num << BDRV_SECTOR_BITS,
1811 nb_sectors << BDRV_SECTOR_BITS, qiov, flags);
1814 int coroutine_fn bdrv_co_writev(BdrvChild *child, int64_t sector_num,
1815 int nb_sectors, QEMUIOVector *qiov)
1817 return bdrv_co_do_writev(child, sector_num, nb_sectors, qiov, 0);
1820 int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
1821 int bytes, BdrvRequestFlags flags)
1823 trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
1825 if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
1826 flags &= ~BDRV_REQ_MAY_UNMAP;
1829 return bdrv_co_pwritev(child, offset, bytes, NULL,
1830 BDRV_REQ_ZERO_WRITE | flags);
1834 * Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
1836 int bdrv_flush_all(void)
1838 BdrvNextIterator it;
1839 BlockDriverState *bs = NULL;
1840 int result = 0;
1842 for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
1843 AioContext *aio_context = bdrv_get_aio_context(bs);
1844 int ret;
1846 aio_context_acquire(aio_context);
1847 ret = bdrv_flush(bs);
1848 if (ret < 0 && !result) {
1849 result = ret;
1851 aio_context_release(aio_context);
1854 return result;
1858 typedef struct BdrvCoBlockStatusData {
1859 BlockDriverState *bs;
1860 BlockDriverState *base;
1861 bool want_zero;
1862 int64_t offset;
1863 int64_t bytes;
1864 int64_t *pnum;
1865 int64_t *map;
1866 BlockDriverState **file;
1867 int ret;
1868 bool done;
1869 } BdrvCoBlockStatusData;
1871 int64_t coroutine_fn bdrv_co_get_block_status_from_file(BlockDriverState *bs,
1872 int64_t sector_num,
1873 int nb_sectors,
1874 int *pnum,
1875 BlockDriverState **file)
1877 assert(bs->file && bs->file->bs);
1878 *pnum = nb_sectors;
1879 *file = bs->file->bs;
1880 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1881 (sector_num << BDRV_SECTOR_BITS);
1884 int64_t coroutine_fn bdrv_co_get_block_status_from_backing(BlockDriverState *bs,
1885 int64_t sector_num,
1886 int nb_sectors,
1887 int *pnum,
1888 BlockDriverState **file)
1890 assert(bs->backing && bs->backing->bs);
1891 *pnum = nb_sectors;
1892 *file = bs->backing->bs;
1893 return BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID |
1894 (sector_num << BDRV_SECTOR_BITS);
1898 * Returns the allocation status of the specified sectors.
1899 * Drivers not implementing the functionality are assumed to not support
1900 * backing files, hence all their sectors are reported as allocated.
1902 * If 'want_zero' is true, the caller is querying for mapping purposes,
1903 * and the result should include BDRV_BLOCK_OFFSET_VALID and
1904 * BDRV_BLOCK_ZERO where possible; otherwise, the result may omit those
1905 * bits particularly if it allows for a larger value in 'pnum'.
1907 * If 'offset' is beyond the end of the disk image the return value is
1908 * BDRV_BLOCK_EOF and 'pnum' is set to 0.
1910 * 'bytes' is the max value 'pnum' should be set to. If bytes goes
1911 * beyond the end of the disk image it will be clamped; if 'pnum' is set to
1912 * the end of the image, then the returned value will include BDRV_BLOCK_EOF.
1914 * 'pnum' is set to the number of bytes (including and immediately
1915 * following the specified offset) that are easily known to be in the
1916 * same allocated/unallocated state. Note that a second call starting
1917 * at the original offset plus returned pnum may have the same status.
1918 * The returned value is non-zero on success except at end-of-file.
1920 * Returns negative errno on failure. Otherwise, if the
1921 * BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
1922 * set to the host mapping and BDS corresponding to the guest offset.
