cpu: Replace cpu_single_env with CPUState current_cpu
[qemu.git] / gdbstub.c
blob9ae657620e5e9e8b850cf2db65aa7bf62c949180
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #include "qemu-common.h"
21 #ifdef CONFIG_USER_ONLY
22 #include <stdlib.h>
23 #include <stdio.h>
24 #include <stdarg.h>
25 #include <string.h>
26 #include <errno.h>
27 #include <unistd.h>
28 #include <fcntl.h>
30 #include "qemu.h"
31 #else
32 #include "monitor/monitor.h"
33 #include "sysemu/char.h"
34 #include "sysemu/sysemu.h"
35 #include "exec/gdbstub.h"
36 #endif
38 #define MAX_PACKET_LENGTH 4096
40 #include "cpu.h"
41 #include "qemu/sockets.h"
42 #include "sysemu/kvm.h"
43 #include "qemu/bitops.h"
45 #ifndef TARGET_CPU_MEMORY_RW_DEBUG
46 static inline int target_memory_rw_debug(CPUArchState *env, target_ulong addr,
47 uint8_t *buf, int len, int is_write)
49 return cpu_memory_rw_debug(env, addr, buf, len, is_write);
51 #else
52 /* target_memory_rw_debug() defined in cpu.h */
53 #endif
55 enum {
56 GDB_SIGNAL_0 = 0,
57 GDB_SIGNAL_INT = 2,
58 GDB_SIGNAL_QUIT = 3,
59 GDB_SIGNAL_TRAP = 5,
60 GDB_SIGNAL_ABRT = 6,
61 GDB_SIGNAL_ALRM = 14,
62 GDB_SIGNAL_IO = 23,
63 GDB_SIGNAL_XCPU = 24,
64 GDB_SIGNAL_UNKNOWN = 143
67 #ifdef CONFIG_USER_ONLY
69 /* Map target signal numbers to GDB protocol signal numbers and vice
70 * versa. For user emulation's currently supported systems, we can
71 * assume most signals are defined.
74 static int gdb_signal_table[] = {
76 TARGET_SIGHUP,
77 TARGET_SIGINT,
78 TARGET_SIGQUIT,
79 TARGET_SIGILL,
80 TARGET_SIGTRAP,
81 TARGET_SIGABRT,
82 -1, /* SIGEMT */
83 TARGET_SIGFPE,
84 TARGET_SIGKILL,
85 TARGET_SIGBUS,
86 TARGET_SIGSEGV,
87 TARGET_SIGSYS,
88 TARGET_SIGPIPE,
89 TARGET_SIGALRM,
90 TARGET_SIGTERM,
91 TARGET_SIGURG,
92 TARGET_SIGSTOP,
93 TARGET_SIGTSTP,
94 TARGET_SIGCONT,
95 TARGET_SIGCHLD,
96 TARGET_SIGTTIN,
97 TARGET_SIGTTOU,
98 TARGET_SIGIO,
99 TARGET_SIGXCPU,
100 TARGET_SIGXFSZ,
101 TARGET_SIGVTALRM,
102 TARGET_SIGPROF,
103 TARGET_SIGWINCH,
104 -1, /* SIGLOST */
105 TARGET_SIGUSR1,
106 TARGET_SIGUSR2,
107 #ifdef TARGET_SIGPWR
108 TARGET_SIGPWR,
109 #else
111 #endif
112 -1, /* SIGPOLL */
124 #ifdef __SIGRTMIN
125 __SIGRTMIN + 1,
126 __SIGRTMIN + 2,
127 __SIGRTMIN + 3,
128 __SIGRTMIN + 4,
129 __SIGRTMIN + 5,
130 __SIGRTMIN + 6,
131 __SIGRTMIN + 7,
132 __SIGRTMIN + 8,
133 __SIGRTMIN + 9,
134 __SIGRTMIN + 10,
135 __SIGRTMIN + 11,
136 __SIGRTMIN + 12,
137 __SIGRTMIN + 13,
138 __SIGRTMIN + 14,
139 __SIGRTMIN + 15,
140 __SIGRTMIN + 16,
141 __SIGRTMIN + 17,
142 __SIGRTMIN + 18,
143 __SIGRTMIN + 19,
144 __SIGRTMIN + 20,
145 __SIGRTMIN + 21,
146 __SIGRTMIN + 22,
147 __SIGRTMIN + 23,
148 __SIGRTMIN + 24,
149 __SIGRTMIN + 25,
150 __SIGRTMIN + 26,
151 __SIGRTMIN + 27,
152 __SIGRTMIN + 28,
153 __SIGRTMIN + 29,
154 __SIGRTMIN + 30,
155 __SIGRTMIN + 31,
156 -1, /* SIGCANCEL */
157 __SIGRTMIN,
158 __SIGRTMIN + 32,
159 __SIGRTMIN + 33,
160 __SIGRTMIN + 34,
161 __SIGRTMIN + 35,
162 __SIGRTMIN + 36,
163 __SIGRTMIN + 37,
164 __SIGRTMIN + 38,
165 __SIGRTMIN + 39,
166 __SIGRTMIN + 40,
167 __SIGRTMIN + 41,
168 __SIGRTMIN + 42,
169 __SIGRTMIN + 43,
170 __SIGRTMIN + 44,
171 __SIGRTMIN + 45,
172 __SIGRTMIN + 46,
173 __SIGRTMIN + 47,
174 __SIGRTMIN + 48,
175 __SIGRTMIN + 49,
176 __SIGRTMIN + 50,
177 __SIGRTMIN + 51,
178 __SIGRTMIN + 52,
179 __SIGRTMIN + 53,
180 __SIGRTMIN + 54,
181 __SIGRTMIN + 55,
182 __SIGRTMIN + 56,
183 __SIGRTMIN + 57,
184 __SIGRTMIN + 58,
185 __SIGRTMIN + 59,
186 __SIGRTMIN + 60,
187 __SIGRTMIN + 61,
188 __SIGRTMIN + 62,
189 __SIGRTMIN + 63,
190 __SIGRTMIN + 64,
191 __SIGRTMIN + 65,
192 __SIGRTMIN + 66,
193 __SIGRTMIN + 67,
194 __SIGRTMIN + 68,
195 __SIGRTMIN + 69,
196 __SIGRTMIN + 70,
197 __SIGRTMIN + 71,
198 __SIGRTMIN + 72,
199 __SIGRTMIN + 73,
200 __SIGRTMIN + 74,
201 __SIGRTMIN + 75,
202 __SIGRTMIN + 76,
203 __SIGRTMIN + 77,
204 __SIGRTMIN + 78,
205 __SIGRTMIN + 79,
206 __SIGRTMIN + 80,
207 __SIGRTMIN + 81,
208 __SIGRTMIN + 82,
209 __SIGRTMIN + 83,
210 __SIGRTMIN + 84,
211 __SIGRTMIN + 85,
212 __SIGRTMIN + 86,
213 __SIGRTMIN + 87,
214 __SIGRTMIN + 88,
215 __SIGRTMIN + 89,
216 __SIGRTMIN + 90,
217 __SIGRTMIN + 91,
218 __SIGRTMIN + 92,
219 __SIGRTMIN + 93,
220 __SIGRTMIN + 94,
221 __SIGRTMIN + 95,
222 -1, /* SIGINFO */
223 -1, /* UNKNOWN */
224 -1, /* DEFAULT */
231 #endif
233 #else
234 /* In system mode we only need SIGINT and SIGTRAP; other signals
235 are not yet supported. */
237 enum {
238 TARGET_SIGINT = 2,
239 TARGET_SIGTRAP = 5
242 static int gdb_signal_table[] = {
245 TARGET_SIGINT,
248 TARGET_SIGTRAP
250 #endif
252 #ifdef CONFIG_USER_ONLY
253 static int target_signal_to_gdb (int sig)
255 int i;
256 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
257 if (gdb_signal_table[i] == sig)
258 return i;
259 return GDB_SIGNAL_UNKNOWN;
261 #endif
263 static int gdb_signal_to_target (int sig)
265 if (sig < ARRAY_SIZE (gdb_signal_table))
266 return gdb_signal_table[sig];
267 else
268 return -1;
271 //#define DEBUG_GDB
273 typedef struct GDBRegisterState {
274 int base_reg;
275 int num_regs;
276 gdb_reg_cb get_reg;
277 gdb_reg_cb set_reg;
278 const char *xml;
279 struct GDBRegisterState *next;
280 } GDBRegisterState;
282 enum RSState {
283 RS_INACTIVE,
284 RS_IDLE,
285 RS_GETLINE,
286 RS_CHKSUM1,
287 RS_CHKSUM2,
289 typedef struct GDBState {
290 CPUArchState *c_cpu; /* current CPU for step/continue ops */
291 CPUArchState *g_cpu; /* current CPU for other ops */
292 CPUArchState *query_cpu; /* for q{f|s}ThreadInfo */
293 enum RSState state; /* parsing state */
294 char line_buf[MAX_PACKET_LENGTH];
295 int line_buf_index;
296 int line_csum;
297 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
298 int last_packet_len;
299 int signal;
300 #ifdef CONFIG_USER_ONLY
301 int fd;
302 int running_state;
303 #else
304 CharDriverState *chr;
305 CharDriverState *mon_chr;
306 #endif
307 char syscall_buf[256];
308 gdb_syscall_complete_cb current_syscall_cb;
309 } GDBState;
311 /* By default use no IRQs and no timers while single stepping so as to
312 * make single stepping like an ICE HW step.
314 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
316 static GDBState *gdbserver_state;
318 /* This is an ugly hack to cope with both new and old gdb.
