2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 #include "exec/helper-proto.h"
30 #include "qemu/host-utils.h"
31 #include "exec/cpu_ldst.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/timer.h"
35 void xtensa_cpu_do_unaligned_access(CPUState
*cs
,
36 vaddr addr
, int is_write
, int is_user
, uintptr_t retaddr
)
38 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
39 CPUXtensaState
*env
= &cpu
->env
;
41 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
42 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
43 cpu_restore_state(CPU(cpu
), retaddr
);
44 HELPER(exception_cause_vaddr
)(env
,
45 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
49 void tlb_fill(CPUState
*cs
,
50 target_ulong vaddr
, int is_write
, int mmu_idx
, uintptr_t retaddr
)
52 XtensaCPU
*cpu
= XTENSA_CPU(cs
);
53 CPUXtensaState
*env
= &cpu
->env
;
57 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, is_write
, mmu_idx
,
58 &paddr
, &page_size
, &access
);
60 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__
,
61 vaddr
, is_write
, mmu_idx
, paddr
, ret
);
65 vaddr
& TARGET_PAGE_MASK
,
66 paddr
& TARGET_PAGE_MASK
,
67 access
, mmu_idx
, page_size
);
69 cpu_restore_state(cs
, retaddr
);
70 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
74 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
79 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
80 &paddr
, &page_size
, &access
);
82 tb_invalidate_phys_addr(&address_space_memory
, paddr
);
86 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
88 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
90 cs
->exception_index
= excp
;
91 if (excp
== EXCP_DEBUG
) {
92 env
->exception_taken
= 0;
97 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
102 if (env
->sregs
[PS
] & PS_EXCM
) {
103 if (env
->config
->ndepc
) {
104 env
->sregs
[DEPC
] = pc
;
106 env
->sregs
[EPC1
] = pc
;
110 env
->sregs
[EPC1
] = pc
;
111 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
114 env
->sregs
[EXCCAUSE
] = cause
;
115 env
->sregs
[PS
] |= PS_EXCM
;
117 HELPER(exception
)(env
, vector
);
120 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
121 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
123 env
->sregs
[EXCVADDR
] = vaddr
;
124 HELPER(exception_cause
)(env
, pc
, cause
);
127 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
129 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
130 HELPER(debug_exception
)(env
, env
->pc
, cause
);
134 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
136 unsigned level
= env
->config
->debug_level
;
139 env
->sregs
[DEBUGCAUSE
] = cause
;
140 env
->sregs
[EPC1
+ level
- 1] = pc
;
141 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
142 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
143 (level
<< PS_INTLEVEL_SHIFT
);
144 HELPER(exception
)(env
, EXC_DEBUG
);
147 uint32_t HELPER(nsa
)(uint32_t v
)
149 if (v
& 0x80000000) {
152 return v
? clz32(v
) - 1 : 31;
155 uint32_t HELPER(nsau
)(uint32_t v
)
157 return v
? clz32(v
) : 32;
160 static void copy_window_from_phys(CPUXtensaState
*env
,
161 uint32_t window
, uint32_t phys
, uint32_t n
)
163 assert(phys
< env
->config
->nareg
);
164 if (phys
+ n
<= env
->config
->nareg
) {
165 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
166 n
* sizeof(uint32_t));
168 uint32_t n1
= env
->config
->nareg
- phys
;
169 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
170 n1
* sizeof(uint32_t));
171 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
172 (n
- n1
) * sizeof(uint32_t));
176 static void copy_phys_from_window(CPUXtensaState
*env
,
177 uint32_t phys
, uint32_t window
, uint32_t n
)
179 assert(phys
< env
->config
->nareg
);
180 if (phys
+ n
<= env
->config
->nareg
) {
181 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
182 n
* sizeof(uint32_t));
184 uint32_t n1
= env
->config
->nareg
- phys
;
185 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
186 n1
* sizeof(uint32_t));
187 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
188 (n
- n1
) * sizeof(uint32_t));
193 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
195 return a
& (env
->config
->nareg
/ 4 - 1);
198 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
200 return 1 << windowbase_bound(a
, env
);
203 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
205 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
208 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
210 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
213 static void rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
215 xtensa_sync_phys_from_window(env
);
216 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
217 xtensa_sync_window_from_phys(env
);
220 static void rotate_window(CPUXtensaState
*env
, uint32_t delta
)
222 rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
225 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
227 rotate_window_abs(env
, v
);
230 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
232 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
233 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
234 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
236 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
