avocado/ppc_prep_40p.py: check TCG accel in all tests
[qemu.git] / target / arm / translate-a64.c
blobd1a59fad9c26e8af9aa9a95d88036ce94c90f0ac
1 /*
2 * AArch64 translation
4 * Copyright (c) 2013 Alexander Graf <agraf@suse.de>
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "tcg/tcg-op.h"
24 #include "tcg/tcg-op-gvec.h"
25 #include "qemu/log.h"
26 #include "arm_ldst.h"
27 #include "translate.h"
28 #include "internals.h"
29 #include "qemu/host-utils.h"
31 #include "semihosting/semihost.h"
32 #include "exec/gen-icount.h"
34 #include "exec/helper-proto.h"
35 #include "exec/helper-gen.h"
36 #include "exec/log.h"
38 #include "translate-a64.h"
39 #include "qemu/atomic128.h"
41 static TCGv_i64 cpu_X[32];
42 static TCGv_i64 cpu_pc;
44 /* Load/store exclusive handling */
45 static TCGv_i64 cpu_exclusive_high;
47 static const char *regnames[] = {
48 "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
49 "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
50 "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
51 "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp"
54 enum a64_shift_type {
55 A64_SHIFT_TYPE_LSL = 0,
56 A64_SHIFT_TYPE_LSR = 1,
57 A64_SHIFT_TYPE_ASR = 2,
58 A64_SHIFT_TYPE_ROR = 3
61 /* Table based decoder typedefs - used when the relevant bits for decode
62 * are too awkwardly scattered across the instruction (eg SIMD).
64 typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
66 typedef struct AArch64DecodeTable {
67 uint32_t pattern;
68 uint32_t mask;
69 AArch64DecodeFn *disas_fn;
70 } AArch64DecodeTable;
72 /* initialize TCG globals. */
73 void a64_translate_init(void)
75 int i;
77 cpu_pc = tcg_global_mem_new_i64(cpu_env,
78 offsetof(CPUARMState, pc),
79 "pc");
80 for (i = 0; i < 32; i++) {
81 cpu_X[i] = tcg_global_mem_new_i64(cpu_env,
82 offsetof(CPUARMState, xregs[i]),
83 regnames[i]);
86 cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env,
87 offsetof(CPUARMState, exclusive_high), "exclusive_high");
91 * Return the core mmu_idx to use for A64 "unprivileged load/store" insns
93 static int get_a64_user_mem_index(DisasContext *s)
96 * If AccType_UNPRIV is not used, the insn uses AccType_NORMAL,
97 * which is the usual mmu_idx for this cpu state.
99 ARMMMUIdx useridx = s->mmu_idx;
101 if (s->unpriv) {
103 * We have pre-computed the condition for AccType_UNPRIV.
104 * Therefore we should never get here with a mmu_idx for
105 * which we do not know the corresponding user mmu_idx.
107 switch (useridx) {
108 case ARMMMUIdx_E10_1:
109 case ARMMMUIdx_E10_1_PAN:
110 useridx = ARMMMUIdx_E10_0;
111 break;
112 case ARMMMUIdx_E20_2:
113 case ARMMMUIdx_E20_2_PAN:
114 useridx = ARMMMUIdx_E20_0;
115 break;
116 case ARMMMUIdx_SE10_1:
117 case ARMMMUIdx_SE10_1_PAN:
118 useridx = ARMMMUIdx_SE10_0;
119 break;
120 case ARMMMUIdx_SE20_2:
121 case ARMMMUIdx_SE20_2_PAN:
122 useridx = ARMMMUIdx_SE20_0;
123 break;
124 default:
125 g_assert_not_reached();
128 return arm_to_core_mmu_idx(useridx);
131 static void reset_btype(DisasContext *s)
133 if (s->btype != 0) {
134 TCGv_i32 zero = tcg_const_i32(0);
135 tcg_gen_st_i32(zero, cpu_env, offsetof(CPUARMState, btype));
136 tcg_temp_free_i32(zero);
137 s->btype = 0;
141 static void set_btype(DisasContext *s, int val)
143 TCGv_i32 tcg_val;
145 /* BTYPE is a 2-bit field, and 0 should be done with reset_btype. */
146 tcg_debug_assert(val >= 1 && val <= 3);
148 tcg_val = tcg_const_i32(val);
149 tcg_gen_st_i32(tcg_val, cpu_env, offsetof(CPUARMState, btype));
150 tcg_temp_free_i32(tcg_val);
151 s->btype = -1;
154 void gen_a64_set_pc_im(uint64_t val)
156 tcg_gen_movi_i64(cpu_pc, val);
160 * Handle Top Byte Ignore (TBI) bits.
162 * If address tagging is enabled via the TCR TBI bits:
163 * + for EL2 and EL3 there is only one TBI bit, and if it is set
164 * then the address is zero-extended, clearing bits [63:56]
165 * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0
166 * and TBI1 controls addressses with bit 55 == 1.
167 * If the appropriate TBI bit is set for the address then
168 * the address is sign-extended from bit 55 into bits [63:56]
170 * Here We have concatenated TBI{1,0} into tbi.
172 static void gen_top_byte_ignore(DisasContext *s, TCGv_i64 dst,
173 TCGv_i64 src, int tbi)
175 if (tbi == 0) {
176 /* Load unmodified address */
177 tcg_gen_mov_i64(dst, src);
178 } else if (!regime_has_2_ranges(s->mmu_idx)) {
179 /* Force tag byte to all zero */
180 tcg_gen_extract_i64(dst, src, 0, 56);
181 } else {
182 /* Sign-extend from bit 55. */
183 tcg_gen_sextract_i64(dst, src, 0, 56);
185 switch (tbi) {
186 case 1:
187 /* tbi0 but !tbi1: only use the extension if positive */
188 tcg_gen_and_i64(dst, dst, src);
189 break;
190 case 2:
191 /* !tbi0 but tbi1: only use the extension if negative */
192 tcg_gen_or_i64(dst, dst, src);
193 break;
194 case 3:
195 /* tbi0 and tbi1: always use the extension */
196 break;
197 default:
198 g_assert_not_reached();
203 static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src)
206 * If address tagging is enabled for instructions via the TCR TBI bits,
207 * then loading an address into the PC will clear out any tag.
209 gen_top_byte_ignore(s, cpu_pc, src, s->tbii);
213 * Handle MTE and/or TBI.
215 * For TBI, ideally, we would do nothing. Proper behaviour on fault is
216 * for the tag to be present in the FAR_ELx register. But for user-only
217 * mode we do not have a TLB with which to implement this, so we must
218 * remove the top byte now.
220 * Always return a fresh temporary that we can increment independently
221 * of the write-back address.
224 TCGv_i64 clean_data_tbi(DisasContext *s, TCGv_i64 addr)
226 TCGv_i64 clean = new_tmp_a64(s);
227 #ifdef CONFIG_USER_ONLY
228 gen_top_byte_ignore(s, clean, addr, s->tbid);
229 #else
230 tcg_gen_mov_i64(clean, addr);
231 #endif
232 return clean;
235 /* Insert a zero tag into src, with the result at dst. */
236 static void gen_address_with_allocation_tag0(TCGv_i64 dst, TCGv_i64 src)
238 tcg_gen_andi_i64(dst, src, ~MAKE_64BIT_MASK(56, 4));
241 static void gen_probe_access(DisasContext *s, TCGv_i64 ptr,
242 MMUAccessType acc, int log2_size)
244 TCGv_i32 t_acc = tcg_const_i32(acc);
245 TCGv_i32 t_idx = tcg_const_i32(get_mem_index(s));
246 TCGv_i32 t_size = tcg_const_i32(1 << log2_size);
248 gen_helper_probe_access(cpu_env, ptr, t_acc, t_idx, t_size);
249 tcg_temp_free_i32(t_acc);
250 tcg_temp_free_i32(t_idx);
251 tcg_temp_free_i32(t_size);
255 * For MTE, check a single logical or atomic access. This probes a single
256 * address, the exact one specified. The size and alignment of the access
257 * is not relevant to MTE, per se, but watchpoints do require the size,
258 * and we want to recognize those before making any other changes to state.
260 static TCGv_i64 gen_mte_check1_mmuidx(DisasContext *s, TCGv_i64 addr,
261 bool is_write, bool tag_checked,
262 int log2_size, bool is_unpriv,
263 int core_idx)
265 if (tag_checked && s->mte_active[is_unpriv]) {
266 TCGv_i32 tcg_desc;
267 TCGv_i64 ret;
268 int desc = 0;
270 desc = FIELD_DP32(desc, MTEDESC, MIDX, core_idx);
271 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
272 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
273 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
274 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, (1 << log2_size) - 1);
275 tcg_desc = tcg_const_i32(desc);
277 ret = new_tmp_a64(s);
278 gen_helper_mte_check(ret, cpu_env, tcg_desc, addr);
279 tcg_temp_free_i32(tcg_desc);
281 return ret;
283 return clean_data_tbi(s, addr);
286 TCGv_i64 gen_mte_check1(DisasContext *s, TCGv_i64 addr, bool is_write,
287 bool tag_checked, int log2_size)
289 return gen_mte_check1_mmuidx(s, addr, is_write, tag_checked, log2_size,
290 false, get_mem_index(s));
294 * For MTE, check multiple logical sequential accesses.
296 TCGv_i64 gen_mte_checkN(DisasContext *s, TCGv_i64 addr, bool is_write,
297 bool tag_checked, int size)
299 if (tag_checked && s->mte_active[0]) {
300 TCGv_i32 tcg_desc;
301 TCGv_i64 ret;
302 int desc = 0;
304 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
305 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
306 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
307 desc = FIELD_DP32(desc, MTEDESC, WRITE, is_write);
308 desc = FIELD_DP32(desc, MTEDESC, SIZEM1, size - 1);
309 tcg_desc = tcg_const_i32(desc);
311 ret = new_tmp_a64(s);
312 gen_helper_mte_check(ret, cpu_env, tcg_desc, addr);
313 tcg_temp_free_i32(tcg_desc);
315 return ret;
317 return clean_data_tbi(s, addr);
320 typedef struct DisasCompare64 {
321 TCGCond cond;
322 TCGv_i64 value;
323 } DisasCompare64;
325 static void a64_test_cc(DisasCompare64 *c64, int cc)
327 DisasCompare c32;
329 arm_test_cc(&c32, cc);
331 /* Sign-extend the 32-bit value so that the GE/LT comparisons work
332 * properly. The NE/EQ comparisons are also fine with this choice. */
333 c64->cond = c32.cond;
334 c64->value = tcg_temp_new_i64();
335 tcg_gen_ext_i32_i64(c64->value, c32.value);
337 arm_free_cc(&c32);
340 static void a64_free_cc(DisasCompare64 *c64)
342 tcg_temp_free_i64(c64->value);
345 static void gen_exception_internal(int excp)
347 TCGv_i32 tcg_excp = tcg_const_i32(excp);
349 assert(excp_is_internal(excp));
350 gen_helper_exception_internal(cpu_env, tcg_excp);
351 tcg_temp_free_i32(tcg_excp);
354 static void gen_exception_internal_insn(DisasContext *s, uint64_t pc, int excp)
356 gen_a64_set_pc_im(pc);
357 gen_exception_internal(excp);
358 s->base.is_jmp = DISAS_NORETURN;
361 static void gen_exception_bkpt_insn(DisasContext *s, uint32_t syndrome)
363 TCGv_i32 tcg_syn;
365 gen_a64_set_pc_im(s->pc_curr);
366 tcg_syn = tcg_const_i32(syndrome);
367 gen_helper_exception_bkpt_insn(cpu_env, tcg_syn);
368 tcg_temp_free_i32(tcg_syn);
369 s->base.is_jmp = DISAS_NORETURN;
372 static void gen_step_complete_exception(DisasContext *s)
374 /* We just completed step of an insn. Move from Active-not-pending
375 * to Active-pending, and then also take the swstep exception.
376 * This corresponds to making the (IMPDEF) choice to prioritize
377 * swstep exceptions over asynchronous exceptions taken to an exception
378 * level where debug is disabled. This choice has the advantage that
379 * we do not need to maintain internal state corresponding to the
380 * ISV/EX syndrome bits between completion of the step and generation
381 * of the exception, and our syndrome information is always correct.
383 gen_ss_advance(s);
384 gen_swstep_exception(s, 1, s->is_ldex);
385 s->base.is_jmp = DISAS_NORETURN;
388 static inline bool use_goto_tb(DisasContext *s, uint64_t dest)
390 if (s->ss_active) {
391 return false;
393 return translator_use_goto_tb(&s->base, dest);
396 static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest)
398 if (use_goto_tb(s, dest)) {
399 tcg_gen_goto_tb(n);
400 gen_a64_set_pc_im(dest);
401 tcg_gen_exit_tb(s->base.tb, n);
402 s->base.is_jmp = DISAS_NORETURN;
403 } else {
404 gen_a64_set_pc_im(dest);
405 if (s->ss_active) {
406 gen_step_complete_exception(s);
407 } else {
408 tcg_gen_lookup_and_goto_ptr();
409 s->base.is_jmp = DISAS_NORETURN;
414 static void init_tmp_a64_array(DisasContext *s)
416 #ifdef CONFIG_DEBUG_TCG
417 memset(s->tmp_a64, 0, sizeof(s->tmp_a64));
418 #endif
419 s->tmp_a64_count = 0;
422 static void free_tmp_a64(DisasContext *s)
424 int i;
425 for (i = 0; i < s->tmp_a64_count; i++) {
426 tcg_temp_free_i64(s->tmp_a64[i]);
428 init_tmp_a64_array(s);
431 TCGv_i64 new_tmp_a64(DisasContext *s)
433 assert(s->tmp_a64_count < TMP_A64_MAX);
434 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64();
437 TCGv_i64 new_tmp_a64_local(DisasContext *s)
439 assert(s->tmp_a64_count < TMP_A64_MAX);
440 return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_local_new_i64();
443 TCGv_i64 new_tmp_a64_zero(DisasContext *s)
445 TCGv_i64 t = new_tmp_a64(s);
446 tcg_gen_movi_i64(t, 0);
447 return t;
451 * Register access functions
453 * These functions are used for directly accessing a register in where
454 * changes to the final register value are likely to be made. If you
455 * need to use a register for temporary calculation (e.g. index type
456 * operations) use the read_* form.
458 * B1.2.1 Register mappings
460 * In instruction register encoding 31 can refer to ZR (zero register) or
461 * the SP (stack pointer) depending on context. In QEMU's case we map SP
462 * to cpu_X[31] and ZR accesses to a temporary which can be discarded.
463 * This is the point of the _sp forms.
465 TCGv_i64 cpu_reg(DisasContext *s, int reg)
467 if (reg == 31) {
468 return new_tmp_a64_zero(s);
469 } else {
470 return cpu_X[reg];
474 /* register access for when 31 == SP */
475 TCGv_i64 cpu_reg_sp(DisasContext *s, int reg)
477 return cpu_X[reg];
480 /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64
481 * representing the register contents. This TCGv is an auto-freed
482 * temporary so it need not be explicitly freed, and may be modified.
484 TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf)
486 TCGv_i64 v = new_tmp_a64(s);
487 if (reg != 31) {
488 if (sf) {
489 tcg_gen_mov_i64(v, cpu_X[reg]);
490 } else {
491 tcg_gen_ext32u_i64(v, cpu_X[reg]);
493 } else {
494 tcg_gen_movi_i64(v, 0);
496 return v;
499 TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf)
501 TCGv_i64 v = new_tmp_a64(s);
502 if (sf) {
503 tcg_gen_mov_i64(v, cpu_X[reg]);
504 } else {
505 tcg_gen_ext32u_i64(v, cpu_X[reg]);
507 return v;
510 /* Return the offset into CPUARMState of a slice (from
511 * the least significant end) of FP register Qn (ie
512 * Dn, Sn, Hn or Bn).
513 * (Note that this is not the same mapping as for A32; see cpu.h)
515 static inline int fp_reg_offset(DisasContext *s, int regno, MemOp size)
517 return vec_reg_offset(s, regno, 0, size);
520 /* Offset of the high half of the 128 bit vector Qn */
521 static inline int fp_reg_hi_offset(DisasContext *s, int regno)
523 return vec_reg_offset(s, regno, 1, MO_64);
526 /* Convenience accessors for reading and writing single and double
527 * FP registers. Writing clears the upper parts of the associated
528 * 128 bit vector register, as required by the architecture.
529 * Note that unlike the GP register accessors, the values returned
530 * by the read functions must be manually freed.
532 static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
534 TCGv_i64 v = tcg_temp_new_i64();
536 tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64));
537 return v;
540 static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
542 TCGv_i32 v = tcg_temp_new_i32();
544 tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32));
545 return v;
548 static TCGv_i32 read_fp_hreg(DisasContext *s, int reg)
550 TCGv_i32 v = tcg_temp_new_i32();
552 tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16));
553 return v;
556 /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64).
557 * If SVE is not enabled, then there are only 128 bits in the vector.
559 static void clear_vec_high(DisasContext *s, bool is_q, int rd)
561 unsigned ofs = fp_reg_offset(s, rd, MO_64);
562 unsigned vsz = vec_full_reg_size(s);
564 /* Nop move, with side effect of clearing the tail. */
565 tcg_gen_gvec_mov(MO_64, ofs, ofs, is_q ? 16 : 8, vsz);
568 void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
570 unsigned ofs = fp_reg_offset(s, reg, MO_64);
572 tcg_gen_st_i64(v, cpu_env, ofs);
573 clear_vec_high(s, false, reg);
576 static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
578 TCGv_i64 tmp = tcg_temp_new_i64();
580 tcg_gen_extu_i32_i64(tmp, v);
581 write_fp_dreg(s, reg, tmp);
582 tcg_temp_free_i64(tmp);
585 /* Expand a 2-operand AdvSIMD vector operation using an expander function. */
586 static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn,
587 GVecGen2Fn *gvec_fn, int vece)
589 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
590 is_q ? 16 : 8, vec_full_reg_size(s));
593 /* Expand a 2-operand + immediate AdvSIMD vector operation using
594 * an expander function.
596 static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn,
597 int64_t imm, GVecGen2iFn *gvec_fn, int vece)
599 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
600 imm, is_q ? 16 : 8, vec_full_reg_size(s));
603 /* Expand a 3-operand AdvSIMD vector operation using an expander function. */
604 static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm,
605 GVecGen3Fn *gvec_fn, int vece)
607 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
608 vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s));
611 /* Expand a 4-operand AdvSIMD vector operation using an expander function. */
612 static void gen_gvec_fn4(DisasContext *s, bool is_q, int rd, int rn, int rm,
613 int rx, GVecGen4Fn *gvec_fn, int vece)
615 gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn),
616 vec_full_reg_offset(s, rm), vec_full_reg_offset(s, rx),
617 is_q ? 16 : 8, vec_full_reg_size(s));
620 /* Expand a 2-operand operation using an out-of-line helper. */
621 static void gen_gvec_op2_ool(DisasContext *s, bool is_q, int rd,
622 int rn, int data, gen_helper_gvec_2 *fn)
624 tcg_gen_gvec_2_ool(vec_full_reg_offset(s, rd),
625 vec_full_reg_offset(s, rn),
626 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
629 /* Expand a 3-operand operation using an out-of-line helper. */
630 static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd,
631 int rn, int rm, int data, gen_helper_gvec_3 *fn)
633 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
634 vec_full_reg_offset(s, rn),
635 vec_full_reg_offset(s, rm),
636 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
639 /* Expand a 3-operand + fpstatus pointer + simd data value operation using
640 * an out-of-line helper.
