2 * Helpers for loads and stores
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
23 #include "exec/helper-proto.h"
24 #include "exec/exec-all.h"
25 #include "exec/cpu_ldst.h"
30 //#define DEBUG_UNALIGNED
31 //#define DEBUG_UNASSIGNED
33 //#define DEBUG_CACHE_CONTROL
36 #define DPRINTF_MMU(fmt, ...) \
37 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
39 #define DPRINTF_MMU(fmt, ...) do {} while (0)
43 #define DPRINTF_MXCC(fmt, ...) \
44 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
46 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
50 #define DPRINTF_ASI(fmt, ...) \
51 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
54 #ifdef DEBUG_CACHE_CONTROL
55 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
56 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
58 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
63 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
65 #define AM_CHECK(env1) (1)
69 #define QT0 (env->qt0)
70 #define QT1 (env->qt1)
72 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
73 /* Calculates TSB pointer value for fault page size
74 * UltraSPARC IIi has fixed sizes (8k or 64k) for the page pointers
75 * UA2005 holds the page size configuration in mmu_ctx registers */
76 static uint64_t ultrasparc_tsb_pointer(CPUSPARCState
*env
,
77 const SparcV9MMU
*mmu
, const int idx
)
79 uint64_t tsb_register
;
81 if (cpu_has_hypervisor(env
)) {
83 int ctx
= mmu
->tag_access
& 0x1fffULL
;
84 uint64_t ctx_register
= mmu
->sun4v_ctx_config
[ctx
? 1 : 0];
86 tsb_index
|= ctx
? 2 : 0;
87 page_size
= idx
? ctx_register
>> 8 : ctx_register
;
89 tsb_register
= mmu
->sun4v_tsb_pointers
[tsb_index
];
92 tsb_register
= mmu
->tsb
;
94 int tsb_split
= (tsb_register
& 0x1000ULL
) ? 1 : 0;
95 int tsb_size
= tsb_register
& 0xf;
97 uint64_t tsb_base_mask
= (~0x1fffULL
) << tsb_size
;
99 /* move va bits to correct position,
100 * the context bits will be masked out later */
101 uint64_t va
= mmu
->tag_access
>> (3 * page_size
+ 9);
103 /* calculate tsb_base mask and adjust va if split is in use */
106 va
&= ~(1ULL << (13 + tsb_size
));
108 va
|= (1ULL << (13 + tsb_size
));
113 return ((tsb_register
& tsb_base_mask
) | (va
& ~tsb_base_mask
)) & ~0xfULL
;
116 /* Calculates tag target register value by reordering bits
117 in tag access register */
118 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register
)
120 return ((tag_access_register
& 0x1fff) << 48) | (tag_access_register
>> 22);
123 static void replace_tlb_entry(SparcTLBEntry
*tlb
,
124 uint64_t tlb_tag
, uint64_t tlb_tte
,
127 target_ulong mask
, size
, va
, offset
;
129 /* flush page range if translation is valid */
130 if (TTE_IS_VALID(tlb
->tte
)) {
131 CPUState
*cs
= CPU(sparc_env_get_cpu(env1
));
133 size
= 8192ULL << 3 * TTE_PGSIZE(tlb
->tte
);
136 va
= tlb
->tag
& mask
;
138 for (offset
= 0; offset
< size
; offset
+= TARGET_PAGE_SIZE
) {
139 tlb_flush_page(cs
, va
+ offset
);
147 static void demap_tlb(SparcTLBEntry
*tlb
, target_ulong demap_addr
,
148 const char *strmmu
, CPUSPARCState
*env1
)
154 int is_demap_context
= (demap_addr
>> 6) & 1;
157 switch ((demap_addr
>> 4) & 3) {
158 case 0: /* primary */
159 context
= env1
->dmmu
.mmu_primary_context
;
161 case 1: /* secondary */
162 context
= env1
->dmmu
.mmu_secondary_context
;
164 case 2: /* nucleus */
167 case 3: /* reserved */
172 for (i
= 0; i
< 64; i
++) {
173 if (TTE_IS_VALID(tlb
[i
].tte
)) {
175 if (is_demap_context
) {
176 /* will remove non-global entries matching context value */
177 if (TTE_IS_GLOBAL(tlb
[i
].tte
) ||
178 !tlb_compare_context(&tlb
[i
], context
)) {
183 will remove any entry matching VA */
184 mask
= 0xffffffffffffe000ULL
;
185 mask
<<= 3 * ((tlb
[i
].tte
>> 61) & 3);
187 if (!compare_masked(demap_addr
, tlb
[i
].tag
, mask
)) {
191 /* entry should be global or matching context value */
192 if (!TTE_IS_GLOBAL(tlb
[i
].tte
) &&
193 !tlb_compare_context(&tlb
[i
], context
)) {
198 replace_tlb_entry(&tlb
[i
], 0, 0, env1
);
200 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu
, i
);
201 dump_mmu(stdout
, fprintf
, env1
);
207 static uint64_t sun4v_tte_to_sun4u(CPUSPARCState
*env
, uint64_t tag
,
211 if (!(cpu_has_hypervisor(env
) && (tag
& TLB_UST1_IS_SUN4V_BIT
))) {
212 /* is already in the sun4u format */
215 sun4u_tte
= TTE_PA(sun4v_tte
) | (sun4v_tte
& TTE_VALID_BIT
);
216 sun4u_tte
|= (sun4v_tte
& 3ULL) << 61; /* TTE_PGSIZE */
217 sun4u_tte
|= CONVERT_BIT(sun4v_tte
, TTE_NFO_BIT_UA2005
, TTE_NFO_BIT
);
218 sun4u_tte
|= CONVERT_BIT(sun4v_tte
, TTE_USED_BIT_UA2005
, TTE_USED_BIT
);
219 sun4u_tte
|= CONVERT_BIT(sun4v_tte
, TTE_W_OK_BIT_UA2005
, TTE_W_OK_BIT
);
220 sun4u_tte
|= CONVERT_BIT(sun4v_tte
, TTE_SIDEEFFECT_BIT_UA2005
,
222 sun4u_tte
|= CONVERT_BIT(sun4v_tte
, TTE_PRIV_BIT_UA2005
, TTE_PRIV_BIT
);
223 sun4u_tte
|= CONVERT_BIT(sun4v_tte
, TTE_LOCKED_BIT_UA2005
, TTE_LOCKED_BIT
);
227 static void replace_tlb_1bit_lru(SparcTLBEntry
*tlb
,
228 uint64_t tlb_tag
, uint64_t tlb_tte
,
229 const char *strmmu
, CPUSPARCState
*env1
,
232 unsigned int i
, replace_used
;
234 tlb_tte
= sun4v_tte_to_sun4u(env1
, addr
, tlb_tte
);
235 if (cpu_has_hypervisor(env1
)) {
236 uint64_t new_vaddr
= tlb_tag
& ~0x1fffULL
;
237 uint64_t new_size
= 8192ULL << 3 * TTE_PGSIZE(tlb_tte
);
238 uint32_t new_ctx
= tlb_tag
& 0x1fffU
;
239 for (i
= 0; i
< 64; i
++) {
240 uint32_t ctx
= tlb
[i
].tag
& 0x1fffU
;
241 /* check if new mapping overlaps an existing one */
242 if (new_ctx
== ctx
) {
243 uint64_t vaddr
= tlb
[i
].tag
& ~0x1fffULL
;
244 uint64_t size
= 8192ULL << 3 * TTE_PGSIZE(tlb
[i
].tte
);
245 if (new_vaddr
== vaddr
246 || (new_vaddr
< vaddr
+ size
247 && vaddr
< new_vaddr
+ new_size
)) {
248 DPRINTF_MMU("auto demap entry [%d] %lx->%lx\n", i
, vaddr
,
250 replace_tlb_entry(&tlb
[i
], tlb_tag
, tlb_tte
, env1
);
257 /* Try replacing invalid entry */