1924 static int coroutine_fn bdrv_co_block_status(BlockDriverState *bs,
1925 bool want_zero,
1926 int64_t offset, int64_t bytes,
1927 int64_t *pnum, int64_t *map,
1928 BlockDriverState **file)
1930 int64_t total_size;
1931 int64_t n; /* bytes */
1932 int ret;
1933 int64_t local_map = 0;
1934 BlockDriverState *local_file = NULL;
1935 int64_t aligned_offset, aligned_bytes;
1936 uint32_t align;
1938 assert(pnum);
1939 *pnum = 0;
1940 total_size = bdrv_getlength(bs);
1941 if (total_size < 0) {
1942 ret = total_size;
1943 goto early_out;
1946 if (offset >= total_size) {
1947 ret = BDRV_BLOCK_EOF;
1948 goto early_out;
1950 if (!bytes) {
1951 ret = 0;
1952 goto early_out;
1955 n = total_size - offset;
1956 if (n < bytes) {
1957 bytes = n;
1960 /* Must be non-NULL or bdrv_getlength() would have failed */
1961 assert(bs->drv);
1962 if (!bs->drv->bdrv_co_get_block_status) {
1963 *pnum = bytes;
1964 ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
1965 if (offset + bytes == total_size) {
1966 ret |= BDRV_BLOCK_EOF;
1968 if (bs->drv->protocol_name) {
1969 ret |= BDRV_BLOCK_OFFSET_VALID;
1970 local_map = offset;
1971 local_file = bs;
1973 goto early_out;
1976 bdrv_inc_in_flight(bs);
1978 /* Round out to request_alignment boundaries */
1979 /* TODO: until we have a byte-based driver callback, we also have to
1980 * round out to sectors, even if that is bigger than request_alignment */
1981 align = MAX(bs->bl.request_alignment, BDRV_SECTOR_SIZE);
1982 aligned_offset = QEMU_ALIGN_DOWN(offset, align);
1983 aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
1986 int count; /* sectors */
1987 int64_t longret;
1989 assert(QEMU_IS_ALIGNED(aligned_offset | aligned_bytes,
1990 BDRV_SECTOR_SIZE));
1992 * The contract allows us to return pnum smaller than bytes, even
1993 * if the next query would see the same status; we truncate the
1994 * request to avoid overflowing the driver's 32-bit interface.
1996 longret = bs->drv->bdrv_co_get_block_status(
1997 bs, aligned_offset >> BDRV_SECTOR_BITS,
1998 MIN(INT_MAX, aligned_bytes) >> BDRV_SECTOR_BITS, &count,
1999 &local_file);
2000 if (longret < 0) {
2001 assert(INT_MIN <= longret);
2002 ret = longret;
2003 goto out;
2005 if (longret & BDRV_BLOCK_OFFSET_VALID) {
2006 local_map = longret & BDRV_BLOCK_OFFSET_MASK;
2008 ret = longret & ~BDRV_BLOCK_OFFSET_MASK;
2009 *pnum = count * BDRV_SECTOR_SIZE;
2013 * The driver's result must be a multiple of request_alignment.
2014 * Clamp pnum and adjust map to original request.
2016 assert(QEMU_IS_ALIGNED(*pnum, align) && align > offset - aligned_offset);
2017 *pnum -= offset - aligned_offset;
2018 if (*pnum > bytes) {
2019 *pnum = bytes;
2021 if (ret & BDRV_BLOCK_OFFSET_VALID) {
2022 local_map += offset - aligned_offset;
2025 if (ret & BDRV_BLOCK_RAW) {
2026 assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
2027 ret = bdrv_co_block_status(local_file, want_zero, local_map,
2028 *pnum, pnum, &local_map, &local_file);
2029 goto out;
2032 if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
2033 ret |= BDRV_BLOCK_ALLOCATED;
2034 } else if (want_zero) {
2035 if (bdrv_unallocated_blocks_are_zero(bs)) {
2036 ret |= BDRV_BLOCK_ZERO;
2037 } else if (bs->backing) {
2038 BlockDriverState *bs2 = bs->backing->bs;
2039 int64_t size2 = bdrv_getlength(bs2);
2041 if (size2 >= 0 && offset >= size2) {
2042 ret |= BDRV_BLOCK_ZERO;
2047 if (want_zero && local_file && local_file != bs &&
2048 (ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
2049 (ret & BDRV_BLOCK_OFFSET_VALID)) {
2050 int64_t file_pnum;
2051 int ret2;
2053 ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
2054 *pnum, &file_pnum, NULL, NULL);
2055 if (ret2 >= 0) {
2056 /* Ignore errors. This is just providing extra information, it
2057 * is useful but not necessary.
