2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
37 #include "migration/vmstate.h"
40 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
41 static void cpu_ppc_tb_start (CPUPPCState
*env
);
43 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
45 CPUState
*cs
= CPU(cpu
);
46 CPUPPCState
*env
= &cpu
->env
;
47 unsigned int old_pending
;
50 /* We may already have the BQL if coming from the reset path */
51 if (!qemu_mutex_iothread_locked()) {
53 qemu_mutex_lock_iothread();
56 old_pending
= env
->pending_interrupts
;
59 env
->pending_interrupts
|= 1 << n_IRQ
;
60 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
62 env
->pending_interrupts
&= ~(1 << n_IRQ
);
63 if (env
->pending_interrupts
== 0) {
64 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
68 if (old_pending
!= env
->pending_interrupts
) {
69 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
73 trace_ppc_irq_set_exit(env
, n_IRQ
, level
, env
->pending_interrupts
,
74 CPU(cpu
)->interrupt_request
);
77 qemu_mutex_unlock_iothread();
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
84 PowerPCCPU
*cpu
= opaque
;
85 CPUPPCState
*env
= &cpu
->env
;
88 trace_ppc_irq_set(env
, pin
, level
);
90 cur_level
= (env
->irq_input_state
>> pin
) & 1;
91 /* Don't generate spurious events */
92 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
93 CPUState
*cs
= CPU(cpu
);
96 case PPC6xx_INPUT_TBEN
:
97 /* Level sensitive - active high */
98 trace_ppc_irq_set_state("time base", level
);
100 cpu_ppc_tb_start(env
);
102 cpu_ppc_tb_stop(env
);
105 case PPC6xx_INPUT_INT
:
106 /* Level sensitive - active high */
107 trace_ppc_irq_set_state("external IRQ", level
);
108 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
110 case PPC6xx_INPUT_SMI
:
111 /* Level sensitive - active high */
112 trace_ppc_irq_set_state("SMI IRQ", level
);
113 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
115 case PPC6xx_INPUT_MCP
:
116 /* Negative edge sensitive */
117 /* XXX: TODO: actual reaction may depends on HID0 status
118 * 603/604/740/750: check HID0[EMCP]
120 if (cur_level
== 1 && level
== 0) {
121 trace_ppc_irq_set_state("machine check", 1);
122 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
125 case PPC6xx_INPUT_CKSTP_IN
:
126 /* Level sensitive - active low */
127 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
128 /* XXX: Note that the only way to restart the CPU is to reset it */
130 trace_ppc_irq_cpu("stop");
134 case PPC6xx_INPUT_HRESET
:
135 /* Level sensitive - active low */
137 trace_ppc_irq_reset("CPU");
138 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
141 case PPC6xx_INPUT_SRESET
:
142 trace_ppc_irq_set_state("RESET IRQ", level
);
143 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
146 g_assert_not_reached();
149 env
->irq_input_state
|= 1 << pin
;
151 env
->irq_input_state
&= ~(1 << pin
);
155 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
157 CPUPPCState
*env
= &cpu
->env
;
159 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
163 #if defined(TARGET_PPC64)
164 /* PowerPC 970 internal IRQ controller */
165 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
167 PowerPCCPU
*cpu
= opaque
;
168 CPUPPCState
*env
= &cpu
->env
;
171 trace_ppc_irq_set(env
, pin
, level
);
173 cur_level
= (env
->irq_input_state
>> pin
) & 1;
174 /* Don't generate spurious events */
175 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
176 CPUState
*cs
= CPU(cpu
);
179 case PPC970_INPUT_INT
:
180 /* Level sensitive - active high */
181 trace_ppc_irq_set_state("external IRQ", level
);
182 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
184 case PPC970_INPUT_THINT
:
185 /* Level sensitive - active high */
186 trace_ppc_irq_set_state("SMI IRQ", level
);
187 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
189 case PPC970_INPUT_MCP
:
190 /* Negative edge sensitive */
191 /* XXX: TODO: actual reaction may depends on HID0 status
192 * 603/604/740/750: check HID0[EMCP]
194 if (cur_level
== 1 && level
== 0) {
195 trace_ppc_irq_set_state("machine check", 1);
196 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
199 case PPC970_INPUT_CKSTP
:
200 /* Level sensitive - active low */
201 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
203 trace_ppc_irq_cpu("stop");