258 for (i
= 0; i
< 64; i
++) {
259 if (!TTE_IS_VALID(tlb
[i
].tte
)) {
260 replace_tlb_entry(&tlb
[i
], tlb_tag
, tlb_tte
, env1
);
262 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu
, i
);
263 dump_mmu(stdout
, fprintf
, env1
);
269 /* All entries are valid, try replacing unlocked entry */
271 for (replace_used
= 0; replace_used
< 2; ++replace_used
) {
273 /* Used entries are not replaced on first pass */
275 for (i
= 0; i
< 64; i
++) {
276 if (!TTE_IS_LOCKED(tlb
[i
].tte
) && !TTE_IS_USED(tlb
[i
].tte
)) {
278 replace_tlb_entry(&tlb
[i
], tlb_tag
, tlb_tte
, env1
);
280 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
281 strmmu
, (replace_used
? "used" : "unused"), i
);
282 dump_mmu(stdout
, fprintf
, env1
);
288 /* Now reset used bit and search for unused entries again */
290 for (i
= 0; i
< 64; i
++) {
291 TTE_SET_UNUSED(tlb
[i
].tte
);
296 DPRINTF_MMU("%s lru replacement: no free entries available, "
297 "replacing the last one\n", strmmu
);
299 /* corner case: the last entry is replaced anyway */
300 replace_tlb_entry(&tlb
[63], tlb_tag
, tlb_tte
, env1
);
305 #ifdef TARGET_SPARC64
306 /* returns true if access using this ASI is to have address translated by MMU
307 otherwise access is to raw physical address */
308 /* TODO: check sparc32 bits */
309 static inline int is_translating_asi(int asi
)
311 /* Ultrasparc IIi translating asi
312 - note this list is defined by cpu implementation
329 static inline target_ulong
address_mask(CPUSPARCState
*env1
, target_ulong addr
)
331 if (AM_CHECK(env1
)) {
332 addr
&= 0xffffffffULL
;
337 static inline target_ulong
asi_address_mask(CPUSPARCState
*env
,
338 int asi
, target_ulong addr
)
340 if (is_translating_asi(asi
)) {
341 addr
= address_mask(env
, addr
);
346 #ifndef CONFIG_USER_ONLY
347 static inline void do_check_asi(CPUSPARCState
*env
, int asi
, uintptr_t ra
)
349 /* ASIs >= 0x80 are user mode.
350 * ASIs >= 0x30 are hyper mode (or super if hyper is not available).
351 * ASIs <= 0x2f are super mode.
354 && !cpu_hypervisor_mode(env
)
355 && (!cpu_supervisor_mode(env
)
356 || (asi
>= 0x30 && cpu_has_hypervisor(env
)))) {
357 cpu_raise_exception_ra(env
, TT_PRIV_ACT
, ra
);
360 #endif /* !CONFIG_USER_ONLY */
363 static void do_check_align(CPUSPARCState
*env
, target_ulong addr
,
364 uint32_t align
, uintptr_t ra
)
367 #ifdef DEBUG_UNALIGNED
368 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
369 "\n", addr
, env
->pc
);
371 cpu_raise_exception_ra(env
, TT_UNALIGNED
, ra
);
375 void helper_check_align(CPUSPARCState
*env
, target_ulong addr
, uint32_t align
)
377 do_check_align(env
, addr
, align
, GETPC());
380 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
382 static void dump_mxcc(CPUSPARCState
*env
)
384 printf("mxccdata: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
386 env
->mxccdata
[0], env
->mxccdata
[1],
387 env
->mxccdata
[2], env
->mxccdata
[3]);
388 printf("mxccregs: %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
390 " %016" PRIx64
" %016" PRIx64
" %016" PRIx64
" %016" PRIx64
392 env
->mxccregs
[0], env
->mxccregs
[1],
393 env
->mxccregs
[2], env
->mxccregs
[3],
394 env
->mxccregs
[4], env
->mxccregs
[5],
395 env
->mxccregs
[6], env
->mxccregs
[7]);
399 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
400 && defined(DEBUG_ASI)
401 static void dump_asi(const char *txt
, target_ulong addr
, int asi
, int size
,
406 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %02" PRIx64
"\n", txt
,
407 addr
, asi
, r1
& 0xff);
410 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %04" PRIx64
"\n", txt
,
411 addr
, asi
, r1
& 0xffff);
414 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %08" PRIx64
"\n", txt
,
415 addr
, asi
, r1
& 0xffffffff);
418 DPRINTF_ASI("%s "TARGET_FMT_lx
" asi 0x%02x = %016" PRIx64
"\n", txt
,
425 #ifndef TARGET_SPARC64
426 #ifndef CONFIG_USER_ONLY
429 /* Leon3 cache control */
431 static void leon3_cache_control_st(CPUSPARCState
*env
, target_ulong addr
,
432 uint64_t val
, int size
)
434 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64
", size:%d\n",
438 DPRINTF_CACHE_CONTROL("32bits only\n");
443 case 0x00: /* Cache control */
445 /* These values must always be read as zeros */
446 val
&= ~CACHE_CTRL_FD
;
447 val
&= ~CACHE_CTRL_FI
;
448 val
&= ~CACHE_CTRL_IB
;
449 val
&= ~CACHE_CTRL_IP
;
450 val
&= ~CACHE_CTRL_DP
;
452 env
->cache_control
= val
;
454 case 0x04: /* Instruction cache configuration */
455 case 0x08: /* Data cache configuration */
459 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr
);
464 static uint64_t leon3_cache_control_ld(CPUSPARCState
*env
, target_ulong addr
,
470 DPRINTF_CACHE_CONTROL("32bits only\n");
475 case 0x00: /* Cache control */
476 ret
= env
->cache_control
;
479 /* Configuration registers are read and only always keep those
482 case 0x04: /* Instruction cache configuration */
485 case 0x08: /* Data cache configuration */
489 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr
);
492 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64
", size:%d\n",
497 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
,
498 int asi
, uint32_t memop
)
500 int size
= 1 << (memop
& MO_SIZE
);
501 int sign
= memop
& MO_SIGN
;
502 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
504 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
505 uint32_t last_addr
= addr
;
508 do_check_align(env
, addr
, size
- 1, GETPC());
510 case ASI_M_MXCC
: /* SuperSparc MXCC registers, or... */
511 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
513 case 0x00: /* Leon3 Cache Control */
514 case 0x08: /* Leon3 Instruction Cache config */
515 case 0x0C: /* Leon3 Date Cache config */
516 if (env
->def
->features
& CPU_FEATURE_CACHE_CTRL
) {
517 ret
= leon3_cache_control_ld(env
, addr
, size
);
520 case 0x01c00a00: /* MXCC control register */