319 If gdb sends qXfer:features:read then assume we're talking to a newish
320 gdb that understands target descriptions. */
321 static int gdb_has_xml;
323 #ifdef CONFIG_USER_ONLY
324 /* XXX: This is not thread safe. Do we care? */
325 static int gdbserver_fd = -1;
327 static int get_char(GDBState *s)
329 uint8_t ch;
330 int ret;
332 for(;;) {
333 ret = qemu_recv(s->fd, &ch, 1, 0);
334 if (ret < 0) {
335 if (errno == ECONNRESET)
336 s->fd = -1;
337 if (errno != EINTR && errno != EAGAIN)
338 return -1;
339 } else if (ret == 0) {
340 close(s->fd);
341 s->fd = -1;
342 return -1;
343 } else {
344 break;
347 return ch;
349 #endif
351 static enum {
352 GDB_SYS_UNKNOWN,
353 GDB_SYS_ENABLED,
354 GDB_SYS_DISABLED,
355 } gdb_syscall_mode;
357 /* If gdb is connected when the first semihosting syscall occurs then use
358 remote gdb syscalls. Otherwise use native file IO. */
359 int use_gdb_syscalls(void)
361 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
362 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
363 : GDB_SYS_DISABLED);
365 return gdb_syscall_mode == GDB_SYS_ENABLED;
368 /* Resume execution. */
369 static inline void gdb_continue(GDBState *s)
371 #ifdef CONFIG_USER_ONLY
372 s->running_state = 1;
373 #else
374 if (runstate_check(RUN_STATE_GUEST_PANICKED)) {
375 runstate_set(RUN_STATE_DEBUG);
377 if (!runstate_needs_reset()) {
378 vm_start();
380 #endif
383 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
385 #ifdef CONFIG_USER_ONLY
386 int ret;
388 while (len > 0) {
389 ret = send(s->fd, buf, len, 0);
390 if (ret < 0) {
391 if (errno != EINTR && errno != EAGAIN)
392 return;
393 } else {
394 buf += ret;
395 len -= ret;
398 #else
399 qemu_chr_fe_write(s->chr, buf, len);
400 #endif
403 static inline int fromhex(int v)
405 if (v >= '0' && v <= '9')
406 return v - '0';
407 else if (v >= 'A' && v <= 'F')
408 return v - 'A' + 10;
409 else if (v >= 'a' && v <= 'f')
410 return v - 'a' + 10;
411 else
412 return 0;
415 static inline int tohex(int v)
417 if (v < 10)
418 return v + '0';
419 else
420 return v - 10 + 'a';
423 static void memtohex(char *buf, const uint8_t *mem, int len)
425 int i, c;
426 char *q;
427 q = buf;
428 for(i = 0; i < len; i++) {
429 c = mem[i];
430 *q++ = tohex(c >> 4);
431 *q++ = tohex(c & 0xf);
433 *q = '\0';
436 static void hextomem(uint8_t *mem, const char *buf, int len)
438 int i;
440 for(i = 0; i < len; i++) {
441 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
442 buf += 2;
446 /* return -1 if error, 0 if OK */
447 static int put_packet_binary(GDBState *s, const char *buf, int len)
449 int csum, i;
450 uint8_t *p;
452 for(;;) {
453 p = s->last_packet;
454 *(p++) = '$';
455 memcpy(p, buf, len);
456 p += len;
457 csum = 0;
458 for(i = 0; i < len; i++) {
459 csum += buf[i];
461 *(p++) = '#';
462 *(p++) = tohex((csum >> 4) & 0xf);
463 *(p++) = tohex((csum) & 0xf);
465 s->last_packet_len = p - s->last_packet;
466 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
468 #ifdef CONFIG_USER_ONLY
469 i = get_char(s);
470 if (i < 0)
471 return -1;
472 if (i == '+')
473 break;
474 #else
475 break;
476 #endif
478 return 0;
481 /* return -1 if error, 0 if OK */
482 static int put_packet(GDBState *s, const char *buf)
484 #ifdef DEBUG_GDB
485 printf("reply='%s'\n", buf);
486 #endif
488 return put_packet_binary(s, buf, strlen(buf));
491 /* The GDB remote protocol transfers values in target byte order. This means
492 we can use the raw memory access routines to access the value buffer.
493 Conveniently, these also handle the case where the buffer is mis-aligned.
495 #define GET_REG8(val) do { \
496 stb_p(mem_buf, val); \
497 return 1; \
498 } while(0)
499 #define GET_REG16(val) do { \
500 stw_p(mem_buf, val); \
501 return 2; \
502 } while(0)
503 #define GET_REG32(val) do { \
504 stl_p(mem_buf, val); \
505 return 4; \
506 } while(0)
507 #define GET_REG64(val) do { \
508 stq_p(mem_buf, val); \
509 return 8; \
510 } while(0)
512 #if TARGET_LONG_BITS == 64
513 #define GET_REGL(val) GET_REG64(val)
514 #define ldtul_p(addr) ldq_p(addr)
515 #else
516 #define GET_REGL(val) GET_REG32(val)
517 #define ldtul_p(addr) ldl_p(addr)
518 #endif
520 #if defined(TARGET_I386)
522 #ifdef TARGET_X86_64
523 static const int gpr_map[16] = {
524 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
525 8, 9, 10, 11, 12, 13, 14, 15
527 #else
528 #define gpr_map gpr_map32
529 #endif
530 static const int gpr_map32[8] = { 0, 1, 2, 3, 4, 5, 6, 7 };
532 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
534 #define IDX_IP_REG CPU_NB_REGS
535 #define IDX_FLAGS_REG (IDX_IP_REG + 1)
536 #define IDX_SEG_REGS (IDX_FLAGS_REG + 1)
537 #define IDX_FP_REGS (IDX_SEG_REGS + 6)
538 #define IDX_XMM_REGS (IDX_FP_REGS + 16)
539 #define IDX_MXCSR_REG (IDX_XMM_REGS + CPU_NB_REGS)
541 static int cpu_gdb_read_register(CPUX86State *env, uint8_t *mem_buf, int n)
543 if (n < CPU_NB_REGS) {
544 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
545 GET_REG64(env->regs[gpr_map[n]]);
546 } else if (n < CPU_NB_REGS32) {
547 GET_REG32(env->regs[gpr_map32[n]]);
549 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
550 #ifdef USE_X86LDOUBLE
551 /* FIXME: byteswap float values - after fixing fpregs layout. */
552 memcpy(mem_buf, &env->fpregs[n - IDX_FP_REGS], 10);
553 #else
554 memset(mem_buf, 0, 10);
555 #endif
556 return 10;
557 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
558 n -= IDX_XMM_REGS;
559 if (n < CPU_NB_REGS32 ||
560 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
561 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
562 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
563 return 16;
565 } else {
566 switch (n) {
567 case IDX_IP_REG:
568 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
569 GET_REG64(env->eip);
570 } else {
571 GET_REG32(env->eip);
573 case IDX_FLAGS_REG: GET_REG32(env->eflags);
575 case IDX_SEG_REGS: GET_REG32(env->segs[R_CS].selector);
576 case IDX_SEG_REGS + 1: GET_REG32(env->segs[R_SS].selector);
577 case IDX_SEG_REGS + 2: GET_REG32(env->segs[R_DS].selector);
578 case IDX_SEG_REGS + 3: GET_REG32(env->segs[R_ES].selector);
579 case IDX_SEG_REGS + 4: GET_REG32(env->segs[R_FS].selector);
580 case IDX_SEG_REGS + 5: GET_REG32(env->segs[R_GS].selector);
582 case IDX_FP_REGS + 8: GET_REG32(env->fpuc);
583 case IDX_FP_REGS + 9: GET_REG32((env->fpus & ~0x3800) |
584 (env->fpstt & 0x7) << 11);
585 case IDX_FP_REGS + 10: GET_REG32(0); /* ftag */
586 case IDX_FP_REGS + 11: GET_REG32(0); /* fiseg */
587 case IDX_FP_REGS + 12: GET_REG32(0); /* fioff */
588 case IDX_FP_REGS + 13: GET_REG32(0); /* foseg */
589 case IDX_FP_REGS + 14: GET_REG32(0); /* fooff */
590 case IDX_FP_REGS + 15: GET_REG32(0); /* fop */
592 case IDX_MXCSR_REG: GET_REG32(env->mxcsr);
595 return 0;
598 static int cpu_x86_gdb_load_seg(CPUX86State *env, int sreg, uint8_t *mem_buf)
600 uint16_t selector = ldl_p(mem_buf);
602 if (selector != env->segs[sreg].selector) {
603 #if defined(CONFIG_USER_ONLY)
604 cpu_x86_load_seg(env, sreg, selector);
605 #else
606 unsigned int limit, flags;
607 target_ulong base;
609 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
610 base = selector << 4;
611 limit = 0xffff;
612 flags = 0;
613 } else {
614 if (!cpu_x86_get_descr_debug(env, selector, &base, &limit, &flags))
615 return 4;
617 cpu_x86_load_seg_cache(env, sreg, selector, base, limit, flags);
618 #endif
620 return 4;
623 static int cpu_gdb_write_register(CPUX86State *env, uint8_t *mem_buf, int n)
625 uint32_t tmp;
627 if (n < CPU_NB_REGS) {
628 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
629 env->regs[gpr_map[n]] = ldtul_p(mem_buf);
630 return sizeof(target_ulong);
631 } else if (n < CPU_NB_REGS32) {
632 n = gpr_map32[n];
633 env->regs[n] &= ~0xffffffffUL;
634 env->regs[n] |= (uint32_t)ldl_p(mem_buf);
635 return 4;
637 } else if (n >= IDX_FP_REGS && n < IDX_FP_REGS + 8) {
638 #ifdef USE_X86LDOUBLE
639 /* FIXME: byteswap float values - after fixing fpregs layout. */
640 memcpy(&env->fpregs[n - IDX_FP_REGS], mem_buf, 10);
641 #endif
642 return 10;
643 } else if (n >= IDX_XMM_REGS && n < IDX_XMM_REGS + CPU_NB_REGS) {
644 n -= IDX_XMM_REGS;
645 if (n < CPU_NB_REGS32 ||
646 (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK)) {
647 env->xmm_regs[n].XMM_Q(0) = ldq_p(mem_buf);
648 env->xmm_regs[n].XMM_Q(1) = ldq_p(mem_buf + 8);
649 return 16;
651 } else {
652 switch (n) {
653 case IDX_IP_REG:
654 if (TARGET_LONG_BITS == 64 && env->hflags & HF_CS64_MASK) {
655 env->eip = ldq_p(mem_buf);
656 return 8;
657 } else {
658 env->eip &= ~0xffffffffUL;
659 env->eip |= (uint32_t)ldl_p(mem_buf);
660 return 4;
662 case IDX_FLAGS_REG:
663 env->eflags = ldl_p(mem_buf);
664 return 4;
666 case IDX_SEG_REGS: return cpu_x86_gdb_load_seg(env, R_CS, mem_buf);
667 case IDX_SEG_REGS + 1: return cpu_x86_gdb_load_seg(env, R_SS, mem_buf);
668 case IDX_SEG_REGS + 2: return cpu_x86_gdb_load_seg(env, R_DS, mem_buf);