642 static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn,
643 int rm, bool is_fp16, int data,
644 gen_helper_gvec_3_ptr *fn)
646 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
647 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
648 vec_full_reg_offset(s, rn),
649 vec_full_reg_offset(s, rm), fpst,
650 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
651 tcg_temp_free_ptr(fpst);
654 /* Expand a 3-operand + qc + operation using an out-of-line helper. */
655 static void gen_gvec_op3_qc(DisasContext *s, bool is_q, int rd, int rn,
656 int rm, gen_helper_gvec_3_ptr *fn)
658 TCGv_ptr qc_ptr = tcg_temp_new_ptr();
660 tcg_gen_addi_ptr(qc_ptr, cpu_env, offsetof(CPUARMState, vfp.qc));
661 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
662 vec_full_reg_offset(s, rn),
663 vec_full_reg_offset(s, rm), qc_ptr,
664 is_q ? 16 : 8, vec_full_reg_size(s), 0, fn);
665 tcg_temp_free_ptr(qc_ptr);
668 /* Expand a 4-operand operation using an out-of-line helper. */
669 static void gen_gvec_op4_ool(DisasContext *s, bool is_q, int rd, int rn,
670 int rm, int ra, int data, gen_helper_gvec_4 *fn)
672 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
673 vec_full_reg_offset(s, rn),
674 vec_full_reg_offset(s, rm),
675 vec_full_reg_offset(s, ra),
676 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
680 * Expand a 4-operand + fpstatus pointer + simd data value operation using
681 * an out-of-line helper.
683 static void gen_gvec_op4_fpst(DisasContext *s, bool is_q, int rd, int rn,
684 int rm, int ra, bool is_fp16, int data,
685 gen_helper_gvec_4_ptr *fn)
687 TCGv_ptr fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
688 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
689 vec_full_reg_offset(s, rn),
690 vec_full_reg_offset(s, rm),
691 vec_full_reg_offset(s, ra), fpst,
692 is_q ? 16 : 8, vec_full_reg_size(s), data, fn);
693 tcg_temp_free_ptr(fpst);
696 /* Set ZF and NF based on a 64 bit result. This is alas fiddlier
697 * than the 32 bit equivalent.
699 static inline void gen_set_NZ64(TCGv_i64 result)
701 tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result);
702 tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF);
705 /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */
706 static inline void gen_logic_CC(int sf, TCGv_i64 result)
708 if (sf) {
709 gen_set_NZ64(result);
710 } else {
711 tcg_gen_extrl_i64_i32(cpu_ZF, result);
712 tcg_gen_mov_i32(cpu_NF, cpu_ZF);
714 tcg_gen_movi_i32(cpu_CF, 0);
715 tcg_gen_movi_i32(cpu_VF, 0);
718 /* dest = T0 + T1; compute C, N, V and Z flags */
719 static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
721 if (sf) {
722 TCGv_i64 result, flag, tmp;
723 result = tcg_temp_new_i64();
724 flag = tcg_temp_new_i64();
725 tmp = tcg_temp_new_i64();
727 tcg_gen_movi_i64(tmp, 0);
728 tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp);
730 tcg_gen_extrl_i64_i32(cpu_CF, flag);
732 gen_set_NZ64(result);
734 tcg_gen_xor_i64(flag, result, t0);
735 tcg_gen_xor_i64(tmp, t0, t1);
736 tcg_gen_andc_i64(flag, flag, tmp);
737 tcg_temp_free_i64(tmp);
738 tcg_gen_extrh_i64_i32(cpu_VF, flag);
740 tcg_gen_mov_i64(dest, result);
741 tcg_temp_free_i64(result);
742 tcg_temp_free_i64(flag);
743 } else {
744 /* 32 bit arithmetic */
745 TCGv_i32 t0_32 = tcg_temp_new_i32();
746 TCGv_i32 t1_32 = tcg_temp_new_i32();
747 TCGv_i32 tmp = tcg_temp_new_i32();
749 tcg_gen_movi_i32(tmp, 0);
750 tcg_gen_extrl_i64_i32(t0_32, t0);
751 tcg_gen_extrl_i64_i32(t1_32, t1);
752 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp);
753 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
754 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
755 tcg_gen_xor_i32(tmp, t0_32, t1_32);
756 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
757 tcg_gen_extu_i32_i64(dest, cpu_NF);
759 tcg_temp_free_i32(tmp);
760 tcg_temp_free_i32(t0_32);
761 tcg_temp_free_i32(t1_32);
765 /* dest = T0 - T1; compute C, N, V and Z flags */
766 static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
768 if (sf) {
769 /* 64 bit arithmetic */
770 TCGv_i64 result, flag, tmp;
772 result = tcg_temp_new_i64();
773 flag = tcg_temp_new_i64();
774 tcg_gen_sub_i64(result, t0, t1);
776 gen_set_NZ64(result);
778 tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1);
779 tcg_gen_extrl_i64_i32(cpu_CF, flag);
781 tcg_gen_xor_i64(flag, result, t0);
782 tmp = tcg_temp_new_i64();
783 tcg_gen_xor_i64(tmp, t0, t1);
784 tcg_gen_and_i64(flag, flag, tmp);
785 tcg_temp_free_i64(tmp);
786 tcg_gen_extrh_i64_i32(cpu_VF, flag);
787 tcg_gen_mov_i64(dest, result);
788 tcg_temp_free_i64(flag);
789 tcg_temp_free_i64(result);
790 } else {
791 /* 32 bit arithmetic */
792 TCGv_i32 t0_32 = tcg_temp_new_i32();
793 TCGv_i32 t1_32 = tcg_temp_new_i32();
794 TCGv_i32 tmp;
796 tcg_gen_extrl_i64_i32(t0_32, t0);
797 tcg_gen_extrl_i64_i32(t1_32, t1);
798 tcg_gen_sub_i32(cpu_NF, t0_32, t1_32);
799 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
800 tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32);
801 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
802 tmp = tcg_temp_new_i32();
803 tcg_gen_xor_i32(tmp, t0_32, t1_32);
804 tcg_temp_free_i32(t0_32);
805 tcg_temp_free_i32(t1_32);
806 tcg_gen_and_i32(cpu_VF, cpu_VF, tmp);
807 tcg_temp_free_i32(tmp);
808 tcg_gen_extu_i32_i64(dest, cpu_NF);
812 /* dest = T0 + T1 + CF; do not compute flags. */
813 static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
815 TCGv_i64 flag = tcg_temp_new_i64();
816 tcg_gen_extu_i32_i64(flag, cpu_CF);
817 tcg_gen_add_i64(dest, t0, t1);
818 tcg_gen_add_i64(dest, dest, flag);
819 tcg_temp_free_i64(flag);
821 if (!sf) {
822 tcg_gen_ext32u_i64(dest, dest);
826 /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */
827 static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1)
829 if (sf) {
830 TCGv_i64 result, cf_64, vf_64, tmp;
831 result = tcg_temp_new_i64();
832 cf_64 = tcg_temp_new_i64();
833 vf_64 = tcg_temp_new_i64();
834 tmp = tcg_const_i64(0);
836 tcg_gen_extu_i32_i64(cf_64, cpu_CF);
837 tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp);
838 tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp);
839 tcg_gen_extrl_i64_i32(cpu_CF, cf_64);
840 gen_set_NZ64(result);
842 tcg_gen_xor_i64(vf_64, result, t0);
843 tcg_gen_xor_i64(tmp, t0, t1);
844 tcg_gen_andc_i64(vf_64, vf_64, tmp);
845 tcg_gen_extrh_i64_i32(cpu_VF, vf_64);
847 tcg_gen_mov_i64(dest, result);
849 tcg_temp_free_i64(tmp);
850 tcg_temp_free_i64(vf_64);
851 tcg_temp_free_i64(cf_64);
852 tcg_temp_free_i64(result);
853 } else {
854 TCGv_i32 t0_32, t1_32, tmp;
855 t0_32 = tcg_temp_new_i32();
856 t1_32 = tcg_temp_new_i32();
857 tmp = tcg_const_i32(0);
859 tcg_gen_extrl_i64_i32(t0_32, t0);
860 tcg_gen_extrl_i64_i32(t1_32, t1);
861 tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp);
862 tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp);
864 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
865 tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32);
866 tcg_gen_xor_i32(tmp, t0_32, t1_32);
867 tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp);
868 tcg_gen_extu_i32_i64(dest, cpu_NF);
870 tcg_temp_free_i32(tmp);
871 tcg_temp_free_i32(t1_32);
872 tcg_temp_free_i32(t0_32);
877 * Load/Store generators
881 * Store from GPR register to memory.
883 static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source,
884 TCGv_i64 tcg_addr, MemOp memop, int memidx,
885 bool iss_valid,
886 unsigned int iss_srt,
887 bool iss_sf, bool iss_ar)
889 memop = finalize_memop(s, memop);
890 tcg_gen_qemu_st_i64(source, tcg_addr, memidx, memop);
892 if (iss_valid) {
893 uint32_t syn;
895 syn = syn_data_abort_with_iss(0,
896 (memop & MO_SIZE),
897 false,
898 iss_srt,
899 iss_sf,
900 iss_ar,
901 0, 0, 0, 0, 0, false);
902 disas_set_insn_syndrome(s, syn);
906 static void do_gpr_st(DisasContext *s, TCGv_i64 source,
907 TCGv_i64 tcg_addr, MemOp memop,
908 bool iss_valid,
909 unsigned int iss_srt,
910 bool iss_sf, bool iss_ar)
912 do_gpr_st_memidx(s, source, tcg_addr, memop, get_mem_index(s),
913 iss_valid, iss_srt, iss_sf, iss_ar);
917 * Load from memory to GPR register
919 static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
920 MemOp memop, bool extend, int memidx,
921 bool iss_valid, unsigned int iss_srt,
922 bool iss_sf, bool iss_ar)
924 memop = finalize_memop(s, memop);
925 tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop);
927 if (extend && (memop & MO_SIGN)) {
928 g_assert((memop & MO_SIZE) <= MO_32);
929 tcg_gen_ext32u_i64(dest, dest);
932 if (iss_valid) {
933 uint32_t syn;
935 syn = syn_data_abort_with_iss(0,
936 (memop & MO_SIZE),
937 (memop & MO_SIGN) != 0,
938 iss_srt,
939 iss_sf,
940 iss_ar,
941 0, 0, 0, 0, 0, false);
942 disas_set_insn_syndrome(s, syn);
946 static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr,
947 MemOp memop, bool extend,
948 bool iss_valid, unsigned int iss_srt,
949 bool iss_sf, bool iss_ar)
951 do_gpr_ld_memidx(s, dest, tcg_addr, memop, extend, get_mem_index(s),
952 iss_valid, iss_srt, iss_sf, iss_ar);
956 * Store from FP register to memory
958 static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
960 /* This writes the bottom N bits of a 128 bit wide vector to memory */
961 TCGv_i64 tmplo = tcg_temp_new_i64();
962 MemOp mop;
964 tcg_gen_ld_i64(tmplo, cpu_env, fp_reg_offset(s, srcidx, MO_64));
966 if (size < 4) {
967 mop = finalize_memop(s, size);
968 tcg_gen_qemu_st_i64(tmplo, tcg_addr, get_mem_index(s), mop);
969 } else {
970 bool be = s->be_data == MO_BE;
971 TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
972 TCGv_i64 tmphi = tcg_temp_new_i64();
974 tcg_gen_ld_i64(tmphi, cpu_env, fp_reg_hi_offset(s, srcidx));
976 mop = s->be_data | MO_UQ;
977 tcg_gen_qemu_st_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
978 mop | (s->align_mem ? MO_ALIGN_16 : 0));
979 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
980 tcg_gen_qemu_st_i64(be ? tmplo : tmphi, tcg_hiaddr,
981 get_mem_index(s), mop);
983 tcg_temp_free_i64(tcg_hiaddr);
984 tcg_temp_free_i64(tmphi);
987 tcg_temp_free_i64(tmplo);
991 * Load from memory to FP register
993 static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
995 /* This always zero-extends and writes to a full 128 bit wide vector */
996 TCGv_i64 tmplo = tcg_temp_new_i64();
997 TCGv_i64 tmphi = NULL;
998 MemOp mop;
1000 if (size < 4) {
1001 mop = finalize_memop(s, size);
1002 tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), mop);
1003 } else {
1004 bool be = s->be_data == MO_BE;
1005 TCGv_i64 tcg_hiaddr;
1007 tmphi = tcg_temp_new_i64();
1008 tcg_hiaddr = tcg_temp_new_i64();
1010 mop = s->be_data | MO_UQ;
1011 tcg_gen_qemu_ld_i64(be ? tmphi : tmplo, tcg_addr, get_mem_index(s),
1012 mop | (s->align_mem ? MO_ALIGN_16 : 0));
1013 tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
1014 tcg_gen_qemu_ld_i64(be ? tmplo : tmphi, tcg_hiaddr,
1015 get_mem_index(s), mop);
1016 tcg_temp_free_i64(tcg_hiaddr);
1019 tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64));
1020 tcg_temp_free_i64(tmplo);
1022 if (tmphi) {
1023 tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx));
1024 tcg_temp_free_i64(tmphi);
1026 clear_vec_high(s, tmphi != NULL, destidx);
1030 * Vector load/store helpers.
1032 * The principal difference between this and a FP load is that we don't
1033 * zero extend as we are filling a partial chunk of the vector register.
1034 * These functions don't support 128 bit loads/stores, which would be
1035 * normal load/store operations.
1037 * The _i32 versions are useful when operating on 32 bit quantities
1038 * (eg for floating point single or using Neon helper functions).
1041 /* Get value of an element within a vector register */
1042 static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
1043 int element, MemOp memop)
1045 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1046 switch ((unsigned)memop) {
1047 case MO_8:
1048 tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
1049 break;
1050 case MO_16:
1051 tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
1052 break;
1053 case MO_32:
1054 tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
1055 break;
1056 case MO_8|MO_SIGN:
1057 tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
1058 break;
1059 case MO_16|MO_SIGN:
1060 tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
1061 break;
1062 case MO_32|MO_SIGN:
1063 tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
1064 break;
1065 case MO_64:
1066 case MO_64|MO_SIGN:
1067 tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
1068 break;
1069 default:
1070 g_assert_not_reached();
1074 static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
1075 int element, MemOp memop)
1077 int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE);
1078 switch (memop) {
1079 case MO_8:
1080 tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
1081 break;
1082 case MO_16:
1083 tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
1084 break;
1085 case MO_8|MO_SIGN:
1086 tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
1087 break;
1088 case MO_16|MO_SIGN:
1089 tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
1090 break;
1091 case MO_32:
1092 case MO_32|MO_SIGN:
1093 tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
1094 break;
1095 default:
1096 g_assert_not_reached();
1100 /* Set value of an element within a vector register */
1101 static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
1102 int element, MemOp memop)
1104 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1105 switch (memop) {
1106 case MO_8:
1107 tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
1108 break;
1109 case MO_16:
1110 tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
1111 break;
1112 case MO_32:
1113 tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
1114 break;
1115 case MO_64:
1116 tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
1117 break;
1118 default:
1119 g_assert_not_reached();
1123 static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
1124 int destidx, int element, MemOp memop)
1126 int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE);
1127 switch (memop) {
1128 case MO_8:
1129 tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
1130 break;
1131 case MO_16:
1132 tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
1133 break;
1134 case MO_32:
1135 tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
1136 break;
1137 default:
1138 g_assert_not_reached();
1142 /* Store from vector register to memory */
1143 static void do_vec_st(DisasContext *s, int srcidx, int element,
1144 TCGv_i64 tcg_addr, MemOp mop)
1146 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1148 read_vec_element(s, tcg_tmp, srcidx, element, mop & MO_SIZE);
1149 tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1151 tcg_temp_free_i64(tcg_tmp);
1154 /* Load from memory to vector register */
1155 static void do_vec_ld(DisasContext *s, int destidx, int element,
1156 TCGv_i64 tcg_addr, MemOp mop)
1158 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
1160 tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), mop);
1161 write_vec_element(s, tcg_tmp, destidx, element, mop & MO_SIZE);
1163 tcg_temp_free_i64(tcg_tmp);
1166 /* Check that FP/Neon access is enabled. If it is, return
1167 * true. If not, emit code to generate an appropriate exception,
1168 * and return false; the caller should not emit any code for
1169 * the instruction. Note that this check must happen after all
1170 * unallocated-encoding checks (otherwise the syndrome information
1171 * for the resulting exception will be incorrect).
1173 static bool fp_access_check(DisasContext *s)
1175 if (s->fp_excp_el) {
1176 assert(!s->fp_access_checked);
1177 s->fp_access_checked = true;
1179 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1180 syn_fp_access_trap(1, 0xe, false), s->fp_excp_el);
1181 return false;
1183 s->fp_access_checked = true;
1184 return true;
1187 /* Check that SVE access is enabled. If it is, return true.
1188 * If not, emit code to generate an appropriate exception and return false.
1190 bool sve_access_check(DisasContext *s)
1192 if (s->sve_excp_el) {
1193 assert(!s->sve_access_checked);
1194 s->sve_access_checked = true;
1196 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
1197 syn_sve_access_trap(), s->sve_excp_el);
1198 return false;
1200 s->sve_access_checked = true;
1201 return fp_access_check(s);
1205 * This utility function is for doing register extension with an
1206 * optional shift. You will likely want to pass a temporary for the
1207 * destination register. See DecodeRegExtend() in the ARM ARM.
1209 static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in,
1210 int option, unsigned int shift)
1212 int extsize = extract32(option, 0, 2);
1213 bool is_signed = extract32(option, 2, 1);
1215 if (is_signed) {
1216 switch (extsize) {
1217 case 0:
1218 tcg_gen_ext8s_i64(tcg_out, tcg_in);
1219 break;
1220 case 1:
1221 tcg_gen_ext16s_i64(tcg_out, tcg_in);
1222 break;
1223 case 2:
1224 tcg_gen_ext32s_i64(tcg_out, tcg_in);
1225 break;
1226 case 3:
1227 tcg_gen_mov_i64(tcg_out, tcg_in);
1228 break;
1230 } else {
1231 switch (extsize) {
1232 case 0:
1233 tcg_gen_ext8u_i64(tcg_out, tcg_in);
1234 break;
1235 case 1:
1236 tcg_gen_ext16u_i64(tcg_out, tcg_in);
1237 break;
1238 case 2:
1239 tcg_gen_ext32u_i64(tcg_out, tcg_in);
1240 break;
1241 case 3:
1242 tcg_gen_mov_i64(tcg_out, tcg_in);
1243 break;
1247 if (shift) {
1248 tcg_gen_shli_i64(tcg_out, tcg_out, shift);
1252 static inline void gen_check_sp_alignment(DisasContext *s)
1254 /* The AArch64 architecture mandates that (if enabled via PSTATE
1255 * or SCTLR bits) there is a check that SP is 16-aligned on every
1256 * SP-relative load or store (with an exception generated if it is not).
1257 * In line with general QEMU practice regarding misaligned accesses,
1258 * we omit these checks for the sake of guest program performance.
1259 * This function is provided as a hook so we can more easily add these
1260 * checks in future (possibly as a "favour catching guest program bugs
1261 * over speed" user selectable option).
1266 * This provides a simple table based table lookup decoder. It is
1267 * intended to be used when the relevant bits for decode are too
1268 * awkwardly placed and switch/if based logic would be confusing and
1269 * deeply nested. Since it's a linear search through the table, tables
1270 * should be kept small.
1272 * It returns the first handler where insn & mask == pattern, or
1273 * NULL if there is no match.
1274 * The table is terminated by an empty mask (i.e. 0)
1276 static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
1277 uint32_t insn)
1279 const AArch64DecodeTable *tptr = table;
1281 while (tptr->mask) {
1282 if ((insn & tptr->mask) == tptr->pattern) {
1283 return tptr->disas_fn;
1285 tptr++;
1287 return NULL;
1291 * The instruction disassembly implemented here matches
1292 * the instruction encoding classifications in chapter C4
1293 * of the ARM Architecture Reference Manual (DDI0487B_a);
1294 * classification names and decode diagrams here should generally
1295 * match up with those in the manual.