522 ret
= env
->mxccregs
[3];
524 qemu_log_mask(LOG_UNIMP
,
525 "%08x: unimplemented access size: %d\n", addr
,
529 case 0x01c00a04: /* MXCC control register */
531 ret
= env
->mxccregs
[3];
533 qemu_log_mask(LOG_UNIMP
,
534 "%08x: unimplemented access size: %d\n", addr
,
538 case 0x01c00c00: /* Module reset register */
540 ret
= env
->mxccregs
[5];
541 /* should we do something here? */
543 qemu_log_mask(LOG_UNIMP
,
544 "%08x: unimplemented access size: %d\n", addr
,
548 case 0x01c00f00: /* MBus port address register */
550 ret
= env
->mxccregs
[7];
552 qemu_log_mask(LOG_UNIMP
,
553 "%08x: unimplemented access size: %d\n", addr
,
558 qemu_log_mask(LOG_UNIMP
,
559 "%08x: unimplemented address, size: %d\n", addr
,
563 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
564 "addr = %08x -> ret = %" PRIx64
","
565 "addr = %08x\n", asi
, size
, sign
, last_addr
, ret
, addr
);
570 case ASI_M_FLUSH_PROBE
: /* SuperSparc MMU probe */
571 case ASI_LEON_MMUFLUSH
: /* LEON3 MMU probe */
575 mmulev
= (addr
>> 8) & 15;
579 ret
= mmu_probe(env
, addr
, mmulev
);
581 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64
"\n",
585 case ASI_M_MMUREGS
: /* SuperSparc MMU regs */
586 case ASI_LEON_MMUREGS
: /* LEON3 MMU regs */
588 int reg
= (addr
>> 8) & 0x1f;
590 ret
= env
->mmuregs
[reg
];
591 if (reg
== 3) { /* Fault status cleared on read */
593 } else if (reg
== 0x13) { /* Fault status read */
594 ret
= env
->mmuregs
[3];
595 } else if (reg
== 0x14) { /* Fault address read */
596 ret
= env
->mmuregs
[4];
598 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64
"\n", reg
, ret
);
601 case ASI_M_TLBDIAG
: /* Turbosparc ITLB Diagnostic */
602 case ASI_M_DIAGS
: /* Turbosparc DTLB Diagnostic */
603 case ASI_M_IODIAG
: /* Turbosparc IOTLB Diagnostic */
605 case ASI_KERNELTXT
: /* Supervisor code access */
608 ret
= cpu_ldub_code(env
, addr
);
611 ret
= cpu_lduw_code(env
, addr
);
615 ret
= cpu_ldl_code(env
, addr
);
618 ret
= cpu_ldq_code(env
, addr
);
622 case ASI_M_TXTC_TAG
: /* SparcStation 5 I-cache tag */
623 case ASI_M_TXTC_DATA
: /* SparcStation 5 I-cache data */
624 case ASI_M_DATAC_TAG
: /* SparcStation 5 D-cache tag */
625 case ASI_M_DATAC_DATA
: /* SparcStation 5 D-cache data */
627 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
630 ret
= ldub_phys(cs
->as
, (hwaddr
)addr
631 | ((hwaddr
)(asi
& 0xf) << 32));
634 ret
= lduw_phys(cs
->as
, (hwaddr
)addr
635 | ((hwaddr
)(asi
& 0xf) << 32));
639 ret
= ldl_phys(cs
->as
, (hwaddr
)addr
640 | ((hwaddr
)(asi
& 0xf) << 32));
643 ret
= ldq_phys(cs
->as
, (hwaddr
)addr
644 | ((hwaddr
)(asi
& 0xf) << 32));
648 case 0x30: /* Turbosparc secondary cache diagnostic */
649 case 0x31: /* Turbosparc RAM snoop */
650 case 0x32: /* Turbosparc page table descriptor diagnostic */
651 case 0x39: /* data cache diagnostic register */
654 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
656 int reg
= (addr
>> 8) & 3;
659 case 0: /* Breakpoint Value (Addr) */
660 ret
= env
->mmubpregs
[reg
];
662 case 1: /* Breakpoint Mask */
663 ret
= env
->mmubpregs
[reg
];
665 case 2: /* Breakpoint Control */
666 ret
= env
->mmubpregs
[reg
];
668 case 3: /* Breakpoint Status */
669 ret
= env
->mmubpregs
[reg
];
670 env
->mmubpregs
[reg
] = 0ULL;
673 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64
"\n", reg
,
677 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
678 ret
= env
->mmubpctrv
;
680 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
681 ret
= env
->mmubpctrc
;
683 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
684 ret
= env
->mmubpctrs
;
686 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
687 ret
= env
->mmubpaction
;
689 case ASI_USERTXT
: /* User code access, XXX */
691 cpu_unassigned_access(cs
, addr
, false, false, asi
, size
);
695 case ASI_USERDATA
: /* User data access */
696 case ASI_KERNELDATA
: /* Supervisor data access */
697 case ASI_P
: /* Implicit primary context data access (v9 only?) */
698 case ASI_M_BYPASS
: /* MMU passthrough */
699 case ASI_LEON_BYPASS
: /* LEON MMU passthrough */
700 /* These are always handled inline. */
701 g_assert_not_reached();
719 dump_asi("read ", last_addr
, asi
, size
, ret
);
724 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, uint64_t val
,
725 int asi
, uint32_t memop
)
727 int size
= 1 << (memop
& MO_SIZE
);
728 SPARCCPU
*cpu
= sparc_env_get_cpu(env
);
729 CPUState
*cs
= CPU(cpu
);
731 do_check_align(env
, addr
, size
- 1, GETPC());
733 case ASI_M_MXCC
: /* SuperSparc MXCC registers, or... */
734 /* case ASI_LEON_CACHEREGS: Leon3 cache control */
736 case 0x00: /* Leon3 Cache Control */
737 case 0x08: /* Leon3 Instruction Cache config */
738 case 0x0C: /* Leon3 Date Cache config */
739 if (env
->def
->features
& CPU_FEATURE_CACHE_CTRL
) {
740 leon3_cache_control_st(env
, addr
, val
, size
);
744 case 0x01c00000: /* MXCC stream data register 0 */
746 env
->mxccdata
[0] = val
;
748 qemu_log_mask(LOG_UNIMP
,
749 "%08x: unimplemented access size: %d\n", addr
,
753 case 0x01c00008: /* MXCC stream data register 1 */
755 env
->mxccdata
[1] = val
;
757 qemu_log_mask(LOG_UNIMP
,
758 "%08x: unimplemented access size: %d\n", addr
,
762 case 0x01c00010: /* MXCC stream data register 2 */
764 env
->mxccdata
[2] = val
;
766 qemu_log_mask(LOG_UNIMP
,
767 "%08x: unimplemented access size: %d\n", addr
,
771 case 0x01c00018: /* MXCC stream data register 3 */
773 env
->mxccdata
[3] = val
;
775 qemu_log_mask(LOG_UNIMP
,
776 "%08x: unimplemented access size: %d\n", addr
,
780 case 0x01c00100: /* MXCC stream source */
782 env
->mxccregs
[0] = val
;
784 qemu_log_mask(LOG_UNIMP
,
785 "%08x: unimplemented access size: %d\n", addr
,
788 env
->mxccdata
[0] = ldq_phys(cs
->as
,
789 (env
->mxccregs
[0] & 0xffffffffULL
) +
791 env
->mxccdata
[1] = ldq_phys(cs
->as
,
792 (env
->mxccregs
[0] & 0xffffffffULL
) +
794 env
