2 * coroutine queues and locks
4 * Copyright (c) 2011 Kevin Wolf <kwolf@redhat.com>
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * The lock-free mutex implementation is based on OSv
25 * (core/lfmutex.cc, include/lockfree/mutex.hh).
26 * Copyright (C) 2013 Cloudius Systems, Ltd.
29 #include "qemu/osdep.h"
30 #include "qemu-common.h"
31 #include "qemu/coroutine.h"
32 #include "qemu/coroutine_int.h"
33 #include "qemu/processor.h"
34 #include "qemu/queue.h"
35 #include "block/aio.h"
38 void qemu_co_queue_init(CoQueue
*queue
)
40 QSIMPLEQ_INIT(&queue
->entries
);
43 void coroutine_fn
qemu_co_queue_wait_impl(CoQueue
*queue
, QemuLockable
*lock
)
45 Coroutine
*self
= qemu_coroutine_self();
46 QSIMPLEQ_INSERT_TAIL(&queue
->entries
, self
, co_queue_next
);
49 qemu_lockable_unlock(lock
);
52 /* There is no race condition here. Other threads will call
53 * aio_co_schedule on our AioContext, which can reenter this
54 * coroutine but only after this yield and after the main loop
55 * has gone through the next iteration.
57 qemu_coroutine_yield();
58 assert(qemu_in_coroutine());
60 /* TODO: OSv implements wait morphing here, where the wakeup
61 * primitive automatically places the woken coroutine on the
62 * mutex's queue. This avoids the thundering herd effect.
63 * This could be implemented for CoMutexes, but not really for
64 * other cases of QemuLockable.
67 qemu_lockable_lock(lock
);
72 * qemu_co_queue_run_restart:
74 * Enter each coroutine that was previously marked for restart by
75 * qemu_co_queue_next() or qemu_co_queue_restart_all(). This function is
76 * invoked by the core coroutine code when the current coroutine yields or
79 void qemu_co_queue_run_restart(Coroutine
*co
)
82 QSIMPLEQ_HEAD(, Coroutine
) tmp_queue_wakeup
=
83 QSIMPLEQ_HEAD_INITIALIZER(tmp_queue_wakeup
);
85 trace_qemu_co_queue_run_restart(co
);
87 /* Because "co" has yielded, any coroutine that we wakeup can resume it.
88 * If this happens and "co" terminates, co->co_queue_wakeup becomes
89 * invalid memory. Therefore, use a temporary queue and do not touch
90 * the "co" coroutine as soon as you enter another one.
92 * In its turn resumed "co" can populate "co_queue_wakeup" queue with
93 * new coroutines to be woken up. The caller, who has resumed "co",
94 * will be responsible for traversing the same queue, which may cause
95 * a different wakeup order but not any missing wakeups.
97 QSIMPLEQ_CONCAT(&tmp_queue_wakeup
, &co
->co_queue_wakeup
);
99 while ((next
= QSIMPLEQ_FIRST(&tmp_queue_wakeup
))) {
100 QSIMPLEQ_REMOVE_HEAD(&tmp_queue_wakeup
, co_queue_next
);
101 qemu_coroutine_enter(next
);
105 static bool qemu_co_queue_do_restart(CoQueue
*queue
, bool single
)
109 if (QSIMPLEQ_EMPTY(&queue
->entries
)) {
113 while ((next
= QSIMPLEQ_FIRST(&queue
->entries
)) != NULL
) {
114 QSIMPLEQ_REMOVE_HEAD(&queue
->entries
, co_queue_next
);
123 bool coroutine_fn
qemu_co_queue_next(CoQueue
*queue
)
125 assert(qemu_in_coroutine());
126 return qemu_co_queue_do_restart(queue
, true);
129 void coroutine_fn
qemu_co_queue_restart_all(CoQueue
*queue
)
131 assert(qemu_in_coroutine());
132 qemu_co_queue_do_restart(queue
, false);
135 bool qemu_co_enter_next_impl(CoQueue
*queue
, QemuLockable
*lock
)
139 next
= QSIMPLEQ_FIRST(&queue
->entries
);
144 QSIMPLEQ_REMOVE_HEAD(&queue
->entries
, co_queue_next
);
146 qemu_lockable_unlock(lock
);
150 qemu_lockable_lock(lock
);
155 bool qemu_co_queue_empty(CoQueue
*queue
)
157 return QSIMPLEQ_FIRST(&queue
->entries
) == NULL
;
160 /* The wait records are handled with a multiple-producer, single-consumer
161 * lock-free queue. There cannot be two concurrent pop_waiter() calls
162 * because pop_waiter() can only be called while mutex->handoff is zero.
163 * This can happen in three cases:
164 * - in qemu_co_mutex_unlock, before the hand-off protocol has started.