2059 if (ret2 & BDRV_BLOCK_EOF &&
2060 (!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
2062 * It is valid for the format block driver to read
2063 * beyond the end of the underlying file's current
2064 * size; such areas read as zero.
2066 ret |= BDRV_BLOCK_ZERO;
2067 } else {
2068 /* Limit request to the range reported by the protocol driver */
2069 *pnum = file_pnum;
2070 ret |= (ret2 & BDRV_BLOCK_ZERO);
2075 out:
2076 bdrv_dec_in_flight(bs);
2077 if (ret >= 0 && offset + *pnum == total_size) {
2078 ret |= BDRV_BLOCK_EOF;
2080 early_out:
2081 if (file) {
2082 *file = local_file;
2084 if (map) {
2085 *map = local_map;
2087 return ret;
2090 static int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
2091 BlockDriverState *base,
2092 bool want_zero,
2093 int64_t offset,
2094 int64_t bytes,
2095 int64_t *pnum,
2096 int64_t *map,
2097 BlockDriverState **file)
2099 BlockDriverState *p;
2100 int ret = 0;
2101 bool first = true;
2103 assert(bs != base);
2104 for (p = bs; p != base; p = backing_bs(p)) {
2105 ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
2106 file);
2107 if (ret < 0) {
2108 break;
2110 if (ret & BDRV_BLOCK_ZERO && ret & BDRV_BLOCK_EOF && !first) {
2112 * Reading beyond the end of the file continues to read
2113 * zeroes, but we can only widen the result to the
2114 * unallocated length we learned from an earlier
2115 * iteration.
2117 *pnum = bytes;
2119 if (ret & (BDRV_BLOCK_ZERO | BDRV_BLOCK_DATA)) {
2120 break;
2122 /* [offset, pnum] unallocated on this layer, which could be only
2123 * the first part of [offset, bytes]. */
2124 bytes = MIN(bytes, *pnum);
2125 first = false;
2127 return ret;
2130 /* Coroutine wrapper for bdrv_block_status_above() */
2131 static void coroutine_fn bdrv_block_status_above_co_entry(void *opaque)
2133 BdrvCoBlockStatusData *data = opaque;
2135 data->ret = bdrv_co_block_status_above(data->bs, data->base,
2136 data->want_zero,
2137 data->offset, data->bytes,
2138 data->pnum, data->map, data->file);
2139 data->done = true;
2143 * Synchronous wrapper around bdrv_co_block_status_above().
2145 * See bdrv_co_block_status_above() for details.