->mxccdata
[2] = ldq_phys(cs
->as
,
795 (env
->mxccregs
[0] & 0xffffffffULL
) +
797 env
->mxccdata
[3] = ldq_phys(cs
->as
,
798 (env
->mxccregs
[0] & 0xffffffffULL
) +
801 case 0x01c00200: /* MXCC stream destination */
803 env
->mxccregs
[1] = val
;
805 qemu_log_mask(LOG_UNIMP
,
806 "%08x: unimplemented access size: %d\n", addr
,
809 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 0,
811 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 8,
813 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 16,
815 stq_phys(cs
->as
, (env
->mxccregs
[1] & 0xffffffffULL
) + 24,
818 case 0x01c00a00: /* MXCC control register */
820 env
->mxccregs
[3] = val
;
822 qemu_log_mask(LOG_UNIMP
,
823 "%08x: unimplemented access size: %d\n", addr
,
827 case 0x01c00a04: /* MXCC control register */
829 env
->mxccregs
[3] = (env
->mxccregs
[3] & 0xffffffff00000000ULL
)
832 qemu_log_mask(LOG_UNIMP
,
833 "%08x: unimplemented access size: %d\n", addr
,
837 case 0x01c00e00: /* MXCC error register */
838 /* writing a 1 bit clears the error */
840 env
->mxccregs
[6] &= ~val
;
842 qemu_log_mask(LOG_UNIMP
,
843 "%08x: unimplemented access size: %d\n", addr
,
847 case 0x01c00f00: /* MBus port address register */
849 env
->mxccregs
[7] = val
;
851 qemu_log_mask(LOG_UNIMP
,
852 "%08x: unimplemented access size: %d\n", addr
,
857 qemu_log_mask(LOG_UNIMP
,
858 "%08x: unimplemented address, size: %d\n", addr
,
862 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64
"\n",
863 asi
, size
, addr
, val
);
868 case ASI_M_FLUSH_PROBE
: /* SuperSparc MMU flush */
869 case ASI_LEON_MMUFLUSH
: /* LEON3 MMU flush */
873 mmulev
= (addr
>> 8) & 15;
874 DPRINTF_MMU("mmu flush level %d\n", mmulev
);
876 case 0: /* flush page */
877 tlb_flush_page(CPU(cpu
), addr
& 0xfffff000);
879 case 1: /* flush segment (256k) */
880 case 2: /* flush region (16M) */
881 case 3: /* flush context (4G) */
882 case 4: /* flush entire */
889 dump_mmu(stdout
, fprintf
, env
);
893 case ASI_M_MMUREGS
: /* write MMU regs */
894 case ASI_LEON_MMUREGS
: /* LEON3 write MMU regs */
896 int reg
= (addr
>> 8) & 0x1f;
899 oldreg
= env
->mmuregs
[reg
];
901 case 0: /* Control Register */
902 env
->mmuregs
[reg
] = (env
->mmuregs
[reg
] & 0xff000000) |
904 /* Mappings generated during no-fault mode
905 are invalid in normal mode. */
906 if ((oldreg
^ env
->mmuregs
[reg
])
907 & (MMU_NF
| env
->def
->mmu_bm
)) {
911 case 1: /* Context Table Pointer Register */
912 env
->mmuregs
[reg
] = val
& env
->def
->mmu_ctpr_mask
;
914 case 2: /* Context Register */
915 env
->mmuregs
[reg
] = val
& env
->def
->mmu_cxr_mask
;
916 if (oldreg
!= env
->mmuregs
[reg
]) {
917 /* we flush when the MMU context changes because
918 QEMU has no MMU context support */
922 case 3: /* Synchronous Fault Status Register with Clear */
923 case 4: /* Synchronous Fault Address Register */
925 case 0x10: /* TLB Replacement Control Register */
926 env
->mmuregs
[reg
] = val
& env
->def
->mmu_trcr_mask
;
928 case 0x13: /* Synchronous Fault Status Register with Read
930 env
->mmuregs
[3] = val
& env
->def
->mmu_sfsr_mask
;
932 case 0x14: /* Synchronous Fault Address Register */
933 env
->mmuregs
[4] = val
;
936 env
->mmuregs
[reg
] = val
;
939 if (oldreg
!= env
->mmuregs
[reg
]) {
940 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
941 reg
, oldreg
, env
->mmuregs
[reg
]);
944 dump_mmu(stdout
, fprintf
, env
);
948 case ASI_M_TLBDIAG
: /* Turbosparc ITLB Diagnostic */
949 case ASI_M_DIAGS
: /* Turbosparc DTLB Diagnostic */
950 case ASI_M_IODIAG
: /* Turbosparc IOTLB Diagnostic */
952 case ASI_M_TXTC_TAG
: /* I-cache tag */
953 case ASI_M_TXTC_DATA
: /* I-cache data */
954 case ASI_M_DATAC_TAG
: /* D-cache tag */
955 case ASI_M_DATAC_DATA
: /* D-cache data */
956 case ASI_M_FLUSH_PAGE
: /* I/D-cache flush page */
957 case ASI_M_FLUSH_SEG
: /* I/D-cache flush segment */
958 case ASI_M_FLUSH_REGION
: /* I/D-cache flush region */
959 case ASI_M_FLUSH_CTX
: /* I/D-cache flush context */
960 case ASI_M_FLUSH_USER
: /* I/D-cache flush user */
962 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
966 stb_phys(cs
->as
, (hwaddr
)addr
967 | ((hwaddr
)(asi
& 0xf) << 32), val
);
970 stw_phys(cs
->as
, (hwaddr
)addr
971 | ((hwaddr
)(asi
& 0xf) << 32), val
);
975 stl_phys(cs
->as
, (hwaddr
)addr
976 | ((hwaddr
)(asi
& 0xf) << 32), val
);
979 stq_phys(cs
->as
, (hwaddr
)addr
980 | ((hwaddr
)(asi
& 0xf) << 32), val
);
985 case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
986 case 0x31: /* store buffer data, Ross RT620 I-cache flush or
987 Turbosparc snoop RAM */
988 case 0x32: /* store buffer control or Turbosparc page table
989 descriptor diagnostic */
990 case 0x36: /* I-cache flash clear */
991 case 0x37: /* D-cache flash clear */
993 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
995 int reg
= (addr
>> 8) & 3;
998 case 0: /* Breakpoint Value (Addr) */
999 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1001 case 1: /* Breakpoint Mask */
1002 env
->mmubpregs
[reg
] = (val
& 0xfffffffffULL
);
1004 case 2: /* Breakpoint Control */
1005 env
->mmubpregs
[reg
] = (val
& 0x7fULL
);
1007 case 3: /* Breakpoint Status */
1008 env
->mmubpregs
[reg
] = (val
& 0xfULL
);
1011 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg
,
1015 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1016 env
->mmubpctrv
= val
& 0xffffffff;
1018 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1019 env
->mmubpctrc
= val
& 0x3;
1021 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1022 env
->mmubpctrs
= val
& 0x3;
1024 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1025 env
->mmubpaction
= val
& 0x1fff;
1027 case ASI_USERTXT
: /* User code access, XXX */
1028 case ASI_KERNELTXT
: /* Supervisor code access, XXX */
1030 cpu_unassigned_access(CPU(sparc_env_get_cpu(env
)),
1031 addr
, true, false, asi
, size
);