1298 /* Unconditional branch (immediate)
1299 * 31 30 26 25 0
1300 * +----+-----------+-------------------------------------+
1301 * | op | 0 0 1 0 1 | imm26 |
1302 * +----+-----------+-------------------------------------+
1304 static void disas_uncond_b_imm(DisasContext *s, uint32_t insn)
1306 uint64_t addr = s->pc_curr + sextract32(insn, 0, 26) * 4;
1308 if (insn & (1U << 31)) {
1309 /* BL Branch with link */
1310 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
1313 /* B Branch / BL Branch with link */
1314 reset_btype(s);
1315 gen_goto_tb(s, 0, addr);
1318 /* Compare and branch (immediate)
1319 * 31 30 25 24 23 5 4 0
1320 * +----+-------------+----+---------------------+--------+
1321 * | sf | 0 1 1 0 1 0 | op | imm19 | Rt |
1322 * +----+-------------+----+---------------------+--------+
1324 static void disas_comp_b_imm(DisasContext *s, uint32_t insn)
1326 unsigned int sf, op, rt;
1327 uint64_t addr;
1328 TCGLabel *label_match;
1329 TCGv_i64 tcg_cmp;
1331 sf = extract32(insn, 31, 1);
1332 op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */
1333 rt = extract32(insn, 0, 5);
1334 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1336 tcg_cmp = read_cpu_reg(s, rt, sf);
1337 label_match = gen_new_label();
1339 reset_btype(s);
1340 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1341 tcg_cmp, 0, label_match);
1343 gen_goto_tb(s, 0, s->base.pc_next);
1344 gen_set_label(label_match);
1345 gen_goto_tb(s, 1, addr);
1348 /* Test and branch (immediate)
1349 * 31 30 25 24 23 19 18 5 4 0
1350 * +----+-------------+----+-------+-------------+------+
1351 * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt |
1352 * +----+-------------+----+-------+-------------+------+
1354 static void disas_test_b_imm(DisasContext *s, uint32_t insn)
1356 unsigned int bit_pos, op, rt;
1357 uint64_t addr;
1358 TCGLabel *label_match;
1359 TCGv_i64 tcg_cmp;
1361 bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5);
1362 op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */
1363 addr = s->pc_curr + sextract32(insn, 5, 14) * 4;
1364 rt = extract32(insn, 0, 5);
1366 tcg_cmp = tcg_temp_new_i64();
1367 tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos));
1368 label_match = gen_new_label();
1370 reset_btype(s);
1371 tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ,
1372 tcg_cmp, 0, label_match);
1373 tcg_temp_free_i64(tcg_cmp);
1374 gen_goto_tb(s, 0, s->base.pc_next);
1375 gen_set_label(label_match);
1376 gen_goto_tb(s, 1, addr);
1379 /* Conditional branch (immediate)
1380 * 31 25 24 23 5 4 3 0
1381 * +---------------+----+---------------------+----+------+
1382 * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond |
1383 * +---------------+----+---------------------+----+------+
1385 static void disas_cond_b_imm(DisasContext *s, uint32_t insn)
1387 unsigned int cond;
1388 uint64_t addr;
1390 if ((insn & (1 << 4)) || (insn & (1 << 24))) {
1391 unallocated_encoding(s);
1392 return;
1394 addr = s->pc_curr + sextract32(insn, 5, 19) * 4;
1395 cond = extract32(insn, 0, 4);
1397 reset_btype(s);
1398 if (cond < 0x0e) {
1399 /* genuinely conditional branches */
1400 TCGLabel *label_match = gen_new_label();
1401 arm_gen_test_cc(cond, label_match);
1402 gen_goto_tb(s, 0, s->base.pc_next);
1403 gen_set_label(label_match);
1404 gen_goto_tb(s, 1, addr);
1405 } else {
1406 /* 0xe and 0xf are both "always" conditions */
1407 gen_goto_tb(s, 0, addr);
1411 /* HINT instruction group, including various allocated HINTs */
1412 static void handle_hint(DisasContext *s, uint32_t insn,
1413 unsigned int op1, unsigned int op2, unsigned int crm)
1415 unsigned int selector = crm << 3 | op2;
1417 if (op1 != 3) {
1418 unallocated_encoding(s);
1419 return;
1422 switch (selector) {
1423 case 0b00000: /* NOP */
1424 break;
1425 case 0b00011: /* WFI */
1426 s->base.is_jmp = DISAS_WFI;
1427 break;
1428 case 0b00001: /* YIELD */
1429 /* When running in MTTCG we don't generate jumps to the yield and
1430 * WFE helpers as it won't affect the scheduling of other vCPUs.
1431 * If we wanted to more completely model WFE/SEV so we don't busy
1432 * spin unnecessarily we would need to do something more involved.
1434 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1435 s->base.is_jmp = DISAS_YIELD;
1437 break;
1438 case 0b00010: /* WFE */
1439 if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) {
1440 s->base.is_jmp = DISAS_WFE;
1442 break;
1443 case 0b00100: /* SEV */
1444 case 0b00101: /* SEVL */
1445 /* we treat all as NOP at least for now */
1446 break;
1447 case 0b00111: /* XPACLRI */
1448 if (s->pauth_active) {
1449 gen_helper_xpaci(cpu_X[30], cpu_env, cpu_X[30]);
1451 break;
1452 case 0b01000: /* PACIA1716 */
1453 if (s->pauth_active) {
1454 gen_helper_pacia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1456 break;
1457 case 0b01010: /* PACIB1716 */
1458 if (s->pauth_active) {
1459 gen_helper_pacib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1461 break;
1462 case 0b01100: /* AUTIA1716 */
1463 if (s->pauth_active) {
1464 gen_helper_autia(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1466 break;
1467 case 0b01110: /* AUTIB1716 */
1468 if (s->pauth_active) {
1469 gen_helper_autib(cpu_X[17], cpu_env, cpu_X[17], cpu_X[16]);
1471 break;
1472 case 0b11000: /* PACIAZ */
1473 if (s->pauth_active) {
1474 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30],
1475 new_tmp_a64_zero(s));
1477 break;
1478 case 0b11001: /* PACIASP */
1479 if (s->pauth_active) {
1480 gen_helper_pacia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1482 break;
1483 case 0b11010: /* PACIBZ */
1484 if (s->pauth_active) {
1485 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30],
1486 new_tmp_a64_zero(s));
1488 break;
1489 case 0b11011: /* PACIBSP */
1490 if (s->pauth_active) {
1491 gen_helper_pacib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1493 break;
1494 case 0b11100: /* AUTIAZ */
1495 if (s->pauth_active) {
1496 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30],
1497 new_tmp_a64_zero(s));
1499 break;
1500 case 0b11101: /* AUTIASP */
1501 if (s->pauth_active) {
1502 gen_helper_autia(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1504 break;
1505 case 0b11110: /* AUTIBZ */
1506 if (s->pauth_active) {
1507 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30],
1508 new_tmp_a64_zero(s));
1510 break;
1511 case 0b11111: /* AUTIBSP */
1512 if (s->pauth_active) {
1513 gen_helper_autib(cpu_X[30], cpu_env, cpu_X[30], cpu_X[31]);
1515 break;
1516 default:
1517 /* default specified as NOP equivalent */
1518 break;
1522 static void gen_clrex(DisasContext *s, uint32_t insn)
1524 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
1527 /* CLREX, DSB, DMB, ISB */
1528 static void handle_sync(DisasContext *s, uint32_t insn,
1529 unsigned int op1, unsigned int op2, unsigned int crm)
1531 TCGBar bar;
1533 if (op1 != 3) {
1534 unallocated_encoding(s);
1535 return;
1538 switch (op2) {
1539 case 2: /* CLREX */
1540 gen_clrex(s, insn);
1541 return;
1542 case 4: /* DSB */
1543 case 5: /* DMB */
1544 switch (crm & 3) {
1545 case 1: /* MBReqTypes_Reads */
1546 bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST;
1547 break;
1548 case 2: /* MBReqTypes_Writes */
1549 bar = TCG_BAR_SC | TCG_MO_ST_ST;
1550 break;
1551 default: /* MBReqTypes_All */
1552 bar = TCG_BAR_SC | TCG_MO_ALL;
1553 break;
1555 tcg_gen_mb(bar);
1556 return;
1557 case 6: /* ISB */
1558 /* We need to break the TB after this insn to execute
1559 * a self-modified code correctly and also to take
1560 * any pending interrupts immediately.
1562 reset_btype(s);
1563 gen_goto_tb(s, 0, s->base.pc_next);
1564 return;
1566 case 7: /* SB */
1567 if (crm != 0 || !dc_isar_feature(aa64_sb, s)) {
1568 goto do_unallocated;
1571 * TODO: There is no speculation barrier opcode for TCG;
1572 * MB and end the TB instead.
1574 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_SC);
1575 gen_goto_tb(s, 0, s->base.pc_next);
1576 return;
1578 default:
1579 do_unallocated:
1580 unallocated_encoding(s);
1581 return;
1585 static void gen_xaflag(void)
1587 TCGv_i32 z = tcg_temp_new_i32();
1589 tcg_gen_setcondi_i32(TCG_COND_EQ, z, cpu_ZF, 0);
1592 * (!C & !Z) << 31
1593 * (!(C | Z)) << 31
1594 * ~((C | Z) << 31)
1595 * ~-(C | Z)
1596 * (C | Z) - 1
1598 tcg_gen_or_i32(cpu_NF, cpu_CF, z);
1599 tcg_gen_subi_i32(cpu_NF, cpu_NF, 1);
1601 /* !(Z & C) */
1602 tcg_gen_and_i32(cpu_ZF, z, cpu_CF);
1603 tcg_gen_xori_i32(cpu_ZF, cpu_ZF, 1);
1605 /* (!C & Z) << 31 -> -(Z & ~C) */
1606 tcg_gen_andc_i32(cpu_VF, z, cpu_CF);
1607 tcg_gen_neg_i32(cpu_VF, cpu_VF);
1609 /* C | Z */
1610 tcg_gen_or_i32(cpu_CF, cpu_CF, z);
1612 tcg_temp_free_i32(z);
1615 static void gen_axflag(void)
1617 tcg_gen_sari_i32(cpu_VF, cpu_VF, 31); /* V ? -1 : 0 */
1618 tcg_gen_andc_i32(cpu_CF, cpu_CF, cpu_VF); /* C & !V */
1620 /* !(Z | V) -> !(!ZF | V) -> ZF & !V -> ZF & ~VF */
1621 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, cpu_VF);
1623 tcg_gen_movi_i32(cpu_NF, 0);
1624 tcg_gen_movi_i32(cpu_VF, 0);
1627 /* MSR (immediate) - move immediate to processor state field */
1628 static void handle_msr_i(DisasContext *s, uint32_t insn,
1629 unsigned int op1, unsigned int op2, unsigned int crm)
1631 TCGv_i32 t1;
1632 int op = op1 << 3 | op2;
1634 /* End the TB by default, chaining is ok. */
1635 s->base.is_jmp = DISAS_TOO_MANY;
1637 switch (op) {
1638 case 0x00: /* CFINV */
1639 if (crm != 0 || !dc_isar_feature(aa64_condm_4, s)) {
1640 goto do_unallocated;
1642 tcg_gen_xori_i32(cpu_CF, cpu_CF, 1);
1643 s->base.is_jmp = DISAS_NEXT;
1644 break;
1646 case 0x01: /* XAFlag */
1647 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1648 goto do_unallocated;
1650 gen_xaflag();
1651 s->base.is_jmp = DISAS_NEXT;
1652 break;
1654 case 0x02: /* AXFlag */
1655 if (crm != 0 || !dc_isar_feature(aa64_condm_5, s)) {
1656 goto do_unallocated;
1658 gen_axflag();
1659 s->base.is_jmp = DISAS_NEXT;
1660 break;
1662 case 0x03: /* UAO */
1663 if (!dc_isar_feature(aa64_uao, s) || s->current_el == 0) {
1664 goto do_unallocated;
1666 if (crm & 1) {
1667 set_pstate_bits(PSTATE_UAO);
1668 } else {
1669 clear_pstate_bits(PSTATE_UAO);
1671 t1 = tcg_const_i32(s->current_el);
1672 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1673 tcg_temp_free_i32(t1);
1674 break;
1676 case 0x04: /* PAN */
1677 if (!dc_isar_feature(aa64_pan, s) || s->current_el == 0) {
1678 goto do_unallocated;
1680 if (crm & 1) {
1681 set_pstate_bits(PSTATE_PAN);
1682 } else {
1683 clear_pstate_bits(PSTATE_PAN);
1685 t1 = tcg_const_i32(s->current_el);
1686 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1687 tcg_temp_free_i32(t1);
1688 break;
1690 case 0x05: /* SPSel */
1691 if (s->current_el == 0) {
1692 goto do_unallocated;
1694 t1 = tcg_const_i32(crm & PSTATE_SP);
1695 gen_helper_msr_i_spsel(cpu_env, t1);
1696 tcg_temp_free_i32(t1);
1697 break;
1699 case 0x19: /* SSBS */
1700 if (!dc_isar_feature(aa64_ssbs, s)) {
1701 goto do_unallocated;
1703 if (crm & 1) {
1704 set_pstate_bits(PSTATE_SSBS);
1705 } else {
1706 clear_pstate_bits(PSTATE_SSBS);
1708 /* Don't need to rebuild hflags since SSBS is a nop */
1709 break;
1711 case 0x1a: /* DIT */
1712 if (!dc_isar_feature(aa64_dit, s)) {
1713 goto do_unallocated;
1715 if (crm & 1) {
1716 set_pstate_bits(PSTATE_DIT);
1717 } else {
1718 clear_pstate_bits(PSTATE_DIT);
1720 /* There's no need to rebuild hflags because DIT is a nop */
1721 break;
1723 case 0x1e: /* DAIFSet */
1724 t1 = tcg_const_i32(crm);
1725 gen_helper_msr_i_daifset(cpu_env, t1);
1726 tcg_temp_free_i32(t1);
1727 break;
1729 case 0x1f: /* DAIFClear */
1730 t1 = tcg_const_i32(crm);
1731 gen_helper_msr_i_daifclear(cpu_env, t1);
1732 tcg_temp_free_i32(t1);
1733 /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */
1734 s->base.is_jmp = DISAS_UPDATE_EXIT;
1735 break;
1737 case 0x1c: /* TCO */
1738 if (dc_isar_feature(aa64_mte, s)) {
1739 /* Full MTE is enabled -- set the TCO bit as directed. */
1740 if (crm & 1) {
1741 set_pstate_bits(PSTATE_TCO);
1742 } else {
1743 clear_pstate_bits(PSTATE_TCO);
1745 t1 = tcg_const_i32(s->current_el);
1746 gen_helper_rebuild_hflags_a64(cpu_env, t1);
1747 tcg_temp_free_i32(t1);
1748 /* Many factors, including TCO, go into MTE_ACTIVE. */
1749 s->base.is_jmp = DISAS_UPDATE_NOCHAIN;
1750 } else if (dc_isar_feature(aa64_mte_insn_reg, s)) {
1751 /* Only "instructions accessible at EL0" -- PSTATE.TCO is WI. */
1752 s->base.is_jmp = DISAS_NEXT;
1753 } else {
1754 goto do_unallocated;
1756 break;
1758 default:
1759 do_unallocated:
1760 unallocated_encoding(s);
1761 return;
1765 static void gen_get_nzcv(TCGv_i64 tcg_rt)
1767 TCGv_i32 tmp = tcg_temp_new_i32();
1768 TCGv_i32 nzcv = tcg_temp_new_i32();
1770 /* build bit 31, N */
1771 tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31));
1772 /* build bit 30, Z */
1773 tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0);
1774 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1);
1775 /* build bit 29, C */
1776 tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1);
1777 /* build bit 28, V */
1778 tcg_gen_shri_i32(tmp, cpu_VF, 31);
1779 tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1);
1780 /* generate result */
1781 tcg_gen_extu_i32_i64(tcg_rt, nzcv);
1783 tcg_temp_free_i32(nzcv);
1784 tcg_temp_free_i32(tmp);
1787 static void gen_set_nzcv(TCGv_i64 tcg_rt)
1789 TCGv_i32 nzcv = tcg_temp_new_i32();
1791 /* take NZCV from R[t] */
1792 tcg_gen_extrl_i64_i32(nzcv, tcg_rt);
1794 /* bit 31, N */
1795 tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31));
1796 /* bit 30, Z */
1797 tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30));
1798 tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0);
1799 /* bit 29, C */
1800 tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29));
1801 tcg_gen_shri_i32(cpu_CF, cpu_CF, 29);
1802 /* bit 28, V */
1803 tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28));
1804 tcg_gen_shli_i32(cpu_VF, cpu_VF, 3);
1805 tcg_temp_free_i32(nzcv);
1808 /* MRS - move from system register
1809 * MSR (register) - move to system register
1810 * SYS
1811 * SYSL
1812 * These are all essentially the same insn in 'read' and 'write'
1813 * versions, with varying op0 fields.
1815 static void handle_sys(DisasContext *s, uint32_t insn, bool isread,
1816 unsigned int op0, unsigned int op1, unsigned int op2,
1817 unsigned int crn, unsigned int crm, unsigned int rt)
1819 const ARMCPRegInfo *ri;
1820 TCGv_i64 tcg_rt;
1822 ri = get_arm_cp_reginfo(s->cp_regs,
1823 ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
1824 crn, crm, op0, op1, op2));
1826 if (!ri) {
1827 /* Unknown register; this might be a guest error or a QEMU
1828 * unimplemented feature.
1830 qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
1831 "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
1832 isread ? "read" : "write", op0, op1, crn, crm, op2);
1833 unallocated_encoding(s);
1834 return;
1837 /* Check access permissions */
1838 if (!cp_access_ok(s->current_el, ri, isread)) {
1839 unallocated_encoding(s);
1840 return;
1843 if (ri->accessfn) {
1844 /* Emit code to perform further access permissions checks at
1845 * runtime; this may result in an exception.
1847 TCGv_ptr tmpptr;
1848 TCGv_i32 tcg_syn, tcg_isread;
1849 uint32_t syndrome;
1851 gen_a64_set_pc_im(s->pc_curr);
1852 tmpptr = tcg_const_ptr(ri);
1853 syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread);
1854 tcg_syn = tcg_const_i32(syndrome);
1855 tcg_isread = tcg_const_i32(isread);
1856 gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread);
1857 tcg_temp_free_ptr(tmpptr);
1858 tcg_temp_free_i32(tcg_syn);
1859 tcg_temp_free_i32(tcg_isread);
1860 } else if (ri->type & ARM_CP_RAISES_EXC) {
1862 * The readfn or writefn might raise an exception;
1863 * synchronize the CPU state in case it does.
1865 gen_a64_set_pc_im(s->pc_curr);
1868 /* Handle special cases first */
1869 switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) {
1870 case ARM_CP_NOP:
1871 return;
1872 case ARM_CP_NZCV:
1873 tcg_rt = cpu_reg(s, rt);
1874 if (isread) {
1875 gen_get_nzcv(tcg_rt);
1876 } else {
1877 gen_set_nzcv(tcg_rt);
1879 return;
1880 case ARM_CP_CURRENTEL:
1881 /* Reads as current EL value from pstate, which is
1882 * guaranteed to be constant by the tb flags.
1884 tcg_rt = cpu_reg(s, rt);
1885 tcg_gen_movi_i64(tcg_rt, s->current_el << 2);
1886 return;
1887 case ARM_CP_DC_ZVA:
1888 /* Writes clear the aligned block of memory which rt points into. */
1889 if (s->mte_active[0]) {
1890 TCGv_i32 t_desc;
1891 int desc = 0;
1893 desc = FIELD_DP32(desc, MTEDESC, MIDX, get_mem_index(s));
1894 desc = FIELD_DP32(desc, MTEDESC, TBI, s->tbid);
1895 desc = FIELD_DP32(desc, MTEDESC, TCMA, s->tcma);
1896 t_desc = tcg_const_i32(desc);
1898 tcg_rt = new_tmp_a64(s);
1899 gen_helper_mte_check_zva(tcg_rt, cpu_env, t_desc, cpu_reg(s, rt));
1900 tcg_temp_free_i32(t_desc);
1901 } else {
1902 tcg_rt = clean_data_tbi(s, cpu_reg(s, rt));
1904 gen_helper_dc_zva(cpu_env, tcg_rt);
1905 return;
1906 case ARM_CP_DC_GVA:
1908 TCGv_i64 clean_addr, tag;
1911 * DC_GVA, like DC_ZVA, requires that we supply the original
1912 * pointer for an invalid page. Probe that address first.