2147 static int bdrv_common_block_status_above(BlockDriverState *bs,
2148 BlockDriverState *base,
2149 bool want_zero, int64_t offset,
2150 int64_t bytes, int64_t *pnum,
2151 int64_t *map,
2152 BlockDriverState **file)
2154 Coroutine *co;
2155 BdrvCoBlockStatusData data = {
2156 .bs = bs,
2157 .base = base,
2158 .want_zero = want_zero,
2159 .offset = offset,
2160 .bytes = bytes,
2161 .pnum = pnum,
2162 .map = map,
2163 .file = file,
2164 .done = false,
2167 if (qemu_in_coroutine()) {
2168 /* Fast-path if already in coroutine context */
2169 bdrv_block_status_above_co_entry(&data);
2170 } else {
2171 co = qemu_coroutine_create(bdrv_block_status_above_co_entry, &data);
2172 bdrv_coroutine_enter(bs, co);
2173 BDRV_POLL_WHILE(bs, !data.done);
2175 return data.ret;
2178 int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
2179 int64_t offset, int64_t bytes, int64_t *pnum,
2180 int64_t *map, BlockDriverState **file)
2182 return bdrv_common_block_status_above(bs, base, true, offset, bytes,
2183 pnum, map, file);
2186 int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
2187 int64_t *pnum, int64_t *map, BlockDriverState **file)
2189 return bdrv_block_status_above(bs, backing_bs(bs),
2190 offset, bytes, pnum, map, file);
2193 int coroutine_fn bdrv_is_allocated(BlockDriverState *bs, int64_t offset,
2194 int64_t bytes, int64_t *pnum)
2196 int ret;
2197 int64_t dummy;
2199 ret = bdrv_common_block_status_above(bs, backing_bs(bs), false, offset,
2200 bytes, pnum ? pnum : &dummy, NULL,
2201 NULL);
2202 if (ret < 0) {
2203 return ret;
2205 return !!(ret & BDRV_BLOCK_ALLOCATED);
2209 * Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
2211 * Return true if (a prefix of) the given range is allocated in any image
2212 * between BASE and TOP (inclusive). BASE can be NULL to check if the given
2213 * offset is allocated in any image of the chain. Return false otherwise,
2214 * or negative errno on failure.
2216 * 'pnum' is set to the number of bytes (including and immediately
2217 * following the specified offset) that are known to be in the same
2218 * allocated/unallocated state. Note that a subsequent call starting
2219 * at 'offset + *pnum' may return the same allocation status (in other
2220 * words, the result is not necessarily the maximum possible range);
2221 * but 'pnum' will only be 0 when end of file is reached.
2224 int bdrv_is_allocated_above(BlockDriverState *top,
2225 BlockDriverState *base,
2226 int64_t offset, int64_t bytes, int64_t *pnum)
2228 BlockDriverState *intermediate;
2229 int ret;
2230 int64_t n = bytes;
2232 intermediate = top;
2233 while (intermediate && intermediate != base) {
2234 int64_t pnum_inter;
2235 int64_t size_inter;
2237 ret = bdrv_is_allocated(intermediate, offset, bytes, &pnum_inter);
2238 if (ret < 0) {
2239 return ret;
2241 if (ret) {
2242 *pnum = pnum_inter;
2243 return 1;
2246 size_inter = bdrv_getlength(intermediate);
2247 if (size_inter < 0) {
2248 return size_inter;
2250 if (n > pnum_inter &&
2251 (intermediate == top || offset + pnum_inter < size_inter)) {
2252 n = pnum_inter;
2255 intermediate = backing_bs(intermediate);
2258 *pnum = n;
2259 return 0;
2262 typedef struct BdrvVmstateCo {
2263 BlockDriverState *bs;
2264 QEMUIOVector *qiov;
2265 int64_t pos;
2266 bool is_read;
2267 int ret;
2268 } BdrvVmstateCo;
2270 static int coroutine_fn
2271 bdrv_co_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2272 bool is_read)
2274 BlockDriver *drv = bs->drv;