1034 case ASI_USERDATA
: /* User data access */
1035 case ASI_KERNELDATA
: /* Supervisor data access */
1037 case ASI_M_BYPASS
: /* MMU passthrough */
1038 case ASI_LEON_BYPASS
: /* LEON MMU passthrough */
1039 case ASI_M_BCOPY
: /* Block copy, sta access */
1040 case ASI_M_BFILL
: /* Block fill, stda access */
1041 /* These are always handled inline. */
1042 g_assert_not_reached();
1045 dump_asi("write", addr
, asi
, size
, val
);
1049 #endif /* CONFIG_USER_ONLY */
1050 #else /* TARGET_SPARC64 */
1052 #ifdef CONFIG_USER_ONLY
1053 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
,
1054 int asi
, uint32_t memop
)
1056 int size
= 1 << (memop
& MO_SIZE
);
1057 int sign
= memop
& MO_SIGN
;
1061 cpu_raise_exception_ra(env
, TT_PRIV_ACT
, GETPC());
1063 do_check_align(env
, addr
, size
- 1, GETPC());
1064 addr
= asi_address_mask(env
, asi
, addr
);
1067 case ASI_PNF
: /* Primary no-fault */
1068 case ASI_PNFL
: /* Primary no-fault LE */
1069 case ASI_SNF
: /* Secondary no-fault */
1070 case ASI_SNFL
: /* Secondary no-fault LE */
1071 if (page_check_range(addr
, size
, PAGE_READ
) == -1) {
1077 ret
= cpu_ldub_data(env
, addr
);
1080 ret
= cpu_lduw_data(env
, addr
);
1083 ret
= cpu_ldl_data(env
, addr
);
1086 ret
= cpu_ldq_data(env
, addr
);
1089 g_assert_not_reached();
1094 case ASI_P
: /* Primary */
1095 case ASI_PL
: /* Primary LE */
1096 case ASI_S
: /* Secondary */
1097 case ASI_SL
: /* Secondary LE */
1098 /* These are always handled inline. */
1099 g_assert_not_reached();
1102 cpu_raise_exception_ra(env
, TT_DATA_ACCESS
, GETPC());
1105 /* Convert from little endian */
1107 case ASI_PNFL
: /* Primary no-fault LE */
1108 case ASI_SNFL
: /* Secondary no-fault LE */
1122 /* Convert to signed number */
1129 ret
= (int16_t) ret
;
1132 ret
= (int32_t) ret
;
1137 dump_asi("read", addr
, asi
, size
, ret
);
1142 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, target_ulong val
,
1143 int asi
, uint32_t memop
)
1145 int size
= 1 << (memop
& MO_SIZE
);
1147 dump_asi("write", addr
, asi
, size
, val
);
1150 cpu_raise_exception_ra(env
, TT_PRIV_ACT
, GETPC());
1152 do_check_align(env
, addr
, size
- 1, GETPC());
1155 case ASI_P
: /* Primary */
1156 case ASI_PL
: /* Primary LE */
1157 case ASI_S
: /* Secondary */
1158 case ASI_SL
: /* Secondary LE */
1159 /* These are always handled inline. */
1160 g_assert_not_reached();
1162 case ASI_PNF
: /* Primary no-fault, RO */
1163 case ASI_SNF
: /* Secondary no-fault, RO */
1164 case ASI_PNFL
: /* Primary no-fault LE, RO */
1165 case ASI_SNFL
: /* Secondary no-fault LE, RO */
1167 cpu_raise_exception_ra(env
, TT_DATA_ACCESS
, GETPC());
1171 #else /* CONFIG_USER_ONLY */
1173 uint64_t helper_ld_asi(CPUSPARCState
*env
, target_ulong addr
,
1174 int asi
, uint32_t memop
)
1176 int size
= 1 << (memop
& MO_SIZE
);
1177 int sign
= memop
& MO_SIGN
;
1178 CPUState
*cs
= CPU(sparc_env_get_cpu(env
));
1180 #if defined(DEBUG_ASI)
1181 target_ulong last_addr
= addr
;
1186 do_check_asi(env
, asi
, GETPC());
1187 do_check_align(env
, addr
, size
- 1, GETPC());
1188 addr
= asi_address_mask(env
, asi
, addr
);
1197 int idx
= (env
->pstate
& PS_PRIV
1198 ? (asi
& 1 ? MMU_KERNEL_SECONDARY_IDX
: MMU_KERNEL_IDX
)
1199 : (asi
& 1 ? MMU_USER_SECONDARY_IDX
: MMU_USER_IDX
));
1201 if (cpu_get_phys_page_nofault(env
, addr
, idx
) == -1ULL) {
1203 dump_asi("read ", last_addr
, asi
, size
, ret
);
1205 /* exception_index is set in get_physical_address_data. */
1206 cpu_raise_exception_ra(env
, cs
->exception_index
, GETPC());
1208 oi
= make_memop_idx(memop
, idx
);
1211 ret
= helper_ret_ldub_mmu(env
, addr
, oi
, GETPC());
1215 ret
= helper_le_lduw_mmu(env
, addr
, oi
, GETPC());
1217 ret
= helper_be_lduw_mmu(env
, addr
, oi
, GETPC());
1222 ret
= helper_le_ldul_mmu(env
, addr
, oi
, GETPC());
1224 ret
= helper_be_ldul_mmu(env
, addr
, oi
, GETPC());
1229 ret
= helper_le_ldq_mmu(env
, addr
, oi
, GETPC());
1231 ret
= helper_be_ldq_mmu(env
, addr
, oi
, GETPC());
1235 g_assert_not_reached();
1240 case ASI_AIUP
: /* As if user primary */
1241 case ASI_AIUS
: /* As if user secondary */
1242 case ASI_AIUPL
: /* As if user primary LE */
1243 case ASI_AIUSL
: /* As if user secondary LE */
1244 case ASI_P
: /* Primary */
1245 case ASI_S
: /* Secondary */
1246 case ASI_PL
: /* Primary LE */
1247 case ASI_SL
: /* Secondary LE */
1248 case ASI_REAL
: /* Bypass */
1249 case ASI_REAL_IO
: /* Bypass, non-cacheable */
1250 case ASI_REAL_L
: /* Bypass LE */
1251 case ASI_REAL_IO_L
: /* Bypass, non-cacheable LE */
1252 case ASI_N
: /* Nucleus */
1253 case ASI_NL
: /* Nucleus Little Endian (LE) */
1254 case ASI_NUCLEUS_QUAD_LDD
: /* Nucleus quad LDD 128 bit atomic */
1255 case ASI_NUCLEUS_QUAD_LDD_L
: /* Nucleus quad LDD 128 bit atomic LE */
1256 case ASI_TWINX_AIUP
: /* As if user primary, twinx */
1257 case ASI_TWINX_AIUS
: /* As if user secondary, twinx */
1258 case ASI_TWINX_REAL
: /* Real address, twinx */
1259 case ASI_TWINX_AIUP_L
: /* As if user primary, twinx, LE */
1260 case ASI_TWINX_AIUS_L
: /* As if user secondary, twinx, LE */
1261 case ASI_TWINX_REAL_L
: /* Real address, twinx, LE */
1262 case ASI_TWINX_N
: /* Nucleus, twinx */
1263 case ASI_TWINX_NL
: /* Nucleus, twinx, LE */
1264 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1265 case ASI_TWINX_P
: /* Primary, twinx */
1266 case ASI_TWINX_PL
: /* Primary, twinx, LE */
1267 case ASI_TWINX_S
: /* Secondary, twinx */
1268 case ASI_TWINX_SL
: /* Secondary, twinx, LE */
1269 /* These are always handled inline. */
1270 g_assert_not_reached();
1272 case ASI_UPA_CONFIG
: /* UPA config */
1275 case ASI_LSU_CONTROL
: /* LSU */
1278 case ASI_IMMU
: /* I-MMU regs */
1280 int reg
= (addr
>> 3) & 0xf;
1283 /* 0x00 I-TSB Tag Target register */
1284 ret
= ultrasparc_tag_target(env
->immu
.tag_access
);
1287 ret
= env
->immu
.sfsr
;
1289 case 5: /* TSB access */