669 case IDX_SEG_REGS + 3: return cpu_x86_gdb_load_seg(env, R_ES, mem_buf);
670 case IDX_SEG_REGS + 4: return cpu_x86_gdb_load_seg(env, R_FS, mem_buf);
671 case IDX_SEG_REGS + 5: return cpu_x86_gdb_load_seg(env, R_GS, mem_buf);
673 case IDX_FP_REGS + 8:
674 env->fpuc = ldl_p(mem_buf);
675 return 4;
676 case IDX_FP_REGS + 9:
677 tmp = ldl_p(mem_buf);
678 env->fpstt = (tmp >> 11) & 7;
679 env->fpus = tmp & ~0x3800;
680 return 4;
681 case IDX_FP_REGS + 10: /* ftag */ return 4;
682 case IDX_FP_REGS + 11: /* fiseg */ return 4;
683 case IDX_FP_REGS + 12: /* fioff */ return 4;
684 case IDX_FP_REGS + 13: /* foseg */ return 4;
685 case IDX_FP_REGS + 14: /* fooff */ return 4;
686 case IDX_FP_REGS + 15: /* fop */ return 4;
688 case IDX_MXCSR_REG:
689 env->mxcsr = ldl_p(mem_buf);
690 return 4;
693 /* Unrecognised register. */
694 return 0;
697 #elif defined (TARGET_PPC)
699 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
700 expects whatever the target description contains. Due to a
701 historical mishap the FP registers appear in between core integer
702 regs and PC, MSR, CR, and so forth. We hack round this by giving the
703 FP regs zero size when talking to a newer gdb. */
704 #define NUM_CORE_REGS 71
705 #if defined (TARGET_PPC64)
706 #define GDB_CORE_XML "power64-core.xml"
707 #else
708 #define GDB_CORE_XML "power-core.xml"
709 #endif
711 static int cpu_gdb_read_register(CPUPPCState *env, uint8_t *mem_buf, int n)
713 if (n < 32) {
714 /* gprs */
715 GET_REGL(env->gpr[n]);
716 } else if (n < 64) {
717 /* fprs */
718 if (gdb_has_xml)
719 return 0;
720 stfq_p(mem_buf, env->fpr[n-32]);
721 return 8;
722 } else {
723 switch (n) {
724 case 64: GET_REGL(env->nip);
725 case 65: GET_REGL(env->msr);
726 case 66:
728 uint32_t cr = 0;
729 int i;
730 for (i = 0; i < 8; i++)
731 cr |= env->crf[i] << (32 - ((i + 1) * 4));
732 GET_REG32(cr);
734 case 67: GET_REGL(env->lr);
735 case 68: GET_REGL(env->ctr);
736 case 69: GET_REGL(env->xer);
737 case 70:
739 if (gdb_has_xml)
740 return 0;
741 GET_REG32(env->fpscr);
745 return 0;
748 static int cpu_gdb_write_register(CPUPPCState *env, uint8_t *mem_buf, int n)
750 if (n < 32) {
751 /* gprs */
752 env->gpr[n] = ldtul_p(mem_buf);
753 return sizeof(target_ulong);
754 } else if (n < 64) {
755 /* fprs */
756 if (gdb_has_xml)
757 return 0;
758 env->fpr[n-32] = ldfq_p(mem_buf);
759 return 8;
760 } else {
761 switch (n) {
762 case 64:
763 env->nip = ldtul_p(mem_buf);
764 return sizeof(target_ulong);
765 case 65:
766 ppc_store_msr(env, ldtul_p(mem_buf));
767 return sizeof(target_ulong);
768 case 66:
770 uint32_t cr = ldl_p(mem_buf);
771 int i;
772 for (i = 0; i < 8; i++)
773 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
774 return 4;
776 case 67:
777 env->lr = ldtul_p(mem_buf);
778 return sizeof(target_ulong);
779 case 68:
780 env->ctr = ldtul_p(mem_buf);
781 return sizeof(target_ulong);
782 case 69:
783 env->xer = ldtul_p(mem_buf);
784 return sizeof(target_ulong);
785 case 70:
786 /* fpscr */
787 if (gdb_has_xml)
788 return 0;
789 store_fpscr(env, ldtul_p(mem_buf), 0xffffffff);
790 return sizeof(target_ulong);
793 return 0;
796 #elif defined (TARGET_SPARC)
798 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
799 #define NUM_CORE_REGS 86
800 #else
801 #define NUM_CORE_REGS 72
802 #endif
804 #ifdef TARGET_ABI32
805 #define GET_REGA(val) GET_REG32(val)
806 #else
807 #define GET_REGA(val) GET_REGL(val)
808 #endif
810 static int cpu_gdb_read_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
812 if (n < 8) {
813 /* g0..g7 */
814 GET_REGA(env->gregs[n]);
816 if (n < 32) {
817 /* register window */
818 GET_REGA(env->regwptr[n - 8]);
820 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
821 if (n < 64) {
822 /* fprs */
823 if (n & 1) {
824 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
825 } else {
826 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
829 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
830 switch (n) {
831 case 64: GET_REGA(env->y);
832 case 65: GET_REGA(cpu_get_psr(env));
833 case 66: GET_REGA(env->wim);
834 case 67: GET_REGA(env->tbr);
835 case 68: GET_REGA(env->pc);
836 case 69: GET_REGA(env->npc);
837 case 70: GET_REGA(env->fsr);
838 case 71: GET_REGA(0); /* csr */
839 default: GET_REGA(0);
841 #else
842 if (n < 64) {
843 /* f0-f31 */
844 if (n & 1) {
845 GET_REG32(env->fpr[(n - 32) / 2].l.lower);
846 } else {
847 GET_REG32(env->fpr[(n - 32) / 2].l.upper);
850 if (n < 80) {
851 /* f32-f62 (double width, even numbers only) */
852 GET_REG64(env->fpr[(n - 32) / 2].ll);
854 switch (n) {
855 case 80: GET_REGL(env->pc);
856 case 81: GET_REGL(env->npc);
857 case 82: GET_REGL((cpu_get_ccr(env) << 32) |
858 ((env->asi & 0xff) << 24) |
859 ((env->pstate & 0xfff) << 8) |
860 cpu_get_cwp64(env));
861 case 83: GET_REGL(env->fsr);
862 case 84: GET_REGL(env->fprs);
863 case 85: GET_REGL(env->y);
865 #endif
866 return 0;
869 static int cpu_gdb_write_register(CPUSPARCState *env, uint8_t *mem_buf, int n)
871 #if defined(TARGET_ABI32)
872 abi_ulong tmp;
874 tmp = ldl_p(mem_buf);
875 #else
876 target_ulong tmp;
878 tmp = ldtul_p(mem_buf);
879 #endif
881 if (n < 8) {
882 /* g0..g7 */
883 env->gregs[n] = tmp;
884 } else if (n < 32) {
885 /* register window */
886 env->regwptr[n - 8] = tmp;
888 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
889 else if (n < 64) {
890 /* fprs */
891 /* f0-f31 */
892 if (n & 1) {
893 env->fpr[(n - 32) / 2].l.lower = tmp;
894 } else {
895 env->fpr[(n - 32) / 2].l.upper = tmp;
897 } else {
898 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
899 switch (n) {
900 case 64: env->y = tmp; break;
901 case 65: cpu_put_psr(env, tmp); break;
902 case 66: env->wim = tmp; break;
903 case 67: env->tbr = tmp; break;
904 case 68: env->pc = tmp; break;
905 case 69: env->npc = tmp; break;
906 case 70: env->fsr = tmp; break;
907 default: return 0;
910 return 4;
911 #else
912 else if (n < 64) {
913 /* f0-f31 */
914 tmp = ldl_p(mem_buf);
915 if (n & 1) {
916 env->fpr[(n - 32) / 2].l.lower = tmp;
917 } else {
918 env->fpr[(n - 32) / 2].l.upper = tmp;
920 return 4;
921 } else if (n < 80) {
922 /* f32-f62 (double width, even numbers only) */
923 env->fpr[(n - 32) / 2].ll = tmp;
924 } else {
925 switch (n) {
926 case 80: env->pc = tmp; break;
927 case 81: env->npc = tmp; break;
928 case 82:
929 cpu_put_ccr(env, tmp >> 32);
930 env->asi = (tmp >> 24) & 0xff;
931 env->pstate = (tmp >> 8) & 0xfff;
932 cpu_put_cwp64(env, tmp & 0xff);
933 break;
934 case 83: env->fsr = tmp; break;
935 case 84: env->fprs = tmp; break;
936 case 85: env->y = tmp; break;
937 default: return 0;
940 return 8;
941 #endif
943 #elif defined (TARGET_ARM)
945 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
946 whatever the target description contains. Due to a historical mishap
947 the FPA registers appear in between core integer regs and the CPSR.
948 We hack round this by giving the FPA regs zero size when talking to a
949 newer gdb. */
950 #define NUM_CORE_REGS 26
951 #define GDB_CORE_XML "arm-core.xml"
953 static int cpu_gdb_read_register(CPUARMState *env, uint8_t *mem_buf, int n)
955 if (n < 16) {
956 /* Core integer register. */
957 GET_REG32(env->regs[n]);
959 if (n < 24) {
960 /* FPA registers. */
961 if (gdb_has_xml)
962 return 0;
963 memset(mem_buf, 0, 12);
964 return 12;
966 switch (n) {
967 case 24:
968 /* FPA status register. */
969 if (gdb_has_xml)
970 return 0;
971 GET_REG32(0);
972 case 25:
973 /* CPSR */
974 GET_REG32(cpsr_read(env));
976 /* Unknown register. */
977 return 0;
980 static int cpu_gdb_write_register(CPUARMState *env, uint8_t *mem_buf, int n)
982 uint32_t tmp;
984 tmp = ldl_p(mem_buf);
986 /* Mask out low bit of PC to workaround gdb bugs. This will probably
987 cause problems if we ever implement the Jazelle DBX extensions. */
988 if (n == 15)
989 tmp &= ~1;
991 if (n < 16) {
992 /* Core integer register. */
993 env->regs[n] = tmp;
994 return 4;
996 if (n < 24) { /* 16-23 */
997 /* FPA registers (ignored). */
998 if (gdb_has_xml)
999 return 0;
1000 return 12;
1002 switch (n) {
1003 case 24:
1004 /* FPA status register (ignored). */
1005 if (gdb_has_xml)
1006 return 0;
1007 return 4;
1008 case 25:
1009 /* CPSR */
1010 cpsr_write (env, tmp, 0xffffffff);
1011 return 4;
1013 /* Unknown register. */
1014 return 0;
1017 #elif defined (TARGET_M68K)
1019 #define NUM_CORE_REGS 18
1021 #define GDB_CORE_XML "cf-core.xml"
1023 static int cpu_gdb_read_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1025 if (n < 8) {
1026 /* D0-D7 */
1027 GET_REG32(env->dregs[n]);
1028 } else if (n < 16) {
1029 /* A0-A7 */
1030 GET_REG32(env->aregs[n - 8]);
1031 } else {
1032 switch (n) {
1033 case 16: GET_REG32(env->sr);
1034 case 17: GET_REG32(env->pc);
1037 /* FP registers not included here because they vary between
1038 ColdFire and m68k. Use XML bits for these. */
1039 return 0;