206 trace_ppc_irq_cpu("restart");
211 case PPC970_INPUT_HRESET
:
212 /* Level sensitive - active low */
214 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
217 case PPC970_INPUT_SRESET
:
218 trace_ppc_irq_set_state("RESET IRQ", level
);
219 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
221 case PPC970_INPUT_TBEN
:
222 trace_ppc_irq_set_state("TBEN IRQ", level
);
226 g_assert_not_reached();
229 env
->irq_input_state
|= 1 << pin
;
231 env
->irq_input_state
&= ~(1 << pin
);
235 void ppc970_irq_init(PowerPCCPU
*cpu
)
237 CPUPPCState
*env
= &cpu
->env
;
239 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
243 /* POWER7 internal IRQ controller */
244 static void power7_set_irq(void *opaque
, int pin
, int level
)
246 PowerPCCPU
*cpu
= opaque
;
248 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
251 case POWER7_INPUT_INT
:
252 /* Level sensitive - active high */
253 trace_ppc_irq_set_state("external IRQ", level
);
254 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
257 g_assert_not_reached();
261 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
263 CPUPPCState
*env
= &cpu
->env
;
265 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
269 /* POWER9 internal IRQ controller */
270 static void power9_set_irq(void *opaque
, int pin
, int level
)
272 PowerPCCPU
*cpu
= opaque
;
274 trace_ppc_irq_set(&cpu
->env
, pin
, level
);
277 case POWER9_INPUT_INT
:
278 /* Level sensitive - active high */
279 trace_ppc_irq_set_state("external IRQ", level
);
280 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
282 case POWER9_INPUT_HINT
:
283 /* Level sensitive - active high */
284 trace_ppc_irq_set_state("HV external IRQ", level
);
285 ppc_set_irq(cpu
, PPC_INTERRUPT_HVIRT
, level
);
288 g_assert_not_reached();
293 void ppcPOWER9_irq_init(PowerPCCPU
*cpu
)
295 CPUPPCState
*env
= &cpu
->env
;
297 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power9_set_irq
, cpu
,
300 #endif /* defined(TARGET_PPC64) */
302 void ppc40x_core_reset(PowerPCCPU
*cpu
)
304 CPUPPCState
*env
= &cpu
->env
;
307 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC core\n");
308 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
309 dbsr
= env
->spr
[SPR_40x_DBSR
];
312 env
->spr
[SPR_40x_DBSR
] = dbsr
;
315 void ppc40x_chip_reset(PowerPCCPU
*cpu
)
317 CPUPPCState
*env
= &cpu
->env
;
320 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC chip\n");
321 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_RESET
);
322 /* XXX: TODO reset all internal peripherals */
323 dbsr
= env
->spr
[SPR_40x_DBSR
];
326 env
->spr
[SPR_40x_DBSR
] = dbsr
;
329 void ppc40x_system_reset(PowerPCCPU
*cpu
)
331 qemu_log_mask(CPU_LOG_RESET
, "Reset PowerPC system\n");
332 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
335 void store_40x_dbcr0(CPUPPCState
*env
, uint32_t val
)
337 PowerPCCPU
*cpu
= env_archcpu(env
);
339 qemu_mutex_lock_iothread();
341 switch ((val
>> 28) & 0x3) {
347 ppc40x_core_reset(cpu
);
351 ppc40x_chip_reset(cpu
);
355 ppc40x_system_reset(cpu
);
359 qemu_mutex_unlock_iothread();
362 /* PowerPC 40x internal IRQ controller */
363 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
365 PowerPCCPU
*cpu
= opaque
;
366 CPUPPCState
*env
= &cpu
->env
;
369 trace_ppc_irq_set(env
, pin
, level
);
371 cur_level
= (env
->irq_input_state
>> pin
) & 1;
372 /* Don't generate spurious events */
373 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
374 CPUState
*cs
= CPU(cpu
);
377 case PPC40x_INPUT_RESET_SYS
:
379 trace_ppc_irq_reset("system");
380 ppc40x_system_reset(cpu
);
383 case PPC40x_INPUT_RESET_CHIP
:
385 trace_ppc_irq_reset("chip");
386 ppc40x_chip_reset(cpu
);
389 case PPC40x_INPUT_RESET_CORE
:
390 /* XXX: TODO: update DBSR[MRR] */
392 trace_ppc_irq_reset("core");
393 ppc40x_core_reset(cpu
);
396 case PPC40x_INPUT_CINT
:
397 /* Level sensitive - active high */
398 trace_ppc_irq_set_state("critical IRQ", level
);
399 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
401 case PPC40x_INPUT_INT
:
402 /* Level sensitive - active high */
403 trace_ppc_irq_set_state("external IRQ", level
);
404 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
406 case PPC40x_INPUT_HALT
:
407 /* Level sensitive - active low */
409 trace_ppc_irq_cpu("stop");