1290 ret
= env
->immu
.tsb
;
1293 /* 0x30 I-TSB Tag Access register */
1294 ret
= env
->immu
.tag_access
;
1297 cpu_unassigned_access(cs
, addr
, false, false, 1, size
);
1302 case ASI_IMMU_TSB_8KB_PTR
: /* I-MMU 8k TSB pointer */
1304 /* env->immuregs[5] holds I-MMU TSB register value
1305 env->immuregs[6] holds I-MMU Tag Access register value */
1306 ret
= ultrasparc_tsb_pointer(env
, &env
->immu
, 0);
1309 case ASI_IMMU_TSB_64KB_PTR
: /* I-MMU 64k TSB pointer */
1311 /* env->immuregs[5] holds I-MMU TSB register value
1312 env->immuregs[6] holds I-MMU Tag Access register value */
1313 ret
= ultrasparc_tsb_pointer(env
, &env
->immu
, 1);
1316 case ASI_ITLB_DATA_ACCESS
: /* I-MMU data access */
1318 int reg
= (addr
>> 3) & 0x3f;
1320 ret
= env
->itlb
[reg
].tte
;
1323 case ASI_ITLB_TAG_READ
: /* I-MMU tag read */
1325 int reg
= (addr
>> 3) & 0x3f;
1327 ret
= env
->itlb
[reg
].tag
;
1330 case ASI_DMMU
: /* D-MMU regs */
1332 int reg
= (addr
>> 3) & 0xf;
1335 /* 0x00 D-TSB Tag Target register */
1336 ret
= ultrasparc_tag_target(env
->dmmu
.tag_access
);
1338 case 1: /* 0x08 Primary Context */
1339 ret
= env
->dmmu
.mmu_primary_context
;
1341 case 2: /* 0x10 Secondary Context */
1342 ret
= env
->dmmu
.mmu_secondary_context
;
1345 ret
= env
->dmmu
.sfsr
;
1347 case 4: /* 0x20 SFAR */
1348 ret
= env
->dmmu
.sfar
;
1350 case 5: /* 0x28 TSB access */
1351 ret
= env
->dmmu
.tsb
;
1353 case 6: /* 0x30 D-TSB Tag Access register */
1354 ret
= env
->dmmu
.tag_access
;
1357 ret
= env
->dmmu
.virtual_watchpoint
;
1360 ret
= env
->dmmu
.physical_watchpoint
;
1363 cpu_unassigned_access(cs
, addr
, false, false, 1, size
);
1368 case ASI_DMMU_TSB_8KB_PTR
: /* D-MMU 8k TSB pointer */
1370 /* env->dmmuregs[5] holds D-MMU TSB register value
1371 env->dmmuregs[6] holds D-MMU Tag Access register value */
1372 ret
= ultrasparc_tsb_pointer(env
, &env
->dmmu
, 0);
1375 case ASI_DMMU_TSB_64KB_PTR
: /* D-MMU 64k TSB pointer */
1377 /* env->dmmuregs[5] holds D-MMU TSB register value
1378 env->dmmuregs[6] holds D-MMU Tag Access register value */
1379 ret
= ultrasparc_tsb_pointer(env
, &env
->dmmu
, 1);
1382 case ASI_DTLB_DATA_ACCESS
: /* D-MMU data access */
1384 int reg
= (addr
>> 3) & 0x3f;
1386 ret
= env
->dtlb
[reg
].tte
;
1389 case ASI_DTLB_TAG_READ
: /* D-MMU tag read */
1391 int reg
= (addr
>> 3) & 0x3f;
1393 ret
= env
->dtlb
[reg
].tag
;
1396 case ASI_INTR_DISPATCH_STAT
: /* Interrupt dispatch, RO */
1398 case ASI_INTR_RECEIVE
: /* Interrupt data receive */
1399 ret
= env
->ivec_status
;
1401 case ASI_INTR_R
: /* Incoming interrupt vector, RO */
1403 int reg
= (addr
>> 4) & 0x3;
1405 ret
= env
->ivec_data
[reg
];
1409 case ASI_SCRATCHPAD
: /* UA2005 privileged scratchpad */
1410 if (unlikely((addr
>= 0x20) && (addr
< 0x30))) {
1411 /* Hyperprivileged access only */
1412 cpu_unassigned_access(cs
, addr
, false, false, 1, size
);
1415 case ASI_HYP_SCRATCHPAD
: /* UA2005 hyperprivileged scratchpad */
1417 unsigned int i
= (addr
>> 3) & 0x7;
1418 ret
= env
->scratch
[i
];
1421 case ASI_MMU
: /* UA2005 Context ID registers */
1422 switch ((addr
>> 3) & 0x3) {
1424 ret
= env
->dmmu
.mmu_primary_context
;
1427 ret
= env
->dmmu
.mmu_secondary_context
;
1430 cpu_unassigned_access(cs
, addr
, true, false, 1, size
);
1433 case ASI_DCACHE_DATA
: /* D-cache data */
1434 case ASI_DCACHE_TAG
: /* D-cache tag access */
1435 case ASI_ESTATE_ERROR_EN
: /* E-cache error enable */
1436 case ASI_AFSR
: /* E-cache asynchronous fault status */
1437 case ASI_AFAR
: /* E-cache asynchronous fault address */
1438 case ASI_EC_TAG_DATA
: /* E-cache tag data */
1439 case ASI_IC_INSTR
: /* I-cache instruction access */
1440 case ASI_IC_TAG
: /* I-cache tag access */
1441 case ASI_IC_PRE_DECODE
: /* I-cache predecode */
1442 case ASI_IC_NEXT_FIELD
: /* I-cache LRU etc. */
1443 case ASI_EC_W
: /* E-cache tag */
1444 case ASI_EC_R
: /* E-cache tag */
1446 case ASI_DMMU_TSB_DIRECT_PTR
: /* D-MMU data pointer */
1447 case ASI_ITLB_DATA_IN
: /* I-MMU data in, WO */
1448 case ASI_IMMU_DEMAP
: /* I-MMU demap, WO */
1449 case ASI_DTLB_DATA_IN
: /* D-MMU data in, WO */
1450 case ASI_DMMU_DEMAP
: /* D-MMU demap, WO */
1451 case ASI_INTR_W
: /* Interrupt vector, WO */
1453 cpu_unassigned_access(cs
, addr
, false, false, 1, size
);
1458 /* Convert to signed number */
1465 ret
= (int16_t) ret
;
1468 ret
= (int32_t) ret
;
1475 dump_asi("read ", last_addr
, asi
, size
, ret
);
1480 void helper_st_asi(CPUSPARCState
*env
, target_ulong addr
, target_ulong val
,
1481 int asi
, uint32_t memop
)
1483 int size
= 1 << (memop
& MO_SIZE
);
1484 SPARCCPU
*cpu
= sparc_env_get_cpu(env
);
1485 CPUState
*cs
= CPU(cpu
);
1488 dump_asi("write", addr
, asi
, size
, val
);
1493 do_check_asi(env
, asi
, GETPC());
1494 do_check_align(env
, addr
, size
- 1, GETPC());
1495 addr
= asi_address_mask(env
, asi
, addr
);
1498 case ASI_AIUP
: /* As if user primary */
1499 case ASI_AIUS
: /* As if user secondary */
1500 case ASI_AIUPL
: /* As if user primary LE */
1501 case ASI_AIUSL
: /* As if user secondary LE */
1502 case ASI_P
: /* Primary */
1503 case ASI_S
: /* Secondary */
1504 case ASI_PL
: /* Primary LE */
1505 case ASI_SL
: /* Secondary LE */
1506 case ASI_REAL
: /* Bypass */
1507 case ASI_REAL_IO
: /* Bypass, non-cacheable */
1508 case ASI_REAL_L
: /* Bypass LE */
1509 case ASI_REAL_IO_L
: /* Bypass, non-cacheable LE */
1510 case ASI_N
: /* Nucleus */
1511 case ASI_NL
: /* Nucleus Little Endian (LE) */
1512 case ASI_NUCLEUS_QUAD_LDD
: /* Nucleus quad LDD 128 bit atomic */
1513 case ASI_NUCLEUS_QUAD_LDD_L
: /* Nucleus quad LDD 128 bit atomic LE */
1514 case ASI_TWINX_AIUP
: /* As if user primary, twinx */
1515 case ASI_TWINX_AIUS
: /* As if user secondary, twinx */
1516 case ASI_TWINX_REAL
: /* Real address, twinx */
1517 case ASI_TWINX_AIUP_L
: /* As if user primary, twinx, LE */