238 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
239 rotate_window(env
, callinc
);
240 env
->sregs
[WINDOW_START
] |=
241 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
245 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
247 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
248 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
251 if ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) {
259 if (windowstart
& windowstart_bit(windowbase
+ n
, env
)) {
264 m
= windowbase_bound(windowbase
+ n
, env
);
265 rotate_window(env
, n
);
266 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
267 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
268 env
->sregs
[EPC1
] = env
->pc
= pc
;
270 if (windowstart
& windowstart_bit(m
+ 1, env
)) {
271 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
272 } else if (windowstart
& windowstart_bit(m
+ 2, env
)) {
273 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
275 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
279 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
281 int n
= (env
->regs
[0] >> 30) & 0x3;
283 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
284 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
287 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
289 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
291 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
295 if (n
== 0 || (m
!= 0 && m
!= n
) ||
296 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
297 qemu_log("Illegal retw instruction(pc = %08x), "
298 "PS = %08x, m = %d, n = %d\n",
299 pc
, env
->sregs
[PS
], m
, n
);
300 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
302 int owb
= windowbase
;
304 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
306 rotate_window(env
, -n
);
307 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
308 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
310 /* window underflow */
311 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
312 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
313 env
->sregs
[EPC1
] = env
->pc
= pc
;
316 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
318 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
320 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
327 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
329 rotate_window(env
, imm4
);
332 void HELPER(restore_owb
)(CPUXtensaState
*env
)
334 rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
337 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
339 if ((env
->sregs
[WINDOW_START
] &
340 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
341 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
342 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
343 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
347 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
349 if (env
->sregs
[LBEG
] != v
) {
350 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
351 env
->sregs
[LBEG
] = v
;
355 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
357 if (env
->sregs
[LEND
] != v
) {
358 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
359 env
->sregs
[LEND
] = v
;
360 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
364 void HELPER(dump_state
)(CPUXtensaState
*env
)
366 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
368 cpu_dump_state(CPU(cpu
), stderr
, fprintf
, 0);
371 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
376 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
377 (intlevel
<< PS_INTLEVEL_SHIFT
);
378 check_interrupts(env
);
379 if (env
->pending_irq_level
) {
380 cpu_loop_exit(CPU(xtensa_env_get_cpu(env
)));
384 cpu
= CPU(xtensa_env_get_cpu(env
));
385 env
->halt_clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
387 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
388 xtensa_rearm_ccompare_timer(env
);
390 HELPER(exception
)(env
, EXCP_HLT
);
393 void HELPER(timer_irq
)(CPUXtensaState
*env
, uint32_t id
, uint32_t active
)
395 xtensa_timer_irq(env
, id
, active
);
398 void HELPER(advance_ccount
)(CPUXtensaState
*env
, uint32_t d
)
400 xtensa_advance_ccount(env
, d
);
403 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
405 check_interrupts(env
);
408 void HELPER(itlb_hit_test
)(CPUXtensaState
*env
, uint32_t vaddr
)
410 get_page_addr_code(env
, vaddr
);
414 * Check vaddr accessibility/cache attributes and raise an exception if
415 * specified by the ATOMCTL SR.
417 * Note: local memory exclusion is not implemented
419 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
421 uint32_t paddr
, page_size
, access
;
422 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
423 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
424 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
427 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
428 * see opcode description in the ISA
431 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
432 rc
= STORE_PROHIBITED_CAUSE
;
436 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
440 * When data cache is not configured use ATOMCTL bypass field.
441 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
442 * under the Conditional Store Option.