2275 int ret = -ENOTSUP;
2277 bdrv_inc_in_flight(bs);
2279 if (!drv) {
2280 ret = -ENOMEDIUM;
2281 } else if (drv->bdrv_load_vmstate) {
2282 if (is_read) {
2283 ret = drv->bdrv_load_vmstate(bs, qiov, pos);
2284 } else {
2285 ret = drv->bdrv_save_vmstate(bs, qiov, pos);
2287 } else if (bs->file) {
2288 ret = bdrv_co_rw_vmstate(bs->file->bs, qiov, pos, is_read);
2291 bdrv_dec_in_flight(bs);
2292 return ret;
2295 static void coroutine_fn bdrv_co_rw_vmstate_entry(void *opaque)
2297 BdrvVmstateCo *co = opaque;
2298 co->ret = bdrv_co_rw_vmstate(co->bs, co->qiov, co->pos, co->is_read);
2301 static inline int
2302 bdrv_rw_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos,
2303 bool is_read)
2305 if (qemu_in_coroutine()) {
2306 return bdrv_co_rw_vmstate(bs, qiov, pos, is_read);
2307 } else {
2308 BdrvVmstateCo data = {
2309 .bs = bs,
2310 .qiov = qiov,
2311 .pos = pos,
2312 .is_read = is_read,
2313 .ret = -EINPROGRESS,
2315 Coroutine *co = qemu_coroutine_create(bdrv_co_rw_vmstate_entry, &data);
2317 bdrv_coroutine_enter(bs, co);
2318 BDRV_POLL_WHILE(bs, data.ret == -EINPROGRESS);
2319 return data.ret;
2323 int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
2324 int64_t pos, int size)
2326 QEMUIOVector qiov;
2327 struct iovec iov = {
2328 .iov_base = (void *) buf,
2329 .iov_len = size,
2331 int ret;
2333 qemu_iovec_init_external(&qiov, &iov, 1);
2335 ret = bdrv_writev_vmstate(bs, &qiov, pos);
2336 if (ret < 0) {
2337 return ret;
2340 return size;
2343 int bdrv_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2345 return bdrv_rw_vmstate(bs, qiov, pos, false);
2348 int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
2349 int64_t pos, int size)
2351 QEMUIOVector qiov;
2352 struct iovec iov = {
2353 .iov_base = buf,
2354 .iov_len = size,
2356 int ret;
2358 qemu_iovec_init_external(&qiov, &iov, 1);
2359 ret = bdrv_readv_vmstate(bs, &qiov, pos);
2360 if (ret < 0) {
2361 return ret;
2364 return size;
2367 int bdrv_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
2369 return bdrv_rw_vmstate(bs, qiov, pos, true);
2372 /**************************************************************/
2373 /* async I/Os */
2375 void bdrv_aio_cancel(BlockAIOCB *acb)
2377 qemu_aio_ref(acb);
2378 bdrv_aio_cancel_async(acb);
2379 while (acb->refcnt > 1) {
2380 if (acb->aiocb_info->get_aio_context) {
2381 aio_poll(acb->aiocb_info->get_aio_context(acb), true);
2382 } else if (acb->bs) {
2383 /* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
2384 * assert that we're not using an I/O thread. Thread-safe
2385 * code should use bdrv_aio_cancel_async exclusively.
2387 assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
2388 aio_poll(bdrv_get_aio_context(acb->bs), true);
2389 } else {
2390 abort();
2393 qemu_aio_unref(acb);
2396 /* Async version of aio cancel. The caller is not blocked if the acb implements
2397 * cancel_async, otherwise we do nothing and let the request normally complete.
2398 * In either case the completion callback must be called. */
2399 void bdrv_aio_cancel_async(BlockAIOCB *acb)
2401 if (acb->aiocb_info->cancel_async) {
2402 acb->aiocb_info->cancel_async(acb);
2406 /**************************************************************/
2407 /* Coroutine block device emulation */
2409 typedef struct FlushCo {
2410 BlockDriverState *bs;
2411 int ret;
2412 } FlushCo;
2415 static void coroutine_fn bdrv_flush_co_entry(void *opaque)
2417 FlushCo *rwco = opaque;
2419 rwco->ret = bdrv_co_flush(rwco->bs);