1518 case ASI_TWINX_AIUS_L
: /* As if user secondary, twinx, LE */
1519 case ASI_TWINX_REAL_L
: /* Real address, twinx, LE */
1520 case ASI_TWINX_N
: /* Nucleus, twinx */
1521 case ASI_TWINX_NL
: /* Nucleus, twinx, LE */
1522 /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
1523 case ASI_TWINX_P
: /* Primary, twinx */
1524 case ASI_TWINX_PL
: /* Primary, twinx, LE */
1525 case ASI_TWINX_S
: /* Secondary, twinx */
1526 case ASI_TWINX_SL
: /* Secondary, twinx, LE */
1527 /* These are always handled inline. */
1528 g_assert_not_reached();
1529 /* these ASIs have different functions on UltraSPARC-IIIi
1530 * and UA2005 CPUs. Use the explicit numbers to avoid confusion
1536 if (cpu_has_hypervisor(env
)) {
1538 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS0
1539 * ASI_DMMU_CTX_ZERO_TSB_BASE_PS1
1540 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS0
1541 * ASI_DMMU_CTX_NONZERO_TSB_BASE_PS1
1543 int idx
= ((asi
& 2) >> 1) | ((asi
& 8) >> 2);
1544 env
->dmmu
.sun4v_tsb_pointers
[idx
] = val
;
1546 helper_raise_exception(env
, TT_ILL_INSN
);
1551 if (cpu_has_hypervisor(env
)) {
1553 * ASI_DMMU_CTX_ZERO_CONFIG
1554 * ASI_DMMU_CTX_NONZERO_CONFIG
1556 env
->dmmu
.sun4v_ctx_config
[(asi
& 8) >> 3] = val
;
1558 helper_raise_exception(env
, TT_ILL_INSN
);
1565 if (cpu_has_hypervisor(env
)) {
1567 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS0
1568 * ASI_IMMU_CTX_ZERO_TSB_BASE_PS1
1569 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS0
1570 * ASI_IMMU_CTX_NONZERO_TSB_BASE_PS1
1572 int idx
= ((asi
& 2) >> 1) | ((asi
& 8) >> 2);
1573 env
->immu
.sun4v_tsb_pointers
[idx
] = val
;
1575 helper_raise_exception(env
, TT_ILL_INSN
);
1580 if (cpu_has_hypervisor(env
)) {
1582 * ASI_IMMU_CTX_ZERO_CONFIG
1583 * ASI_IMMU_CTX_NONZERO_CONFIG
1585 env
->immu
.sun4v_ctx_config
[(asi
& 8) >> 3] = val
;
1587 helper_raise_exception(env
, TT_ILL_INSN
);
1590 case ASI_UPA_CONFIG
: /* UPA config */
1593 case ASI_LSU_CONTROL
: /* LSU */
1594 env
->lsu
= val
& (DMMU_E
| IMMU_E
);
1596 case ASI_IMMU
: /* I-MMU regs */
1598 int reg
= (addr
>> 3) & 0xf;
1601 oldreg
= env
->immu
.mmuregs
[reg
];
1605 case 1: /* Not in I-MMU */
1609 if ((val
& 1) == 0) {
1610 val
= 0; /* Clear SFSR */
1612 env
->immu
.sfsr
= val
;
1616 case 5: /* TSB access */
1617 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64
" -> 0x%016"
1618 PRIx64
"\n", env
->immu
.tsb
, val
);
1619 env
->immu
.tsb
= val
;
1621 case 6: /* Tag access */
1622 env
->immu
.tag_access
= val
;
1628 cpu_unassigned_access(cs
, addr
, true, false, 1, size
);
1632 if (oldreg
!= env
->immu
.mmuregs
[reg
]) {
1633 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64
" -> 0x%016"
1634 PRIx64
"\n", reg
, oldreg
, env
->immuregs
[reg
]);
1637 dump_mmu(stdout
, fprintf
, env
);
1641 case ASI_ITLB_DATA_IN
: /* I-MMU data in */
1642 /* ignore real translation entries */
1643 if (!(addr
& TLB_UST1_IS_REAL_BIT
)) {
1644 replace_tlb_1bit_lru(env
->itlb
, env
->immu
.tag_access
,
1645 val
, "immu", env
, addr
);
1648 case ASI_ITLB_DATA_ACCESS
: /* I-MMU data access */
1650 /* TODO: auto demap */
1652 unsigned int i
= (addr
>> 3) & 0x3f;
1654 /* ignore real translation entries */
1655 if (!(addr
& TLB_UST1_IS_REAL_BIT
)) {
1656 replace_tlb_entry(&env
->itlb
[i
], env
->immu
.tag_access
,
1657 sun4v_tte_to_sun4u(env
, addr
, val
), env
);
1660 DPRINTF_MMU("immu data access replaced entry [%i]\n", i
);
1661 dump_mmu(stdout
, fprintf
, env
);
1665 case ASI_IMMU_DEMAP
: /* I-MMU demap */
1666 demap_tlb(env
->itlb
, addr
, "immu", env
);
1668 case ASI_DMMU
: /* D-MMU regs */
1670 int reg
= (addr
>> 3) & 0xf;
1673 oldreg
= env
->dmmu
.mmuregs
[reg
];
1679 if ((val
& 1) == 0) {
1680 val
= 0; /* Clear SFSR, Fault address */
1683 env
->dmmu
.sfsr
= val
;
1685 case 1: /* Primary context */
1686 env
->dmmu
.mmu_primary_context
= val
;
1687 /* can be optimized to only flush MMU_USER_IDX
1688 and MMU_KERNEL_IDX entries */
1689 tlb_flush(CPU(cpu
));
1691 case 2: /* Secondary context */
1692 env
->dmmu
.mmu_secondary_context
= val
;
1693 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
1694 and MMU_KERNEL_SECONDARY_IDX entries */
1695 tlb_flush(CPU(cpu
));
1697 case 5: /* TSB access */
1698 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64
" -> 0x%016"
1699 PRIx64
"\n", env
->dmmu
.tsb
, val
);
1700 env
->dmmu
.tsb
= val
;
1702 case 6: /* Tag access */
1703 env
->dmmu
.tag_access
= val
;
1705 case 7: /* Virtual Watchpoint */
1706 env
->dmmu
.virtual_watchpoint
= val
;
1708 case 8: /* Physical Watchpoint */
1709 env
->dmmu
.physical_watchpoint
= val
;
1712 cpu_unassigned_access(cs
, addr
, true, false, 1, size
);
1716 if (oldreg
!= env
->dmmu
.mmuregs
[reg
]) {
1717 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64
" -> 0x%016"
1718 PRIx64
"\n", reg
, oldreg
, env
->dmmuregs
[reg
]);
1721 dump_mmu(stdout
, fprintf
, env
);
1725 case ASI_DTLB_DATA_IN
: /* D-MMU data in */
1726 /* ignore real translation entries */
1727 if (!(addr
& TLB_UST1_IS_REAL_BIT
)) {
1728 replace_tlb_1bit_lru(env
->dtlb
, env
->dmmu
.tag_access
,
1729 val
, "dmmu", env
, addr
);
1732 case ASI_DTLB_DATA_ACCESS
: /* D-MMU data access */
1734 unsigned int i
= (addr
>> 3) & 0x3f;
1736 /* ignore real translation entries */
1737 if (!(addr
& TLB_UST1_IS_REAL_BIT
)) {
1738 replace_tlb_entry(&env
->dtlb
[i
], env
->dmmu
.tag_access
,
1739 sun4v_tte_to_sun4u(env
, addr
, val
), env
);
1742 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i
);
1743 dump_mmu(stdout
, fprintf
, env
);
1747 case ASI_DMMU_DEMAP
: /* D-MMU demap */
1748 demap_tlb(env
->dtlb
, addr
, "dmmu", env
);
1750 case ASI_INTR_RECEIVE
: /* Interrupt data receive */
1751 env
->ivec_status
= val
& 0x20;
1753 case ASI_SCRATCHPAD
: /* UA2005 privileged scratchpad */
1754 if (unlikely((addr
>= 0x20) && (addr
< 0x30))) {
1755 /* Hyperprivileged access only */