1914 tcg_rt = cpu_reg(s, rt);
1915 clean_addr = clean_data_tbi(s, tcg_rt);
1916 gen_probe_access(s, clean_addr, MMU_DATA_STORE, MO_8);
1918 if (s->ata) {
1919 /* Extract the tag from the register to match STZGM. */
1920 tag = tcg_temp_new_i64();
1921 tcg_gen_shri_i64(tag, tcg_rt, 56);
1922 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1923 tcg_temp_free_i64(tag);
1926 return;
1927 case ARM_CP_DC_GZVA:
1929 TCGv_i64 clean_addr, tag;
1931 /* For DC_GZVA, we can rely on DC_ZVA for the proper fault. */
1932 tcg_rt = cpu_reg(s, rt);
1933 clean_addr = clean_data_tbi(s, tcg_rt);
1934 gen_helper_dc_zva(cpu_env, clean_addr);
1936 if (s->ata) {
1937 /* Extract the tag from the register to match STZGM. */
1938 tag = tcg_temp_new_i64();
1939 tcg_gen_shri_i64(tag, tcg_rt, 56);
1940 gen_helper_stzgm_tags(cpu_env, clean_addr, tag);
1941 tcg_temp_free_i64(tag);
1944 return;
1945 default:
1946 break;
1948 if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) {
1949 return;
1950 } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) {
1951 return;
1954 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1955 gen_io_start();
1958 tcg_rt = cpu_reg(s, rt);
1960 if (isread) {
1961 if (ri->type & ARM_CP_CONST) {
1962 tcg_gen_movi_i64(tcg_rt, ri->resetvalue);
1963 } else if (ri->readfn) {
1964 TCGv_ptr tmpptr;
1965 tmpptr = tcg_const_ptr(ri);
1966 gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr);
1967 tcg_temp_free_ptr(tmpptr);
1968 } else {
1969 tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset);
1971 } else {
1972 if (ri->type & ARM_CP_CONST) {
1973 /* If not forbidden by access permissions, treat as WI */
1974 return;
1975 } else if (ri->writefn) {
1976 TCGv_ptr tmpptr;
1977 tmpptr = tcg_const_ptr(ri);
1978 gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt);
1979 tcg_temp_free_ptr(tmpptr);
1980 } else {
1981 tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset);
1985 if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) {
1986 /* I/O operations must end the TB here (whether read or write) */
1987 s->base.is_jmp = DISAS_UPDATE_EXIT;
1989 if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) {
1991 * A write to any coprocessor regiser that ends a TB
1992 * must rebuild the hflags for the next TB.
1994 TCGv_i32 tcg_el = tcg_const_i32(s->current_el);
1995 gen_helper_rebuild_hflags_a64(cpu_env, tcg_el);
1996 tcg_temp_free_i32(tcg_el);
1998 * We default to ending the TB on a coprocessor register write,
1999 * but allow this to be suppressed by the register definition
2000 * (usually only necessary to work around guest bugs).
2002 s->base.is_jmp = DISAS_UPDATE_EXIT;
2006 /* System
2007 * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0
2008 * +---------------------+---+-----+-----+-------+-------+-----+------+
2009 * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt |
2010 * +---------------------+---+-----+-----+-------+-------+-----+------+
2012 static void disas_system(DisasContext *s, uint32_t insn)
2014 unsigned int l, op0, op1, crn, crm, op2, rt;
2015 l = extract32(insn, 21, 1);
2016 op0 = extract32(insn, 19, 2);
2017 op1 = extract32(insn, 16, 3);
2018 crn = extract32(insn, 12, 4);
2019 crm = extract32(insn, 8, 4);
2020 op2 = extract32(insn, 5, 3);
2021 rt = extract32(insn, 0, 5);
2023 if (op0 == 0) {
2024 if (l || rt != 31) {
2025 unallocated_encoding(s);
2026 return;
2028 switch (crn) {
2029 case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */
2030 handle_hint(s, insn, op1, op2, crm);
2031 break;
2032 case 3: /* CLREX, DSB, DMB, ISB */
2033 handle_sync(s, insn, op1, op2, crm);
2034 break;
2035 case 4: /* MSR (immediate) */
2036 handle_msr_i(s, insn, op1, op2, crm);
2037 break;
2038 default:
2039 unallocated_encoding(s);
2040 break;
2042 return;
2044 handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt);
2047 /* Exception generation
2049 * 31 24 23 21 20 5 4 2 1 0
2050 * +-----------------+-----+------------------------+-----+----+
2051 * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL |
2052 * +-----------------------+------------------------+----------+
2054 static void disas_exc(DisasContext *s, uint32_t insn)
2056 int opc = extract32(insn, 21, 3);
2057 int op2_ll = extract32(insn, 0, 5);
2058 int imm16 = extract32(insn, 5, 16);
2059 TCGv_i32 tmp;
2061 switch (opc) {
2062 case 0:
2063 /* For SVC, HVC and SMC we advance the single-step state
2064 * machine before taking the exception. This is architecturally
2065 * mandated, to ensure that single-stepping a system call
2066 * instruction works properly.
2068 switch (op2_ll) {
2069 case 1: /* SVC */
2070 gen_ss_advance(s);
2071 gen_exception_insn(s, s->base.pc_next, EXCP_SWI,
2072 syn_aa64_svc(imm16), default_exception_el(s));
2073 break;
2074 case 2: /* HVC */
2075 if (s->current_el == 0) {
2076 unallocated_encoding(s);
2077 break;
2079 /* The pre HVC helper handles cases when HVC gets trapped
2080 * as an undefined insn by runtime configuration.
2082 gen_a64_set_pc_im(s->pc_curr);
2083 gen_helper_pre_hvc(cpu_env);
2084 gen_ss_advance(s);
2085 gen_exception_insn(s, s->base.pc_next, EXCP_HVC,
2086 syn_aa64_hvc(imm16), 2);
2087 break;
2088 case 3: /* SMC */
2089 if (s->current_el == 0) {
2090 unallocated_encoding(s);
2091 break;
2093 gen_a64_set_pc_im(s->pc_curr);
2094 tmp = tcg_const_i32(syn_aa64_smc(imm16));
2095 gen_helper_pre_smc(cpu_env, tmp);
2096 tcg_temp_free_i32(tmp);
2097 gen_ss_advance(s);
2098 gen_exception_insn(s, s->base.pc_next, EXCP_SMC,
2099 syn_aa64_smc(imm16), 3);
2100 break;
2101 default:
2102 unallocated_encoding(s);
2103 break;
2105 break;
2106 case 1:
2107 if (op2_ll != 0) {
2108 unallocated_encoding(s);
2109 break;
2111 /* BRK */
2112 gen_exception_bkpt_insn(s, syn_aa64_bkpt(imm16));
2113 break;
2114 case 2:
2115 if (op2_ll != 0) {
2116 unallocated_encoding(s);
2117 break;
2119 /* HLT. This has two purposes.
2120 * Architecturally, it is an external halting debug instruction.
2121 * Since QEMU doesn't implement external debug, we treat this as
2122 * it is required for halting debug disabled: it will UNDEF.
2123 * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction.
2125 if (semihosting_enabled() && imm16 == 0xf000) {
2126 #ifndef CONFIG_USER_ONLY
2127 /* In system mode, don't allow userspace access to semihosting,
2128 * to provide some semblance of security (and for consistency
2129 * with our 32-bit semihosting).
2131 if (s->current_el == 0) {
2132 unsupported_encoding(s, insn);
2133 break;
2135 #endif
2136 gen_exception_internal_insn(s, s->pc_curr, EXCP_SEMIHOST);
2137 } else {
2138 unsupported_encoding(s, insn);
2140 break;
2141 case 5:
2142 if (op2_ll < 1 || op2_ll > 3) {
2143 unallocated_encoding(s);
2144 break;
2146 /* DCPS1, DCPS2, DCPS3 */
2147 unsupported_encoding(s, insn);
2148 break;
2149 default:
2150 unallocated_encoding(s);
2151 break;
2155 /* Unconditional branch (register)
2156 * 31 25 24 21 20 16 15 10 9 5 4 0
2157 * +---------------+-------+-------+-------+------+-------+
2158 * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 |
2159 * +---------------+-------+-------+-------+------+-------+
2161 static void disas_uncond_b_reg(DisasContext *s, uint32_t insn)
2163 unsigned int opc, op2, op3, rn, op4;
2164 unsigned btype_mod = 2; /* 0: BR, 1: BLR, 2: other */
2165 TCGv_i64 dst;
2166 TCGv_i64 modifier;
2168 opc = extract32(insn, 21, 4);
2169 op2 = extract32(insn, 16, 5);
2170 op3 = extract32(insn, 10, 6);
2171 rn = extract32(insn, 5, 5);
2172 op4 = extract32(insn, 0, 5);
2174 if (op2 != 0x1f) {
2175 goto do_unallocated;
2178 switch (opc) {
2179 case 0: /* BR */
2180 case 1: /* BLR */
2181 case 2: /* RET */
2182 btype_mod = opc;
2183 switch (op3) {
2184 case 0:
2185 /* BR, BLR, RET */
2186 if (op4 != 0) {
2187 goto do_unallocated;
2189 dst = cpu_reg(s, rn);
2190 break;
2192 case 2:
2193 case 3:
2194 if (!dc_isar_feature(aa64_pauth, s)) {
2195 goto do_unallocated;
2197 if (opc == 2) {
2198 /* RETAA, RETAB */
2199 if (rn != 0x1f || op4 != 0x1f) {
2200 goto do_unallocated;
2202 rn = 30;
2203 modifier = cpu_X[31];
2204 } else {
2205 /* BRAAZ, BRABZ, BLRAAZ, BLRABZ */
2206 if (op4 != 0x1f) {
2207 goto do_unallocated;
2209 modifier = new_tmp_a64_zero(s);
2211 if (s->pauth_active) {
2212 dst = new_tmp_a64(s);
2213 if (op3 == 2) {
2214 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2215 } else {
2216 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2218 } else {
2219 dst = cpu_reg(s, rn);
2221 break;
2223 default:
2224 goto do_unallocated;
2226 gen_a64_set_pc(s, dst);
2227 /* BLR also needs to load return address */
2228 if (opc == 1) {
2229 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2231 break;
2233 case 8: /* BRAA */
2234 case 9: /* BLRAA */
2235 if (!dc_isar_feature(aa64_pauth, s)) {
2236 goto do_unallocated;
2238 if ((op3 & ~1) != 2) {
2239 goto do_unallocated;
2241 btype_mod = opc & 1;
2242 if (s->pauth_active) {
2243 dst = new_tmp_a64(s);
2244 modifier = cpu_reg_sp(s, op4);
2245 if (op3 == 2) {
2246 gen_helper_autia(dst, cpu_env, cpu_reg(s, rn), modifier);
2247 } else {
2248 gen_helper_autib(dst, cpu_env, cpu_reg(s, rn), modifier);
2250 } else {
2251 dst = cpu_reg(s, rn);
2253 gen_a64_set_pc(s, dst);
2254 /* BLRAA also needs to load return address */
2255 if (opc == 9) {
2256 tcg_gen_movi_i64(cpu_reg(s, 30), s->base.pc_next);
2258 break;
2260 case 4: /* ERET */
2261 if (s->current_el == 0) {
2262 goto do_unallocated;
2264 switch (op3) {
2265 case 0: /* ERET */
2266 if (op4 != 0) {
2267 goto do_unallocated;
2269 dst = tcg_temp_new_i64();
2270 tcg_gen_ld_i64(dst, cpu_env,
2271 offsetof(CPUARMState, elr_el[s->current_el]));
2272 break;
2274 case 2: /* ERETAA */
2275 case 3: /* ERETAB */
2276 if (!dc_isar_feature(aa64_pauth, s)) {
2277 goto do_unallocated;
2279 if (rn != 0x1f || op4 != 0x1f) {
2280 goto do_unallocated;
2282 dst = tcg_temp_new_i64();
2283 tcg_gen_ld_i64(dst, cpu_env,
2284 offsetof(CPUARMState, elr_el[s->current_el]));
2285 if (s->pauth_active) {
2286 modifier = cpu_X[31];
2287 if (op3 == 2) {
2288 gen_helper_autia(dst, cpu_env, dst, modifier);
2289 } else {
2290 gen_helper_autib(dst, cpu_env, dst, modifier);
2293 break;
2295 default:
2296 goto do_unallocated;
2298 if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) {
2299 gen_io_start();
2302 gen_helper_exception_return(cpu_env, dst);
2303 tcg_temp_free_i64(dst);
2304 /* Must exit loop to check un-masked IRQs */
2305 s->base.is_jmp = DISAS_EXIT;
2306 return;
2308 case 5: /* DRPS */
2309 if (op3 != 0 || op4 != 0 || rn != 0x1f) {
2310 goto do_unallocated;
2311 } else {
2312 unsupported_encoding(s, insn);
2314 return;
2316 default:
2317 do_unallocated:
2318 unallocated_encoding(s);
2319 return;
2322 switch (btype_mod) {
2323 case 0: /* BR */
2324 if (dc_isar_feature(aa64_bti, s)) {
2325 /* BR to {x16,x17} or !guard -> 1, else 3. */
2326 set_btype(s, rn == 16 || rn == 17 || !s->guarded_page ? 1 : 3);
2328 break;
2330 case 1: /* BLR */
2331 if (dc_isar_feature(aa64_bti, s)) {
2332 /* BLR sets BTYPE to 2, regardless of source guarded page. */
2333 set_btype(s, 2);
2335 break;
2337 default: /* RET or none of the above. */
2338 /* BTYPE will be set to 0 by normal end-of-insn processing. */
2339 break;
2342 s->base.is_jmp = DISAS_JUMP;
2345 /* Branches, exception generating and system instructions */
2346 static void disas_b_exc_sys(DisasContext *s, uint32_t insn)
2348 switch (extract32(insn, 25, 7)) {
2349 case 0x0a: case 0x0b:
2350 case 0x4a: case 0x4b: /* Unconditional branch (immediate) */
2351 disas_uncond_b_imm(s, insn);
2352 break;
2353 case 0x1a: case 0x5a: /* Compare & branch (immediate) */
2354 disas_comp_b_imm(s, insn);
2355 break;
2356 case 0x1b: case 0x5b: /* Test & branch (immediate) */
2357 disas_test_b_imm(s, insn);
2358 break;
2359 case 0x2a: /* Conditional branch (immediate) */
2360 disas_cond_b_imm(s, insn);
2361 break;
2362 case 0x6a: /* Exception generation / System */
2363 if (insn & (1 << 24)) {
2364 if (extract32(insn, 22, 2) == 0) {
2365 disas_system(s, insn);
2366 } else {
2367 unallocated_encoding(s);
2369 } else {
2370 disas_exc(s, insn);
2372 break;
2373 case 0x6b: /* Unconditional branch (register) */
2374 disas_uncond_b_reg(s, insn);
2375 break;
2376 default:
2377 unallocated_encoding(s);
2378 break;
2383 * Load/Store exclusive instructions are implemented by remembering
2384 * the value/address loaded, and seeing if these are the same
2385 * when the store is performed. This is not actually the architecturally
2386 * mandated semantics, but it works for typical guest code sequences
2387 * and avoids having to monitor regular stores.
2389 * The store exclusive uses the atomic cmpxchg primitives to avoid
2390 * races in multi-threaded linux-user and when MTTCG softmmu is
2391 * enabled.
2393 static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
2394 TCGv_i64 addr, int size, bool is_pair)
2396 int idx = get_mem_index(s);
2397 MemOp memop = s->be_data;
2399 g_assert(size <= 3);
2400 if (is_pair) {
2401 g_assert(size >= 2);
2402 if (size == 2) {
2403 /* The pair must be single-copy atomic for the doubleword. */
2404 memop |= MO_64 | MO_ALIGN;
2405 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2406 if (s->be_data == MO_LE) {
2407 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32);
2408 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32);
2409 } else {
2410 tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32);
2411 tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32);
2413 } else {
2414 /* The pair must be single-copy atomic for *each* doubleword, not
2415 the entire quadword, however it must be quadword aligned. */
2416 memop |= MO_64;
2417 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx,
2418 memop | MO_ALIGN_16);
2420 TCGv_i64 addr2 = tcg_temp_new_i64();
2421 tcg_gen_addi_i64(addr2, addr, 8);
2422 tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop);
2423 tcg_temp_free_i64(addr2);
2425 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2426 tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high);
2428 } else {
2429 memop |= size | MO_ALIGN;
2430 tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop);
2431 tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val);
2433 tcg_gen_mov_i64(cpu_exclusive_addr, addr);
2436 static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
2437 TCGv_i64 addr, int size, int is_pair)
2439 /* if (env->exclusive_addr == addr && env->exclusive_val == [addr]
2440 * && (!is_pair || env->exclusive_high == [addr + datasize])) {
2441 * [addr] = {Rt};
2442 * if (is_pair) {
2443 * [addr + datasize] = {Rt2};
2445 * {Rd} = 0;
2446 * } else {
2447 * {Rd} = 1;
2449 * env->exclusive_addr = -1;
2451 TCGLabel *fail_label = gen_new_label();
2452 TCGLabel *done_label = gen_new_label();
2453 TCGv_i64 tmp;
2455 tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label);
2457 tmp = tcg_temp_new_i64();
2458 if (is_pair) {
2459 if (size == 2) {
2460 if (s->be_data == MO_LE) {
2461 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2));
2462 } else {
2463 tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt));
2465 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr,
2466 cpu_exclusive_val, tmp,
2467 get_mem_index(s),
2468 MO_64 | MO_ALIGN | s->be_data);
2469 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2470 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2471 if (!HAVE_CMPXCHG128) {
2472 gen_helper_exit_atomic(cpu_env);
2473 s->base.is_jmp = DISAS_NORETURN;
2474 } else if (s->be_data == MO_LE) {
2475 gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env,
2476 cpu_exclusive_addr,
2477 cpu_reg(s, rt),
2478 cpu_reg(s, rt2));
2479 } else {
2480 gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env,
2481 cpu_exclusive_addr,
2482 cpu_reg(s, rt),
2483 cpu_reg(s, rt2));
2485 } else if (s->be_data == MO_LE) {
2486 gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr,
2487 cpu_reg(s, rt), cpu_reg(s, rt2));
2488 } else {
2489 gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr,
2490 cpu_reg(s, rt), cpu_reg(s, rt2));
2492 } else {
2493 tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val,
2494 cpu_reg(s, rt), get_mem_index(s),
2495 size | MO_ALIGN | s->be_data);
2496 tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val);
2498 tcg_gen_mov_i64(cpu_reg(s, rd), tmp);
2499 tcg_temp_free_i64(tmp);
2500 tcg_gen_br(done_label);
2502 gen_set_label(fail_label);
2503 tcg_gen_movi_i64(cpu_reg(s, rd), 1);
2504 gen_set_label(done_label);
2505 tcg_gen_movi_i64(cpu_exclusive_addr, -1);
2508 static void gen_compare_and_swap(DisasContext *s, int rs, int rt,
2509 int rn, int size)
2511 TCGv_i64 tcg_rs = cpu_reg(s, rs);
2512 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2513 int memidx = get_mem_index(s);
2514 TCGv_i64 clean_addr;
2516 if (rn == 31) {
2517 gen_check_sp_alignment(s);
2519 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size);
2520 tcg_gen_atomic_cmpxchg_i64(tcg_rs, clean_addr, tcg_rs, tcg_rt, memidx,
2521 size | MO_ALIGN | s->be_data);
2524 static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt,
2525 int rn, int size)
2527 TCGv_i64 s1 = cpu_reg(s, rs);
2528 TCGv_i64 s2 = cpu_reg(s, rs + 1);
2529 TCGv_i64 t1 = cpu_reg(s, rt);
2530 TCGv_i64 t2 = cpu_reg(s, rt + 1);
2531 TCGv_i64 clean_addr;
2532 int memidx = get_mem_index(s);
2534 if (rn == 31) {
2535 gen_check_sp_alignment(s);
2538 /* This is a single atomic access, despite the "pair". */
2539 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), true, rn != 31, size + 1);
2541 if (size == 2) {
2542 TCGv_i64 cmp = tcg_temp_new_i64();
2543 TCGv_i64 val = tcg_temp_new_i64();
2545 if (s->be_data == MO_LE) {
2546 tcg_gen_concat32_i64(val, t1, t2);
2547 tcg_gen_concat32_i64(cmp, s1, s2);
2548 } else {
2549 tcg_gen_concat32_i64(val, t2, t1);
2550 tcg_gen_concat32_i64(cmp, s2, s1);
2553 tcg_gen_atomic_cmpxchg_i64(cmp, clean_addr, cmp, val, memidx,
2554 MO_64 | MO_ALIGN | s->be_data);
2555 tcg_temp_free_i64(val);
2557 if (s->be_data == MO_LE) {
2558 tcg_gen_extr32_i64(s1, s2, cmp);
2559 } else {
2560 tcg_gen_extr32_i64(s2, s1, cmp);
2562 tcg_temp_free_i64(cmp);
2563 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2564 if (HAVE_CMPXCHG128) {
2565 TCGv_i32 tcg_rs = tcg_const_i32(rs);
2566 if (s->be_data == MO_LE) {
2567 gen_helper_casp_le_parallel(cpu_env, tcg_rs,
2568 clean_addr, t1, t2);
2569 } else {
2570 gen_helper_casp_be_parallel(cpu_env, tcg_rs,
2571 clean_addr, t1, t2);
2573 tcg_temp_free_i32(tcg_rs);
2574 } else {
2575 gen_helper_exit_atomic(cpu_env);
2576 s->base.is_jmp = DISAS_NORETURN;
2578 } else {
2579 TCGv_i64 d1 = tcg_temp_new_i64();
2580 TCGv_i64 d2 = tcg_temp_new_i64();
2581 TCGv_i64 a2 = tcg_temp_new_i64();
2582 TCGv_i64 c1 = tcg_temp_new_i64();
2583 TCGv_i64 c2 = tcg_temp_new_i64();
2584 TCGv_i64 zero = tcg_const_i64(0);
2586 /* Load the two words, in memory order. */
2587 tcg_gen_qemu_ld_i64(d1, clean_addr, memidx,
2588 MO_64 | MO_ALIGN_16 | s->be_data);
2589 tcg_gen_addi_i64(a2, clean_addr, 8);
2590 tcg_gen_qemu_ld_i64(d2, a2, memidx, MO_64 | s->be_data);
2592 /* Compare the two words, also in memory order. */
2593 tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1);
2594 tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2);
2595 tcg_gen_and_i64(c2, c2, c1);
2597 /* If compare equal, write back new data, else write back old data. */
2598 tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1);
2599 tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2);
2600 tcg_gen_qemu_st_i64(c1, clean_addr, memidx, MO_64 | s->be_data);
2601 tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data);
2602 tcg_temp_free_i64(a2);
2603 tcg_temp_free_i64(c1);
2604 tcg_temp_free_i64(c2);
2605 tcg_temp_free_i64(zero);
2607 /* Write back the data from memory to Rs. */
2608 tcg_gen_mov_i64(s1, d1);
2609 tcg_gen_mov_i64(s2, d2);
2610 tcg_temp_free_i64(d1);
2611 tcg_temp_free_i64(d2);
2615 /* Update the Sixty-Four bit (SF) registersize. This logic is derived
2616 * from the ARMv8 specs for LDR (Shared decode for all encodings).
