kill regs_to_env and env_to_regs
[qemu.git] / cpu-exec.c
bloba426db9cc0d9b68956d869a46de2074f12656dbf
1 /*
2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "exec.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "kvm.h"
25 #if !defined(CONFIG_SOFTMMU)
26 #undef EAX
27 #undef ECX
28 #undef EDX
29 #undef EBX
30 #undef ESP
31 #undef EBP
32 #undef ESI
33 #undef EDI
34 #undef EIP
35 #include <signal.h>
36 #ifdef __linux__
37 #include <sys/ucontext.h>
38 #endif
39 #endif
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
43 #undef env
44 #define env cpu_single_env
45 #endif
47 int tb_invalidated_flag;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState *env)
54 return cpu_has_work(env);
57 void cpu_loop_exit(void)
59 longjmp(env->jmp_env, 1);
62 /* exit the current TB from a signal handler. The host registers are
63 restored in a state compatible with the CPU emulator
65 void cpu_resume_from_signal(CPUState *env1, void *puc)
67 #if !defined(CONFIG_SOFTMMU)
68 #ifdef __linux__
69 struct ucontext *uc = puc;
70 #elif defined(__OpenBSD__)
71 struct sigcontext *uc = puc;
72 #endif
73 #endif
75 env = env1;
77 /* XXX: restore cpu registers saved in host registers */
79 #if !defined(CONFIG_SOFTMMU)
80 if (puc) {
81 /* XXX: use siglongjmp ? */
82 #ifdef __linux__
83 sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
84 #elif defined(__OpenBSD__)
85 sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
86 #endif
88 #endif
89 env->exception_index = -1;
90 longjmp(env->jmp_env, 1);
93 /* Execute the code without caching the generated code. An interpreter
94 could be used if available. */
95 static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
97 unsigned long next_tb;
98 TranslationBlock *tb;
100 /* Should never happen.
101 We only end up here when an existing TB is too long. */
102 if (max_cycles > CF_COUNT_MASK)
103 max_cycles = CF_COUNT_MASK;
105 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
106 max_cycles);
107 env->current_tb = tb;
108 /* execute the generated code */
109 next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
111 if ((next_tb & 3) == 2) {
112 /* Restore PC. This may happen if async event occurs before
113 the TB starts executing. */
114 cpu_pc_from_tb(env, tb);
116 tb_phys_invalidate(tb, -1);
117 tb_free(tb);
120 static TranslationBlock *tb_find_slow(target_ulong pc,
121 target_ulong cs_base,
122 uint64_t flags)
124 TranslationBlock *tb, **ptb1;
125 unsigned int h;
126 target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
128 tb_invalidated_flag = 0;
130 /* find translated block using physical mappings */
131 phys_pc = get_phys_addr_code(env, pc);
132 phys_page1 = phys_pc & TARGET_PAGE_MASK;
133 phys_page2 = -1;
134 h = tb_phys_hash_func(phys_pc);
135 ptb1 = &tb_phys_hash[h];
136 for(;;) {
137 tb = *ptb1;
138 if (!tb)
139 goto not_found;
140 if (tb->pc == pc &&
141 tb->page_addr[0] == phys_page1 &&
142 tb->cs_base == cs_base &&
143 tb->flags == flags) {
144 /* check next page if needed */
145 if (tb->page_addr[1] != -1) {
146 virt_page2 = (pc & TARGET_PAGE_MASK) +
147 TARGET_PAGE_SIZE;
148 phys_page2 = get_phys_addr_code(env, virt_page2);
149 if (tb->page_addr[1] == phys_page2)
150 goto found;
151 } else {
152 goto found;
155 ptb1 = &tb->phys_hash_next;
157 not_found:
158 /* if no translated code available, then translate it now */
159 tb = tb_gen_code(env, pc, cs_base, flags, 0);
161 found:
162 /* we add the TB in the virtual pc hash table */
163 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
164 return tb;
167 static inline TranslationBlock *tb_find_fast(void)
169 TranslationBlock *tb;
170 target_ulong cs_base, pc;
171 int flags;
173 /* we record a subset of the CPU state. It will
174 always be the same before a given translated block
175 is executed. */
176 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
177 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
178 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
179 tb->flags != flags)) {
180 tb = tb_find_slow(pc, cs_base, flags);
182 return tb;
185 static CPUDebugExcpHandler *debug_excp_handler;
187 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
189 CPUDebugExcpHandler *old_handler = debug_excp_handler;
191 debug_excp_handler = handler;
192 return old_handler;