444 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
445 access
= PAGE_CACHE_BYPASS
;
448 switch (access
& PAGE_CACHE_MASK
) {
455 case PAGE_CACHE_BYPASS
:
456 if ((atomctl
& 0x3) == 0) {
457 HELPER(exception_cause_vaddr
)(env
, pc
,
458 LOAD_STORE_ERROR_CAUSE
, vaddr
);
462 case PAGE_CACHE_ISOLATE
:
463 HELPER(exception_cause_vaddr
)(env
, pc
,
464 LOAD_STORE_ERROR_CAUSE
, vaddr
);
472 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
474 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
476 v
= (v
& 0xffffff00) | 0x1;
477 if (v
!= env
->sregs
[RASID
]) {
478 env
->sregs
[RASID
] = v
;
479 tlb_flush(CPU(cpu
), 1);
483 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
485 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
489 return (tlbcfg
>> 16) & 0x3;
492 return (tlbcfg
>> 20) & 0x1;
495 return (tlbcfg
>> 24) & 0x1;
503 * Get bit mask for the virtual address bits translated by the TLB way
505 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
507 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
508 bool varway56
= dtlb
?
509 env
->config
->dtlb
.varway56
:
510 env
->config
->itlb
.varway56
;
514 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
518 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
525 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
534 return REGION_PAGE_MASK
;
539 * Get bit mask for the 'VPN without index' field.
540 * See ISA, 4.6.5.6, data format for RxTLB0
542 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
546 env
->config
->dtlb
.nrefillentries
:
547 env
->config
->itlb
.nrefillentries
) == 32;
548 return is32
? 0xffff8000 : 0xffffc000;
549 } else if (way
== 4) {
550 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
551 } else if (way
<= 6) {
552 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
553 bool varway56
= dtlb
?
554 env
->config
->dtlb
.varway56
:
555 env
->config
->itlb
.varway56
;
558 return mask
<< (way
== 5 ? 2 : 3);
568 * Split virtual address into VPN (with index) and entry index
569 * for the given TLB way
571 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
572 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
574 bool varway56
= dtlb
?
575 env
->config
->dtlb
.varway56
:
576 env
->config
->itlb
.varway56
;
584 env
->config
->dtlb
.nrefillentries
:
585 env
->config
->itlb
.nrefillentries
) == 32;
586 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
591 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
592 *ei
= (v
>> eibase
) & 0x3;
598 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
599 *ei
= (v
>> eibase
) & 0x3;
601 *ei
= (v
>> 27) & 0x1;
607 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
608 *ei
= (v
>> eibase
) & 0x7;
610 *ei
= (v
>> 28) & 0x1;
619 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
623 * Split TLB address into TLB way, entry index and VPN (with index).
624 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
626 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
627 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
629 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
630 *wi
= v
& (dtlb
? 0xf : 0x7);
631 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
633 *vpn
= v
& REGION_PAGE_MASK
;
635 *ei
= (v
>> 29) & 0x7;
639 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
640 uint32_t v
, bool dtlb
, uint32_t *pwi
)
646 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
650 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
653 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
655 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
657 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
658 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
660 return v
& REGION_PAGE_MASK
;
664 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
666 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
667 return entry
->paddr
| entry
->attr
;
670 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
672 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
674 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
675 if (entry
->variable
&& entry
->asid
) {
676 tlb_flush_page(CPU(xtensa_env_get_cpu(env
)), entry
->vaddr
);
682 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
684 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
688 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
692 if (ring
>= xtensa_get_ring(env
)) {
693 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
697 case INST_TLB_MULTI_HIT_CAUSE
:
698 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
699 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
704 return (v
& REGION_PAGE_MASK
) | 0x1;
708 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
709 xtensa_tlb_entry
*entry
, bool dtlb
,
710 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
713 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
714 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
715 entry
->attr
= pte
& 0xf;
718 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
719 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
721 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
722 CPUState
*cs
= CPU(cpu
);
723 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
725 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
726 if (entry
->variable
) {
728 tlb_flush_page(cs
, entry
->vaddr
);
730 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
731 tlb_flush_page(cs
, entry
->vaddr
);
733 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
734 __func__
, dtlb
, wi