1042 static int cpu_gdb_write_register(CPUM68KState *env, uint8_t *mem_buf, int n)
1044 uint32_t tmp;
1046 tmp = ldl_p(mem_buf);
1048 if (n < 8) {
1049 /* D0-D7 */
1050 env->dregs[n] = tmp;
1051 } else if (n < 16) {
1052 /* A0-A7 */
1053 env->aregs[n - 8] = tmp;
1054 } else {
1055 switch (n) {
1056 case 16: env->sr = tmp; break;
1057 case 17: env->pc = tmp; break;
1058 default: return 0;
1061 return 4;
1063 #elif defined (TARGET_MIPS)
1065 #define NUM_CORE_REGS 73
1067 static int cpu_gdb_read_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1069 if (n < 32) {
1070 GET_REGL(env->active_tc.gpr[n]);
1072 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
1073 if (n >= 38 && n < 70) {
1074 if (env->CP0_Status & (1 << CP0St_FR))
1075 GET_REGL(env->active_fpu.fpr[n - 38].d);
1076 else
1077 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
1079 switch (n) {
1080 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
1081 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
1084 switch (n) {
1085 case 32: GET_REGL((int32_t)env->CP0_Status);
1086 case 33: GET_REGL(env->active_tc.LO[0]);
1087 case 34: GET_REGL(env->active_tc.HI[0]);
1088 case 35: GET_REGL(env->CP0_BadVAddr);
1089 case 36: GET_REGL((int32_t)env->CP0_Cause);
1090 case 37: GET_REGL(env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16));
1091 case 72: GET_REGL(0); /* fp */
1092 case 89: GET_REGL((int32_t)env->CP0_PRid);
1094 if (n >= 73 && n <= 88) {
1095 /* 16 embedded regs. */
1096 GET_REGL(0);
1099 return 0;
1102 /* convert MIPS rounding mode in FCR31 to IEEE library */
1103 static unsigned int ieee_rm[] =
1105 float_round_nearest_even,
1106 float_round_to_zero,
1107 float_round_up,
1108 float_round_down
1110 #define RESTORE_ROUNDING_MODE \
1111 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1113 static int cpu_gdb_write_register(CPUMIPSState *env, uint8_t *mem_buf, int n)
1115 target_ulong tmp;
1117 tmp = ldtul_p(mem_buf);
1119 if (n < 32) {
1120 env->active_tc.gpr[n] = tmp;
1121 return sizeof(target_ulong);
1123 if (env->CP0_Config1 & (1 << CP0C1_FP)
1124 && n >= 38 && n < 73) {
1125 if (n < 70) {
1126 if (env->CP0_Status & (1 << CP0St_FR))
1127 env->active_fpu.fpr[n - 38].d = tmp;
1128 else
1129 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1131 switch (n) {
1132 case 70:
1133 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1134 /* set rounding mode */
1135 RESTORE_ROUNDING_MODE;
1136 break;
1137 case 71: env->active_fpu.fcr0 = tmp; break;
1139 return sizeof(target_ulong);
1141 switch (n) {
1142 case 32: env->CP0_Status = tmp; break;
1143 case 33: env->active_tc.LO[0] = tmp; break;
1144 case 34: env->active_tc.HI[0] = tmp; break;
1145 case 35: env->CP0_BadVAddr = tmp; break;
1146 case 36: env->CP0_Cause = tmp; break;
1147 case 37:
1148 env->active_tc.PC = tmp & ~(target_ulong)1;
1149 if (tmp & 1) {
1150 env->hflags |= MIPS_HFLAG_M16;
1151 } else {
1152 env->hflags &= ~(MIPS_HFLAG_M16);
1154 break;
1155 case 72: /* fp, ignored */ break;
1156 default:
1157 if (n > 89)
1158 return 0;
1159 /* Other registers are readonly. Ignore writes. */
1160 break;
1163 return sizeof(target_ulong);
1165 #elif defined(TARGET_OPENRISC)
1167 #define NUM_CORE_REGS (32 + 3)
1169 static int cpu_gdb_read_register(CPUOpenRISCState *env, uint8_t *mem_buf, int n)
1171 if (n < 32) {
1172 GET_REG32(env->gpr[n]);
1173 } else {
1174 switch (n) {
1175 case 32: /* PPC */
1176 GET_REG32(env->ppc);
1177 break;
1179 case 33: /* NPC */
1180 GET_REG32(env->npc);
1181 break;
1183 case 34: /* SR */
1184 GET_REG32(env->sr);
1185 break;
1187 default:
1188 break;
1191 return 0;
1194 static int cpu_gdb_write_register(CPUOpenRISCState *env,
1195 uint8_t *mem_buf, int n)
1197 uint32_t tmp;
1199 if (n > NUM_CORE_REGS) {
1200 return 0;
1203 tmp = ldl_p(mem_buf);
1205 if (n < 32) {
1206 env->gpr[n] = tmp;
1207 } else {
1208 switch (n) {
1209 case 32: /* PPC */
1210 env->ppc = tmp;
1211 break;
1213 case 33: /* NPC */
1214 env->npc = tmp;
1215 break;
1217 case 34: /* SR */
1218 env->sr = tmp;
1219 break;
1221 default:
1222 break;
1225 return 4;
1227 #elif defined (TARGET_SH4)
1229 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1230 /* FIXME: We should use XML for this. */
1232 #define NUM_CORE_REGS 59
1234 static int cpu_gdb_read_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1236 switch (n) {
1237 case 0 ... 7:
1238 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1239 GET_REGL(env->gregs[n + 16]);
1240 } else {
1241 GET_REGL(env->gregs[n]);
1243 case 8 ... 15:
1244 GET_REGL(env->gregs[n]);
1245 case 16:
1246 GET_REGL(env->pc);
1247 case 17:
1248 GET_REGL(env->pr);
1249 case 18:
1250 GET_REGL(env->gbr);
1251 case 19:
1252 GET_REGL(env->vbr);
1253 case 20:
1254 GET_REGL(env->mach);
1255 case 21:
1256 GET_REGL(env->macl);
1257 case 22:
1258 GET_REGL(env->sr);
1259 case 23:
1260 GET_REGL(env->fpul);
1261 case 24:
1262 GET_REGL(env->fpscr);
1263 case 25 ... 40:
1264 if (env->fpscr & FPSCR_FR) {
1265 stfl_p(mem_buf, env->fregs[n - 9]);
1266 } else {
1267 stfl_p(mem_buf, env->fregs[n - 25]);
1269 return 4;
1270 case 41:
1271 GET_REGL(env->ssr);
1272 case 42:
1273 GET_REGL(env->spc);
1274 case 43 ... 50:
1275 GET_REGL(env->gregs[n - 43]);
1276 case 51 ... 58:
1277 GET_REGL(env->gregs[n - (51 - 16)]);
1280 return 0;
1283 static int cpu_gdb_write_register(CPUSH4State *env, uint8_t *mem_buf, int n)
1285 switch (n) {
1286 case 0 ... 7:
1287 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1288 env->gregs[n + 16] = ldl_p(mem_buf);
1289 } else {
1290 env->gregs[n] = ldl_p(mem_buf);
1292 break;
1293 case 8 ... 15:
1294 env->gregs[n] = ldl_p(mem_buf);
1295 break;
1296 case 16:
1297 env->pc = ldl_p(mem_buf);
1298 break;
1299 case 17:
1300 env->pr = ldl_p(mem_buf);
1301 break;
1302 case 18:
1303 env->gbr = ldl_p(mem_buf);
1304 break;
1305 case 19:
1306 env->vbr = ldl_p(mem_buf);
1307 break;
1308 case 20:
1309 env->mach = ldl_p(mem_buf);
1310 break;
1311 case 21:
1312 env->macl = ldl_p(mem_buf);
1313 break;
1314 case 22:
1315 env->sr = ldl_p(mem_buf);
1316 break;
1317 case 23:
1318 env->fpul = ldl_p(mem_buf);
1319 break;
1320 case 24:
1321 env->fpscr = ldl_p(mem_buf);
1322 break;
1323 case 25 ... 40:
1324 if (env->fpscr & FPSCR_FR) {
1325 env->fregs[n - 9] = ldfl_p(mem_buf);
1326 } else {
1327 env->fregs[n - 25] = ldfl_p(mem_buf);
1329 break;
1330 case 41:
1331 env->ssr = ldl_p(mem_buf);
1332 break;
1333 case 42:
1334 env->spc = ldl_p(mem_buf);
1335 break;
1336 case 43 ... 50:
1337 env->gregs[n - 43] = ldl_p(mem_buf);
1338 break;
1339 case 51 ... 58:
1340 env->gregs[n - (51 - 16)] = ldl_p(mem_buf);
1341 break;
1342 default: return 0;
1345 return 4;
1347 #elif defined (TARGET_MICROBLAZE)
1349 #define NUM_CORE_REGS (32 + 5)
1351 static int cpu_gdb_read_register(CPUMBState *env, uint8_t *mem_buf, int n)
1353 if (n < 32) {
1354 GET_REG32(env->regs[n]);
1355 } else {
1356 GET_REG32(env->sregs[n - 32]);
1358 return 0;
1361 static int cpu_gdb_write_register(CPUMBState *env, uint8_t *mem_buf, int n)
1363 uint32_t tmp;
1365 if (n > NUM_CORE_REGS)
1366 return 0;
1368 tmp = ldl_p(mem_buf);
1370 if (n < 32) {
1371 env->regs[n] = tmp;
1372 } else {
1373 env->sregs[n - 32] = tmp;
1375 return 4;
1377 #elif defined (TARGET_CRIS)
1379 #define NUM_CORE_REGS 49
1381 static int
1382 read_register_crisv10(CPUCRISState *env, uint8_t *mem_buf, int n)
1384 if (n < 15) {
1385 GET_REG32(env->regs[n]);
1388 if (n == 15) {
1389 GET_REG32(env->pc);
1392 if (n < 32) {
1393 switch (n) {
1394 case 16:
1395 GET_REG8(env->pregs[n - 16]);
1396 break;
1397 case 17:
1398 GET_REG8(env->pregs[n - 16]);
1399 break;
1400 case 20:
1401 case 21:
1402 GET_REG16(env->pregs[n - 16]);
1403 break;
1404 default:
1405 if (n >= 23) {
1406 GET_REG32(env->pregs[n - 16]);
1408 break;
1411 return 0;
1414 static int cpu_gdb_read_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1416 uint8_t srs;
1418 if (env->pregs[PR_VR] < 32)
1419 return read_register_crisv10(env, mem_buf, n);
1421 srs = env->pregs[PR_SRS];
1422 if (n < 16) {
1423 GET_REG32(env->regs[n]);
1426 if (n >= 21 && n < 32) {
1427 GET_REG32(env->pregs[n - 16]);
1429 if (n >= 33 && n < 49) {
1430 GET_REG32(env->sregs[srs][n - 33]);
1432 switch (n) {
1433 case 16: GET_REG8(env->pregs[0]);
1434 case 17: GET_REG8(env->pregs[1]);
1435 case 18: GET_REG32(env->pregs[2]);
1436 case 19: GET_REG8(srs);
1437 case 20: GET_REG16(env->pregs[4]);
1438 case 32: GET_REG32(env->pc);
1441 return 0;
1444 static int cpu_gdb_write_register(CPUCRISState *env, uint8_t *mem_buf, int n)
1446 uint32_t tmp;
1448 if (n > 49)
1449 return 0;
1451 tmp = ldl_p(mem_buf);
1453 if (n < 16) {
1454 env->regs[n] = tmp;
1457 if (n >= 21 && n < 32) {
1458 env->pregs[n - 16] = tmp;
1461 /* FIXME: Should support function regs be writable? */
1462 switch (n) {
1463 case 16: return 1;
1464 case 17: return 1;
1465 case 18: env->pregs[PR_PID] = tmp; break;
1466 case 19: return 1;