195 static void cpu_handle_debug_exception(CPUState *env)
197 CPUWatchpoint *wp;
199 if (!env->watchpoint_hit)
200 QTAILQ_FOREACH(wp, &env->watchpoints, entry)
201 wp->flags &= ~BP_WATCHPOINT_HIT;
203 if (debug_excp_handler)
204 debug_excp_handler(env);
207 /* main execution loop */
209 int cpu_exec(CPUState *env1)
211 #define DECLARE_HOST_REGS 1
212 #include "hostregs_helper.h"
213 int ret, interrupt_request;
214 TranslationBlock *tb;
215 uint8_t *tc_ptr;
216 unsigned long next_tb;
218 if (cpu_halted(env1) == EXCP_HALTED)
219 return EXCP_HALTED;
221 cpu_single_env = env1;
223 /* first we save global registers */
224 #define SAVE_HOST_REGS 1
225 #include "hostregs_helper.h"
226 env = env1;
228 #if defined(TARGET_I386)
229 /* put eflags in CPU temporary format */
230 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
231 DF = 1 - (2 * ((env->eflags >> 10) & 1));
232 CC_OP = CC_OP_EFLAGS;
233 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
234 #elif defined(TARGET_SPARC)
235 #elif defined(TARGET_M68K)
236 env->cc_op = CC_OP_FLAGS;
237 env->cc_dest = env->sr & 0xf;
238 env->cc_x = (env->sr >> 4) & 1;
239 #elif defined(TARGET_ALPHA)
240 #elif defined(TARGET_ARM)
241 #elif defined(TARGET_PPC)
242 #elif defined(TARGET_MICROBLAZE)
243 #elif defined(TARGET_MIPS)
244 #elif defined(TARGET_SH4)
245 #elif defined(TARGET_CRIS)
246 #elif defined(TARGET_S390X)
247 /* XXXXX */
248 #else
249 #error unsupported target CPU
250 #endif
251 env->exception_index = -1;
253 /* prepare setjmp context for exception handling */
254 for(;;) {
255 if (setjmp(env->jmp_env) == 0) {
256 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
257 #undef env
258 env = cpu_single_env;
259 #define env cpu_single_env
260 #endif
261 env->current_tb = NULL;
262 /* if an exception is pending, we execute it here */
263 if (env->exception_index >= 0) {
264 if (env->exception_index >= EXCP_INTERRUPT) {
265 /* exit request from the cpu execution loop */
266 ret = env->exception_index;
267 if (ret == EXCP_DEBUG)
268 cpu_handle_debug_exception(env);
269 break;
270 } else {
271 #if defined(CONFIG_USER_ONLY)
272 /* if user mode only, we simulate a fake exception
273 which will be handled outside the cpu execution
274 loop */
275 #if defined(TARGET_I386)
276 do_interrupt_user(env->exception_index,
277 env->exception_is_int,
278 env->error_code,
279 env->exception_next_eip);
280 /* successfully delivered */
281 env->old_exception = -1;
282 #endif
283 ret = env->exception_index;
284 break;
285 #else
286 #if defined(TARGET_I386)
287 /* simulate a real cpu exception. On i386, it can
288 trigger new exceptions, but we do not handle
289 double or triple faults yet. */
290 do_interrupt(env->exception_index,
291 env->exception_is_int,
292 env->error_code,
293 env->exception_next_eip, 0);
294 /* successfully delivered */
295 env->old_exception = -1;
296 #elif defined(TARGET_PPC)
297 do_interrupt(env);
298 #elif defined(TARGET_MICROBLAZE)
299 do_interrupt(env);
300 #elif defined(TARGET_MIPS)
301 do_interrupt(env);
302 #elif defined(TARGET_SPARC)
303 do_interrupt(env);
304 #elif defined(TARGET_ARM)
305 do_interrupt(env);
306 #elif defined(TARGET_SH4)
307 do_interrupt(env);
308 #elif defined(TARGET_ALPHA)
309 do_interrupt(env);
310 #elif defined(TARGET_CRIS)
311 do_interrupt(env);
312 #elif defined(TARGET_M68K)
313 do_interrupt(0);
314 #endif
315 #endif
317 env->exception_index = -1;
320 if (kvm_enabled()) {
321 kvm_cpu_exec(env);
322 longjmp(env->jmp_env, 1);
325 next_tb = 0; /* force lookup of first TB */
326 for(;;) {
327 interrupt_request = env->interrupt_request;
328 if (unlikely(interrupt_request)) {
329 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
330 /* Mask out external interrupts for this step. */
331 interrupt_request &= ~(CPU_INTERRUPT_HARD |
332 CPU_INTERRUPT_FIQ |
333 CPU_INTERRUPT_SMI |
334 CPU_INTERRUPT_NMI);
336 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
337 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
338 env->exception_index = EXCP_DEBUG;
339 cpu_loop_exit();
341 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
342 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
343 defined(TARGET_MICROBLAZE)
344 if (interrupt_request & CPU_INTERRUPT_HALT) {
345 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