2422 int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
2424 int current_gen;
2425 int ret = 0;
2427 bdrv_inc_in_flight(bs);
2429 if (!bdrv_is_inserted(bs) || bdrv_is_read_only(bs) ||
2430 bdrv_is_sg(bs)) {
2431 goto early_exit;
2434 qemu_co_mutex_lock(&bs->reqs_lock);
2435 current_gen = atomic_read(&bs->write_gen);
2437 /* Wait until any previous flushes are completed */
2438 while (bs->active_flush_req) {
2439 qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
2442 /* Flushes reach this point in nondecreasing current_gen order. */
2443 bs->active_flush_req = true;
2444 qemu_co_mutex_unlock(&bs->reqs_lock);
2446 /* Write back all layers by calling one driver function */
2447 if (bs->drv->bdrv_co_flush) {
2448 ret = bs->drv->bdrv_co_flush(bs);
2449 goto out;
2452 /* Write back cached data to the OS even with cache=unsafe */
2453 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_OS);
2454 if (bs->drv->bdrv_co_flush_to_os) {
2455 ret = bs->drv->bdrv_co_flush_to_os(bs);
2456 if (ret < 0) {
2457 goto out;
2461 /* But don't actually force it to the disk with cache=unsafe */
2462 if (bs->open_flags & BDRV_O_NO_FLUSH) {
2463 goto flush_parent;
2466 /* Check if we really need to flush anything */
2467 if (bs->flushed_gen == current_gen) {
2468 goto flush_parent;
2471 BLKDBG_EVENT(bs->file, BLKDBG_FLUSH_TO_DISK);
2472 if (!bs->drv) {
2473 /* bs->drv->bdrv_co_flush() might have ejected the BDS
2474 * (even in case of apparent success) */
2475 ret = -ENOMEDIUM;
2476 goto out;
2478 if (bs->drv->bdrv_co_flush_to_disk) {
2479 ret = bs->drv->bdrv_co_flush_to_disk(bs);
2480 } else if (bs->drv->bdrv_aio_flush) {
2481 BlockAIOCB *acb;
2482 CoroutineIOCompletion co = {
2483 .coroutine = qemu_coroutine_self(),
2486 acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
2487 if (acb == NULL) {
2488 ret = -EIO;
2489 } else {
2490 qemu_coroutine_yield();
2491 ret = co.ret;
2493 } else {
2495 * Some block drivers always operate in either writethrough or unsafe
2496 * mode and don't support bdrv_flush therefore. Usually qemu doesn't
2497 * know how the server works (because the behaviour is hardcoded or
2498 * depends on server-side configuration), so we can't ensure that
2499 * everything is safe on disk. Returning an error doesn't work because
2500 * that would break guests even if the server operates in writethrough
2501 * mode.
2503 * Let's hope the user knows what he's doing.
2505 ret = 0;
2508 if (ret < 0) {
2509 goto out;
2512 /* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
2513 * in the case of cache=unsafe, so there are no useless flushes.
2515 flush_parent:
2516 ret = bs->file ? bdrv_co_flush(bs->file->bs) : 0;
2517 out:
2518 /* Notify any pending flushes that we have completed */
2519 if (ret == 0) {
2520 bs->flushed_gen = current_gen;
2523 qemu_co_mutex_lock(&bs->reqs_lock);
2524 bs->active_flush_req = false;
2525 /* Return value is ignored - it's ok if wait queue is empty */
2526 qemu_co_queue_next(&bs->flush_queue);
2527 qemu_co_mutex_unlock(&bs->reqs_lock);
2529 early_exit:
2530 bdrv_dec_in_flight(bs);
2531 return ret;
2534 int bdrv_flush(BlockDriverState *bs)
2536 Coroutine *co;
2537 FlushCo flush_co = {
2538 .bs = bs,
2539 .ret = NOT_DONE,
2542 if (qemu_in_coroutine()) {
2543 /* Fast-path if already in coroutine context */
2544 bdrv_flush_co_entry(&flush_co);
2545 } else {
2546 co = qemu_coroutine_create(bdrv_flush_co_entry, &flush_co);