2618 static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc)
2620 int opc0 = extract32(opc, 0, 1);
2621 int regsize;
2623 if (is_signed) {
2624 regsize = opc0 ? 32 : 64;
2625 } else {
2626 regsize = size == 3 ? 64 : 32;
2628 return regsize == 64;
2631 /* Load/store exclusive
2633 * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
2634 * +-----+-------------+----+---+----+------+----+-------+------+------+
2635 * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
2636 * +-----+-------------+----+---+----+------+----+-------+------+------+
2638 * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
2639 * L: 0 -> store, 1 -> load
2640 * o2: 0 -> exclusive, 1 -> not
2641 * o1: 0 -> single register, 1 -> register pair
2642 * o0: 1 -> load-acquire/store-release, 0 -> not
2644 static void disas_ldst_excl(DisasContext *s, uint32_t insn)
2646 int rt = extract32(insn, 0, 5);
2647 int rn = extract32(insn, 5, 5);
2648 int rt2 = extract32(insn, 10, 5);
2649 int rs = extract32(insn, 16, 5);
2650 int is_lasr = extract32(insn, 15, 1);
2651 int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr;
2652 int size = extract32(insn, 30, 2);
2653 TCGv_i64 clean_addr;
2655 switch (o2_L_o1_o0) {
2656 case 0x0: /* STXR */
2657 case 0x1: /* STLXR */
2658 if (rn == 31) {
2659 gen_check_sp_alignment(s);
2661 if (is_lasr) {
2662 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2664 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2665 true, rn != 31, size);
2666 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, false);
2667 return;
2669 case 0x4: /* LDXR */
2670 case 0x5: /* LDAXR */
2671 if (rn == 31) {
2672 gen_check_sp_alignment(s);
2674 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2675 false, rn != 31, size);
2676 s->is_ldex = true;
2677 gen_load_exclusive(s, rt, rt2, clean_addr, size, false);
2678 if (is_lasr) {
2679 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2681 return;
2683 case 0x8: /* STLLR */
2684 if (!dc_isar_feature(aa64_lor, s)) {
2685 break;
2687 /* StoreLORelease is the same as Store-Release for QEMU. */
2688 /* fall through */
2689 case 0x9: /* STLR */
2690 /* Generate ISS for non-exclusive accesses including LASR. */
2691 if (rn == 31) {
2692 gen_check_sp_alignment(s);
2694 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2695 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2696 true, rn != 31, size);
2697 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2698 do_gpr_st(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, true, rt,
2699 disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2700 return;
2702 case 0xc: /* LDLAR */
2703 if (!dc_isar_feature(aa64_lor, s)) {
2704 break;
2706 /* LoadLOAcquire is the same as Load-Acquire for QEMU. */
2707 /* fall through */
2708 case 0xd: /* LDAR */
2709 /* Generate ISS for non-exclusive accesses including LASR. */
2710 if (rn == 31) {
2711 gen_check_sp_alignment(s);
2713 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2714 false, rn != 31, size);
2715 /* TODO: ARMv8.4-LSE SCTLR.nAA */
2716 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size | MO_ALIGN, false, true,
2717 rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr);
2718 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2719 return;
2721 case 0x2: case 0x3: /* CASP / STXP */
2722 if (size & 2) { /* STXP / STLXP */
2723 if (rn == 31) {
2724 gen_check_sp_alignment(s);
2726 if (is_lasr) {
2727 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
2729 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2730 true, rn != 31, size);
2731 gen_store_exclusive(s, rs, rt, rt2, clean_addr, size, true);
2732 return;
2734 if (rt2 == 31
2735 && ((rt | rs) & 1) == 0
2736 && dc_isar_feature(aa64_atomics, s)) {
2737 /* CASP / CASPL */
2738 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2739 return;
2741 break;
2743 case 0x6: case 0x7: /* CASPA / LDXP */
2744 if (size & 2) { /* LDXP / LDAXP */
2745 if (rn == 31) {
2746 gen_check_sp_alignment(s);
2748 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn),
2749 false, rn != 31, size);
2750 s->is_ldex = true;
2751 gen_load_exclusive(s, rt, rt2, clean_addr, size, true);
2752 if (is_lasr) {
2753 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
2755 return;
2757 if (rt2 == 31
2758 && ((rt | rs) & 1) == 0
2759 && dc_isar_feature(aa64_atomics, s)) {
2760 /* CASPA / CASPAL */
2761 gen_compare_and_swap_pair(s, rs, rt, rn, size | 2);
2762 return;
2764 break;
2766 case 0xa: /* CAS */
2767 case 0xb: /* CASL */
2768 case 0xe: /* CASA */
2769 case 0xf: /* CASAL */
2770 if (rt2 == 31 && dc_isar_feature(aa64_atomics, s)) {
2771 gen_compare_and_swap(s, rs, rt, rn, size);
2772 return;
2774 break;
2776 unallocated_encoding(s);
2780 * Load register (literal)
2782 * 31 30 29 27 26 25 24 23 5 4 0
2783 * +-----+-------+---+-----+-------------------+-------+
2784 * | opc | 0 1 1 | V | 0 0 | imm19 | Rt |
2785 * +-----+-------+---+-----+-------------------+-------+
2787 * V: 1 -> vector (simd/fp)
2788 * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit,
2789 * 10-> 32 bit signed, 11 -> prefetch
2790 * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated)
2792 static void disas_ld_lit(DisasContext *s, uint32_t insn)
2794 int rt = extract32(insn, 0, 5);
2795 int64_t imm = sextract32(insn, 5, 19) << 2;
2796 bool is_vector = extract32(insn, 26, 1);
2797 int opc = extract32(insn, 30, 2);
2798 bool is_signed = false;
2799 int size = 2;
2800 TCGv_i64 tcg_rt, clean_addr;
2802 if (is_vector) {
2803 if (opc == 3) {
2804 unallocated_encoding(s);
2805 return;
2807 size = 2 + opc;
2808 if (!fp_access_check(s)) {
2809 return;
2811 } else {
2812 if (opc == 3) {
2813 /* PRFM (literal) : prefetch */
2814 return;
2816 size = 2 + extract32(opc, 0, 1);
2817 is_signed = extract32(opc, 1, 1);
2820 tcg_rt = cpu_reg(s, rt);
2822 clean_addr = tcg_const_i64(s->pc_curr + imm);
2823 if (is_vector) {
2824 do_fp_ld(s, rt, clean_addr, size);
2825 } else {
2826 /* Only unsigned 32bit loads target 32bit registers. */
2827 bool iss_sf = opc != 0;
2829 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
2830 false, true, rt, iss_sf, false);
2832 tcg_temp_free_i64(clean_addr);
2836 * LDNP (Load Pair - non-temporal hint)
2837 * LDP (Load Pair - non vector)
2838 * LDPSW (Load Pair Signed Word - non vector)
2839 * STNP (Store Pair - non-temporal hint)
2840 * STP (Store Pair - non vector)
2841 * LDNP (Load Pair of SIMD&FP - non-temporal hint)
2842 * LDP (Load Pair of SIMD&FP)
2843 * STNP (Store Pair of SIMD&FP - non-temporal hint)
2844 * STP (Store Pair of SIMD&FP)
2846 * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0
2847 * +-----+-------+---+---+-------+---+-----------------------------+
2848 * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt |
2849 * +-----+-------+---+---+-------+---+-------+-------+------+------+
2851 * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit
2852 * LDPSW/STGP 01
2853 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit
2854 * V: 0 -> GPR, 1 -> Vector
2855 * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index,
2856 * 10 -> signed offset, 11 -> pre-index
2857 * L: 0 -> Store 1 -> Load
2859 * Rt, Rt2 = GPR or SIMD registers to be stored
2860 * Rn = general purpose register containing address
2861 * imm7 = signed offset (multiple of 4 or 8 depending on size)
2863 static void disas_ldst_pair(DisasContext *s, uint32_t insn)
2865 int rt = extract32(insn, 0, 5);
2866 int rn = extract32(insn, 5, 5);
2867 int rt2 = extract32(insn, 10, 5);
2868 uint64_t offset = sextract64(insn, 15, 7);
2869 int index = extract32(insn, 23, 2);
2870 bool is_vector = extract32(insn, 26, 1);
2871 bool is_load = extract32(insn, 22, 1);
2872 int opc = extract32(insn, 30, 2);
2874 bool is_signed = false;
2875 bool postindex = false;
2876 bool wback = false;
2877 bool set_tag = false;
2879 TCGv_i64 clean_addr, dirty_addr;
2881 int size;
2883 if (opc == 3) {
2884 unallocated_encoding(s);
2885 return;
2888 if (is_vector) {
2889 size = 2 + opc;
2890 } else if (opc == 1 && !is_load) {
2891 /* STGP */
2892 if (!dc_isar_feature(aa64_mte_insn_reg, s) || index == 0) {
2893 unallocated_encoding(s);
2894 return;
2896 size = 3;
2897 set_tag = true;
2898 } else {
2899 size = 2 + extract32(opc, 1, 1);
2900 is_signed = extract32(opc, 0, 1);
2901 if (!is_load && is_signed) {
2902 unallocated_encoding(s);
2903 return;
2907 switch (index) {
2908 case 1: /* post-index */
2909 postindex = true;
2910 wback = true;
2911 break;
2912 case 0:
2913 /* signed offset with "non-temporal" hint. Since we don't emulate
2914 * caches we don't care about hints to the cache system about
2915 * data access patterns, and handle this identically to plain
2916 * signed offset.
2918 if (is_signed) {
2919 /* There is no non-temporal-hint version of LDPSW */
2920 unallocated_encoding(s);
2921 return;
2923 postindex = false;
2924 break;
2925 case 2: /* signed offset, rn not updated */
2926 postindex = false;
2927 break;
2928 case 3: /* pre-index */
2929 postindex = false;
2930 wback = true;
2931 break;
2934 if (is_vector && !fp_access_check(s)) {
2935 return;
2938 offset <<= (set_tag ? LOG2_TAG_GRANULE : size);
2940 if (rn == 31) {
2941 gen_check_sp_alignment(s);
2944 dirty_addr = read_cpu_reg_sp(s, rn, 1);
2945 if (!postindex) {
2946 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
2949 if (set_tag) {
2950 if (!s->ata) {
2952 * TODO: We could rely on the stores below, at least for
2953 * system mode, if we arrange to add MO_ALIGN_16.
2955 gen_helper_stg_stub(cpu_env, dirty_addr);
2956 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
2957 gen_helper_stg_parallel(cpu_env, dirty_addr, dirty_addr);
2958 } else {
2959 gen_helper_stg(cpu_env, dirty_addr, dirty_addr);
2963 clean_addr = gen_mte_checkN(s, dirty_addr, !is_load,
2964 (wback || rn != 31) && !set_tag, 2 << size);
2966 if (is_vector) {
2967 if (is_load) {
2968 do_fp_ld(s, rt, clean_addr, size);
2969 } else {
2970 do_fp_st(s, rt, clean_addr, size);
2972 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2973 if (is_load) {
2974 do_fp_ld(s, rt2, clean_addr, size);
2975 } else {
2976 do_fp_st(s, rt2, clean_addr, size);
2978 } else {
2979 TCGv_i64 tcg_rt = cpu_reg(s, rt);
2980 TCGv_i64 tcg_rt2 = cpu_reg(s, rt2);
2982 if (is_load) {
2983 TCGv_i64 tmp = tcg_temp_new_i64();
2985 /* Do not modify tcg_rt before recognizing any exception
2986 * from the second load.