346 env->halted = 1;
347 env->exception_index = EXCP_HLT;
348 cpu_loop_exit();
350 #endif
351 #if defined(TARGET_I386)
352 if (interrupt_request & CPU_INTERRUPT_INIT) {
353 svm_check_intercept(SVM_EXIT_INIT);
354 do_cpu_init(env);
355 env->exception_index = EXCP_HALTED;
356 cpu_loop_exit();
357 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
358 do_cpu_sipi(env);
359 } else if (env->hflags2 & HF2_GIF_MASK) {
360 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
361 !(env->hflags & HF_SMM_MASK)) {
362 svm_check_intercept(SVM_EXIT_SMI);
363 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
364 do_smm_enter();
365 next_tb = 0;
366 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
367 !(env->hflags2 & HF2_NMI_MASK)) {
368 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
369 env->hflags2 |= HF2_NMI_MASK;
370 do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
371 next_tb = 0;
372 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
373 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
374 do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
375 next_tb = 0;
376 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
377 (((env->hflags2 & HF2_VINTR_MASK) &&
378 (env->hflags2 & HF2_HIF_MASK)) ||
379 (!(env->hflags2 & HF2_VINTR_MASK) &&
380 (env->eflags & IF_MASK &&
381 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
382 int intno;
383 svm_check_intercept(SVM_EXIT_INTR);
384 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
385 intno = cpu_get_pic_interrupt(env);
386 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
387 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
388 #undef env
389 env = cpu_single_env;
390 #define env cpu_single_env
391 #endif
392 do_interrupt(intno, 0, 0, 0, 1);
393 /* ensure that no TB jump will be modified as
394 the program flow was changed */
395 next_tb = 0;
396 #if !defined(CONFIG_USER_ONLY)
397 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
398 (env->eflags & IF_MASK) &&
399 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
400 int intno;
401 /* FIXME: this should respect TPR */
402 svm_check_intercept(SVM_EXIT_VINTR);
403 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
404 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
405 do_interrupt(intno, 0, 0, 0, 1);
406 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
407 next_tb = 0;
408 #endif
411 #elif defined(TARGET_PPC)
412 #if 0
413 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
414 cpu_reset(env);
416 #endif
417 if (interrupt_request & CPU_INTERRUPT_HARD) {
418 ppc_hw_interrupt(env);
419 if (env->pending_interrupts == 0)
420 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
421 next_tb = 0;
423 #elif defined(TARGET_MICROBLAZE)
424 if ((interrupt_request & CPU_INTERRUPT_HARD)
425 && (env->sregs[SR_MSR] & MSR_IE)
426 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
427 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
428 env->exception_index = EXCP_IRQ;
429 do_interrupt(env);
430 next_tb = 0;
432 #elif defined(TARGET_MIPS)
433 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
434 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
435 (env->CP0_Status & (1 << CP0St_IE)) &&
436 !(env->CP0_Status & (1 << CP0St_EXL)) &&
437 !(env->CP0_Status & (1 << CP0St_ERL)) &&
438 !(env->hflags & MIPS_HFLAG_DM)) {
439 /* Raise it */
440 env->exception_index = EXCP_EXT_INTERRUPT;
441 env->error_code = 0;
442 do_interrupt(env);
443 next_tb = 0;
445 #elif defined(TARGET_SPARC)
446 if (interrupt_request & CPU_INTERRUPT_HARD) {
447 if (cpu_interrupts_enabled(env) &&
448 env->interrupt_index > 0) {
449 int pil = env->interrupt_index & 0xf;
450 int type = env->interrupt_index & 0xf0;
452 if (((type == TT_EXTINT) &&
453 cpu_pil_allowed(env, pil)) ||
454 type != TT_EXTINT) {
455 env->exception_index = env->interrupt_index;
456 do_interrupt(env);
457 next_tb = 0;
460 } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
461 //do_interrupt(0, 0, 0, 0, 0);
462 env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
464 #elif defined(TARGET_ARM)
465 if (interrupt_request & CPU_INTERRUPT_FIQ
466 && !(env->uncached_cpsr & CPSR_F)) {
467 env->exception_index = EXCP_FIQ;
468 do_interrupt(env);
469 next_tb = 0;