2547 bdrv_coroutine_enter(bs, co);
2548 BDRV_POLL_WHILE(bs, flush_co.ret == NOT_DONE);
2551 return flush_co.ret;
2554 typedef struct DiscardCo {
2555 BlockDriverState *bs;
2556 int64_t offset;
2557 int bytes;
2558 int ret;
2559 } DiscardCo;
2560 static void coroutine_fn bdrv_pdiscard_co_entry(void *opaque)
2562 DiscardCo *rwco = opaque;
2564 rwco->ret = bdrv_co_pdiscard(rwco->bs, rwco->offset, rwco->bytes);
2567 int coroutine_fn bdrv_co_pdiscard(BlockDriverState *bs, int64_t offset,
2568 int bytes)
2570 BdrvTrackedRequest req;
2571 int max_pdiscard, ret;
2572 int head, tail, align;
2574 if (!bs->drv) {
2575 return -ENOMEDIUM;
2578 if (bdrv_has_readonly_bitmaps(bs)) {
2579 return -EPERM;
2582 ret = bdrv_check_byte_request(bs, offset, bytes);
2583 if (ret < 0) {
2584 return ret;
2585 } else if (bs->read_only) {
2586 return -EPERM;
2588 assert(!(bs->open_flags & BDRV_O_INACTIVE));
2590 /* Do nothing if disabled. */
2591 if (!(bs->open_flags & BDRV_O_UNMAP)) {
2592 return 0;
2595 if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
2596 return 0;
2599 /* Discard is advisory, but some devices track and coalesce
2600 * unaligned requests, so we must pass everything down rather than
2601 * round here. Still, most devices will just silently ignore
2602 * unaligned requests (by returning -ENOTSUP), so we must fragment
2603 * the request accordingly. */
2604 align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
2605 assert(align % bs->bl.request_alignment == 0);
2606 head = offset % align;
2607 tail = (offset + bytes) % align;
2609 bdrv_inc_in_flight(bs);
2610 tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
2612 ret = notifier_with_return_list_notify(&bs->before_write_notifiers, &req);
2613 if (ret < 0) {
2614 goto out;
2617 max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT_MAX),
2618 align);
2619 assert(max_pdiscard >= bs->bl.request_alignment);
2621 while (bytes > 0) {
2622 int num = bytes;
2624 if (head) {
2625 /* Make small requests to get to alignment boundaries. */
2626 num = MIN(bytes, align - head);
2627 if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
2628 num %= bs->bl.request_alignment;
2630 head = (head + num) % align;
2631 assert(num < max_pdiscard);
2632 } else if (tail) {
2633 if (num > align) {
2634 /* Shorten the request to the last aligned cluster. */
2635 num -= tail;
2636 } else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
2637 tail > bs->bl.request_alignment) {
2638 tail %= bs->bl.request_alignment;
2639 num -= tail;
2642 /* limit request size */
2643 if (num > max_pdiscard) {
2644 num = max_pdiscard;
2647 if (!bs->drv) {
2648 ret = -ENOMEDIUM;
2649 goto out;
2651 if (bs->drv->bdrv_co_pdiscard) {
2652 ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
2653 } else {
2654 BlockAIOCB *acb;
2655 CoroutineIOCompletion co = {
2656 .coroutine = qemu_coroutine_self(),
2659 acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
2660 bdrv_co_io_em_complete, &co);
2661 if (acb == NULL) {
2662 ret = -EIO;
2663 goto out;
2664 } else {
2665 qemu_coroutine_yield();
2666 ret = co.ret;
2669 if (ret && ret != -ENOTSUP) {
2670 goto out;
2673 offset += num;
2674 bytes -= num;
2676 ret = 0;
2677 out:
2678 atomic_inc(&bs->write_gen);
2679 bdrv_set_dirty(bs, req.offset, req.bytes);
2680 tracked_request_end(&req);
2681 bdrv_dec_in_flight(bs);
2682 return ret;
2685 int bdrv_pdiscard(BlockDriverState *bs, int64_t offset, int bytes)
2687 Coroutine *co;
2688 DiscardCo rwco = {