412 trace_ppc_irq_cpu("restart");
417 case PPC40x_INPUT_DEBUG
:
418 /* Level sensitive - active high */
419 trace_ppc_irq_set_state("debug pin", level
);
420 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
423 g_assert_not_reached();
426 env
->irq_input_state
|= 1 << pin
;
428 env
->irq_input_state
&= ~(1 << pin
);
432 void ppc40x_irq_init(PowerPCCPU
*cpu
)
434 CPUPPCState
*env
= &cpu
->env
;
436 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
437 cpu
, PPC40x_INPUT_NB
);
440 /* PowerPC E500 internal IRQ controller */
441 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
443 PowerPCCPU
*cpu
= opaque
;
444 CPUPPCState
*env
= &cpu
->env
;
447 trace_ppc_irq_set(env
, pin
, level
);
449 cur_level
= (env
->irq_input_state
>> pin
) & 1;
450 /* Don't generate spurious events */
451 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
453 case PPCE500_INPUT_MCK
:
455 trace_ppc_irq_reset("system");
456 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
459 case PPCE500_INPUT_RESET_CORE
:
461 trace_ppc_irq_reset("core");
462 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
465 case PPCE500_INPUT_CINT
:
466 /* Level sensitive - active high */
467 trace_ppc_irq_set_state("critical IRQ", level
);
468 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
470 case PPCE500_INPUT_INT
:
471 /* Level sensitive - active high */
472 trace_ppc_irq_set_state("core IRQ", level
);
473 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
475 case PPCE500_INPUT_DEBUG
:
476 /* Level sensitive - active high */
477 trace_ppc_irq_set_state("debug pin", level
);
478 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
481 g_assert_not_reached();
484 env
->irq_input_state
|= 1 << pin
;
486 env
->irq_input_state
&= ~(1 << pin
);
490 void ppce500_irq_init(PowerPCCPU
*cpu
)
492 CPUPPCState
*env
= &cpu
->env
;
494 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
495 cpu
, PPCE500_INPUT_NB
);
498 /* Enable or Disable the E500 EPR capability */
499 void ppce500_set_mpic_proxy(bool enabled
)
504 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
506 cpu
->env
.mpic_proxy
= enabled
;
508 kvmppc_set_mpic_proxy(cpu
, enabled
);
513 /*****************************************************************************/
514 /* PowerPC time base and decrementer emulation */
516 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
518 /* TB time in tb periods */
519 return muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
) + tb_offset
;
522 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
524 ppc_tb_t
*tb_env
= env
->tb_env
;
528 return env
->spr
[SPR_TBL
];
531 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
532 trace_ppc_tb_load(tb
);
537 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
539 ppc_tb_t
*tb_env
= env
->tb_env
;
542 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
543 trace_ppc_tb_load(tb
);
548 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
551 return env
->spr
[SPR_TBU
];
554 return _cpu_ppc_load_tbu(env
);
557 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
558 int64_t *tb_offsetp
, uint64_t value
)
560 *tb_offsetp
= value
-
561 muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
563 trace_ppc_tb_store(value
, *tb_offsetp
);
566 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
568 ppc_tb_t
*tb_env
= env
->tb_env
;
571 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
572 tb
&= 0xFFFFFFFF00000000ULL
;
573 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
574 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
577 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
579 ppc_tb_t
*tb_env
= env
->tb_env
;
582 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
583 tb
&= 0x00000000FFFFFFFFULL
;
584 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
585 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
588 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
590 _cpu_ppc_store_tbu(env
, value
);
593 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
595 ppc_tb_t
*tb_env
= env
->tb_env
;
598 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
599 trace_ppc_tb_load(tb
);
604 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
606 ppc_tb_t
*tb_env
= env
->tb_env
;
609 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