471 /* ARMv7-M interrupt return works by loading a magic value
472 into the PC. On real hardware the load causes the
473 return to occur. The qemu implementation performs the
474 jump normally, then does the exception return when the
475 CPU tries to execute code at the magic address.
476 This will cause the magic PC value to be pushed to
477 the stack if an interrupt occured at the wrong time.
478 We avoid this by disabling interrupts when
479 pc contains a magic address. */
480 if (interrupt_request & CPU_INTERRUPT_HARD
481 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
482 || !(env->uncached_cpsr & CPSR_I))) {
483 env->exception_index = EXCP_IRQ;
484 do_interrupt(env);
485 next_tb = 0;
487 #elif defined(TARGET_SH4)
488 if (interrupt_request & CPU_INTERRUPT_HARD) {
489 do_interrupt(env);
490 next_tb = 0;
492 #elif defined(TARGET_ALPHA)
493 if (interrupt_request & CPU_INTERRUPT_HARD) {
494 do_interrupt(env);
495 next_tb = 0;
497 #elif defined(TARGET_CRIS)
498 if (interrupt_request & CPU_INTERRUPT_HARD
499 && (env->pregs[PR_CCS] & I_FLAG)) {
500 env->exception_index = EXCP_IRQ;
501 do_interrupt(env);
502 next_tb = 0;
504 if (interrupt_request & CPU_INTERRUPT_NMI
505 && (env->pregs[PR_CCS] & M_FLAG)) {
506 env->exception_index = EXCP_NMI;
507 do_interrupt(env);
508 next_tb = 0;
510 #elif defined(TARGET_M68K)
511 if (interrupt_request & CPU_INTERRUPT_HARD
512 && ((env->sr & SR_I) >> SR_I_SHIFT)
513 < env->pending_level) {
514 /* Real hardware gets the interrupt vector via an
515 IACK cycle at this point. Current emulated
516 hardware doesn't rely on this, so we
517 provide/save the vector when the interrupt is
518 first signalled. */
519 env->exception_index = env->pending_vector;
520 do_interrupt(1);
521 next_tb = 0;
523 #endif
524 /* Don't use the cached interupt_request value,
525 do_interrupt may have updated the EXITTB flag. */
526 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
527 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
528 /* ensure that no TB jump will be modified as
529 the program flow was changed */
530 next_tb = 0;
533 if (unlikely(env->exit_request)) {
534 env->exit_request = 0;
535 env->exception_index = EXCP_INTERRUPT;
536 cpu_loop_exit();
538 #ifdef CONFIG_DEBUG_EXEC
539 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
540 /* restore flags in standard format */
541 #if defined(TARGET_I386)
542 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
543 log_cpu_state(env, X86_DUMP_CCOP);
544 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
545 #elif defined(TARGET_ARM)
546 log_cpu_state(env, 0);
547 #elif defined(TARGET_SPARC)
548 log_cpu_state(env, 0);
549 #elif defined(TARGET_PPC)
550 log_cpu_state(env, 0);
551 #elif defined(TARGET_M68K)
552 cpu_m68k_flush_flags(env, env->cc_op);
553 env->cc_op = CC_OP_FLAGS;
554 env->sr = (env->sr & 0xffe0)
555 | env->cc_dest | (env->cc_x << 4);
556 log_cpu_state(env, 0);
557 #elif defined(TARGET_MICROBLAZE)
558 log_cpu_state(env, 0);
559 #elif defined(TARGET_MIPS)
560 log_cpu_state(env, 0);
561 #elif defined(TARGET_SH4)
562 log_cpu_state(env, 0);
563 #elif defined(TARGET_ALPHA)
564 log_cpu_state(env, 0);
565 #elif defined(TARGET_CRIS)
566 log_cpu_state(env, 0);
567 #else
568 #error unsupported target CPU
569 #endif
571 #endif
572 spin_lock(&tb_lock);
573 tb = tb_find_fast();
574 /* Note: we do it here to avoid a gcc bug on Mac OS X when
575 doing it in tb_find_slow */
576 if (tb_invalidated_flag) {
577 /* as some TB could have been invalidated because
578 of memory exceptions while generating the code, we
579 must recompute the hash index here */
580 next_tb = 0;
581 tb_invalidated_flag = 0;
583 #ifdef CONFIG_DEBUG_EXEC
584 qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
585 (long)tb->tc_ptr, tb->pc,
586 lookup_symbol(tb->pc));
587 #endif
588 /* see if we can patch the calling TB. When the TB
589 spans two pages, we cannot safely do a direct
590 jump. */
592 if (next_tb != 0 && tb->page_addr[1] == -1) {
593 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
596 spin_unlock(&tb_lock);
597 env->current_tb = tb;
599 /* cpu_interrupt might be called while translating the
600 TB, but before it is linked into a potentially
601 infinite loop and becomes env->current_tb. Avoid
602 starting execution if there is a pending interrupt. */