165 * In this case, qemu_co_mutex_lock will see mutex->handoff == 0 and
166 * not take part in the handoff.
167 * - in qemu_co_mutex_lock, if it steals the hand-off responsibility from
168 * qemu_co_mutex_unlock. In this case, qemu_co_mutex_unlock will fail
169 * the cmpxchg (it will see either 0 or the next sequence value) and
170 * exit. The next hand-off cannot begin until qemu_co_mutex_lock has
172 * - in qemu_co_mutex_unlock, if it takes the hand-off token itself.
173 * In this case another iteration starts with mutex->handoff == 0;
174 * a concurrent qemu_co_mutex_lock will fail the cmpxchg, and
175 * qemu_co_mutex_unlock will go back to case (1).
177 * The following functions manage this queue.
179 typedef struct CoWaitRecord
{
181 QSLIST_ENTRY(CoWaitRecord
) next
;
184 static void push_waiter(CoMutex
*mutex
, CoWaitRecord
*w
)
186 w
->co
= qemu_coroutine_self();
187 QSLIST_INSERT_HEAD_ATOMIC(&mutex
->from_push
, w
, next
);
190 static void move_waiters(CoMutex
*mutex
)
192 QSLIST_HEAD(, CoWaitRecord
) reversed
;
193 QSLIST_MOVE_ATOMIC(&reversed
, &mutex
->from_push
);
194 while (!QSLIST_EMPTY(&reversed
)) {
195 CoWaitRecord
*w
= QSLIST_FIRST(&reversed
);
196 QSLIST_REMOVE_HEAD(&reversed
, next
);
197 QSLIST_INSERT_HEAD(&mutex
->to_pop
, w
, next
);
201 static CoWaitRecord
*pop_waiter(CoMutex
*mutex
)
205 if (QSLIST_EMPTY(&mutex
->to_pop
)) {
207 if (QSLIST_EMPTY(&mutex
->to_pop
)) {
211 w
= QSLIST_FIRST(&mutex
->to_pop
);
212 QSLIST_REMOVE_HEAD(&mutex
->to_pop
, next
);
216 static bool has_waiters(CoMutex
*mutex
)
218 return QSLIST_EMPTY(&mutex
->to_pop
) || QSLIST_EMPTY(&mutex
->from_push
);
221 void qemu_co_mutex_init(CoMutex
*mutex
)
223 memset(mutex
, 0, sizeof(*mutex
));
226 static void coroutine_fn
qemu_co_mutex_wake(CoMutex
*mutex
, Coroutine
*co
)
228 /* Read co before co->ctx; pairs with smp_wmb() in
229 * qemu_coroutine_enter().
231 smp_read_barrier_depends();
232 mutex
->ctx
= co
->ctx
;
236 static void coroutine_fn
qemu_co_mutex_lock_slowpath(AioContext
*ctx
,
239 Coroutine
*self
= qemu_coroutine_self();
241 unsigned old_handoff
;
243 trace_qemu_co_mutex_lock_entry(mutex
, self
);
245 push_waiter(mutex
, &w
);
247 /* This is the "Responsibility Hand-Off" protocol; a lock() picks from
248 * a concurrent unlock() the responsibility of waking somebody up.
250 old_handoff
= atomic_mb_read(&mutex
->handoff
);
252 has_waiters(mutex
) &&
253 atomic_cmpxchg(&mutex
->handoff
, old_handoff
, 0) == old_handoff
) {
254 /* There can be no concurrent pops, because there can be only
255 * one active handoff at a time.
257 CoWaitRecord
*to_wake
= pop_waiter(mutex
);
258 Coroutine
*co
= to_wake
->co
;
260 /* We got the lock ourselves! */
261 assert(to_wake
== &w
);
266 qemu_co_mutex_wake(mutex
, co
);
269 qemu_coroutine_yield();
270 trace_qemu_co_mutex_lock_return(mutex
, self
);
273 void coroutine_fn
qemu_co_mutex_lock(CoMutex
*mutex
)
275 AioContext
*ctx
= qemu_get_current_aio_context();
276 Coroutine
*self
= qemu_coroutine_self();
279 /* Running a very small critical section on pthread_mutex_t and CoMutex
280 * shows that pthread_mutex_t is much faster because it doesn't actually
281 * go to sleep. What happens is that the critical section is shorter
282 * than the latency of entering the kernel and thus FUTEX_WAIT always
283 * fails. With CoMutex there is no such latency but you still want to
284 * avoid wait and wakeup. So introduce it artificially.