2689 .bs = bs,
2690 .offset = offset,
2691 .bytes = bytes,
2692 .ret = NOT_DONE,
2695 if (qemu_in_coroutine()) {
2696 /* Fast-path if already in coroutine context */
2697 bdrv_pdiscard_co_entry(&rwco);
2698 } else {
2699 co = qemu_coroutine_create(bdrv_pdiscard_co_entry, &rwco);
2700 bdrv_coroutine_enter(bs, co);
2701 BDRV_POLL_WHILE(bs, rwco.ret == NOT_DONE);
2704 return rwco.ret;
2707 int bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
2709 BlockDriver *drv = bs->drv;
2710 CoroutineIOCompletion co = {
2711 .coroutine = qemu_coroutine_self(),
2713 BlockAIOCB *acb;
2715 bdrv_inc_in_flight(bs);
2716 if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
2717 co.ret = -ENOTSUP;
2718 goto out;
2721 if (drv->bdrv_co_ioctl) {
2722 co.ret = drv->bdrv_co_ioctl(bs, req, buf);
2723 } else {
2724 acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
2725 if (!acb) {
2726 co.ret = -ENOTSUP;
2727 goto out;
2729 qemu_coroutine_yield();
2731 out:
2732 bdrv_dec_in_flight(bs);
2733 return co.ret;
2736 void *qemu_blockalign(BlockDriverState *bs, size_t size)
2738 return qemu_memalign(bdrv_opt_mem_align(bs), size);
2741 void *qemu_blockalign0(BlockDriverState *bs, size_t size)
2743 return memset(qemu_blockalign(bs, size), 0, size);
2746 void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
2748 size_t align = bdrv_opt_mem_align(bs);
2750 /* Ensure that NULL is never returned on success */
2751 assert(align > 0);
2752 if (size == 0) {
2753 size = align;
2756 return qemu_try_memalign(align, size);
2759 void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
2761 void *mem = qemu_try_blockalign(bs, size);
2763 if (mem) {
2764 memset(mem, 0, size);
2767 return mem;
2771 * Check if all memory in this vector is sector aligned.
2773 bool bdrv_qiov_is_aligned(BlockDriverState *bs, QEMUIOVector *qiov)
2775 int i;
2776 size_t alignment = bdrv_min_mem_align(bs);
2778 for (i = 0; i < qiov->niov; i++) {
2779 if ((uintptr_t) qiov->iov[i].iov_base % alignment) {
2780 return false;
2782 if (qiov->iov[i].iov_len % alignment) {
2783 return false;
2787 return true;
2790 void bdrv_add_before_write_notifier(BlockDriverState *bs,
2791 NotifierWithReturn *notifier)
2793 notifier_with_return_list_add(&bs->before_write_notifiers, notifier);
2796 void bdrv_io_plug(BlockDriverState *bs)
2798 BdrvChild *child;
2800 QLIST_FOREACH(child, &bs->children, next) {
2801 bdrv_io_plug(child->bs);
2804 if (atomic_fetch_inc(&bs->io_plugged) == 0) {
2805 BlockDriver *drv = bs->drv;
2806 if (drv && drv->bdrv_io_plug) {
2807 drv->bdrv_io_plug(bs);
2812 void bdrv_io_unplug(BlockDriverState *bs)
2814 BdrvChild *child;
2816 assert(bs->io_plugged);
2817 if (atomic_fetch_dec(&bs->io_plugged) == 1) {
2818 BlockDriver *drv = bs->drv;
2819 if (drv && drv->bdrv_io_unplug) {
2820 drv->bdrv_io_unplug(bs);
2824 QLIST_FOREACH(child, &bs->children, next) {
2825 bdrv_io_unplug(child->bs);
2829 void bdrv_register_buf(BlockDriverState *bs, void *host, size_t size)
2831 BdrvChild *child;
2833 if (bs->drv && bs->drv->bdrv_register_buf) {
2834 bs->drv->bdrv_register_buf(bs, host, size);
2836 QLIST_FOREACH(child, &bs->children, next) {
2837 bdrv_register_buf(child->bs, host, size);
2841 void bdrv_unregister_buf(BlockDriverState *bs, void *host)
2843 BdrvChild *child;
2845 if (bs->drv && bs->drv->bdrv_unregister_buf) {
2846 bs->drv->bdrv_unregister_buf(bs, host);
2848 QLIST_FOREACH(child, &bs->children, next) {
2849 bdrv_unregister_buf(child->bs, host);