603 if (unlikely (env->exit_request))
604 env->current_tb = NULL;
606 while (env->current_tb) {
607 tc_ptr = tb->tc_ptr;
608 /* execute the generated code */
609 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
610 #undef env
611 env = cpu_single_env;
612 #define env cpu_single_env
613 #endif
614 next_tb = tcg_qemu_tb_exec(tc_ptr);
615 env->current_tb = NULL;
616 if ((next_tb & 3) == 2) {
617 /* Instruction counter expired. */
618 int insns_left;
619 tb = (TranslationBlock *)(long)(next_tb & ~3);
620 /* Restore PC. */
621 cpu_pc_from_tb(env, tb);
622 insns_left = env->icount_decr.u32;
623 if (env->icount_extra && insns_left >= 0) {
624 /* Refill decrementer and continue execution. */
625 env->icount_extra += insns_left;
626 if (env->icount_extra > 0xffff) {
627 insns_left = 0xffff;
628 } else {
629 insns_left = env->icount_extra;
631 env->icount_extra -= insns_left;
632 env->icount_decr.u16.low = insns_left;
633 } else {
634 if (insns_left > 0) {
635 /* Execute remaining instructions. */
636 cpu_exec_nocache(insns_left, tb);
638 env->exception_index = EXCP_INTERRUPT;
639 next_tb = 0;
640 cpu_loop_exit();
644 /* reset soft MMU for next block (it can currently
645 only be set by a memory fault) */
646 } /* for(;;) */
648 } /* for(;;) */
651 #if defined(TARGET_I386)
652 /* restore flags in standard format */
653 env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
654 #elif defined(TARGET_ARM)
655 /* XXX: Save/restore host fpu exception state?. */
656 #elif defined(TARGET_SPARC)
657 #elif defined(TARGET_PPC)
658 #elif defined(TARGET_M68K)
659 cpu_m68k_flush_flags(env, env->cc_op);
660 env->cc_op = CC_OP_FLAGS;
661 env->sr = (env->sr & 0xffe0)
662 | env->cc_dest | (env->cc_x << 4);
663 #elif defined(TARGET_MICROBLAZE)
664 #elif defined(TARGET_MIPS)
665 #elif defined(TARGET_SH4)
666 #elif defined(TARGET_ALPHA)
667 #elif defined(TARGET_CRIS)
668 #elif defined(TARGET_S390X)
669 /* XXXXX */
670 #else
671 #error unsupported target CPU
672 #endif
674 /* restore global registers */
675 #include "hostregs_helper.h"
677 /* fail safe : never use cpu_single_env outside cpu_exec() */
678 cpu_single_env = NULL;
679 return ret;
682 /* must only be called from the generated code as an exception can be
683 generated */
684 void tb_invalidate_page_range(target_ulong start, target_ulong end)
686 /* XXX: cannot enable it yet because it yields to MMU exception
687 where NIP != read address on PowerPC */
688 #if 0
689 target_ulong phys_addr;
690 phys_addr = get_phys_addr_code(env, start);
691 tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
692 #endif
695 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
697 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
699 CPUX86State *saved_env;
701 saved_env = env;
702 env = s;
703 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
704 selector &= 0xffff;
705 cpu_x86_load_seg_cache(env, seg_reg, selector,
706 (selector << 4), 0xffff, 0);
707 } else {
708 helper_load_seg(seg_reg, selector);
710 env = saved_env;
713 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
715 CPUX86State *saved_env;
717 saved_env = env;
718 env = s;
720 helper_fsave(ptr, data32);
722 env = saved_env;
725 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
727 CPUX86State *saved_env;
729 saved_env = env;
730 env = s;
732 helper_frstor(ptr, data32);
734 env = saved_env;
737 #endif /* TARGET_I386 */
739 #if !defined(CONFIG_SOFTMMU)
741 #if defined(TARGET_I386)
742 #define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
743 #else
744 #define EXCEPTION_ACTION cpu_loop_exit()
745 #endif
747 /* 'pc' is the host PC at which the exception was raised. 'address' is
748 the effective address of the memory exception. 'is_write' is 1 if a
749 write caused the exception and otherwise 0'. 'old_set' is the
750 signal set which should be restored */
751 static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
752 int is_write, sigset_t *old_set,
753 void *puc)
755 TranslationBlock *tb;
756 int ret;
758 if (cpu_single_env)
759 env = cpu_single_env; /* XXX: find a correct solution for multithread */
760 #if defined(DEBUG_SIGNAL)
761 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
762 pc, address, is_write, *(unsigned long *)old_set);
763 #endif
764 /* XXX: locking issue */