610 trace_ppc_tb_load(tb
);
615 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
617 ppc_tb_t
*tb_env
= env
->tb_env
;
620 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
621 tb
&= 0xFFFFFFFF00000000ULL
;
622 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
623 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
626 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
628 ppc_tb_t
*tb_env
= env
->tb_env
;
631 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
632 tb
&= 0x00000000FFFFFFFFULL
;
633 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
634 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
637 uint64_t cpu_ppc_load_vtb(CPUPPCState
*env
)
639 ppc_tb_t
*tb_env
= env
->tb_env
;
641 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
645 void cpu_ppc_store_vtb(CPUPPCState
*env
, uint64_t value
)
647 ppc_tb_t
*tb_env
= env
->tb_env
;
649 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
650 &tb_env
->vtb_offset
, value
);
653 void cpu_ppc_store_tbu40(CPUPPCState
*env
, uint64_t value
)
655 ppc_tb_t
*tb_env
= env
->tb_env
;
658 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
661 tb
|= (value
& ~0xFFFFFFUL
);
662 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
663 &tb_env
->tb_offset
, tb
);
666 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
668 ppc_tb_t
*tb_env
= env
->tb_env
;
669 uint64_t tb
, atb
, vmclk
;
671 /* If the time base is already frozen, do nothing */
672 if (tb_env
->tb_freq
!= 0) {
673 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
674 /* Get the time base */
675 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
676 /* Get the alternate time base */
677 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
678 /* Store the time base value (ie compute the current offset) */
679 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
680 /* Store the alternate time base value (compute the current offset) */
681 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
682 /* Set the time base frequency to zero */
684 /* Now, the time bases are frozen to tb_offset / atb_offset value */
688 static void cpu_ppc_tb_start (CPUPPCState
*env
)
690 ppc_tb_t
*tb_env
= env
->tb_env
;
691 uint64_t tb
, atb
, vmclk
;
693 /* If the time base is not frozen, do nothing */
694 if (tb_env
->tb_freq
== 0) {
695 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
696 /* Get the time base from tb_offset */
697 tb
= tb_env
->tb_offset
;
698 /* Get the alternate time base from atb_offset */
699 atb
= tb_env
->atb_offset
;
700 /* Restore the tb frequency from the decrementer frequency */
701 tb_env
->tb_freq
= tb_env
->decr_freq
;
702 /* Store the time base value */
703 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
704 /* Store the alternate time base value */
705 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
709 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
711 ppc_tb_t
*tb_env
= env
->tb_env
;
712 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
713 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
716 static inline int64_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
718 ppc_tb_t
*tb_env
= env
->tb_env
;
721 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
723 decr
= muldiv64(diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
724 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
727 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
729 trace_ppc_decr_load(decr
);
734 target_ulong
cpu_ppc_load_decr(CPUPPCState
*env
)
736 ppc_tb_t
*tb_env
= env
->tb_env
;
740 return env
->spr
[SPR_DECR
];
743 decr
= _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
746 * If large decrementer is enabled then the decrementer is signed extened
747 * to 64 bits, otherwise it is a 32 bit value.
749 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
752 return (uint32_t) decr
;
755 target_ulong
cpu_ppc_load_hdecr(CPUPPCState
*env
)
757 PowerPCCPU
*cpu
= env_archcpu(env
);
758 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
759 ppc_tb_t
*tb_env
= env
->tb_env
;
762 hdecr
= _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
765 * If we have a large decrementer (POWER9 or later) then hdecr is sign
766 * extended to 64 bits, otherwise it is 32 bits.