, ei
);
737 tlb_flush_page(cs
, entry
->vaddr
);
738 if (xtensa_option_enabled(env
->config
,
739 XTENSA_OPTION_REGION_TRANSLATION
)) {
740 entry
->paddr
= pte
& REGION_PAGE_MASK
;
742 entry
->attr
= pte
& 0xf;
746 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
751 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
752 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
756 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
758 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
761 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
762 if (change
& (1 << i
)) {
763 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
766 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
769 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
771 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
772 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
773 tb_invalidate_virtual_addr(env
, v
);
775 env
->sregs
[IBREAKA
+ i
] = v
;
778 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
781 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
782 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
783 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
785 if (env
->cpu_watchpoint
[i
]) {
786 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
788 if (dbreakc
& DBREAKC_SB
) {
789 flags
|= BP_MEM_WRITE
;
791 if (dbreakc
& DBREAKC_LB
) {
792 flags
|= BP_MEM_READ
;
794 /* contiguous mask after inversion is one less than some power of 2 */
795 if ((~mask
+ 1) & ~mask
) {
796 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
797 /* cut mask after the first zero bit */
798 mask
= 0xffffffff << (32 - clo32(mask
));
800 if (cpu_watchpoint_insert(cs
, dbreaka
& mask
, ~mask
+ 1,
801 flags
, &env
->cpu_watchpoint
[i
])) {
802 env
->cpu_watchpoint
[i
] = NULL
;
803 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
804 dbreaka
& mask
, ~mask
+ 1);
808 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
810 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
812 if ((dbreakc
& DBREAKC_SB_LB
) &&
813 env
->sregs
[DBREAKA
+ i
] != v
) {
814 set_dbreak(env
, i
, v
, dbreakc
);
816 env
->sregs
[DBREAKA
+ i
] = v
;
819 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
821 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
822 if (v
& DBREAKC_SB_LB
) {
823 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
825 if (env
->cpu_watchpoint
[i
]) {
826 CPUState
*cs
= CPU(xtensa_env_get_cpu(env
));
828 cpu_watchpoint_remove_by_ref(cs
, env
->cpu_watchpoint
[i
]);
829 env
->cpu_watchpoint
[i
] = NULL
;
833 env
->sregs
[DBREAKC
+ i
] = v
;
836 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
838 static const int rounding_mode
[] = {
839 float_round_nearest_even
,
845 env
->uregs
[FCR
] = v
& 0xfffff07f;
846 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
849 float32
HELPER(abs_s
)(float32 v
)
851 return float32_abs(v
);
854 float32
HELPER(neg_s
)(float32 v
)
856 return float32_chs(v
);
859 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
861 return float32_add(a
, b
, &env
->fp_status
);
864 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
866 return float32_sub(a
, b
, &env
->fp_status
);
869 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
871 return float32_mul(a
, b
, &env
->fp_status
);
874 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
876 return float32_muladd(b
, c
, a
, 0,
880 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
882 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
886 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
888 float_status fp_status
= {0};
890 set_float_rounding_mode(rounding_mode
, &fp_status
);
891 return float32_to_int32(
892 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
895 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
897 float_status fp_status
= {0};
900 set_float_rounding_mode(rounding_mode
, &fp_status
);
902 res
= float32_scalbn(v
, scale
, &fp_status
);
904 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
905 return float32_to_int32(res
, &fp_status
);
907 return float32_to_uint32(res
, &fp_status
);
911 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
913 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
914 (int32_t)scale
, &env
->fp_status
);
917 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
919 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
920 (int32_t)scale
, &env
->fp_status
);
923 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
926 env
->sregs
[BR
] |= br
;
928 env
->sregs
[BR
] &= ~br
;
932 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
934 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
937 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
939 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
942 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
944 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
945 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
948 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
950 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
953 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
955 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
956 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
959 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
961 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
964 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
966 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
967 set_br(env
, v
!= float_relation_greater
, br
);