765 if (is_write && page_unprotect(h2g(address), pc, puc)) {
766 return 1;
769 /* see if it is an MMU fault */
770 ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
771 if (ret < 0)
772 return 0; /* not an MMU fault */
773 if (ret == 0)
774 return 1; /* the MMU fault was handled without causing real CPU fault */
775 /* now we have a real cpu fault */
776 tb = tb_find_pc(pc);
777 if (tb) {
778 /* the PC is inside the translated code. It means that we have
779 a virtual CPU fault */
780 cpu_restore_state(tb, env, pc, puc);
783 /* we restore the process signal mask as the sigreturn should
784 do it (XXX: use sigsetjmp) */
785 sigprocmask(SIG_SETMASK, old_set, NULL);
786 EXCEPTION_ACTION;
788 /* never comes here */
789 return 1;
792 #if defined(__i386__)
794 #if defined(__APPLE__)
795 # include <sys/ucontext.h>
797 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
798 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
799 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
800 # define MASK_sig(context) ((context)->uc_sigmask)
801 #elif defined (__NetBSD__)
802 # include <ucontext.h>
804 # define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
805 # define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
806 # define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
807 # define MASK_sig(context) ((context)->uc_sigmask)
808 #elif defined (__FreeBSD__) || defined(__DragonFly__)
809 # include <ucontext.h>
811 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
812 # define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
813 # define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
814 # define MASK_sig(context) ((context)->uc_sigmask)
815 #elif defined(__OpenBSD__)
816 # define EIP_sig(context) ((context)->sc_eip)
817 # define TRAP_sig(context) ((context)->sc_trapno)
818 # define ERROR_sig(context) ((context)->sc_err)
819 # define MASK_sig(context) ((context)->sc_mask)
820 #else
821 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
822 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
823 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
824 # define MASK_sig(context) ((context)->uc_sigmask)
825 #endif
827 int cpu_signal_handler(int host_signum, void *pinfo,
828 void *puc)
830 siginfo_t *info = pinfo;
831 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
832 ucontext_t *uc = puc;
833 #elif defined(__OpenBSD__)
834 struct sigcontext *uc = puc;
835 #else
836 struct ucontext *uc = puc;
837 #endif
838 unsigned long pc;
839 int trapno;
841 #ifndef REG_EIP
842 /* for glibc 2.1 */
843 #define REG_EIP EIP
844 #define REG_ERR ERR
845 #define REG_TRAPNO TRAPNO
846 #endif
847 pc = EIP_sig(uc);
848 trapno = TRAP_sig(uc);
849 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
850 trapno == 0xe ?
851 (ERROR_sig(uc) >> 1) & 1 : 0,
852 &MASK_sig(uc), puc);
855 #elif defined(__x86_64__)
857 #ifdef __NetBSD__
858 #define PC_sig(context) _UC_MACHINE_PC(context)
859 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
860 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
861 #define MASK_sig(context) ((context)->uc_sigmask)
862 #elif defined(__OpenBSD__)
863 #define PC_sig(context) ((context)->sc_rip)
864 #define TRAP_sig(context) ((context)->sc_trapno)
865 #define ERROR_sig(context) ((context)->sc_err)
866 #define MASK_sig(context) ((context)->sc_mask)
867 #elif defined (__FreeBSD__) || defined(__DragonFly__)
868 #include <ucontext.h>
870 #define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
871 #define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
872 #define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
873 #define MASK_sig(context) ((context)->uc_sigmask)
874 #else
875 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
876 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
877 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
878 #define MASK_sig(context) ((context)->uc_sigmask)
879 #endif
881 int cpu_signal_handler(int host_signum, void *pinfo,
882 void *puc)
884 siginfo_t *info = pinfo;
885 unsigned long pc;
886 #if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
887 ucontext_t *uc = puc;
888 #elif defined(__OpenBSD__)
889 struct sigcontext *uc = puc;
890 #else
891 struct ucontext *uc = puc;
892 #endif
894 pc = PC_sig(uc);