1467 case 20: return 2;
1468 case 32: env->pc = tmp; break;
1471 return 4;
1473 #elif defined (TARGET_ALPHA)
1475 #define NUM_CORE_REGS 67
1477 static int cpu_gdb_read_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1479 uint64_t val;
1480 CPU_DoubleU d;
1482 switch (n) {
1483 case 0 ... 30:
1484 val = env->ir[n];
1485 break;
1486 case 32 ... 62:
1487 d.d = env->fir[n - 32];
1488 val = d.ll;
1489 break;
1490 case 63:
1491 val = cpu_alpha_load_fpcr(env);
1492 break;
1493 case 64:
1494 val = env->pc;
1495 break;
1496 case 66:
1497 val = env->unique;
1498 break;
1499 case 31:
1500 case 65:
1501 /* 31 really is the zero register; 65 is unassigned in the
1502 gdb protocol, but is still required to occupy 8 bytes. */
1503 val = 0;
1504 break;
1505 default:
1506 return 0;
1508 GET_REGL(val);
1511 static int cpu_gdb_write_register(CPUAlphaState *env, uint8_t *mem_buf, int n)
1513 target_ulong tmp = ldtul_p(mem_buf);
1514 CPU_DoubleU d;
1516 switch (n) {
1517 case 0 ... 30:
1518 env->ir[n] = tmp;
1519 break;
1520 case 32 ... 62:
1521 d.ll = tmp;
1522 env->fir[n - 32] = d.d;
1523 break;
1524 case 63:
1525 cpu_alpha_store_fpcr(env, tmp);
1526 break;
1527 case 64:
1528 env->pc = tmp;
1529 break;
1530 case 66:
1531 env->unique = tmp;
1532 break;
1533 case 31:
1534 case 65:
1535 /* 31 really is the zero register; 65 is unassigned in the
1536 gdb protocol, but is still required to occupy 8 bytes. */
1537 break;
1538 default:
1539 return 0;
1541 return 8;
1543 #elif defined (TARGET_S390X)
1545 #define NUM_CORE_REGS S390_NUM_REGS
1547 static int cpu_gdb_read_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1549 uint64_t val;
1550 int cc_op;
1552 switch (n) {
1553 case S390_PSWM_REGNUM:
1554 cc_op = calc_cc(env, env->cc_op, env->cc_src, env->cc_dst, env->cc_vr);
1555 val = deposit64(env->psw.mask, 44, 2, cc_op);
1556 GET_REGL(val);
1557 break;
1558 case S390_PSWA_REGNUM:
1559 GET_REGL(env->psw.addr);
1560 break;
1561 case S390_R0_REGNUM ... S390_R15_REGNUM:
1562 GET_REGL(env->regs[n-S390_R0_REGNUM]);
1563 break;
1564 case S390_A0_REGNUM ... S390_A15_REGNUM:
1565 GET_REG32(env->aregs[n-S390_A0_REGNUM]);
1566 break;
1567 case S390_FPC_REGNUM:
1568 GET_REG32(env->fpc);
1569 break;
1570 case S390_F0_REGNUM ... S390_F15_REGNUM:
1571 GET_REG64(env->fregs[n-S390_F0_REGNUM].ll);
1572 break;
1575 return 0;
1578 static int cpu_gdb_write_register(CPUS390XState *env, uint8_t *mem_buf, int n)
1580 target_ulong tmpl;
1581 uint32_t tmp32;
1582 int r = 8;
1583 tmpl = ldtul_p(mem_buf);
1584 tmp32 = ldl_p(mem_buf);
1586 switch (n) {
1587 case S390_PSWM_REGNUM:
1588 env->psw.mask = tmpl;
1589 env->cc_op = extract64(tmpl, 44, 2);
1590 break;
1591 case S390_PSWA_REGNUM:
1592 env->psw.addr = tmpl;
1593 break;
1594 case S390_R0_REGNUM ... S390_R15_REGNUM:
1595 env->regs[n-S390_R0_REGNUM] = tmpl;
1596 break;
1597 case S390_A0_REGNUM ... S390_A15_REGNUM:
1598 env->aregs[n-S390_A0_REGNUM] = tmp32;
1599 r = 4;
1600 break;
1601 case S390_FPC_REGNUM:
1602 env->fpc = tmp32;
1603 r = 4;
1604 break;
1605 case S390_F0_REGNUM ... S390_F15_REGNUM:
1606 env->fregs[n-S390_F0_REGNUM].ll = tmpl;
1607 break;
1608 default:
1609 return 0;
1611 return r;
1613 #elif defined (TARGET_LM32)
1615 #include "hw/lm32/lm32_pic.h"
1616 #define NUM_CORE_REGS (32 + 7)
1618 static int cpu_gdb_read_register(CPULM32State *env, uint8_t *mem_buf, int n)
1620 if (n < 32) {
1621 GET_REG32(env->regs[n]);
1622 } else {
1623 switch (n) {
1624 case 32:
1625 GET_REG32(env->pc);
1626 break;
1627 /* FIXME: put in right exception ID */
1628 case 33:
1629 GET_REG32(0);
1630 break;
1631 case 34:
1632 GET_REG32(env->eba);
1633 break;
1634 case 35:
1635 GET_REG32(env->deba);
1636 break;
1637 case 36:
1638 GET_REG32(env->ie);
1639 break;
1640 case 37:
1641 GET_REG32(lm32_pic_get_im(env->pic_state));
1642 break;
1643 case 38:
1644 GET_REG32(lm32_pic_get_ip(env->pic_state));
1645 break;
1648 return 0;
1651 static int cpu_gdb_write_register(CPULM32State *env, uint8_t *mem_buf, int n)
1653 uint32_t tmp;
1655 if (n > NUM_CORE_REGS) {
1656 return 0;
1659 tmp = ldl_p(mem_buf);
1661 if (n < 32) {
1662 env->regs[n] = tmp;
1663 } else {
1664 switch (n) {
1665 case 32:
1666 env->pc = tmp;
1667 break;
1668 case 34:
1669 env->eba = tmp;
1670 break;
1671 case 35:
1672 env->deba = tmp;
1673 break;
1674 case 36:
1675 env->ie = tmp;
1676 break;
1677 case 37:
1678 lm32_pic_set_im(env->pic_state, tmp);
1679 break;
1680 case 38:
1681 lm32_pic_set_ip(env->pic_state, tmp);
1682 break;
1685 return 4;
1687 #elif defined(TARGET_XTENSA)
1689 /* Use num_core_regs to see only non-privileged registers in an unmodified gdb.
1690 * Use num_regs to see all registers. gdb modification is required for that:
1691 * reset bit 0 in the 'flags' field of the registers definitions in the
1692 * gdb/xtensa-config.c inside gdb source tree or inside gdb overlay.
1694 #define NUM_CORE_REGS (env->config->gdb_regmap.num_regs)
1695 #define num_g_regs NUM_CORE_REGS
1697 static int cpu_gdb_read_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1699 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1701 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1702 return 0;
1705 switch (reg->type) {
1706 case 9: /*pc*/
1707 GET_REG32(env->pc);
1708 break;
1710 case 1: /*ar*/
1711 xtensa_sync_phys_from_window(env);
1712 GET_REG32(env->phys_regs[(reg->targno & 0xff) % env->config->nareg]);
1713 break;
1715 case 2: /*SR*/
1716 GET_REG32(env->sregs[reg->targno & 0xff]);
1717 break;
1719 case 3: /*UR*/
1720 GET_REG32(env->uregs[reg->targno & 0xff]);
1721 break;
1723 case 4: /*f*/
1724 GET_REG32(float32_val(env->fregs[reg->targno & 0x0f]));
1725 break;
1727 case 8: /*a*/
1728 GET_REG32(env->regs[reg->targno & 0x0f]);
1729 break;
1731 default:
1732 qemu_log("%s from reg %d of unsupported type %d\n",
1733 __func__, n, reg->type);
1734 return 0;
1738 static int cpu_gdb_write_register(CPUXtensaState *env, uint8_t *mem_buf, int n)
1740 uint32_t tmp;
1741 const XtensaGdbReg *reg = env->config->gdb_regmap.reg + n;
1743 if (n < 0 || n >= env->config->gdb_regmap.num_regs) {
1744 return 0;
1747 tmp = ldl_p(mem_buf);
1749 switch (reg->type) {
1750 case 9: /*pc*/
1751 env->pc = tmp;
1752 break;
1754 case 1: /*ar*/
1755 env->phys_regs[(reg->targno & 0xff) % env->config->nareg] = tmp;
1756 xtensa_sync_window_from_phys(env);
1757 break;
1759 case 2: /*SR*/
1760 env->sregs[reg->targno & 0xff] = tmp;
1761 break;
1763 case 3: /*UR*/
1764 env->uregs[reg->targno & 0xff] = tmp;
1765 break;
1767 case 4: /*f*/
1768 env->fregs[reg->targno & 0x0f] = make_float32(tmp);
1769 break;
1771 case 8: /*a*/
1772 env->regs[reg->targno & 0x0f] = tmp;
1773 break;
1775 default:
1776 qemu_log("%s to reg %d of unsupported type %d\n",
1777 __func__, n, reg->type);
1778 return 0;
1781 return 4;
1783 #else
1785 #define NUM_CORE_REGS 0
1787 static int cpu_gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int n)
1789 return 0;
1792 static int cpu_gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int n)
1794 return 0;
1797 #endif
1799 #if !defined(TARGET_XTENSA)
1800 static int num_g_regs = NUM_CORE_REGS;
1801 #endif
1803 #ifdef GDB_CORE_XML
1804 /* Encode data using the encoding for 'x' packets. */
1805 static int memtox(char *buf, const char *mem, int len)
1807 char *p = buf;
1808 char c;
1810 while (len--) {
1811 c = *(mem++);
1812 switch (c) {
1813 case '#': case '$': case '*': case '}':
1814 *(p++) = '}';
1815 *(p++) = c ^ 0x20;
1816 break;
1817 default:
1818 *(p++) = c;
1819 break;
1822 return p - buf;
1825 static const char *get_feature_xml(const char *p, const char **newp)
1827 size_t len;
1828 int i;
1829 const char *name;
1830 static char target_xml[1024];
1832 len = 0;
1833 while (p[len] && p[len] != ':')
1834 len++;
1835 *newp = p + len;
1837 name = NULL;
1838 if (strncmp(p, "target.xml", len) == 0) {
1839 /* Generate the XML description for this CPU. */
1840 if (!target_xml[0]) {
1841 GDBRegisterState *r;
1843 snprintf(target_xml, sizeof(target_xml),
1844 "<?xml version=\"1.0\"?>"
1845 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1846 "<target>"
1847 "<xi:include href=\"%s\"/>",
1848 GDB_CORE_XML);
1850 for (r = first_cpu->gdb_regs; r; r = r->next) {
1851 pstrcat(target_xml, sizeof(target_xml), "<xi:include href=\"");
1852 pstrcat(target_xml, sizeof(target_xml), r->xml);
1853 pstrcat(target_xml, sizeof(target_xml), "\"/>");
1855 pstrcat(target_xml, sizeof(target_xml), "</target>");
1857 return target_xml;
1859 for (i = 0; ; i++) {
1860 name = xml_builtin[i][0];
1861 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1862 break;
1864 return name ? xml_builtin[i][1] : NULL;
1866 #endif
1868 static int gdb_read_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1870 GDBRegisterState *r;
1872 if (reg < NUM_CORE_REGS)
1873 return cpu_gdb_read_register(env, mem_buf, reg);
1875 for (r = env->gdb_regs; r; r = r->next) {