768 if (pcc
->lrg_decr_bits
> 32) {
771 return (uint32_t) hdecr
;
774 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
776 ppc_tb_t
*tb_env
= env
->tb_env
;
778 return cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
779 tb_env
->purr_offset
);
782 /* When decrementer expires,
783 * all we need to do is generate or queue a CPU exception
785 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
788 trace_ppc_decr_excp("raise");
789 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
792 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
794 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
797 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
799 CPUPPCState
*env
= &cpu
->env
;
802 trace_ppc_decr_excp("raise HV");
804 /* The architecture specifies that we don't deliver HDEC
805 * interrupts in a PM state. Not only they don't cause a
806 * wakeup but they also get effectively discarded.
808 if (!env
->resume_as_sreset
) {
809 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
813 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
815 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
818 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
820 void (*raise_excp
)(void *),
821 void (*lower_excp
)(PowerPCCPU
*),
822 target_ulong decr
, target_ulong value
,
825 CPUPPCState
*env
= &cpu
->env
;
826 ppc_tb_t
*tb_env
= env
->tb_env
;
828 int64_t signed_value
;
831 /* Truncate value to decr_width and sign extend for simplicity */
832 signed_value
= sextract64(value
, 0, nr_bits
);
833 signed_decr
= sextract64(decr
, 0, nr_bits
);
835 trace_ppc_decr_store(nr_bits
, decr
, value
);
838 /* KVM handles decrementer exceptions, we don't need our own timer */
843 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
846 * If we get a really small DEC value, we can assume that by the time we
847 * handled it we should inject an interrupt already.
849 * On MSB level based DEC implementations the MSB always means the interrupt
850 * is pending, so raise it on those.
852 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
853 * an edge interrupt, so raise it here too.
856 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
) && signed_value
< 0) ||
857 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && signed_value
< 0
858 && signed_decr
>= 0)) {
863 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
864 if (signed_value
>= 0 && (tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
868 /* Calculate the next timer event */
869 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
870 next
= now
+ muldiv64(value
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
874 timer_mod(timer
, next
);
877 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, target_ulong decr
,
878 target_ulong value
, int nr_bits
)
880 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
882 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
883 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
, decr
,
887 void cpu_ppc_store_decr(CPUPPCState
*env
, target_ulong value
)
889 PowerPCCPU
*cpu
= env_archcpu(env
);
890 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
893 if (env
->spr
[SPR_LPCR
] & LPCR_LD
) {
894 nr_bits
= pcc
->lrg_decr_bits
;
897 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
, nr_bits
);
900 static void cpu_ppc_decr_cb(void *opaque
)
902 PowerPCCPU
*cpu
= opaque
;
904 cpu_ppc_decr_excp(cpu
);
907 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, target_ulong hdecr
,
908 target_ulong value
, int nr_bits
)
910 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
912 if (tb_env
->hdecr_timer
!= NULL
) {
913 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
914 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
915 hdecr
, value
, nr_bits
);
919 void cpu_ppc_store_hdecr(CPUPPCState
*env
, target_ulong value
)
921 PowerPCCPU
*cpu
= env_archcpu(env
);
922 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
924 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
,
928 static void cpu_ppc_hdecr_cb(void *opaque
)
930 PowerPCCPU
*cpu
= opaque
;
932 cpu_ppc_hdecr_excp(cpu
);
935 void cpu_ppc_store_purr(CPUPPCState
*env
, uint64_t value
)
937 ppc_tb_t
*tb_env
= env
->tb_env
;
939 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
940 &tb_env
->purr_offset
, value
);
943 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
945 CPUPPCState
*env
= opaque
;
946 PowerPCCPU
*cpu
= env_archcpu(env
);
947 ppc_tb_t
*tb_env
= env
->tb_env
;
949 tb_env
->tb_freq
= freq
;
950 tb_env
->decr_freq
= freq
;
951 /* There is a bug in Linux 2.4 kernels:
952 * if a decrementer exception is pending when it enables msr_ee at startup,
953 * it's not ready to handle it...