895 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
896 TRAP_sig(uc) == 0xe ?
897 (ERROR_sig(uc) >> 1) & 1 : 0,
898 &MASK_sig(uc), puc);
901 #elif defined(_ARCH_PPC)
903 /***********************************************************************
904 * signal context platform-specific definitions
905 * From Wine
907 #ifdef linux
908 /* All Registers access - only for local access */
909 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
910 /* Gpr Registers access */
911 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
912 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
913 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
914 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
915 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
916 # define LR_sig(context) REG_sig(link, context) /* Link register */
917 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
918 /* Float Registers access */
919 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
920 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
921 /* Exception Registers access */
922 # define DAR_sig(context) REG_sig(dar, context)
923 # define DSISR_sig(context) REG_sig(dsisr, context)
924 # define TRAP_sig(context) REG_sig(trap, context)
925 #endif /* linux */
927 #ifdef __APPLE__
928 # include <sys/ucontext.h>
929 typedef struct ucontext SIGCONTEXT;
930 /* All Registers access - only for local access */
931 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
932 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
933 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
934 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
935 /* Gpr Registers access */
936 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
937 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
938 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
939 # define CTR_sig(context) REG_sig(ctr, context)
940 # define XER_sig(context) REG_sig(xer, context) /* Link register */
941 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
942 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
943 /* Float Registers access */
944 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
945 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
946 /* Exception Registers access */
947 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
948 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
949 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
950 #endif /* __APPLE__ */
952 int cpu_signal_handler(int host_signum, void *pinfo,
953 void *puc)
955 siginfo_t *info = pinfo;
956 struct ucontext *uc = puc;
957 unsigned long pc;
958 int is_write;
960 pc = IAR_sig(uc);
961 is_write = 0;
962 #if 0
963 /* ppc 4xx case */
964 if (DSISR_sig(uc) & 0x00800000)
965 is_write = 1;
966 #else
967 if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
968 is_write = 1;
969 #endif
970 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
971 is_write, &uc->uc_sigmask, puc);
974 #elif defined(__alpha__)
976 int cpu_signal_handler(int host_signum, void *pinfo,
977 void *puc)
979 siginfo_t *info = pinfo;
980 struct ucontext *uc = puc;
981 uint32_t *pc = uc->uc_mcontext.sc_pc;
982 uint32_t insn = *pc;
983 int is_write = 0;
985 /* XXX: need kernel patch to get write flag faster */
986 switch (insn >> 26) {
987 case 0x0d: // stw
988 case 0x0e: // stb
989 case 0x0f: // stq_u
990 case 0x24: // stf
991 case 0x25: // stg
992 case 0x26: // sts
993 case 0x27: // stt
994 case 0x2c: // stl
995 case 0x2d: // stq
996 case 0x2e: // stl_c
997 case 0x2f: // stq_c
998 is_write = 1;
1001 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1002 is_write, &uc->uc_sigmask, puc);
1004 #elif defined(__sparc__)
1006 int cpu_signal_handler(int host_signum, void *pinfo,
1007 void *puc)
1009 siginfo_t *info = pinfo;
1010 int is_write;
1011 uint32_t insn;
1012 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1013 uint32_t *regs = (uint32_t *)(info + 1);
1014 void *sigmask = (regs + 20);
1015 /* XXX: is there a standard glibc define ? */