288 waiters
= atomic_cmpxchg(&mutex
->locked
, 0, 1);
290 while (waiters
== 1 && ++i
< 1000) {
291 if (atomic_read(&mutex
->ctx
) == ctx
) {
294 if (atomic_read(&mutex
->locked
) == 0) {
295 goto retry_fast_path
;
299 waiters
= atomic_fetch_inc(&mutex
->locked
);
304 trace_qemu_co_mutex_lock_uncontended(mutex
, self
);
307 qemu_co_mutex_lock_slowpath(ctx
, mutex
);
309 mutex
->holder
= self
;
313 void coroutine_fn
qemu_co_mutex_unlock(CoMutex
*mutex
)
315 Coroutine
*self
= qemu_coroutine_self();
317 trace_qemu_co_mutex_unlock_entry(mutex
, self
);
319 assert(mutex
->locked
);
320 assert(mutex
->holder
== self
);
321 assert(qemu_in_coroutine());
324 mutex
->holder
= NULL
;
326 if (atomic_fetch_dec(&mutex
->locked
) == 1) {
327 /* No waiting qemu_co_mutex_lock(). Pfew, that was easy! */
332 CoWaitRecord
*to_wake
= pop_waiter(mutex
);
333 unsigned our_handoff
;
336 qemu_co_mutex_wake(mutex
, to_wake
->co
);
340 /* Some concurrent lock() is in progress (we know this because
341 * mutex->locked was >1) but it hasn't yet put itself on the wait
342 * queue. Pick a sequence number for the handoff protocol (not 0).
344 if (++mutex
->sequence
== 0) {
348 our_handoff
= mutex
->sequence
;
349 atomic_mb_set(&mutex
->handoff
, our_handoff
);
350 if (!has_waiters(mutex
)) {
351 /* The concurrent lock has not added itself yet, so it
352 * will be able to pick our handoff.
357 /* Try to do the handoff protocol ourselves; if somebody else has
358 * already taken it, however, we're done and they're responsible.
360 if (atomic_cmpxchg(&mutex
->handoff
, our_handoff
, 0) != our_handoff
) {
365 trace_qemu_co_mutex_unlock_return(mutex
, self
);
368 void qemu_co_rwlock_init(CoRwlock
*lock
)
370 memset(lock
, 0, sizeof(*lock
));
371 qemu_co_queue_init(&lock
->queue
);
372 qemu_co_mutex_init(&lock
->mutex
);
375 void qemu_co_rwlock_rdlock(CoRwlock
*lock
)
377 Coroutine
*self
= qemu_coroutine_self();
379 qemu_co_mutex_lock(&lock
->mutex
);
380 /* For fairness, wait if a writer is in line. */
381 while (lock
->pending_writer
) {
382 qemu_co_queue_wait(&lock
->queue
, &lock
->mutex
);
385 qemu_co_mutex_unlock(&lock
->mutex
);
387 /* The rest of the read-side critical section is run without the mutex. */
391 void qemu_co_rwlock_unlock(CoRwlock
*lock
)
393 Coroutine
*self
= qemu_coroutine_self();
395 assert(qemu_in_coroutine());
397 /* The critical section started in qemu_co_rwlock_wrlock. */
398 qemu_co_queue_restart_all(&lock
->queue
);
402 qemu_co_mutex_lock(&lock
->mutex
);
404 assert(lock
->reader
>= 0);
405 /* Wakeup only one waiting writer */
407 qemu_co_queue_next(&lock
->queue
);
410 qemu_co_mutex_unlock(&lock
->mutex
);
413 void qemu_co_rwlock_downgrade(CoRwlock
*lock
)
415 Coroutine
*self
= qemu_coroutine_self();
417 /* lock->mutex critical section started in qemu_co_rwlock_wrlock or
418 * qemu_co_rwlock_upgrade.
420 assert(lock
->reader
== 0);
422 qemu_co_mutex_unlock(&lock
->mutex
);
424 /* The rest of the read-side critical section is run without the mutex. */
428 void qemu_co_rwlock_wrlock(CoRwlock
*lock
)
430 qemu_co_mutex_lock(&lock
->mutex
);
431 lock
->pending_writer
++;
432 while (lock
->reader
) {
433 qemu_co_queue_wait(&lock
->queue
, &lock
->mutex
);
435 lock
->pending_writer
--;
437 /* The rest of the write-side critical section is run with
438 * the mutex taken, so that lock->reader remains zero.
439 * There is no need to update self->locks_held.
443 void qemu_co_rwlock_upgrade(CoRwlock
*lock
)
445 Coroutine
*self
= qemu_coroutine_self();
447 qemu_co_mutex_lock(&lock
->mutex
);
448 assert(lock
->reader
> 0);
450 lock
->pending_writer
++;
451 while (lock
->reader
) {
452 qemu_co_queue_wait(&lock
->queue
, &lock
->mutex
);
454 lock
->pending_writer
--;
456 /* The rest of the write-side critical section is run with
457 * the mutex taken, similar to qemu_co_rwlock_wrlock. Do
458 * not account for the lock twice in self->locks_held.