1756 cpu_unassigned_access(cs
, addr
, true, false, 1, size
);
1759 case ASI_HYP_SCRATCHPAD
: /* UA2005 hyperprivileged scratchpad */
1761 unsigned int i
= (addr
>> 3) & 0x7;
1762 env
->scratch
[i
] = val
;
1765 case ASI_MMU
: /* UA2005 Context ID registers */
1767 switch ((addr
>> 3) & 0x3) {
1769 env
->dmmu
.mmu_primary_context
= val
;
1770 env
->immu
.mmu_primary_context
= val
;
1771 tlb_flush_by_mmuidx(CPU(cpu
),
1772 (1 << MMU_USER_IDX
) | (1 << MMU_KERNEL_IDX
));
1775 env
->dmmu
.mmu_secondary_context
= val
;
1776 env
->immu
.mmu_secondary_context
= val
;
1777 tlb_flush_by_mmuidx(CPU(cpu
),
1778 (1 << MMU_USER_SECONDARY_IDX
) |
1779 (1 << MMU_KERNEL_SECONDARY_IDX
));
1782 cpu_unassigned_access(cs
, addr
, true, false, 1, size
);
1786 case ASI_QUEUE
: /* UA2005 CPU mondo queue */
1787 case ASI_DCACHE_DATA
: /* D-cache data */
1788 case ASI_DCACHE_TAG
: /* D-cache tag access */
1789 case ASI_ESTATE_ERROR_EN
: /* E-cache error enable */
1790 case ASI_AFSR
: /* E-cache asynchronous fault status */
1791 case ASI_AFAR
: /* E-cache asynchronous fault address */
1792 case ASI_EC_TAG_DATA
: /* E-cache tag data */
1793 case ASI_IC_INSTR
: /* I-cache instruction access */
1794 case ASI_IC_TAG
: /* I-cache tag access */
1795 case ASI_IC_PRE_DECODE
: /* I-cache predecode */
1796 case ASI_IC_NEXT_FIELD
: /* I-cache LRU etc. */
1797 case ASI_EC_W
: /* E-cache tag */
1798 case ASI_EC_R
: /* E-cache tag */
1800 case ASI_IMMU_TSB_8KB_PTR
: /* I-MMU 8k TSB pointer, RO */
1801 case ASI_IMMU_TSB_64KB_PTR
: /* I-MMU 64k TSB pointer, RO */
1802 case ASI_ITLB_TAG_READ
: /* I-MMU tag read, RO */
1803 case ASI_DMMU_TSB_8KB_PTR
: /* D-MMU 8k TSB pointer, RO */
1804 case ASI_DMMU_TSB_64KB_PTR
: /* D-MMU 64k TSB pointer, RO */
1805 case ASI_DMMU_TSB_DIRECT_PTR
: /* D-MMU data pointer, RO */
1806 case ASI_DTLB_TAG_READ
: /* D-MMU tag read, RO */
1807 case ASI_INTR_DISPATCH_STAT
: /* Interrupt dispatch, RO */
1808 case ASI_INTR_R
: /* Incoming interrupt vector, RO */
1809 case ASI_PNF
: /* Primary no-fault, RO */
1810 case ASI_SNF
: /* Secondary no-fault, RO */
1811 case ASI_PNFL
: /* Primary no-fault LE, RO */
1812 case ASI_SNFL
: /* Secondary no-fault LE, RO */
1814 cpu_unassigned_access(cs
, addr
, true, false, 1, size
);
1818 #endif /* CONFIG_USER_ONLY */
1819 #endif /* TARGET_SPARC64 */
1821 #if !defined(CONFIG_USER_ONLY)
1822 #ifndef TARGET_SPARC64
1823 void sparc_cpu_unassigned_access(CPUState
*cs
, hwaddr addr
,
1824 bool is_write
, bool is_exec
, int is_asi
,
1827 SPARCCPU
*cpu
= SPARC_CPU(cs
);
1828 CPUSPARCState
*env
= &cpu
->env
;
1831 #ifdef DEBUG_UNASSIGNED
1833 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1834 " asi 0x%02x from " TARGET_FMT_lx
"\n",
1835 is_exec
? "exec" : is_write
? "write" : "read", size
,
1836 size
== 1 ? "" : "s", addr
, is_asi
, env
->pc
);
1838 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
1839 " from " TARGET_FMT_lx
"\n",
1840 is_exec
? "exec" : is_write
? "write" : "read", size
,
1841 size
== 1 ? "" : "s", addr
, env
->pc
);
1844 /* Don't overwrite translation and access faults */
1845 fault_type
= (env
->mmuregs
[3] & 0x1c) >> 2;
1846 if ((fault_type
> 4) || (fault_type
== 0)) {
1847 env
->mmuregs
[3] = 0; /* Fault status register */
1849 env
->mmuregs
[3] |= 1 << 16;
1852 env
->mmuregs
[3] |= 1 << 5;
1855 env
->mmuregs
[3] |= 1 << 6;
1858 env
->mmuregs
[3] |= 1 << 7;
1860 env
->mmuregs
[3] |= (5 << 2) | 2;
1861 /* SuperSPARC will never place instruction fault addresses in the FAR */
1863 env
->mmuregs
[4] = addr
; /* Fault address register */
1866 /* overflow (same type fault was not read before another fault) */
1867 if (fault_type
== ((env
->mmuregs
[3] & 0x1c)) >> 2) {
1868 env
->mmuregs
[3] |= 1;
1871 if ((env
->mmuregs
[0] & MMU_E
) && !(env
->mmuregs
[0] & MMU_NF
)) {
1872 int tt
= is_exec
? TT_CODE_ACCESS
: TT_DATA_ACCESS
;
1873 cpu_raise_exception_ra(env
, tt
, GETPC());
1876 /* flush neverland mappings created during no-fault mode,
1877 so the sequential MMU faults report proper fault types */
1878 if (env
->mmuregs
[0] & MMU_NF
) {
1883 void sparc_cpu_unassigned_access(CPUState
*cs
, hwaddr addr
,
1884 bool is_write
, bool is_exec
, int is_asi
,
1887 SPARCCPU
*cpu
= SPARC_CPU(cs
);
1888 CPUSPARCState
*env
= &cpu
->env
;
1890 #ifdef DEBUG_UNASSIGNED
1891 printf("Unassigned mem access to " TARGET_FMT_plx
" from " TARGET_FMT_lx
1892 "\n", addr
, env
->pc
);
1895 if (is_exec
) { /* XXX has_hypervisor */
1896 if (env
->lsu
& (IMMU_E
)) {
1897 cpu_raise_exception_ra(env
, TT_CODE_ACCESS
, GETPC());
1898 } else if (cpu_has_hypervisor(env
) && !(env
->hpstate
& HS_PRIV
)) {
1899 cpu_raise_exception_ra(env
, TT_INSN_REAL_TRANSLATION_MISS
, GETPC());
1902 if (env
->lsu
& (DMMU_E
)) {
1903 cpu_raise_exception_ra(env
, TT_DATA_ACCESS
, GETPC());
1904 } else if (cpu_has_hypervisor(env
) && !(env
->hpstate
& HS_PRIV
)) {
1905 cpu_raise_exception_ra(env
, TT_DATA_REAL_TRANSLATION_MISS
, GETPC());
1912 #if !defined(CONFIG_USER_ONLY)
1913 void QEMU_NORETURN
sparc_cpu_do_unaligned_access(CPUState
*cs
, vaddr addr
,
1914 MMUAccessType access_type
,
1918 SPARCCPU
*cpu
= SPARC_CPU(cs
);
1919 CPUSPARCState
*env
= &cpu
->env
;
1921 #ifdef DEBUG_UNALIGNED
1922 printf("Unaligned access to 0x" TARGET_FMT_lx
" from 0x" TARGET_FMT_lx
1923 "\n", addr
, env
->pc
);
1925 cpu_raise_exception_ra(env
, TT_UNALIGNED
, retaddr
);
1928 /* try to fill the TLB and return an exception if error. If retaddr is
1929 NULL, it means that the function was called in C code (i.e. not
1930 from generated code or from helper.c) */
1931 /* XXX: fix it to restore all registers */
1932 void tlb_fill(CPUState
*cs
, target_ulong addr
, MMUAccessType access_type
,
1933 int mmu_idx
, uintptr_t retaddr
)
1937 ret
= sparc_cpu_handle_mmu_fault(cs
, addr
, access_type
, mmu_idx
);
1939 cpu_loop_exit_restore(cs
, retaddr
);