2988 do_gpr_ld(s, tmp, clean_addr, size + is_signed * MO_SIGN,
2989 false, false, 0, false, false);
2990 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
2991 do_gpr_ld(s, tcg_rt2, clean_addr, size + is_signed * MO_SIGN,
2992 false, false, 0, false, false);
2994 tcg_gen_mov_i64(tcg_rt, tmp);
2995 tcg_temp_free_i64(tmp);
2996 } else {
2997 do_gpr_st(s, tcg_rt, clean_addr, size,
2998 false, 0, false, false);
2999 tcg_gen_addi_i64(clean_addr, clean_addr, 1 << size);
3000 do_gpr_st(s, tcg_rt2, clean_addr, size,
3001 false, 0, false, false);
3005 if (wback) {
3006 if (postindex) {
3007 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3009 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3014 * Load/store (immediate post-indexed)
3015 * Load/store (immediate pre-indexed)
3016 * Load/store (unscaled immediate)
3018 * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0
3019 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3020 * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt |
3021 * +----+-------+---+-----+-----+---+--------+-----+------+------+
3023 * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback)
3024 10 -> unprivileged
3025 * V = 0 -> non-vector
3026 * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit
3027 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3029 static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn,
3030 int opc,
3031 int size,
3032 int rt,
3033 bool is_vector)
3035 int rn = extract32(insn, 5, 5);
3036 int imm9 = sextract32(insn, 12, 9);
3037 int idx = extract32(insn, 10, 2);
3038 bool is_signed = false;
3039 bool is_store = false;
3040 bool is_extended = false;
3041 bool is_unpriv = (idx == 2);
3042 bool iss_valid = !is_vector;
3043 bool post_index;
3044 bool writeback;
3045 int memidx;
3047 TCGv_i64 clean_addr, dirty_addr;
3049 if (is_vector) {
3050 size |= (opc & 2) << 1;
3051 if (size > 4 || is_unpriv) {
3052 unallocated_encoding(s);
3053 return;
3055 is_store = ((opc & 1) == 0);
3056 if (!fp_access_check(s)) {
3057 return;
3059 } else {
3060 if (size == 3 && opc == 2) {
3061 /* PRFM - prefetch */
3062 if (idx != 0) {
3063 unallocated_encoding(s);
3064 return;
3066 return;
3068 if (opc == 3 && size > 1) {
3069 unallocated_encoding(s);
3070 return;
3072 is_store = (opc == 0);
3073 is_signed = extract32(opc, 1, 1);
3074 is_extended = (size < 3) && extract32(opc, 0, 1);
3077 switch (idx) {
3078 case 0:
3079 case 2:
3080 post_index = false;
3081 writeback = false;
3082 break;
3083 case 1:
3084 post_index = true;
3085 writeback = true;
3086 break;
3087 case 3:
3088 post_index = false;
3089 writeback = true;
3090 break;
3091 default:
3092 g_assert_not_reached();
3095 if (rn == 31) {
3096 gen_check_sp_alignment(s);
3099 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3100 if (!post_index) {
3101 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3104 memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s);
3105 clean_addr = gen_mte_check1_mmuidx(s, dirty_addr, is_store,
3106 writeback || rn != 31,
3107 size, is_unpriv, memidx);
3109 if (is_vector) {
3110 if (is_store) {
3111 do_fp_st(s, rt, clean_addr, size);
3112 } else {
3113 do_fp_ld(s, rt, clean_addr, size);
3115 } else {
3116 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3117 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3119 if (is_store) {
3120 do_gpr_st_memidx(s, tcg_rt, clean_addr, size, memidx,
3121 iss_valid, rt, iss_sf, false);
3122 } else {
3123 do_gpr_ld_memidx(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3124 is_extended, memidx,
3125 iss_valid, rt, iss_sf, false);
3129 if (writeback) {
3130 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
3131 if (post_index) {
3132 tcg_gen_addi_i64(dirty_addr, dirty_addr, imm9);
3134 tcg_gen_mov_i64(tcg_rn, dirty_addr);
3139 * Load/store (register offset)
3141 * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3142 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3143 * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt |
3144 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+
3146 * For non-vector:
3147 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3148 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3149 * For vector:
3150 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3151 * opc<0>: 0 -> store, 1 -> load
3152 * V: 1 -> vector/simd
3153 * opt: extend encoding (see DecodeRegExtend)
3154 * S: if S=1 then scale (essentially index by sizeof(size))
3155 * Rt: register to transfer into/out of
3156 * Rn: address register or SP for base
3157 * Rm: offset register or ZR for offset
3159 static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn,
3160 int opc,
3161 int size,
3162 int rt,
3163 bool is_vector)
3165 int rn = extract32(insn, 5, 5);
3166 int shift = extract32(insn, 12, 1);
3167 int rm = extract32(insn, 16, 5);
3168 int opt = extract32(insn, 13, 3);
3169 bool is_signed = false;
3170 bool is_store = false;
3171 bool is_extended = false;
3173 TCGv_i64 tcg_rm, clean_addr, dirty_addr;
3175 if (extract32(opt, 1, 1) == 0) {
3176 unallocated_encoding(s);
3177 return;
3180 if (is_vector) {
3181 size |= (opc & 2) << 1;
3182 if (size > 4) {
3183 unallocated_encoding(s);
3184 return;
3186 is_store = !extract32(opc, 0, 1);
3187 if (!fp_access_check(s)) {
3188 return;
3190 } else {
3191 if (size == 3 && opc == 2) {
3192 /* PRFM - prefetch */
3193 return;
3195 if (opc == 3 && size > 1) {
3196 unallocated_encoding(s);
3197 return;
3199 is_store = (opc == 0);
3200 is_signed = extract32(opc, 1, 1);
3201 is_extended = (size < 3) && extract32(opc, 0, 1);
3204 if (rn == 31) {
3205 gen_check_sp_alignment(s);
3207 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3209 tcg_rm = read_cpu_reg(s, rm, 1);
3210 ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0);
3212 tcg_gen_add_i64(dirty_addr, dirty_addr, tcg_rm);
3213 clean_addr = gen_mte_check1(s, dirty_addr, is_store, true, size);
3215 if (is_vector) {
3216 if (is_store) {
3217 do_fp_st(s, rt, clean_addr, size);
3218 } else {
3219 do_fp_ld(s, rt, clean_addr, size);
3221 } else {
3222 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3223 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3224 if (is_store) {
3225 do_gpr_st(s, tcg_rt, clean_addr, size,
3226 true, rt, iss_sf, false);
3227 } else {
3228 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3229 is_extended, true, rt, iss_sf, false);
3235 * Load/store (unsigned immediate)
3237 * 31 30 29 27 26 25 24 23 22 21 10 9 5
3238 * +----+-------+---+-----+-----+------------+-------+------+
3239 * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt |
3240 * +----+-------+---+-----+-----+------------+-------+------+
3242 * For non-vector:
3243 * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit
3244 * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32
3245 * For vector:
3246 * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated
3247 * opc<0>: 0 -> store, 1 -> load
3248 * Rn: base address register (inc SP)
3249 * Rt: target register
3251 static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn,
3252 int opc,
3253 int size,
3254 int rt,
3255 bool is_vector)
3257 int rn = extract32(insn, 5, 5);
3258 unsigned int imm12 = extract32(insn, 10, 12);
3259 unsigned int offset;
3261 TCGv_i64 clean_addr, dirty_addr;
3263 bool is_store;
3264 bool is_signed = false;
3265 bool is_extended = false;
3267 if (is_vector) {
3268 size |= (opc & 2) << 1;
3269 if (size > 4) {
3270 unallocated_encoding(s);
3271 return;
3273 is_store = !extract32(opc, 0, 1);
3274 if (!fp_access_check(s)) {
3275 return;
3277 } else {
3278 if (size == 3 && opc == 2) {
3279 /* PRFM - prefetch */
3280 return;
3282 if (opc == 3 && size > 1) {
3283 unallocated_encoding(s);
3284 return;
3286 is_store = (opc == 0);
3287 is_signed = extract32(opc, 1, 1);
3288 is_extended = (size < 3) && extract32(opc, 0, 1);
3291 if (rn == 31) {
3292 gen_check_sp_alignment(s);
3294 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3295 offset = imm12 << size;
3296 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3297 clean_addr = gen_mte_check1(s, dirty_addr, is_store, rn != 31, size);
3299 if (is_vector) {
3300 if (is_store) {
3301 do_fp_st(s, rt, clean_addr, size);
3302 } else {
3303 do_fp_ld(s, rt, clean_addr, size);
3305 } else {
3306 TCGv_i64 tcg_rt = cpu_reg(s, rt);
3307 bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc);
3308 if (is_store) {
3309 do_gpr_st(s, tcg_rt, clean_addr, size,
3310 true, rt, iss_sf, false);
3311 } else {
3312 do_gpr_ld(s, tcg_rt, clean_addr, size + is_signed * MO_SIGN,
3313 is_extended, true, rt, iss_sf, false);
3318 /* Atomic memory operations
3320 * 31 30 27 26 24 22 21 16 15 12 10 5 0
3321 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+
3322 * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt |
3323 * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+
3325 * Rt: the result register
3326 * Rn: base address or SP
3327 * Rs: the source register for the operation
3328 * V: vector flag (always 0 as of v8.3)
3329 * A: acquire flag
3330 * R: release flag
3332 static void disas_ldst_atomic(DisasContext *s, uint32_t insn,
3333 int size, int rt, bool is_vector)
3335 int rs = extract32(insn, 16, 5);
3336 int rn = extract32(insn, 5, 5);
3337 int o3_opc = extract32(insn, 12, 4);
3338 bool r = extract32(insn, 22, 1);
3339 bool a = extract32(insn, 23, 1);
3340 TCGv_i64 tcg_rs, tcg_rt, clean_addr;
3341 AtomicThreeOpFn *fn = NULL;
3342 MemOp mop = s->be_data | size | MO_ALIGN;
3344 if (is_vector || !dc_isar_feature(aa64_atomics, s)) {
3345 unallocated_encoding(s);
3346 return;
3348 switch (o3_opc) {
3349 case 000: /* LDADD */
3350 fn = tcg_gen_atomic_fetch_add_i64;
3351 break;
3352 case 001: /* LDCLR */
3353 fn = tcg_gen_atomic_fetch_and_i64;
3354 break;
3355 case 002: /* LDEOR */
3356 fn = tcg_gen_atomic_fetch_xor_i64;
3357 break;
3358 case 003: /* LDSET */
3359 fn = tcg_gen_atomic_fetch_or_i64;
3360 break;
3361 case 004: /* LDSMAX */
3362 fn = tcg_gen_atomic_fetch_smax_i64;
3363 mop |= MO_SIGN;
3364 break;
3365 case 005: /* LDSMIN */
3366 fn = tcg_gen_atomic_fetch_smin_i64;
3367 mop |= MO_SIGN;
3368 break;
3369 case 006: /* LDUMAX */
3370 fn = tcg_gen_atomic_fetch_umax_i64;
3371 break;
3372 case 007: /* LDUMIN */
3373 fn = tcg_gen_atomic_fetch_umin_i64;
3374 break;
3375 case 010: /* SWP */
3376 fn = tcg_gen_atomic_xchg_i64;
3377 break;
3378 case 014: /* LDAPR, LDAPRH, LDAPRB */
3379 if (!dc_isar_feature(aa64_rcpc_8_3, s) ||
3380 rs != 31 || a != 1 || r != 0) {
3381 unallocated_encoding(s);
3382 return;
3384 break;
3385 default:
3386 unallocated_encoding(s);
3387 return;
3390 if (rn == 31) {
3391 gen_check_sp_alignment(s);
3393 clean_addr = gen_mte_check1(s, cpu_reg_sp(s, rn), false, rn != 31, size);
3395 if (o3_opc == 014) {
3397 * LDAPR* are a special case because they are a simple load, not a
3398 * fetch-and-do-something op.
3399 * The architectural consistency requirements here are weaker than
3400 * full load-acquire (we only need "load-acquire processor consistent"),
3401 * but we choose to implement them as full LDAQ.
3403 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, size, false,
3404 true, rt, disas_ldst_compute_iss_sf(size, false, 0), true);
3405 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3406 return;
3409 tcg_rs = read_cpu_reg(s, rs, true);
3410 tcg_rt = cpu_reg(s, rt);
3412 if (o3_opc == 1) { /* LDCLR */
3413 tcg_gen_not_i64(tcg_rs, tcg_rs);
3416 /* The tcg atomic primitives are all full barriers. Therefore we
3417 * can ignore the Acquire and Release bits of this instruction.
3419 fn(tcg_rt, clean_addr, tcg_rs, get_mem_index(s), mop);
3421 if ((mop & MO_SIGN) && size != MO_64) {
3422 tcg_gen_ext32u_i64(tcg_rt, tcg_rt);
3427 * PAC memory operations
3429 * 31 30 27 26 24 22 21 12 11 10 5 0
3430 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3431 * | size | 1 1 1 | V | 0 0 | M S | 1 | imm9 | W | 1 | Rn | Rt |
3432 * +------+-------+---+-----+-----+---+--------+---+---+----+-----+
3434 * Rt: the result register
3435 * Rn: base address or SP
3436 * V: vector flag (always 0 as of v8.3)
3437 * M: clear for key DA, set for key DB
3438 * W: pre-indexing flag
3439 * S: sign for imm9.
3441 static void disas_ldst_pac(DisasContext *s, uint32_t insn,
3442 int size, int rt, bool is_vector)
3444 int rn = extract32(insn, 5, 5);
3445 bool is_wback = extract32(insn, 11, 1);
3446 bool use_key_a = !extract32(insn, 23, 1);
3447 int offset;
3448 TCGv_i64 clean_addr, dirty_addr, tcg_rt;
3450 if (size != 3 || is_vector || !dc_isar_feature(aa64_pauth, s)) {
3451 unallocated_encoding(s);
3452 return;
3455 if (rn == 31) {
3456 gen_check_sp_alignment(s);
3458 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3460 if (s->pauth_active) {
3461 if (use_key_a) {
3462 gen_helper_autda(dirty_addr, cpu_env, dirty_addr,
3463 new_tmp_a64_zero(s));
3464 } else {
3465 gen_helper_autdb(dirty_addr, cpu_env, dirty_addr,
3466 new_tmp_a64_zero(s));
3470 /* Form the 10-bit signed, scaled offset. */
3471 offset = (extract32(insn, 22, 1) << 9) | extract32(insn, 12, 9);
3472 offset = sextract32(offset << size, 0, 10 + size);
3473 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3475 /* Note that "clean" and "dirty" here refer to TBI not PAC. */
3476 clean_addr = gen_mte_check1(s, dirty_addr, false,
3477 is_wback || rn != 31, size);
3479 tcg_rt = cpu_reg(s, rt);
3480 do_gpr_ld(s, tcg_rt, clean_addr, size,
3481 /* extend */ false, /* iss_valid */ !is_wback,
3482 /* iss_srt */ rt, /* iss_sf */ true, /* iss_ar */ false);
3484 if (is_wback) {
3485 tcg_gen_mov_i64(cpu_reg_sp(s, rn), dirty_addr);
3490 * LDAPR/STLR (unscaled immediate)
3492 * 31 30 24 22 21 12 10 5 0
3493 * +------+-------------+-----+---+--------+-----+----+-----+
3494 * | size | 0 1 1 0 0 1 | opc | 0 | imm9 | 0 0 | Rn | Rt |
3495 * +------+-------------+-----+---+--------+-----+----+-----+
3497 * Rt: source or destination register
3498 * Rn: base register
3499 * imm9: unscaled immediate offset
3500 * opc: 00: STLUR*, 01/10/11: various LDAPUR*
3501 * size: size of load/store
3503 static void disas_ldst_ldapr_stlr(DisasContext *s, uint32_t insn)
3505 int rt = extract32(insn, 0, 5);
3506 int rn = extract32(insn, 5, 5);
3507 int offset = sextract32(insn, 12, 9);
3508 int opc = extract32(insn, 22, 2);
3509 int size = extract32(insn, 30, 2);
3510 TCGv_i64 clean_addr, dirty_addr;
3511 bool is_store = false;
3512 bool extend = false;
3513 bool iss_sf;
3514 MemOp mop;
3516 if (!dc_isar_feature(aa64_rcpc_8_4, s)) {
3517 unallocated_encoding(s);
3518 return;
3521 /* TODO: ARMv8.4-LSE SCTLR.nAA */
3522 mop = size | MO_ALIGN;
3524 switch (opc) {
3525 case 0: /* STLURB */
3526 is_store = true;
3527 break;
3528 case 1: /* LDAPUR* */
3529 break;
3530 case 2: /* LDAPURS* 64-bit variant */
3531 if (size == 3) {
3532 unallocated_encoding(s);
3533 return;
3535 mop |= MO_SIGN;
3536 break;
3537 case 3: /* LDAPURS* 32-bit variant */
3538 if (size > 1) {
3539 unallocated_encoding(s);
3540 return;
3542 mop |= MO_SIGN;
3543 extend = true; /* zero-extend 32->64 after signed load */
3544 break;
3545 default:
3546 g_assert_not_reached();
3549 iss_sf = disas_ldst_compute_iss_sf(size, (mop & MO_SIGN) != 0, opc);
3551 if (rn == 31) {
3552 gen_check_sp_alignment(s);
3555 dirty_addr = read_cpu_reg_sp(s, rn, 1);
3556 tcg_gen_addi_i64(dirty_addr, dirty_addr, offset);
3557 clean_addr = clean_data_tbi(s, dirty_addr);
3559 if (is_store) {
3560 /* Store-Release semantics */
3561 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL);
3562 do_gpr_st(s, cpu_reg(s, rt), clean_addr, mop, true, rt, iss_sf, true);
3563 } else {
3565 * Load-AcquirePC semantics; we implement as the slightly more
3566 * restrictive Load-Acquire.
3568 do_gpr_ld(s, cpu_reg(s, rt), clean_addr, mop,
3569 extend, true, rt, iss_sf, true);
3570 tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ);
3574 /* Load/store register (all forms) */
3575 static void disas_ldst_reg(DisasContext *s, uint32_t insn)
3577 int rt = extract32(insn, 0, 5);
3578 int opc = extract32(insn, 22, 2);
3579 bool is_vector = extract32(insn, 26, 1);
3580 int size = extract32(insn, 30, 2);
3582 switch (extract32(insn, 24, 2)) {
3583 case 0:
3584 if (extract32(insn, 21, 1) == 0) {
3585 /* Load/store register (unscaled immediate)
3586 * Load/store immediate pre/post-indexed
3587 * Load/store register unprivileged
3589 disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector);
3590 return;
3592 switch (extract32(insn, 10, 2)) {
3593 case 0:
3594 disas_ldst_atomic(s, insn, size, rt, is_vector);
3595 return;
3596 case 2:
3597 disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector);
3598 return;
3599 default:
3600 disas_ldst_pac(s, insn, size, rt, is_vector);
3601 return;
3603 break;
3604 case 1:
3605 disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector);
3606 return;
3608 unallocated_encoding(s);
3611 /* AdvSIMD load/store multiple structures
3613 * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
3614 * +---+---+---------------+---+-------------+--------+------+------+------+
3615 * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
3616 * +---+---+---------------+---+-------------+--------+------+------+------+
3618 * AdvSIMD load/store multiple structures (post-indexed)
3620 * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
3621 * +---+---+---------------+---+---+---------+--------+------+------+------+
3622 * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
3623 * +---+---+---------------+---+---+---------+--------+------+------+------+
3625 * Rt: first (or only) SIMD&FP register to be transferred
3626 * Rn: base address or SP
3627 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3629 static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
3631 int rt = extract32(insn, 0, 5);
3632 int rn = extract32(insn, 5, 5);
3633 int rm = extract32(insn, 16, 5);
3634 int size = extract32(insn, 10, 2);
3635 int opcode = extract32(insn, 12, 4);
3636 bool is_store = !extract32(insn, 22, 1);
3637 bool is_postidx = extract32(insn, 23, 1);
3638 bool is_q = extract32(insn, 30, 1);
3639 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3640 MemOp endian, align, mop;
3642 int total; /* total bytes */
3643 int elements; /* elements per vector */
3644 int rpt; /* num iterations */
3645 int selem; /* structure elements */
3646 int r;
3648 if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
3649 unallocated_encoding(s);
3650 return;
3653 if (!is_postidx && rm != 0) {
3654 unallocated_encoding(s);
3655 return;
3658 /* From the shared decode logic */
3659 switch (opcode) {
3660 case 0x0:
3661 rpt = 1;
3662 selem = 4;
3663 break;
3664 case 0x2:
3665 rpt = 4;
3666 selem = 1;
3667 break;
3668 case 0x4:
3669 rpt = 1;
3670 selem = 3;
3671 break;
3672 case 0x6:
3673 rpt = 3;
3674 selem = 1;
3675 break;
3676 case 0x7:
3677 rpt = 1;
3678 selem = 1;
3679 break;
3680 case 0x8:
3681 rpt = 1;
3682 selem = 2;
3683 break;
3684 case 0xa:
3685 rpt = 2;
3686 selem = 1;
3687 break;
3688 default:
3689 unallocated_encoding(s);
3690 return;
3693 if (size == 3 && !is_q && selem != 1) {
3694 /* reserved */
3695 unallocated_encoding(s);
3696 return;
3699 if (!fp_access_check(s)) {
3700 return;
3703 if (rn == 31) {
3704 gen_check_sp_alignment(s);
3707 /* For our purposes, bytes are always little-endian. */
3708 endian = s->be_data;
3709 if (size == 0) {
3710 endian = MO_LE;
3713 total = rpt * selem * (is_q ? 16 : 8);
3714 tcg_rn = cpu_reg_sp(s, rn);
3717 * Issue the MTE check vs the logical repeat count, before we
3718 * promote consecutive little-endian elements below.
3720 clean_addr = gen_mte_checkN(s, tcg_rn, is_store, is_postidx || rn != 31,
3721 total);
3724 * Consecutive little-endian elements from a single register
3725 * can be promoted to a larger little-endian operation.
3727 align = MO_ALIGN;
3728 if (selem == 1 && endian == MO_LE) {
3729 align = pow2_align(size);
3730 size = 3;
3732 if (!s->align_mem) {
3733 align = 0;
3735 mop = endian | size | align;
3737 elements = (is_q ? 16 : 8) >> size;
3738 tcg_ebytes = tcg_const_i64(1 << size);
3739 for (r = 0; r < rpt; r++) {
3740 int e;
3741 for (e = 0; e < elements; e++) {
3742 int xs;
3743 for (xs = 0; xs < selem; xs++) {
3744 int tt = (rt + r + xs) % 32;
3745 if (is_store) {
3746 do_vec_st(s, tt, e, clean_addr, mop);
3747 } else {
3748 do_vec_ld(s, tt, e, clean_addr, mop);
3750 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3754 tcg_temp_free_i64(tcg_ebytes);
3756 if (!is_store) {
3757 /* For non-quad operations, setting a slice of the low
3758 * 64 bits of the register clears the high 64 bits (in
3759 * the ARM ARM pseudocode this is implicit in the fact
3760 * that 'rval' is a 64 bit wide variable).
3761 * For quad operations, we might still need to zero the
3762 * high bits of SVE.