955 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
956 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF, 32);
957 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
960 static void timebase_save(PPCTimebase
*tb
)
962 uint64_t ticks
= cpu_get_host_ticks();
963 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
965 if (!first_ppc_cpu
->env
.tb_env
) {
966 error_report("No timebase object");
970 /* not used anymore, we keep it for compatibility */
971 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
973 * tb_offset is only expected to be changed by QEMU so
974 * there is no need to update it from KVM here
976 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
978 tb
->runstate_paused
=
979 runstate_check(RUN_STATE_PAUSED
) || runstate_check(RUN_STATE_SAVE_VM
);
982 static void timebase_load(PPCTimebase
*tb
)
985 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
986 int64_t tb_off_adj
, tb_off
;
989 if (!first_ppc_cpu
->env
.tb_env
) {
990 error_report("No timebase object");
994 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
996 tb_off_adj
= tb
->guest_timebase
- cpu_get_host_ticks();
998 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
999 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
1000 (tb_off_adj
- tb_off
) / freq
);
1002 /* Set new offset to all CPUs */
1004 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
1005 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
1006 kvmppc_set_reg_tb_offset(pcpu
, pcpu
->env
.tb_env
->tb_offset
);
1010 void cpu_ppc_clock_vm_state_change(void *opaque
, bool running
,
1013 PPCTimebase
*tb
= opaque
;
1023 * When migrating a running guest, read the clock just
1024 * before migration, so that the guest clock counts
1025 * during the events between:
1031 * This reduces clock difference on migration from 5s
1032 * to 0.1s (when max_downtime == 5s), because sending the
1033 * final pages of memory (which happens between vm_stop()
1034 * and pre_save()) takes max_downtime.
1036 static int timebase_pre_save(void *opaque
)
1038 PPCTimebase
*tb
= opaque
;
1040 /* guest_timebase won't be overridden in case of paused guest or savevm */
1041 if (!tb
->runstate_paused
) {
1048 const VMStateDescription vmstate_ppc_timebase
= {
1051 .minimum_version_id
= 1,
1052 .pre_save
= timebase_pre_save
,
1053 .fields
= (VMStateField
[]) {
1054 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
1055 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
1056 VMSTATE_END_OF_LIST()
1060 /* Set up (once) timebase frequency (in Hz) */
1061 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
1063 PowerPCCPU
*cpu
= env_archcpu(env
);
1066 tb_env
= g_new0(ppc_tb_t
, 1);
1067 env
->tb_env
= tb_env
;
1068 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1069 if (is_book3s_arch2x(env
)) {
1070 /* All Book3S 64bit CPUs implement level based DEC logic */
1071 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
1073 /* Create new timer */
1074 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
1075 if (env
->has_hv_mode
&& !cpu
->vhyp
) {
1076 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
1079 tb_env
->hdecr_timer
= NULL
;
1081 cpu_ppc_set_tb_clk(env
, freq
);
1083 return &cpu_ppc_set_tb_clk
;
1086 /* cpu_ppc_hdecr_init may be used if the timer is not used by HDEC emulation */
1087 void cpu_ppc_hdecr_init(CPUPPCState
*env
)
1089 PowerPCCPU
*cpu
= env_archcpu(env
);
1091 assert(env
->tb_env
->hdecr_timer
== NULL
);
1093 env
->tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
,
1094 &cpu_ppc_hdecr_cb
, cpu
);
1097 void cpu_ppc_hdecr_exit(CPUPPCState
*env
)
1099 PowerPCCPU
*cpu
= env_archcpu(env
);
1101 timer_free(env
->tb_env
->hdecr_timer
);
1102 env
->tb_env
->hdecr_timer
= NULL
;
1104 cpu_ppc_hdecr_lower(cpu
);
1107 /*****************************************************************************/
1108 /* PowerPC 40x timers */
1110 /* PIT, FIT & WDT */
1111 typedef struct ppc40x_timer_t ppc40x_timer_t
;
1112 struct ppc40x_timer_t
{
1113 uint64_t pit_reload
; /* PIT auto-reload value */
1114 uint64_t fit_next
; /* Tick for next FIT interrupt */
1115 QEMUTimer
*fit_timer
;
1116 uint64_t wdt_next