1016 unsigned long pc = regs[1];
1017 #else
1018 #ifdef __linux__
1019 struct sigcontext *sc = puc;
1020 unsigned long pc = sc->sigc_regs.tpc;
1021 void *sigmask = (void *)sc->sigc_mask;
1022 #elif defined(__OpenBSD__)
1023 struct sigcontext *uc = puc;
1024 unsigned long pc = uc->sc_pc;
1025 void *sigmask = (void *)(long)uc->sc_mask;
1026 #endif
1027 #endif
1029 /* XXX: need kernel patch to get write flag faster */
1030 is_write = 0;
1031 insn = *(uint32_t *)pc;
1032 if ((insn >> 30) == 3) {
1033 switch((insn >> 19) & 0x3f) {
1034 case 0x05: // stb
1035 case 0x15: // stba
1036 case 0x06: // sth
1037 case 0x16: // stha
1038 case 0x04: // st
1039 case 0x14: // sta
1040 case 0x07: // std
1041 case 0x17: // stda
1042 case 0x0e: // stx
1043 case 0x1e: // stxa
1044 case 0x24: // stf
1045 case 0x34: // stfa
1046 case 0x27: // stdf
1047 case 0x37: // stdfa
1048 case 0x26: // stqf
1049 case 0x36: // stqfa
1050 case 0x25: // stfsr
1051 case 0x3c: // casa
1052 case 0x3e: // casxa
1053 is_write = 1;
1054 break;
1057 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1058 is_write, sigmask, NULL);
1061 #elif defined(__arm__)
1063 int cpu_signal_handler(int host_signum, void *pinfo,
1064 void *puc)
1066 siginfo_t *info = pinfo;
1067 struct ucontext *uc = puc;
1068 unsigned long pc;
1069 int is_write;
1071 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1072 pc = uc->uc_mcontext.gregs[R15];
1073 #else
1074 pc = uc->uc_mcontext.arm_pc;
1075 #endif
1076 /* XXX: compute is_write */
1077 is_write = 0;
1078 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1079 is_write,
1080 &uc->uc_sigmask, puc);
1083 #elif defined(__mc68000)
1085 int cpu_signal_handler(int host_signum, void *pinfo,
1086 void *puc)
1088 siginfo_t *info = pinfo;
1089 struct ucontext *uc = puc;
1090 unsigned long pc;
1091 int is_write;
1093 pc = uc->uc_mcontext.gregs[16];
1094 /* XXX: compute is_write */
1095 is_write = 0;
1096 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1097 is_write,
1098 &uc->uc_sigmask, puc);
1101 #elif defined(__ia64)
1103 #ifndef __ISR_VALID
1104 /* This ought to be in <bits/siginfo.h>... */
1105 # define __ISR_VALID 1
1106 #endif
1108 int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1110 siginfo_t *info = pinfo;
1111 struct ucontext *uc = puc;
1112 unsigned long ip;
1113 int is_write = 0;
1115 ip = uc->uc_mcontext.sc_ip;
1116 switch (host_signum) {
1117 case SIGILL:
1118 case SIGFPE:
1119 case SIGSEGV:
1120 case SIGBUS:
1121 case SIGTRAP:
1122 if (info->si_code && (info->si_segvflags & __ISR_VALID))
1123 /* ISR.W (write-access) is bit 33: */
1124 is_write = (info->si_isr >> 33) & 1;
1125 break;
1127 default:
1128 break;
1130 return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1131 is_write,
1132 &uc->uc_sigmask, puc);
1135 #elif defined(__s390__)
1137 int cpu_signal_handler(int host_signum, void *pinfo,
1138 void *puc)
1140 siginfo_t *info = pinfo;
1141 struct ucontext *uc = puc;
1142 unsigned long pc;
1143 int is_write;
1145 pc = uc->uc_mcontext.psw.addr;
1146 /* XXX: compute is_write */
1147 is_write = 0;
1148 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1149 is_write, &uc->uc_sigmask, puc);
1152 #elif defined(__mips__)
1154 int cpu_signal_handler(int host_signum, void *pinfo,
1155 void *puc)
1157 siginfo_t *info = pinfo;
1158 struct ucontext *uc = puc;
1159 greg_t pc = uc->uc_mcontext.pc;
1160 int is_write;
1162 /* XXX: compute is_write */
1163 is_write = 0;
1164 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1165 is_write, &uc->uc_sigmask, puc);
1168 #elif defined(__hppa__)
1170 int cpu_signal_handler(int host_signum, void *pinfo,
1171 void *puc)
1173 struct siginfo *info = pinfo;
1174 struct ucontext *uc = puc;
1175 unsigned long pc;
1176 int is_write;
1178 pc = uc->uc_mcontext.sc_iaoq[0];
1179 /* FIXME: compute is_write */
1180 is_write = 0;
1181 return handle_cpu_signal(pc, (unsigned long)info->si_addr,
1182 is_write,
1183 &uc->uc_sigmask, puc);
1186 #else
1188 #error host CPU specific signal handler needed
1190 #endif
1192 #endif /* !defined(CONFIG_SOFTMMU) */