3764 for (r = 0; r < rpt * selem; r++) {
3765 int tt = (rt + r) % 32;
3766 clear_vec_high(s, is_q, tt);
3770 if (is_postidx) {
3771 if (rm == 31) {
3772 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3773 } else {
3774 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3779 /* AdvSIMD load/store single structure
3781 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3782 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3783 * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
3784 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3786 * AdvSIMD load/store single structure (post-indexed)
3788 * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
3789 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3790 * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
3791 * +---+---+---------------+-----+-----------+-----+---+------+------+------+
3793 * Rt: first (or only) SIMD&FP register to be transferred
3794 * Rn: base address or SP
3795 * Rm (post-index only): post-index register (when !31) or size dependent #imm
3796 * index = encoded in Q:S:size dependent on size
3798 * lane_size = encoded in R, opc
3799 * transfer width = encoded in opc, S, size
3801 static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
3803 int rt = extract32(insn, 0, 5);
3804 int rn = extract32(insn, 5, 5);
3805 int rm = extract32(insn, 16, 5);
3806 int size = extract32(insn, 10, 2);
3807 int S = extract32(insn, 12, 1);
3808 int opc = extract32(insn, 13, 3);
3809 int R = extract32(insn, 21, 1);
3810 int is_load = extract32(insn, 22, 1);
3811 int is_postidx = extract32(insn, 23, 1);
3812 int is_q = extract32(insn, 30, 1);
3814 int scale = extract32(opc, 1, 2);
3815 int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
3816 bool replicate = false;
3817 int index = is_q << 3 | S << 2 | size;
3818 int xs, total;
3819 TCGv_i64 clean_addr, tcg_rn, tcg_ebytes;
3820 MemOp mop;
3822 if (extract32(insn, 31, 1)) {
3823 unallocated_encoding(s);
3824 return;
3826 if (!is_postidx && rm != 0) {
3827 unallocated_encoding(s);
3828 return;
3831 switch (scale) {
3832 case 3:
3833 if (!is_load || S) {
3834 unallocated_encoding(s);
3835 return;
3837 scale = size;
3838 replicate = true;
3839 break;
3840 case 0:
3841 break;
3842 case 1:
3843 if (extract32(size, 0, 1)) {
3844 unallocated_encoding(s);
3845 return;
3847 index >>= 1;
3848 break;
3849 case 2:
3850 if (extract32(size, 1, 1)) {
3851 unallocated_encoding(s);
3852 return;
3854 if (!extract32(size, 0, 1)) {
3855 index >>= 2;
3856 } else {
3857 if (S) {
3858 unallocated_encoding(s);
3859 return;
3861 index >>= 3;
3862 scale = 3;
3864 break;
3865 default:
3866 g_assert_not_reached();
3869 if (!fp_access_check(s)) {
3870 return;
3873 if (rn == 31) {
3874 gen_check_sp_alignment(s);
3877 total = selem << scale;
3878 tcg_rn = cpu_reg_sp(s, rn);
3880 clean_addr = gen_mte_checkN(s, tcg_rn, !is_load, is_postidx || rn != 31,
3881 total);
3882 mop = finalize_memop(s, scale);
3884 tcg_ebytes = tcg_const_i64(1 << scale);
3885 for (xs = 0; xs < selem; xs++) {
3886 if (replicate) {
3887 /* Load and replicate to all elements */
3888 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
3890 tcg_gen_qemu_ld_i64(tcg_tmp, clean_addr, get_mem_index(s), mop);
3891 tcg_gen_gvec_dup_i64(scale, vec_full_reg_offset(s, rt),
3892 (is_q + 1) * 8, vec_full_reg_size(s),
3893 tcg_tmp);
3894 tcg_temp_free_i64(tcg_tmp);
3895 } else {
3896 /* Load/store one element per register */
3897 if (is_load) {
3898 do_vec_ld(s, rt, index, clean_addr, mop);
3899 } else {
3900 do_vec_st(s, rt, index, clean_addr, mop);
3903 tcg_gen_add_i64(clean_addr, clean_addr, tcg_ebytes);
3904 rt = (rt + 1) % 32;
3906 tcg_temp_free_i64(tcg_ebytes);
3908 if (is_postidx) {
3909 if (rm == 31) {
3910 tcg_gen_addi_i64(tcg_rn, tcg_rn, total);
3911 } else {
3912 tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
3918 * Load/Store memory tags
3920 * 31 30 29 24 22 21 12 10 5 0
3921 * +-----+-------------+-----+---+------+-----+------+------+
3922 * | 1 1 | 0 1 1 0 0 1 | op1 | 1 | imm9 | op2 | Rn | Rt |
3923 * +-----+-------------+-----+---+------+-----+------+------+
3925 static void disas_ldst_tag(DisasContext *s, uint32_t insn)
3927 int rt = extract32(insn, 0, 5);
3928 int rn = extract32(insn, 5, 5);
3929 uint64_t offset = sextract64(insn, 12, 9) << LOG2_TAG_GRANULE;
3930 int op2 = extract32(insn, 10, 2);
3931 int op1 = extract32(insn, 22, 2);
3932 bool is_load = false, is_pair = false, is_zero = false, is_mult = false;
3933 int index = 0;
3934 TCGv_i64 addr, clean_addr, tcg_rt;
3936 /* We checked insn bits [29:24,21] in the caller. */
3937 if (extract32(insn, 30, 2) != 3) {
3938 goto do_unallocated;
3942 * @index is a tri-state variable which has 3 states:
3943 * < 0 : post-index, writeback
3944 * = 0 : signed offset
3945 * > 0 : pre-index, writeback
3947 switch (op1) {
3948 case 0:
3949 if (op2 != 0) {
3950 /* STG */
3951 index = op2 - 2;
3952 } else {
3953 /* STZGM */
3954 if (s->current_el == 0 || offset != 0) {
3955 goto do_unallocated;
3957 is_mult = is_zero = true;
3959 break;
3960 case 1:
3961 if (op2 != 0) {
3962 /* STZG */
3963 is_zero = true;
3964 index = op2 - 2;
3965 } else {
3966 /* LDG */
3967 is_load = true;
3969 break;
3970 case 2:
3971 if (op2 != 0) {
3972 /* ST2G */
3973 is_pair = true;
3974 index = op2 - 2;
3975 } else {
3976 /* STGM */
3977 if (s->current_el == 0 || offset != 0) {
3978 goto do_unallocated;
3980 is_mult = true;
3982 break;
3983 case 3:
3984 if (op2 != 0) {
3985 /* STZ2G */
3986 is_pair = is_zero = true;
3987 index = op2 - 2;
3988 } else {
3989 /* LDGM */
3990 if (s->current_el == 0 || offset != 0) {
3991 goto do_unallocated;
3993 is_mult = is_load = true;
3995 break;
3997 default:
3998 do_unallocated:
3999 unallocated_encoding(s);
4000 return;
4003 if (is_mult
4004 ? !dc_isar_feature(aa64_mte, s)
4005 : !dc_isar_feature(aa64_mte_insn_reg, s)) {
4006 goto do_unallocated;
4009 if (rn == 31) {
4010 gen_check_sp_alignment(s);
4013 addr = read_cpu_reg_sp(s, rn, true);
4014 if (index >= 0) {
4015 /* pre-index or signed offset */
4016 tcg_gen_addi_i64(addr, addr, offset);
4019 if (is_mult) {
4020 tcg_rt = cpu_reg(s, rt);
4022 if (is_zero) {
4023 int size = 4 << s->dcz_blocksize;
4025 if (s->ata) {
4026 gen_helper_stzgm_tags(cpu_env, addr, tcg_rt);
4029 * The non-tags portion of STZGM is mostly like DC_ZVA,
4030 * except the alignment happens before the access.
4032 clean_addr = clean_data_tbi(s, addr);
4033 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4034 gen_helper_dc_zva(cpu_env, clean_addr);
4035 } else if (s->ata) {
4036 if (is_load) {
4037 gen_helper_ldgm(tcg_rt, cpu_env, addr);
4038 } else {
4039 gen_helper_stgm(cpu_env, addr, tcg_rt);
4041 } else {
4042 MMUAccessType acc = is_load ? MMU_DATA_LOAD : MMU_DATA_STORE;
4043 int size = 4 << GMID_EL1_BS;
4045 clean_addr = clean_data_tbi(s, addr);
4046 tcg_gen_andi_i64(clean_addr, clean_addr, -size);
4047 gen_probe_access(s, clean_addr, acc, size);
4049 if (is_load) {
4050 /* The result tags are zeros. */
4051 tcg_gen_movi_i64(tcg_rt, 0);
4054 return;
4057 if (is_load) {
4058 tcg_gen_andi_i64(addr, addr, -TAG_GRANULE);
4059 tcg_rt = cpu_reg(s, rt);
4060 if (s->ata) {
4061 gen_helper_ldg(tcg_rt, cpu_env, addr, tcg_rt);
4062 } else {
4063 clean_addr = clean_data_tbi(s, addr);
4064 gen_probe_access(s, clean_addr, MMU_DATA_LOAD, MO_8);
4065 gen_address_with_allocation_tag0(tcg_rt, addr);
4067 } else {
4068 tcg_rt = cpu_reg_sp(s, rt);
4069 if (!s->ata) {
4071 * For STG and ST2G, we need to check alignment and probe memory.
4072 * TODO: For STZG and STZ2G, we could rely on the stores below,
4073 * at least for system mode; user-only won't enforce alignment.
4075 if (is_pair) {
4076 gen_helper_st2g_stub(cpu_env, addr);
4077 } else {
4078 gen_helper_stg_stub(cpu_env, addr);
4080 } else if (tb_cflags(s->base.tb) & CF_PARALLEL) {
4081 if (is_pair) {
4082 gen_helper_st2g_parallel(cpu_env, addr, tcg_rt);
4083 } else {
4084 gen_helper_stg_parallel(cpu_env, addr, tcg_rt);
4086 } else {
4087 if (is_pair) {
4088 gen_helper_st2g(cpu_env, addr, tcg_rt);
4089 } else {
4090 gen_helper_stg(cpu_env, addr, tcg_rt);
4095 if (is_zero) {
4096 TCGv_i64 clean_addr = clean_data_tbi(s, addr);
4097 TCGv_i64 tcg_zero = tcg_const_i64(0);
4098 int mem_index = get_mem_index(s);
4099 int i, n = (1 + is_pair) << LOG2_TAG_GRANULE;
4101 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index,
4102 MO_UQ | MO_ALIGN_16);
4103 for (i = 8; i < n; i += 8) {
4104 tcg_gen_addi_i64(clean_addr, clean_addr, 8);
4105 tcg_gen_qemu_st_i64(tcg_zero, clean_addr, mem_index, MO_UQ);
4107 tcg_temp_free_i64(tcg_zero);
4110 if (index != 0) {
4111 /* pre-index or post-index */
4112 if (index < 0) {
4113 /* post-index */
4114 tcg_gen_addi_i64(addr, addr, offset);
4116 tcg_gen_mov_i64(cpu_reg_sp(s, rn), addr);
4120 /* Loads and stores */
4121 static void disas_ldst(DisasContext *s, uint32_t insn)
4123 switch (extract32(insn, 24, 6)) {
4124 case 0x08: /* Load/store exclusive */
4125 disas_ldst_excl(s, insn);
4126 break;
4127 case 0x18: case 0x1c: /* Load register (literal) */
4128 disas_ld_lit(s, insn);
4129 break;
4130 case 0x28: case 0x29:
4131 case 0x2c: case 0x2d: /* Load/store pair (all forms) */
4132 disas_ldst_pair(s, insn);
4133 break;
4134 case 0x38: case 0x39:
4135 case 0x3c: case 0x3d: /* Load/store register (all forms) */
4136 disas_ldst_reg(s, insn);
4137 break;
4138 case 0x0c: /* AdvSIMD load/store multiple structures */
4139 disas_ldst_multiple_struct(s, insn);
4140 break;
4141 case 0x0d: /* AdvSIMD load/store single structure */
4142 disas_ldst_single_struct(s, insn);
4143 break;
4144 case 0x19:
4145 if (extract32(insn, 21, 1) != 0) {
4146 disas_ldst_tag(s, insn);
4147 } else if (extract32(insn, 10, 2) == 0) {
4148 disas_ldst_ldapr_stlr(s, insn);
4149 } else {
4150 unallocated_encoding(s);
4152 break;
4153 default:
4154 unallocated_encoding(s);
4155 break;
4159 /* PC-rel. addressing
4160 * 31 30 29 28 24 23 5 4 0
4161 * +----+-------+-----------+-------------------+------+
4162 * | op | immlo | 1 0 0 0 0 | immhi | Rd |
4163 * +----+-------+-----------+-------------------+------+
4165 static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
4167 unsigned int page, rd;
4168 uint64_t base;
4169 uint64_t offset;
4171 page = extract32(insn, 31, 1);
4172 /* SignExtend(immhi:immlo) -> offset */
4173 offset = sextract64(insn, 5, 19);
4174 offset = offset << 2 | extract32(insn, 29, 2);
4175 rd = extract32(insn, 0, 5);
4176 base = s->pc_curr;
4178 if (page) {
4179 /* ADRP (page based) */
4180 base &= ~0xfff;
4181 offset <<= 12;
4184 tcg_gen_movi_i64(cpu_reg(s, rd), base + offset);
4188 * Add/subtract (immediate)
4190 * 31 30 29 28 23 22 21 10 9 5 4 0
4191 * +--+--+--+-------------+--+-------------+-----+-----+
4192 * |sf|op| S| 1 0 0 0 1 0 |sh| imm12 | Rn | Rd |
4193 * +--+--+--+-------------+--+-------------+-----+-----+
4195 * sf: 0 -> 32bit, 1 -> 64bit
4196 * op: 0 -> add , 1 -> sub
4197 * S: 1 -> set flags
4198 * sh: 1 -> LSL imm by 12
4200 static void disas_add_sub_imm(DisasContext *s, uint32_t insn)
4202 int rd = extract32(insn, 0, 5);
4203 int rn = extract32(insn, 5, 5);
4204 uint64_t imm = extract32(insn, 10, 12);
4205 bool shift = extract32(insn, 22, 1);
4206 bool setflags = extract32(insn, 29, 1);
4207 bool sub_op = extract32(insn, 30, 1);
4208 bool is_64bit = extract32(insn, 31, 1);
4210 TCGv_i64 tcg_rn = cpu_reg_sp(s, rn);
4211 TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd);
4212 TCGv_i64 tcg_result;
4214 if (shift) {
4215 imm <<= 12;
4218 tcg_result = tcg_temp_new_i64();
4219 if (!setflags) {
4220 if (sub_op) {
4221 tcg_gen_subi_i64(tcg_result, tcg_rn, imm);
4222 } else {
4223 tcg_gen_addi_i64(tcg_result, tcg_rn, imm);
4225 } else {
4226 TCGv_i64 tcg_imm = tcg_const_i64(imm);
4227 if (sub_op) {
4228 gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4229 } else {
4230 gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm);
4232 tcg_temp_free_i64(tcg_imm);
4235 if (is_64bit) {
4236 tcg_gen_mov_i64(tcg_rd, tcg_result);
4237 } else {
4238 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4241 tcg_temp_free_i64(tcg_result);
4245 * Add/subtract (immediate, with tags)
4247 * 31 30 29 28 23 22 21 16 14 10 9 5 4 0
4248 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4249 * |sf|op| S| 1 0 0 0 1 1 |o2| uimm6 |o3| uimm4 | Rn | Rd |
4250 * +--+--+--+-------------+--+---------+--+-------+-----+-----+
4252 * op: 0 -> add, 1 -> sub
4254 static void disas_add_sub_imm_with_tags(DisasContext *s, uint32_t insn)
4256 int rd = extract32(insn, 0, 5);
4257 int rn = extract32(insn, 5, 5);
4258 int uimm4 = extract32(insn, 10, 4);
4259 int uimm6 = extract32(insn, 16, 6);
4260 bool sub_op = extract32(insn, 30, 1);
4261 TCGv_i64 tcg_rn, tcg_rd;
4262 int imm;
4264 /* Test all of sf=1, S=0, o2=0, o3=0. */
4265 if ((insn & 0xa040c000u) != 0x80000000u ||
4266 !dc_isar_feature(aa64_mte_insn_reg, s)) {
4267 unallocated_encoding(s);
4268 return;
4271 imm = uimm6 << LOG2_TAG_GRANULE;
4272 if (sub_op) {
4273 imm = -imm;
4276 tcg_rn = cpu_reg_sp(s, rn);
4277 tcg_rd = cpu_reg_sp(s, rd);
4279 if (s->ata) {
4280 TCGv_i32 offset = tcg_const_i32(imm);
4281 TCGv_i32 tag_offset = tcg_const_i32(uimm4);
4283 gen_helper_addsubg(tcg_rd, cpu_env, tcg_rn, offset, tag_offset);
4284 tcg_temp_free_i32(tag_offset);
4285 tcg_temp_free_i32(offset);
4286 } else {
4287 tcg_gen_addi_i64(tcg_rd, tcg_rn, imm);
4288 gen_address_with_allocation_tag0(tcg_rd, tcg_rd);
4292 /* The input should be a value in the bottom e bits (with higher
4293 * bits zero); returns that value replicated into every element
4294 * of size e in a 64 bit integer.
4296 static uint64_t bitfield_replicate(uint64_t mask, unsigned int e)
4298 assert(e != 0);
4299 while (e < 64) {
4300 mask |= mask << e;
4301 e *= 2;
4303 return mask;
4306 /* Return a value with the bottom len bits set (where 0 < len <= 64) */
4307 static inline uint64_t bitmask64(unsigned int length)
4309 assert(length > 0 && length <= 64);
4310 return ~0ULL >> (64 - length);
4313 /* Simplified variant of pseudocode DecodeBitMasks() for the case where we
4314 * only require the wmask. Returns false if the imms/immr/immn are a reserved
4315 * value (ie should cause a guest UNDEF exception), and true if they are
4316 * valid, in which case the decoded bit pattern is written to result.
4318 bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn,
4319 unsigned int imms, unsigned int immr)
4321 uint64_t mask;
4322 unsigned e, levels, s, r;
4323 int len;
4325 assert(immn < 2 && imms < 64 && immr < 64);
4327 /* The bit patterns we create here are 64 bit patterns which
4328 * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or
4329 * 64 bits each. Each element contains the same value: a run
4330 * of between 1 and e-1 non-zero bits, rotated within the
4331 * element by between 0 and e-1 bits.
4333 * The element size and run length are encoded into immn (1 bit)
4334 * and imms (6 bits) as follows:
4335 * 64 bit elements: immn = 1, imms = <length of run - 1>
4336 * 32 bit elements: immn = 0, imms = 0 : <length of run - 1>
4337 * 16 bit elements: immn = 0, imms = 10 : <length of run - 1>
4338 * 8 bit elements: immn = 0, imms = 110 : <length of run - 1>
4339 * 4 bit elements: immn = 0, imms = 1110 : <length of run - 1>
4340 * 2 bit elements: immn = 0, imms = 11110 : <length of run - 1>
4341 * Notice that immn = 0, imms = 11111x is the only combination
4342 * not covered by one of the above options; this is reserved.
4343 * Further, <length of run - 1> all-ones is a reserved pattern.
4345 * In all cases the rotation is by immr % e (and immr is 6 bits).
4348 /* First determine the element size */
4349 len = 31 - clz32((immn << 6) | (~imms & 0x3f));
4350 if (len < 1) {
4351 /* This is the immn == 0, imms == 0x11111x case */
4352 return false;
4354 e = 1 << len;
4356 levels = e - 1;
4357 s = imms & levels;
4358 r = immr & levels;
4360 if (s == levels) {
4361 /* <length of run - 1> mustn't be all-ones. */
4362 return false;
4365 /* Create the value of one element: s+1 set bits rotated
4366 * by r within the element (which is e bits wide)...
4368 mask = bitmask64(s + 1);
4369 if (r) {
4370 mask = (mask >> r) | (mask << (e - r));
4371 mask &= bitmask64(e);
4373 /* ...then replicate the element over the whole 64 bit value */
4374 mask = bitfield_replicate(mask, e);
4375 *result = mask;
4376 return true;
4379 /* Logical (immediate)
4380 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4381 * +----+-----+-------------+---+------+------+------+------+
4382 * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd |
4383 * +----+-----+-------------+---+------+------+------+------+
4385 static void disas_logic_imm(DisasContext *s, uint32_t insn)
4387 unsigned int sf, opc, is_n, immr, imms, rn, rd;
4388 TCGv_i64 tcg_rd, tcg_rn;
4389 uint64_t wmask;
4390 bool is_and = false;
4392 sf = extract32(insn, 31, 1);
4393 opc = extract32(insn, 29, 2);
4394 is_n = extract32(insn, 22, 1);
4395 immr = extract32(insn, 16, 6);
4396 imms = extract32(insn, 10, 6);
4397 rn = extract32(insn, 5, 5);
4398 rd = extract32(insn, 0, 5);
4400 if (!sf && is_n) {
4401 unallocated_encoding(s);
4402 return;
4405 if (opc == 0x3) { /* ANDS */
4406 tcg_rd = cpu_reg(s, rd);
4407 } else {
4408 tcg_rd = cpu_reg_sp(s, rd);
4410 tcg_rn = cpu_reg(s, rn);
4412 if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) {
4413 /* some immediate field values are reserved */
4414 unallocated_encoding(s);
4415 return;
4418 if (!sf) {
4419 wmask &= 0xffffffff;
4422 switch (opc) {
4423 case 0x3: /* ANDS */
4424 case 0x0: /* AND */
4425 tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask);
4426 is_and = true;
4427 break;
4428 case 0x1: /* ORR */
4429 tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask);
4430 break;
4431 case 0x2: /* EOR */
4432 tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask);
4433 break;
4434 default:
4435 assert(FALSE); /* must handle all above */
4436 break;
4439 if (!sf && !is_and) {
4440 /* zero extend final result; we know we can skip this for AND
4441 * since the immediate had the high 32 bits clear.