; /* Tick for next WDT interrupt */
1117 QEMUTimer
*wdt_timer
;
1119 /* 405 have the PIT, 440 have a DECR. */
1120 unsigned int decr_excp
;
1123 /* Fixed interval timer */
1124 static void cpu_4xx_fit_cb (void *opaque
)
1126 PowerPCCPU
*cpu
= opaque
;
1127 CPUPPCState
*env
= &cpu
->env
;
1129 ppc40x_timer_t
*ppc40x_timer
;
1132 tb_env
= env
->tb_env
;
1133 ppc40x_timer
= tb_env
->opaque
;
1134 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1135 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1149 /* Cannot occur, but makes gcc happy */
1152 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->tb_freq
);
1155 timer_mod(ppc40x_timer
->fit_timer
, next
);
1156 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1157 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1158 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1160 trace_ppc4xx_fit((int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1161 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1164 /* Programmable interval timer */
1165 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1167 ppc40x_timer_t
*ppc40x_timer
;
1170 ppc40x_timer
= tb_env
->opaque
;
1171 if (ppc40x_timer
->pit_reload
<= 1 ||
1172 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1173 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1175 trace_ppc4xx_pit_stop();
1176 timer_del(tb_env
->decr_timer
);
1178 trace_ppc4xx_pit_start(ppc40x_timer
->pit_reload
);
1179 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1180 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1181 NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1183 next
+= tb_env
->decr_next
- now
;
1186 timer_mod(tb_env
->decr_timer
, next
);
1187 tb_env
->decr_next
= next
;
1191 static void cpu_4xx_pit_cb (void *opaque
)
1193 PowerPCCPU
*cpu
= opaque
;
1194 CPUPPCState
*env
= &cpu
->env
;
1196 ppc40x_timer_t
*ppc40x_timer
;
1198 tb_env
= env
->tb_env
;
1199 ppc40x_timer
= tb_env
->opaque
;
1200 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1201 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1202 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1204 start_stop_pit(env
, tb_env
, 1);
1205 trace_ppc4xx_pit((int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1206 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1207 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1208 ppc40x_timer
->pit_reload
);
1211 /* Watchdog timer */
1212 static void cpu_4xx_wdt_cb (void *opaque
)
1214 PowerPCCPU
*cpu
= opaque
;
1215 CPUPPCState
*env
= &cpu
->env
;
1217 ppc40x_timer_t
*ppc40x_timer
;
1220 tb_env
= env
->tb_env
;
1221 ppc40x_timer
= tb_env
->opaque
;
1222 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1223 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1237 /* Cannot occur, but makes gcc happy */
1240 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1243 trace_ppc4xx_wdt(env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1244 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1247 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1248 ppc40x_timer
->wdt_next
= next
;
1249 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1252 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1253 ppc40x_timer
->wdt_next
= next
;
1254 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1255 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1256 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1260 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1261 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1262 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1266 case 0x1: /* Core reset */
1267 ppc40x_core_reset(cpu
);
1269 case 0x2: /* Chip reset */
1270 ppc40x_chip_reset(cpu
);
1272 case 0x3: /* System reset */
1273 ppc40x_system_reset(cpu
);
1279 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1282 ppc40x_timer_t
*ppc40x_timer
;
1284 tb_env
= env
->tb_env
;
1285 ppc40x_timer
= tb_env
->opaque
;
1286 trace_ppc40x_store_pit(val
);
1287 ppc40x_timer
->pit_reload
= val
;
1288 start_stop_pit(env
, tb_env
, 0);
1291 target_ulong
load_40x_pit (CPUPPCState
*env
)
1293 return cpu_ppc_load_decr(env
);