1876 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1877 return r->get_reg(env, mem_buf, reg - r->base_reg);
1880 return 0;
1883 static int gdb_write_register(CPUArchState *env, uint8_t *mem_buf, int reg)
1885 GDBRegisterState *r;
1887 if (reg < NUM_CORE_REGS)
1888 return cpu_gdb_write_register(env, mem_buf, reg);
1890 for (r = env->gdb_regs; r; r = r->next) {
1891 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1892 return r->set_reg(env, mem_buf, reg - r->base_reg);
1895 return 0;
1898 #if !defined(TARGET_XTENSA)
1899 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1900 specifies the first register number and these registers are included in
1901 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1902 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1905 void gdb_register_coprocessor(CPUArchState * env,
1906 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1907 int num_regs, const char *xml, int g_pos)
1909 GDBRegisterState *s;
1910 GDBRegisterState **p;
1911 static int last_reg = NUM_CORE_REGS;
1913 p = &env->gdb_regs;
1914 while (*p) {
1915 /* Check for duplicates. */
1916 if (strcmp((*p)->xml, xml) == 0)
1917 return;
1918 p = &(*p)->next;
1921 s = g_new0(GDBRegisterState, 1);
1922 s->base_reg = last_reg;
1923 s->num_regs = num_regs;
1924 s->get_reg = get_reg;
1925 s->set_reg = set_reg;
1926 s->xml = xml;
1928 /* Add to end of list. */
1929 last_reg += num_regs;
1930 *p = s;
1931 if (g_pos) {
1932 if (g_pos != s->base_reg) {
1933 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1934 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1935 } else {
1936 num_g_regs = last_reg;
1940 #endif
1942 #ifndef CONFIG_USER_ONLY
1943 static const int xlat_gdb_type[] = {
1944 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1945 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1946 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1948 #endif
1950 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1952 CPUArchState *env;
1953 int err = 0;
1955 if (kvm_enabled())
1956 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1958 switch (type) {
1959 case GDB_BREAKPOINT_SW:
1960 case GDB_BREAKPOINT_HW:
1961 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1962 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1963 if (err)
1964 break;
1966 return err;
1967 #ifndef CONFIG_USER_ONLY
1968 case GDB_WATCHPOINT_WRITE:
1969 case GDB_WATCHPOINT_READ:
1970 case GDB_WATCHPOINT_ACCESS:
1971 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1972 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1973 NULL);
1974 if (err)
1975 break;
1977 return err;
1978 #endif
1979 default:
1980 return -ENOSYS;
1984 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1986 CPUArchState *env;
1987 int err = 0;
1989 if (kvm_enabled())
1990 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1992 switch (type) {
1993 case GDB_BREAKPOINT_SW:
1994 case GDB_BREAKPOINT_HW:
1995 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1996 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1997 if (err)
1998 break;
2000 return err;
2001 #ifndef CONFIG_USER_ONLY
2002 case GDB_WATCHPOINT_WRITE:
2003 case GDB_WATCHPOINT_READ:
2004 case GDB_WATCHPOINT_ACCESS:
2005 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2006 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
2007 if (err)
2008 break;
2010 return err;
2011 #endif
2012 default:
2013 return -ENOSYS;
2017 static void gdb_breakpoint_remove_all(void)
2019 CPUArchState *env;
2021 if (kvm_enabled()) {
2022 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
2023 return;
2026 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2027 cpu_breakpoint_remove_all(env, BP_GDB);
2028 #ifndef CONFIG_USER_ONLY
2029 cpu_watchpoint_remove_all(env, BP_GDB);
2030 #endif
2034 static void gdb_set_cpu_pc(GDBState *s, target_ulong pc)
2036 cpu_synchronize_state(ENV_GET_CPU(s->c_cpu));
2037 #if defined(TARGET_I386)
2038 s->c_cpu->eip = pc;
2039 #elif defined (TARGET_PPC)
2040 s->c_cpu->nip = pc;
2041 #elif defined (TARGET_SPARC)
2042 s->c_cpu->pc = pc;
2043 s->c_cpu->npc = pc + 4;
2044 #elif defined (TARGET_ARM)
2045 s->c_cpu->regs[15] = pc;
2046 #elif defined (TARGET_SH4)
2047 s->c_cpu->pc = pc;
2048 #elif defined (TARGET_MIPS)
2049 s->c_cpu->active_tc.PC = pc & ~(target_ulong)1;
2050 if (pc & 1) {
2051 s->c_cpu->hflags |= MIPS_HFLAG_M16;
2052 } else {
2053 s->c_cpu->hflags &= ~(MIPS_HFLAG_M16);
2055 #elif defined (TARGET_MICROBLAZE)
2056 s->c_cpu->sregs[SR_PC] = pc;
2057 #elif defined(TARGET_OPENRISC)
2058 s->c_cpu->pc = pc;
2059 #elif defined (TARGET_CRIS)
2060 s->c_cpu->pc = pc;
2061 #elif defined (TARGET_ALPHA)
2062 s->c_cpu->pc = pc;
2063 #elif defined (TARGET_S390X)
2064 s->c_cpu->psw.addr = pc;
2065 #elif defined (TARGET_LM32)
2066 s->c_cpu->pc = pc;
2067 #elif defined(TARGET_XTENSA)
2068 s->c_cpu->pc = pc;
2069 #endif
2072 static CPUArchState *find_cpu(uint32_t thread_id)
2074 CPUArchState *env;
2075 CPUState *cpu;
2077 for (env = first_cpu; env != NULL; env = env->next_cpu) {
2078 cpu = ENV_GET_CPU(env);
2079 if (cpu_index(cpu) == thread_id) {
2080 return env;
2084 return NULL;
2087 static int gdb_handle_packet(GDBState *s, const char *line_buf)
2089 CPUArchState *env;
2090 const char *p;
2091 uint32_t thread;
2092 int ch, reg_size, type, res;
2093 char buf[MAX_PACKET_LENGTH];
2094 uint8_t mem_buf[MAX_PACKET_LENGTH];
2095 uint8_t *registers;
2096 target_ulong addr, len;
2098 #ifdef DEBUG_GDB
2099 printf("command='%s'\n", line_buf);
2100 #endif
2101 p = line_buf;
2102 ch = *p++;
2103 switch(ch) {
2104 case '?':
2105 /* TODO: Make this return the correct value for user-mode. */
2106 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
2107 cpu_index(ENV_GET_CPU(s->c_cpu)));
2108 put_packet(s, buf);
2109 /* Remove all the breakpoints when this query is issued,
2110 * because gdb is doing and initial connect and the state
2111 * should be cleaned up.
2113 gdb_breakpoint_remove_all();
2114 break;
2115 case 'c':
2116 if (*p != '\0') {
2117 addr = strtoull(p, (char **)&p, 16);
2118 gdb_set_cpu_pc(s, addr);
2120 s->signal = 0;
2121 gdb_continue(s);
2122 return RS_IDLE;
2123 case 'C':
2124 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
2125 if (s->signal == -1)
2126 s->signal = 0;
2127 gdb_continue(s);
2128 return RS_IDLE;
2129 case 'v':
2130 if (strncmp(p, "Cont", 4) == 0) {
2131 int res_signal, res_thread;
2133 p += 4;
2134 if (*p == '?') {
2135 put_packet(s, "vCont;c;C;s;S");
2136 break;
2138 res = 0;
2139 res_signal = 0;
2140 res_thread = 0;
2141 while (*p) {
2142 int action, signal;
2144 if (*p++ != ';') {
2145 res = 0;
2146 break;
2148 action = *p++;
2149 signal = 0;
2150 if (action == 'C' || action == 'S') {
2151 signal = strtoul(p, (char **)&p, 16);
2152 } else if (action != 'c' && action != 's') {
2153 res = 0;
2154 break;
2156 thread = 0;
2157 if (*p == ':') {
2158 thread = strtoull(p+1, (char **)&p, 16);
2160 action = tolower(action);
2161 if (res == 0 || (res == 'c' && action == 's')) {
2162 res = action;
2163 res_signal = signal;
2164 res_thread = thread;
2167 if (res) {
2168 if (res_thread != -1 && res_thread != 0) {
2169 env = find_cpu(res_thread);
2170 if (env == NULL) {
2171 put_packet(s, "E22");
2172 break;
2174 s->c_cpu = env;
2176 if (res == 's') {
2177 cpu_single_step(s->c_cpu, sstep_flags);
2179 s->signal = res_signal;
2180 gdb_continue(s);
2181 return RS_IDLE;
2183 break;
2184 } else {
2185 goto unknown_command;
2187 case 'k':
2188 #ifdef CONFIG_USER_ONLY
2189 /* Kill the target */
2190 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
2191 exit(0);
2192 #endif
2193 case 'D':
2194 /* Detach packet */
2195 gdb_breakpoint_remove_all();
2196 gdb_syscall_mode = GDB_SYS_DISABLED;
2197 gdb_continue(s);
2198 put_packet(s, "OK");
2199 break;
2200 case 's':
2201 if (*p != '\0') {
2202 addr = strtoull(p, (char **)&p, 16);
2203 gdb_set_cpu_pc(s, addr);
2205 cpu_single_step(s->c_cpu, sstep_flags);
2206 gdb_continue(s);
2207 return RS_IDLE;
2208 case 'F':
2210 target_ulong ret;
2211 target_ulong err;
2213 ret = strtoull(p, (char **)&p, 16);
2214 if (*p == ',') {
2215 p++;
2216 err = strtoull(p, (char **)&p, 16);
2217 } else {
2218 err = 0;
2220 if (*p == ',')
2221 p++;
2222 type = *p;
2223 if (s->current_syscall_cb) {
2224 s->current_syscall_cb(s->c_cpu, ret, err);
2225 s->current_syscall_cb = NULL;
2227 if (type == 'C') {
2228 put_packet(s, "T02");
2229 } else {
2230 gdb_continue(s);
2233 break;
2234 case 'g':
2235 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2236 env = s->g_cpu;
2237 len = 0;
2238 for (addr = 0; addr < num_g_regs; addr++) {
2239 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
2240 len += reg_size;
2242 memtohex(buf, mem_buf, len);
2243 put_packet(s, buf);
2244 break;
2245 case 'G':
2246 cpu_synchronize_state(ENV_GET_CPU(s->g_cpu));
2247 env = s->g_cpu;
2248 registers = mem_buf;
2249 len = strlen(p) / 2;
2250 hextomem((uint8_t *)registers, p, len);
2251 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
2252 reg_size = gdb_write_register(s->g_cpu, registers, addr);
2253 len -= reg_size;
2254 registers += reg_size;
2256 put_packet(s, "OK");
2257 break;
2258 case 'm':
2259 addr = strtoull(p, (char **)&p, 16);
2260 if (*p == ',')
2261 p++;
2262 len = strtoull(p, NULL, 16);
2263 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
2264 put_packet (s, "E14");
2265 } else {
2266 memtohex(buf, mem_buf, len);
2267 put_packet(s, buf);
2269 break;
2270 case 'M':
2271 addr = strtoull(p, (char **)&p, 16);
2272 if (*p == ',')
2273 p++;
2274 len = strtoull(p, (char **)&p, 16);
2275 if (*p == ':')
2276 p++;
2277 hextomem(mem_buf, p, len);
2278 if (target_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0) {
2279 put_packet(s, "E14");
2280 } else {
2281 put_packet(s, "OK");
2283 break;
2284 case 'p':
2285 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
2286 This works, but can be very slow. Anything new enough to
2287 understand XML also knows how to use this properly. */
2288 if (!gdb_has_xml)
2289 goto unknown_command;
2290 addr = strtoull(p, (char **)&p, 16);
2291 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
2292 if (reg_size) {
2293 memtohex(buf, mem_buf, reg_size);
2294 put_packet(s, buf);
2295 } else {
2296 put_packet(s, "E14");
2298 break;
2299 case 'P':
2300 if (!gdb_has_xml)
2301 goto unknown_command;
2302 addr = strtoull(p, (char **)&p, 16);
2303 if (*p == '=')
2304 p++;
2305 reg_size = strlen(p) / 2;
2306 hextomem(mem_buf, p, reg_size);
2307 gdb_write_register(s->g_cpu, mem_buf, addr);
2308 put_packet(s, "OK");
2309 break;
2310 case 'Z':
2311 case 'z':
2312 type = strtoul(p, (char **)&p, 16);
2313 if (*p == ',')
2314 p++;
2315 addr = strtoull(p, (char **)&p, 16);
2316 if (*p == ',')
2317 p++;
2318 len = strtoull(p, (char **)&p, 16);
2319 if (ch == 'Z')
2320 res = gdb_breakpoint_insert(addr, len, type);
2321 else
2322 res = gdb_breakpoint_remove(addr, len, type);
2323 if (res >= 0)
2324 put_packet(s, "OK");
2325 else if (res == -ENOSYS)
2326 put_packet(s, "");
2327 else
2328 put_packet(s, "E22");
2329 break;
2330 case 'H':
2331 type = *p++;
2332 thread = strtoull(p, (char **)&p, 16);
2333 if (thread == -1 || thread == 0) {
2334 put_packet(s, "OK");
2335 break;
2337 env = find_cpu(thread);
2338 if (env == NULL) {
2339 put_packet(s, "E22");
2340 break;
2342 switch (type) {
2343 case 'c':
2344 s->c_cpu = env;
2345 put_packet(s, "OK");
2346 break;
2347 case 'g':
2348 s->g_cpu = env;
2349 put_packet(s, "OK");
2350 break;
2351 default:
2352 put_packet(s, "E22");
2353 break;
2355 break;
2356 case 'T':
2357 thread = strtoull(p, (char **)&p, 16);
2358 env = find_cpu(thread);
2360 if (env != NULL) {
2361 put_packet(s, "OK");
2362 } else {
2363 put_packet(s, "E22");
2365 break;
2366 case 'q':
2367 case 'Q':
2368 /* parse any 'q' packets here */
2369 if (!strcmp(p,"qemu.sstepbits")) {
2370 /* Query Breakpoint bit definitions */
2371 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
2372 SSTEP_ENABLE,
2373 SSTEP_NOIRQ,
2374 SSTEP_NOTIMER);
2375 put_packet(s, buf);
2376 break;
2377 } else if (strncmp(p,"qemu.sstep",10) == 0) {
2378 /* Display or change the sstep_flags */
2379 p += 10;
2380 if (*p != '=') {
2381 /* Display current setting */
2382 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
2383 put_packet(s, buf);
2384 break;
2386 p++;
2387 type = strtoul(p, (char **)&p, 16);
2388 sstep_flags = type;
2389 put_packet(s, "OK");
2390 break;
2391 } else if (strcmp(p,"C") == 0) {
2392 /* "Current thread" remains vague in the spec, so always return
2393 * the first CPU (gdb returns the first thread). */
2394 put_packet(s, "QC1");
2395 break;
2396 } else if (strcmp(p,"fThreadInfo") == 0) {
2397 s->query_cpu = first_cpu;
2398 goto report_cpuinfo;
2399 } else if (strcmp(p,"sThreadInfo") == 0) {
2400 report_cpuinfo:
2401 if (s->query_cpu) {
2402 snprintf(buf, sizeof(buf), "m%x",
2403 cpu_index(ENV_GET_CPU(s->query_cpu)));
2404 put_packet(s, buf);
2405 s->query_cpu = s->query_cpu->next_cpu;
2406 } else
2407 put_packet(s, "l");
2408 break;
2409 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
2410 thread = strtoull(p+16, (char **)&p, 16);
2411 env = find_cpu(thread);
2412 if (env != NULL) {
2413 CPUState *cpu = ENV_GET_CPU(env);
2414 cpu_synchronize_state(cpu);
2415 len = snprintf((char *)mem_buf, sizeof(mem_buf),
2416 "CPU#%d [%s]", cpu->cpu_index,
2417 cpu->halted ? "halted " : "running");
2418 memtohex(buf, mem_buf, len);
2419 put_packet(s, buf);
2421 break;
2423 #ifdef CONFIG_USER_ONLY
2424 else if (strncmp(p, "Offsets", 7) == 0) {
2425 TaskState *ts = s->c_cpu->opaque;
2427 snprintf(buf, sizeof(buf),
2428 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
2429 ";Bss=" TARGET_ABI_FMT_lx,
2430 ts->info->code_offset,
2431 ts->info->data_offset,
2432 ts->info->data_offset);
2433 put_packet(s, buf);
2434 break;
2436 #else /* !CONFIG_USER_ONLY */
2437 else if (strncmp(p, "Rcmd,", 5) == 0) {
2438 int len = strlen(p + 5);
2440 if ((len % 2) != 0) {
2441 put_packet(s, "E01");
2442 break;
2444 hextomem(mem_buf, p + 5, len);
2445 len = len / 2;
2446 mem_buf[len++] = 0;
2447 qemu_chr_be_write(s->mon_chr, mem_buf, len);
2448 put_packet(s, "OK");
2449 break;
2451 #endif /* !CONFIG_USER_ONLY */
2452 if (strncmp(p, "Supported", 9) == 0) {
2453 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
2454 #ifdef GDB_CORE_XML
2455 pstrcat(buf, sizeof(buf), ";qXfer:features:read+");
2456 #endif
2457 put_packet(s, buf);
2458 break;
2460 #ifdef GDB_CORE_XML
2461 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
2462 const char *xml;
2463 target_ulong total_len;
2465 gdb_has_xml = 1;
2466 p += 19;
2467 xml = get_feature_xml(p, &p);
2468 if (!xml) {
2469 snprintf(buf, sizeof(buf), "E00");
2470 put_packet(s, buf);
2471 break;
2474 if (*p == ':')
2475 p++;
2476 addr = strtoul(p, (char **)&p, 16);
2477 if (*p == ',')
2478 p++;
2479 len = strtoul(p, (char **)&p, 16);
2481 total_len = strlen(xml);
2482 if (addr > total_len) {
2483 snprintf(buf, sizeof(buf), "E00");
2484 put_packet(s, buf);
2485 break;
2487 if (len > (MAX_PACKET_LENGTH - 5) / 2)
2488 len = (MAX_PACKET_LENGTH - 5) / 2;
2489 if (len < total_len - addr) {
2490 buf[0] = 'm';
2491 len = memtox(buf + 1, xml + addr, len);
2492 } else {
2493 buf[0] = 'l';
2494 len = memtox(buf + 1, xml + addr, total_len - addr);
2496 put_packet_binary(s, buf, len + 1);
2497 break;
2499 #endif
2500 /* Unrecognised 'q' command. */
2501 goto unknown_command;
2503 default:
2504 unknown_command:
2505 /* put empty packet */
2506 buf[0] = '\0';
2507 put_packet(s, buf);
2508 break;
2510 return RS_IDLE;
2513 void gdb_set_stop_cpu(CPUState *cpu)
2515 CPUArchState *env = cpu->env_ptr;
2517 gdbserver_state->c_cpu = env;
2518 gdbserver_state->g_cpu = env;
2521 #ifndef CONFIG_USER_ONLY
2522 static void gdb_vm_state_change(void *opaque, int running, RunState state)
2524 GDBState *s = gdbserver_state;
2525 CPUArchState *env = s->c_cpu;
2526 CPUState *cpu = ENV_GET_CPU(env);
2527 char buf[256];
2528 const char *type;
2529 int ret;
2531 if (running || s->state == RS_INACTIVE) {
2532 return;
2534 /* Is there a GDB syscall waiting to be sent? */
2535 if (s->current_syscall_cb) {
2536 put_packet(s, s->syscall_buf);
2537 return;
2539 switch (state) {
2540 case RUN_STATE_DEBUG:
2541 if (env->watchpoint_hit) {
2542 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
2543 case BP_MEM_READ:
2544 type = "r";
2545 break;
2546 case BP_MEM_ACCESS:
2547 type = "a";
2548 break;
2549 default:
2550 type = "";
2551 break;
2553 snprintf(buf, sizeof(buf),
2554 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
2555 GDB_SIGNAL_TRAP, cpu_index(cpu), type,
2556 env->watchpoint_hit->vaddr);
2557 env->watchpoint_hit = NULL;
2558 goto send_packet;
2560 tb_flush(env);
2561 ret = GDB_SIGNAL_TRAP;
2562 break;
2563 case RUN_STATE_PAUSED:
2564 ret = GDB_SIGNAL_INT;
2565 break;
2566 case RUN_STATE_SHUTDOWN:
2567 ret = GDB_SIGNAL_QUIT;
2568 break;
2569 case RUN_STATE_IO_ERROR:
2570 ret = GDB_SIGNAL_IO;
2571 break;
2572 case RUN_STATE_WATCHDOG:
2573 ret = GDB_SIGNAL_ALRM;
2574 break;
2575 case RUN_STATE_INTERNAL_ERROR:
2576 ret = GDB_SIGNAL_ABRT;
2577 break;
2578 case RUN_STATE_SAVE_VM:
2579 case RUN_STATE_RESTORE_VM:
2580 return;
2581 case RUN_STATE_FINISH_MIGRATE:
2582 ret = GDB_SIGNAL_XCPU;
2583 break;
2584 default:
2585 ret = GDB_SIGNAL_UNKNOWN;
2586 break;
2588 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, cpu_index(cpu));
2590 send_packet:
2591 put_packet(s, buf);
2593 /* disable single step if it was enabled */
2594 cpu_single_step(env, 0);
2596 #endif
2598 /* Send a gdb syscall request.
2599 This accepts limited printf-style format specifiers, specifically:
2600 %x - target_ulong argument printed in hex.
2601 %lx - 64-bit argument printed in hex.