1296 void store_40x_tsr(CPUPPCState
*env
, target_ulong val
)
1298 PowerPCCPU
*cpu
= env_archcpu(env
);
1300 trace_ppc40x_store_tcr(val
);
1302 env
->spr
[SPR_40x_TSR
] &= ~(val
& 0xFC000000);
1303 if (val
& 0x80000000) {
1304 ppc_set_irq(cpu
, PPC_INTERRUPT_PIT
, 0);
1308 void store_40x_tcr(CPUPPCState
*env
, target_ulong val
)
1310 PowerPCCPU
*cpu
= env_archcpu(env
);
1313 trace_ppc40x_store_tsr(val
);
1315 tb_env
= env
->tb_env
;
1316 env
->spr
[SPR_40x_TCR
] = val
& 0xFFC00000;
1317 start_stop_pit(env
, tb_env
, 1);
1318 cpu_4xx_wdt_cb(cpu
);
1321 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1323 CPUPPCState
*env
= opaque
;
1324 ppc_tb_t
*tb_env
= env
->tb_env
;
1326 trace_ppc40x_set_tb_clk(freq
);
1327 tb_env
->tb_freq
= freq
;
1328 tb_env
->decr_freq
= freq
;
1329 /* XXX: we should also update all timers */
1332 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1333 unsigned int decr_excp
)
1336 ppc40x_timer_t
*ppc40x_timer
;
1337 PowerPCCPU
*cpu
= env_archcpu(env
);
1339 trace_ppc40x_timers_init(freq
);
1341 tb_env
= g_new0(ppc_tb_t
, 1);
1342 ppc40x_timer
= g_new0(ppc40x_timer_t
, 1);
1344 env
->tb_env
= tb_env
;
1345 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1346 tb_env
->tb_freq
= freq
;
1347 tb_env
->decr_freq
= freq
;
1348 tb_env
->opaque
= ppc40x_timer
;
1350 /* We use decr timer for PIT */
1351 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, cpu
);
1352 ppc40x_timer
->fit_timer
=
1353 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, cpu
);
1354 ppc40x_timer
->wdt_timer
=
1355 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, cpu
);
1356 ppc40x_timer
->decr_excp
= decr_excp
;
1358 return &ppc_40x_set_tb_clk
;
1361 /*****************************************************************************/
1362 /* Embedded PowerPC Device Control Registers */
1363 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1365 dcr_read_cb dcr_read
;
1366 dcr_write_cb dcr_write
;
1370 /* XXX: on 460, DCR addresses are 32 bits wide,
1371 * using DCRIPR to get the 22 upper bits of the DCR address
1373 #define DCRN_NB 1024
1375 ppc_dcrn_t dcrn
[DCRN_NB
];
1376 int (*read_error
)(int dcrn
);
1377 int (*write_error
)(int dcrn
);
1380 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1384 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1386 dcr
= &dcr_env
->dcrn
[dcrn
];
1387 if (dcr
->dcr_read
== NULL
)
1389 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1390 trace_ppc_dcr_read(dcrn
, *valp
);
1395 if (dcr_env
->read_error
!= NULL
)
1396 return (*dcr_env
->read_error
)(dcrn
);
1401 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1405 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1407 dcr
= &dcr_env
->dcrn
[dcrn
];
1408 if (dcr
->dcr_write
== NULL
)
1410 trace_ppc_dcr_write(dcrn
, val
);
1411 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1416 if (dcr_env
->write_error
!= NULL
)
1417 return (*dcr_env
->write_error
)(dcrn
);
1422 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1423 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1428 dcr_env
= env
->dcr_env
;
1429 if (dcr_env
== NULL
)
1431 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1433 dcr
= &dcr_env
->dcrn
[dcrn
];
1434 if (dcr
->opaque
!= NULL
||
1435 dcr
->dcr_read
!= NULL
||
1436 dcr
->dcr_write
!= NULL
)
1438 dcr
->opaque
= opaque
;
1439 dcr
->dcr_read
= dcr_read
;
1440 dcr
->dcr_write
= dcr_write
;
1445 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1446 int (*write_error
)(int dcrn
))
1450 dcr_env
= g_new0(ppc_dcr_t
, 1);
1451 dcr_env
->read_error
= read_error
;
1452 dcr_env
->write_error
= write_error
;
1453 env
->dcr_env
= dcr_env
;
1458 /*****************************************************************************/
1460 int ppc_cpu_pir(PowerPCCPU
*cpu
)
1462 CPUPPCState
*env
= &cpu
->env
;
1463 return env
->spr_cb
[SPR_PIR
].default_value
;
1466 PowerPCCPU
*ppc_get_vcpu_by_pir(int pir
)
1471 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1473 if (ppc_cpu_pir(cpu
) == pir
) {
1481 void ppc_irq_reset(PowerPCCPU
*cpu
)
1483 CPUPPCState
*env
= &cpu
->env
;
1485 env
->irq_input_state
= 0;
1486 kvmppc_set_interrupt(cpu
, PPC_INTERRUPT_EXT
, 0);