2602 %s - string pointer (target_ulong) and length (int) pair. */
2603 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
2605 va_list va;
2606 char *p;
2607 char *p_end;
2608 target_ulong addr;
2609 uint64_t i64;
2610 GDBState *s;
2612 s = gdbserver_state;
2613 if (!s)
2614 return;
2615 s->current_syscall_cb = cb;
2616 #ifndef CONFIG_USER_ONLY
2617 vm_stop(RUN_STATE_DEBUG);
2618 #endif
2619 va_start(va, fmt);
2620 p = s->syscall_buf;
2621 p_end = &s->syscall_buf[sizeof(s->syscall_buf)];
2622 *(p++) = 'F';
2623 while (*fmt) {
2624 if (*fmt == '%') {
2625 fmt++;
2626 switch (*fmt++) {
2627 case 'x':
2628 addr = va_arg(va, target_ulong);
2629 p += snprintf(p, p_end - p, TARGET_FMT_lx, addr);
2630 break;
2631 case 'l':
2632 if (*(fmt++) != 'x')
2633 goto bad_format;
2634 i64 = va_arg(va, uint64_t);
2635 p += snprintf(p, p_end - p, "%" PRIx64, i64);
2636 break;
2637 case 's':
2638 addr = va_arg(va, target_ulong);
2639 p += snprintf(p, p_end - p, TARGET_FMT_lx "/%x",
2640 addr, va_arg(va, int));
2641 break;
2642 default:
2643 bad_format:
2644 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2645 fmt - 1);
2646 break;
2648 } else {
2649 *(p++) = *(fmt++);
2652 *p = 0;
2653 va_end(va);
2654 #ifdef CONFIG_USER_ONLY
2655 put_packet(s, s->syscall_buf);
2656 gdb_handlesig(s->c_cpu, 0);
2657 #else
2658 /* In this case wait to send the syscall packet until notification that
2659 the CPU has stopped. This must be done because if the packet is sent
2660 now the reply from the syscall request could be received while the CPU
2661 is still in the running state, which can cause packets to be dropped
2662 and state transition 'T' packets to be sent while the syscall is still
2663 being processed. */
2664 cpu_exit(ENV_GET_CPU(s->c_cpu));
2665 #endif
2668 static void gdb_read_byte(GDBState *s, int ch)
2670 int i, csum;
2671 uint8_t reply;
2673 #ifndef CONFIG_USER_ONLY
2674 if (s->last_packet_len) {
2675 /* Waiting for a response to the last packet. If we see the start
2676 of a new command then abandon the previous response. */
2677 if (ch == '-') {
2678 #ifdef DEBUG_GDB
2679 printf("Got NACK, retransmitting\n");
2680 #endif
2681 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2683 #ifdef DEBUG_GDB
2684 else if (ch == '+')
2685 printf("Got ACK\n");
2686 else
2687 printf("Got '%c' when expecting ACK/NACK\n", ch);
2688 #endif
2689 if (ch == '+' || ch == '$')
2690 s->last_packet_len = 0;
2691 if (ch != '$')
2692 return;
2694 if (runstate_is_running()) {
2695 /* when the CPU is running, we cannot do anything except stop
2696 it when receiving a char */
2697 vm_stop(RUN_STATE_PAUSED);
2698 } else
2699 #endif
2701 switch(s->state) {
2702 case RS_IDLE:
2703 if (ch == '$') {
2704 s->line_buf_index = 0;
2705 s->state = RS_GETLINE;
2707 break;
2708 case RS_GETLINE:
2709 if (ch == '#') {
2710 s->state = RS_CHKSUM1;
2711 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2712 s->state = RS_IDLE;
2713 } else {
2714 s->line_buf[s->line_buf_index++] = ch;
2716 break;
2717 case RS_CHKSUM1:
2718 s->line_buf[s->line_buf_index] = '\0';
2719 s->line_csum = fromhex(ch) << 4;
2720 s->state = RS_CHKSUM2;
2721 break;
2722 case RS_CHKSUM2:
2723 s->line_csum |= fromhex(ch);
2724 csum = 0;
2725 for(i = 0; i < s->line_buf_index; i++) {
2726 csum += s->line_buf[i];
2728 if (s->line_csum != (csum & 0xff)) {
2729 reply = '-';
2730 put_buffer(s, &reply, 1);
2731 s->state = RS_IDLE;
2732 } else {
2733 reply = '+';
2734 put_buffer(s, &reply, 1);
2735 s->state = gdb_handle_packet(s, s->line_buf);
2737 break;
2738 default:
2739 abort();
2744 /* Tell the remote gdb that the process has exited. */
2745 void gdb_exit(CPUArchState *env, int code)
2747 GDBState *s;
2748 char buf[4];
2750 s = gdbserver_state;
2751 if (!s) {
2752 return;
2754 #ifdef CONFIG_USER_ONLY
2755 if (gdbserver_fd < 0 || s->fd < 0) {
2756 return;
2758 #endif
2760 snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
2761 put_packet(s, buf);
2763 #ifndef CONFIG_USER_ONLY
2764 if (s->chr) {
2765 qemu_chr_delete(s->chr);
2767 #endif
2770 #ifdef CONFIG_USER_ONLY
2772 gdb_queuesig (void)
2774 GDBState *s;
2776 s = gdbserver_state;
2778 if (gdbserver_fd < 0 || s->fd < 0)
2779 return 0;
2780 else
2781 return 1;
2785 gdb_handlesig (CPUArchState *env, int sig)
2787 GDBState *s;
2788 char buf[256];
2789 int n;
2791 s = gdbserver_state;
2792 if (gdbserver_fd < 0 || s->fd < 0)
2793 return sig;
2795 /* disable single step if it was enabled */
2796 cpu_single_step(env, 0);
2797 tb_flush(env);
2799 if (sig != 0)
2801 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2802 put_packet(s, buf);
2804 /* put_packet() might have detected that the peer terminated the
2805 connection. */
2806 if (s->fd < 0)
2807 return sig;
2809 sig = 0;
2810 s->state = RS_IDLE;
2811 s->running_state = 0;
2812 while (s->running_state == 0) {
2813 n = read (s->fd, buf, 256);
2814 if (n > 0)
2816 int i;
2818 for (i = 0; i < n; i++)
2819 gdb_read_byte (s, buf[i]);
2821 else if (n == 0 || errno != EAGAIN)
2823 /* XXX: Connection closed. Should probably wait for another
2824 connection before continuing. */
2825 return sig;
2828 sig = s->signal;
2829 s->signal = 0;
2830 return sig;
2833 /* Tell the remote gdb that the process has exited due to SIG. */
2834 void gdb_signalled(CPUArchState *env, int sig)
2836 GDBState *s;
2837 char buf[4];
2839 s = gdbserver_state;
2840 if (gdbserver_fd < 0 || s->fd < 0)
2841 return;
2843 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2844 put_packet(s, buf);
2847 static void gdb_accept(void)
2849 GDBState *s;
2850 struct sockaddr_in sockaddr;
2851 socklen_t len;
2852 int fd;
2854 for(;;) {
2855 len = sizeof(sockaddr);
2856 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2857 if (fd < 0 && errno != EINTR) {
2858 perror("accept");
2859 return;
2860 } else if (fd >= 0) {
2861 #ifndef _WIN32
2862 fcntl(fd, F_SETFD, FD_CLOEXEC);
2863 #endif
2864 break;
2868 /* set short latency */
2869 socket_set_nodelay(fd);
2871 s = g_malloc0(sizeof(GDBState));
2872 s->c_cpu = first_cpu;
2873 s->g_cpu = first_cpu;
2874 s->fd = fd;
2875 gdb_has_xml = 0;
2877 gdbserver_state = s;
2879 fcntl(fd, F_SETFL, O_NONBLOCK);
2882 static int gdbserver_open(int port)
2884 struct sockaddr_in sockaddr;
2885 int fd, val, ret;
2887 fd = socket(PF_INET, SOCK_STREAM, 0);
2888 if (fd < 0) {
2889 perror("socket");
2890 return -1;
2892 #ifndef _WIN32
2893 fcntl(fd, F_SETFD, FD_CLOEXEC);
2894 #endif
2896 /* allow fast reuse */
2897 val = 1;
2898 qemu_setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &val, sizeof(val));
2900 sockaddr.sin_family = AF_INET;
2901 sockaddr.sin_port = htons(port);
2902 sockaddr.sin_addr.s_addr = 0;
2903 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2904 if (ret < 0) {
2905 perror("bind");
2906 close(fd);
2907 return -1;
2909 ret = listen(fd, 0);
2910 if (ret < 0) {
2911 perror("listen");
2912 close(fd);
2913 return -1;
2915 return fd;
2918 int gdbserver_start(int port)
2920 gdbserver_fd = gdbserver_open(port);
2921 if (gdbserver_fd < 0)
2922 return -1;
2923 /* accept connections */
2924 gdb_accept();
2925 return 0;
2928 /* Disable gdb stub for child processes. */
2929 void gdbserver_fork(CPUArchState *env)
2931 GDBState *s = gdbserver_state;
2932 if (gdbserver_fd < 0 || s->fd < 0)
2933 return;
2934 close(s->fd);
2935 s->fd = -1;
2936 cpu_breakpoint_remove_all(env, BP_GDB);
2937 cpu_watchpoint_remove_all(env, BP_GDB);
2939 #else
2940 static int gdb_chr_can_receive(void *opaque)
2942 /* We can handle an arbitrarily large amount of data.
2943 Pick the maximum packet size, which is as good as anything. */
2944 return MAX_PACKET_LENGTH;
2947 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2949 int i;
2951 for (i = 0; i < size; i++) {
2952 gdb_read_byte(gdbserver_state, buf[i]);
2956 static void gdb_chr_event(void *opaque, int event)
2958 switch (event) {
2959 case CHR_EVENT_OPENED:
2960 vm_stop(RUN_STATE_PAUSED);
2961 gdb_has_xml = 0;
2962 break;
2963 default:
2964 break;
2968 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2970 char buf[MAX_PACKET_LENGTH];
2972 buf[0] = 'O';
2973 if (len > (MAX_PACKET_LENGTH/2) - 1)
2974 len = (MAX_PACKET_LENGTH/2) - 1;
2975 memtohex(buf + 1, (uint8_t *)msg, len);
2976 put_packet(s, buf);
2979 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2981 const char *p = (const char *)buf;
2982 int max_sz;
2984 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2985 for (;;) {
2986 if (len <= max_sz) {
2987 gdb_monitor_output(gdbserver_state, p, len);
2988 break;
2990 gdb_monitor_output(gdbserver_state, p, max_sz);
2991 p += max_sz;
2992 len -= max_sz;
2994 return len;
2997 #ifndef _WIN32
2998 static void gdb_sigterm_handler(int signal)
3000 if (runstate_is_running()) {
3001 vm_stop(RUN_STATE_PAUSED);
3004 #endif
3006 int gdbserver_start(const char *device)
3008 GDBState *s;
3009 char gdbstub_device_name[128];
3010 CharDriverState *chr = NULL;
3011 CharDriverState *mon_chr;
3013 if (!device)
3014 return -1;
3015 if (strcmp(device, "none") != 0) {
3016 if (strstart(device, "tcp:", NULL)) {
3017 /* enforce required TCP attributes */
3018 snprintf(gdbstub_device_name, sizeof(gdbstub_device_name),
3019 "%s,nowait,nodelay,server", device);
3020 device = gdbstub_device_name;
3022 #ifndef _WIN32
3023 else if (strcmp(device, "stdio") == 0) {
3024 struct sigaction act;
3026 memset(&act, 0, sizeof(act));
3027 act.sa_handler = gdb_sigterm_handler;
3028 sigaction(SIGINT, &act, NULL);
3030 #endif
3031 chr = qemu_chr_new("gdb", device, NULL);
3032 if (!chr)
3033 return -1;
3035 qemu_chr_fe_claim_no_fail(chr);
3036 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
3037 gdb_chr_event, NULL);
3040 s = gdbserver_state;
3041 if (!s) {
3042 s = g_malloc0(sizeof(GDBState));
3043 gdbserver_state = s;
3045 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
3047 /* Initialize a monitor terminal for gdb */
3048 mon_chr = g_malloc0(sizeof(*mon_chr));
3049 mon_chr->chr_write = gdb_monitor_write;
3050 monitor_init(mon_chr, 0);
3051 } else {
3052 if (s->chr)
3053 qemu_chr_delete(s->chr);
3054 mon_chr = s->mon_chr;
3055 memset(s, 0, sizeof(GDBState));
3057 s->c_cpu = first_cpu;
3058 s->g_cpu = first_cpu;
3059 s->chr = chr;
3060 s->state = chr ? RS_IDLE : RS_INACTIVE;
3061 s->mon_chr = mon_chr;
3062 s->current_syscall_cb = NULL;
3064 return 0;
3066 #endif