4443 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4446 if (opc == 3) { /* ANDS */
4447 gen_logic_CC(sf, tcg_rd);
4452 * Move wide (immediate)
4454 * 31 30 29 28 23 22 21 20 5 4 0
4455 * +--+-----+-------------+-----+----------------+------+
4456 * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd |
4457 * +--+-----+-------------+-----+----------------+------+
4459 * sf: 0 -> 32 bit, 1 -> 64 bit
4460 * opc: 00 -> N, 10 -> Z, 11 -> K
4461 * hw: shift/16 (0,16, and sf only 32, 48)
4463 static void disas_movw_imm(DisasContext *s, uint32_t insn)
4465 int rd = extract32(insn, 0, 5);
4466 uint64_t imm = extract32(insn, 5, 16);
4467 int sf = extract32(insn, 31, 1);
4468 int opc = extract32(insn, 29, 2);
4469 int pos = extract32(insn, 21, 2) << 4;
4470 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4471 TCGv_i64 tcg_imm;
4473 if (!sf && (pos >= 32)) {
4474 unallocated_encoding(s);
4475 return;
4478 switch (opc) {
4479 case 0: /* MOVN */
4480 case 2: /* MOVZ */
4481 imm <<= pos;
4482 if (opc == 0) {
4483 imm = ~imm;
4485 if (!sf) {
4486 imm &= 0xffffffffu;
4488 tcg_gen_movi_i64(tcg_rd, imm);
4489 break;
4490 case 3: /* MOVK */
4491 tcg_imm = tcg_const_i64(imm);
4492 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16);
4493 tcg_temp_free_i64(tcg_imm);
4494 if (!sf) {
4495 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4497 break;
4498 default:
4499 unallocated_encoding(s);
4500 break;
4504 /* Bitfield
4505 * 31 30 29 28 23 22 21 16 15 10 9 5 4 0
4506 * +----+-----+-------------+---+------+------+------+------+
4507 * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd |
4508 * +----+-----+-------------+---+------+------+------+------+
4510 static void disas_bitfield(DisasContext *s, uint32_t insn)
4512 unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len;
4513 TCGv_i64 tcg_rd, tcg_tmp;
4515 sf = extract32(insn, 31, 1);
4516 opc = extract32(insn, 29, 2);
4517 n = extract32(insn, 22, 1);
4518 ri = extract32(insn, 16, 6);
4519 si = extract32(insn, 10, 6);
4520 rn = extract32(insn, 5, 5);
4521 rd = extract32(insn, 0, 5);
4522 bitsize = sf ? 64 : 32;
4524 if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) {
4525 unallocated_encoding(s);
4526 return;
4529 tcg_rd = cpu_reg(s, rd);
4531 /* Suppress the zero-extend for !sf. Since RI and SI are constrained
4532 to be smaller than bitsize, we'll never reference data outside the
4533 low 32-bits anyway. */
4534 tcg_tmp = read_cpu_reg(s, rn, 1);
4536 /* Recognize simple(r) extractions. */
4537 if (si >= ri) {
4538 /* Wd<s-r:0> = Wn<s:r> */
4539 len = (si - ri) + 1;
4540 if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */
4541 tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len);
4542 goto done;
4543 } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */
4544 tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len);
4545 return;
4547 /* opc == 1, BFXIL fall through to deposit */
4548 tcg_gen_shri_i64(tcg_tmp, tcg_tmp, ri);
4549 pos = 0;
4550 } else {
4551 /* Handle the ri > si case with a deposit
4552 * Wd<32+s-r,32-r> = Wn<s:0>
4554 len = si + 1;
4555 pos = (bitsize - ri) & (bitsize - 1);
4558 if (opc == 0 && len < ri) {
4559 /* SBFM: sign extend the destination field from len to fill
4560 the balance of the word. Let the deposit below insert all
4561 of those sign bits. */
4562 tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len);
4563 len = ri;
4566 if (opc == 1) { /* BFM, BFXIL */
4567 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len);
4568 } else {
4569 /* SBFM or UBFM: We start with zero, and we haven't modified
4570 any bits outside bitsize, therefore the zero-extension
4571 below is unneeded. */
4572 tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len);
4573 return;
4576 done:
4577 if (!sf) { /* zero extend final result */
4578 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4582 /* Extract
4583 * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0
4584 * +----+------+-------------+---+----+------+--------+------+------+
4585 * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd |
4586 * +----+------+-------------+---+----+------+--------+------+------+
4588 static void disas_extract(DisasContext *s, uint32_t insn)
4590 unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0;
4592 sf = extract32(insn, 31, 1);
4593 n = extract32(insn, 22, 1);
4594 rm = extract32(insn, 16, 5);
4595 imm = extract32(insn, 10, 6);
4596 rn = extract32(insn, 5, 5);
4597 rd = extract32(insn, 0, 5);
4598 op21 = extract32(insn, 29, 2);
4599 op0 = extract32(insn, 21, 1);
4600 bitsize = sf ? 64 : 32;
4602 if (sf != n || op21 || op0 || imm >= bitsize) {
4603 unallocated_encoding(s);
4604 } else {
4605 TCGv_i64 tcg_rd, tcg_rm, tcg_rn;
4607 tcg_rd = cpu_reg(s, rd);
4609 if (unlikely(imm == 0)) {
4610 /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts,
4611 * so an extract from bit 0 is a special case.
4613 if (sf) {
4614 tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm));
4615 } else {
4616 tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm));
4618 } else {
4619 tcg_rm = cpu_reg(s, rm);
4620 tcg_rn = cpu_reg(s, rn);
4622 if (sf) {
4623 /* Specialization to ROR happens in EXTRACT2. */
4624 tcg_gen_extract2_i64(tcg_rd, tcg_rm, tcg_rn, imm);
4625 } else {
4626 TCGv_i32 t0 = tcg_temp_new_i32();
4628 tcg_gen_extrl_i64_i32(t0, tcg_rm);
4629 if (rm == rn) {
4630 tcg_gen_rotri_i32(t0, t0, imm);
4631 } else {
4632 TCGv_i32 t1 = tcg_temp_new_i32();
4633 tcg_gen_extrl_i64_i32(t1, tcg_rn);
4634 tcg_gen_extract2_i32(t0, t0, t1, imm);
4635 tcg_temp_free_i32(t1);
4637 tcg_gen_extu_i32_i64(tcg_rd, t0);
4638 tcg_temp_free_i32(t0);
4644 /* Data processing - immediate */
4645 static void disas_data_proc_imm(DisasContext *s, uint32_t insn)
4647 switch (extract32(insn, 23, 6)) {
4648 case 0x20: case 0x21: /* PC-rel. addressing */
4649 disas_pc_rel_adr(s, insn);
4650 break;
4651 case 0x22: /* Add/subtract (immediate) */
4652 disas_add_sub_imm(s, insn);
4653 break;
4654 case 0x23: /* Add/subtract (immediate, with tags) */
4655 disas_add_sub_imm_with_tags(s, insn);
4656 break;
4657 case 0x24: /* Logical (immediate) */
4658 disas_logic_imm(s, insn);
4659 break;
4660 case 0x25: /* Move wide (immediate) */
4661 disas_movw_imm(s, insn);
4662 break;
4663 case 0x26: /* Bitfield */
4664 disas_bitfield(s, insn);
4665 break;
4666 case 0x27: /* Extract */
4667 disas_extract(s, insn);
4668 break;
4669 default:
4670 unallocated_encoding(s);
4671 break;
4675 /* Shift a TCGv src by TCGv shift_amount, put result in dst.
4676 * Note that it is the caller's responsibility to ensure that the
4677 * shift amount is in range (ie 0..31 or 0..63) and provide the ARM
4678 * mandated semantics for out of range shifts.
4680 static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf,
4681 enum a64_shift_type shift_type, TCGv_i64 shift_amount)
4683 switch (shift_type) {
4684 case A64_SHIFT_TYPE_LSL:
4685 tcg_gen_shl_i64(dst, src, shift_amount);
4686 break;
4687 case A64_SHIFT_TYPE_LSR:
4688 tcg_gen_shr_i64(dst, src, shift_amount);
4689 break;
4690 case A64_SHIFT_TYPE_ASR:
4691 if (!sf) {
4692 tcg_gen_ext32s_i64(dst, src);
4694 tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount);
4695 break;
4696 case A64_SHIFT_TYPE_ROR:
4697 if (sf) {
4698 tcg_gen_rotr_i64(dst, src, shift_amount);
4699 } else {
4700 TCGv_i32 t0, t1;
4701 t0 = tcg_temp_new_i32();
4702 t1 = tcg_temp_new_i32();
4703 tcg_gen_extrl_i64_i32(t0, src);
4704 tcg_gen_extrl_i64_i32(t1, shift_amount);
4705 tcg_gen_rotr_i32(t0, t0, t1);
4706 tcg_gen_extu_i32_i64(dst, t0);
4707 tcg_temp_free_i32(t0);
4708 tcg_temp_free_i32(t1);
4710 break;
4711 default:
4712 assert(FALSE); /* all shift types should be handled */
4713 break;
4716 if (!sf) { /* zero extend final result */
4717 tcg_gen_ext32u_i64(dst, dst);
4721 /* Shift a TCGv src by immediate, put result in dst.
4722 * The shift amount must be in range (this should always be true as the
4723 * relevant instructions will UNDEF on bad shift immediates).
4725 static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf,
4726 enum a64_shift_type shift_type, unsigned int shift_i)
4728 assert(shift_i < (sf ? 64 : 32));
4730 if (shift_i == 0) {
4731 tcg_gen_mov_i64(dst, src);
4732 } else {
4733 TCGv_i64 shift_const;
4735 shift_const = tcg_const_i64(shift_i);
4736 shift_reg(dst, src, sf, shift_type, shift_const);
4737 tcg_temp_free_i64(shift_const);
4741 /* Logical (shifted register)
4742 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4743 * +----+-----+-----------+-------+---+------+--------+------+------+
4744 * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd |
4745 * +----+-----+-----------+-------+---+------+--------+------+------+
4747 static void disas_logic_reg(DisasContext *s, uint32_t insn)
4749 TCGv_i64 tcg_rd, tcg_rn, tcg_rm;
4750 unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd;
4752 sf = extract32(insn, 31, 1);
4753 opc = extract32(insn, 29, 2);
4754 shift_type = extract32(insn, 22, 2);
4755 invert = extract32(insn, 21, 1);
4756 rm = extract32(insn, 16, 5);
4757 shift_amount = extract32(insn, 10, 6);
4758 rn = extract32(insn, 5, 5);
4759 rd = extract32(insn, 0, 5);
4761 if (!sf && (shift_amount & (1 << 5))) {
4762 unallocated_encoding(s);
4763 return;
4766 tcg_rd = cpu_reg(s, rd);
4768 if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) {
4769 /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for
4770 * register-register MOV and MVN, so it is worth special casing.
4772 tcg_rm = cpu_reg(s, rm);
4773 if (invert) {
4774 tcg_gen_not_i64(tcg_rd, tcg_rm);
4775 if (!sf) {
4776 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4778 } else {
4779 if (sf) {
4780 tcg_gen_mov_i64(tcg_rd, tcg_rm);
4781 } else {
4782 tcg_gen_ext32u_i64(tcg_rd, tcg_rm);
4785 return;
4788 tcg_rm = read_cpu_reg(s, rm, sf);
4790 if (shift_amount) {
4791 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount);
4794 tcg_rn = cpu_reg(s, rn);
4796 switch (opc | (invert << 2)) {
4797 case 0: /* AND */
4798 case 3: /* ANDS */
4799 tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
4800 break;
4801 case 1: /* ORR */
4802 tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm);
4803 break;
4804 case 2: /* EOR */
4805 tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm);
4806 break;
4807 case 4: /* BIC */
4808 case 7: /* BICS */
4809 tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm);
4810 break;
4811 case 5: /* ORN */
4812 tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm);
4813 break;
4814 case 6: /* EON */
4815 tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm);
4816 break;
4817 default:
4818 assert(FALSE);
4819 break;
4822 if (!sf) {
4823 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
4826 if (opc == 3) {
4827 gen_logic_CC(sf, tcg_rd);
4832 * Add/subtract (extended register)
4834 * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0|
4835 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4836 * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd |
4837 * +--+--+--+-----------+-----+--+-------+------+------+----+----+
4839 * sf: 0 -> 32bit, 1 -> 64bit
4840 * op: 0 -> add , 1 -> sub
4841 * S: 1 -> set flags
4842 * opt: 00
4843 * option: extension type (see DecodeRegExtend)
4844 * imm3: optional shift to Rm
4846 * Rd = Rn + LSL(extend(Rm), amount)
4848 static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn)
4850 int rd = extract32(insn, 0, 5);
4851 int rn = extract32(insn, 5, 5);
4852 int imm3 = extract32(insn, 10, 3);
4853 int option = extract32(insn, 13, 3);
4854 int rm = extract32(insn, 16, 5);
4855 int opt = extract32(insn, 22, 2);
4856 bool setflags = extract32(insn, 29, 1);
4857 bool sub_op = extract32(insn, 30, 1);
4858 bool sf = extract32(insn, 31, 1);
4860 TCGv_i64 tcg_rm, tcg_rn; /* temps */
4861 TCGv_i64 tcg_rd;
4862 TCGv_i64 tcg_result;
4864 if (imm3 > 4 || opt != 0) {
4865 unallocated_encoding(s);
4866 return;
4869 /* non-flag setting ops may use SP */
4870 if (!setflags) {
4871 tcg_rd = cpu_reg_sp(s, rd);
4872 } else {
4873 tcg_rd = cpu_reg(s, rd);
4875 tcg_rn = read_cpu_reg_sp(s, rn, sf);
4877 tcg_rm = read_cpu_reg(s, rm, sf);
4878 ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3);
4880 tcg_result = tcg_temp_new_i64();
4882 if (!setflags) {
4883 if (sub_op) {
4884 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4885 } else {
4886 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4888 } else {
4889 if (sub_op) {
4890 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4891 } else {
4892 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4896 if (sf) {
4897 tcg_gen_mov_i64(tcg_rd, tcg_result);
4898 } else {
4899 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4902 tcg_temp_free_i64(tcg_result);
4906 * Add/subtract (shifted register)
4908 * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0
4909 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4910 * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd |
4911 * +--+--+--+-----------+-----+--+-------+---------+------+------+
4913 * sf: 0 -> 32bit, 1 -> 64bit
4914 * op: 0 -> add , 1 -> sub
4915 * S: 1 -> set flags
4916 * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED
4917 * imm6: Shift amount to apply to Rm before the add/sub
4919 static void disas_add_sub_reg(DisasContext *s, uint32_t insn)
4921 int rd = extract32(insn, 0, 5);
4922 int rn = extract32(insn, 5, 5);
4923 int imm6 = extract32(insn, 10, 6);
4924 int rm = extract32(insn, 16, 5);
4925 int shift_type = extract32(insn, 22, 2);
4926 bool setflags = extract32(insn, 29, 1);
4927 bool sub_op = extract32(insn, 30, 1);
4928 bool sf = extract32(insn, 31, 1);
4930 TCGv_i64 tcg_rd = cpu_reg(s, rd);
4931 TCGv_i64 tcg_rn, tcg_rm;
4932 TCGv_i64 tcg_result;
4934 if ((shift_type == 3) || (!sf && (imm6 > 31))) {
4935 unallocated_encoding(s);
4936 return;
4939 tcg_rn = read_cpu_reg(s, rn, sf);
4940 tcg_rm = read_cpu_reg(s, rm, sf);
4942 shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6);
4944 tcg_result = tcg_temp_new_i64();
4946 if (!setflags) {
4947 if (sub_op) {
4948 tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm);
4949 } else {
4950 tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm);
4952 } else {
4953 if (sub_op) {
4954 gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm);
4955 } else {
4956 gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm);
4960 if (sf) {
4961 tcg_gen_mov_i64(tcg_rd, tcg_result);
4962 } else {
4963 tcg_gen_ext32u_i64(tcg_rd, tcg_result);
4966 tcg_temp_free_i64(tcg_result);
4969 /* Data-processing (3 source)
4971 * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0
4972 * +--+------+-----------+------+------+----+------+------+------+
4973 * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd |
4974 * +--+------+-----------+------+------+----+------+------+------+
4976 static void disas_data_proc_3src(DisasContext *s, uint32_t insn)
4978 int rd = extract32(insn, 0, 5);
4979 int rn = extract32(insn, 5, 5);
4980 int ra = extract32(insn, 10, 5);
4981 int rm = extract32(insn, 16, 5);
4982 int op_id = (extract32(insn, 29, 3) << 4) |
4983 (extract32(insn, 21, 3) << 1) |
4984 extract32(insn, 15, 1);
4985 bool sf = extract32(insn, 31, 1);
4986 bool is_sub = extract32(op_id, 0, 1);
4987 bool is_high = extract32(op_id, 2, 1);
4988 bool is_signed = false;
4989 TCGv_i64 tcg_op1;
4990 TCGv_i64 tcg_op2;
4991 TCGv_i64 tcg_tmp;
4993 /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */
4994 switch (op_id) {
4995 case 0x42: /* SMADDL */
4996 case 0x43: /* SMSUBL */
4997 case 0x44: /* SMULH */
4998 is_signed = true;
4999 break;
5000 case 0x0: /* MADD (32bit) */
5001 case 0x1: /* MSUB (32bit) */
5002 case 0x40: /* MADD (64bit) */
5003 case 0x41: /* MSUB (64bit) */
5004 case 0x4a: /* UMADDL */
5005 case 0x4b: /* UMSUBL */
5006 case 0x4c: /* UMULH */
5007 break;
5008 default:
5009 unallocated_encoding(s);
5010 return;
5013 if (is_high) {
5014 TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */
5015 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5016 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5017 TCGv_i64 tcg_rm = cpu_reg(s, rm);
5019 if (is_signed) {
5020 tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5021 } else {
5022 tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm);
5025 tcg_temp_free_i64(low_bits);
5026 return;
5029 tcg_op1 = tcg_temp_new_i64();
5030 tcg_op2 = tcg_temp_new_i64();
5031 tcg_tmp = tcg_temp_new_i64();
5033 if (op_id < 0x42) {
5034 tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn));
5035 tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm));
5036 } else {
5037 if (is_signed) {
5038 tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn));
5039 tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm));
5040 } else {
5041 tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn));
5042 tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm));
5046 if (ra == 31 && !is_sub) {
5047 /* Special-case MADD with rA == XZR; it is the standard MUL alias */
5048 tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2);
5049 } else {
5050 tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2);
5051 if (is_sub) {
5052 tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5053 } else {
5054 tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp);
5058 if (!sf) {
5059 tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd));
5062 tcg_temp_free_i64(tcg_op1);
5063 tcg_temp_free_i64(tcg_op2);
5064 tcg_temp_free_i64(tcg_tmp);
5067 /* Add/subtract (with carry)
5068 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0
5069 * +--+--+--+------------------------+------+-------------+------+-----+
5070 * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | 0 0 0 0 0 0 | Rn | Rd |
5071 * +--+--+--+------------------------+------+-------------+------+-----+
5074 static void disas_adc_sbc(DisasContext *s, uint32_t insn)
5076 unsigned int sf, op, setflags, rm, rn, rd;
5077 TCGv_i64 tcg_y, tcg_rn, tcg_rd;
5079 sf = extract32(insn, 31, 1);
5080 op = extract32(insn, 30, 1);
5081 setflags = extract32(insn, 29, 1);
5082 rm = extract32(insn, 16, 5);
5083 rn = extract32(insn, 5, 5);
5084 rd = extract32(insn, 0, 5);
5086 tcg_rd = cpu_reg(s, rd);
5087 tcg_rn = cpu_reg(s, rn);
5089 if (op) {
5090 tcg_y = new_tmp_a64(s);
5091 tcg_gen_not_i64(tcg_y, cpu_reg(s, rm));
5092 } else {
5093 tcg_y = cpu_reg(s, rm);
5096 if (setflags) {
5097 gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y);
5098 } else {
5099 gen_adc(sf, tcg_rd, tcg_rn, tcg_y);
5104 * Rotate right into flags
5105 * 31 30 29 21 15 10 5 4 0
5106 * +--+--+--+-----------------+--------+-----------+------+--+------+
5107 * |sf|op| S| 1 1 0 1 0 0 0 0 | imm6 | 0 0 0 0 1 | Rn |o2| mask |
5108 * +--+--+--+-----------------+--------+-----------+------+--+------+
5110 static void disas_rotate_right_into_flags(DisasContext *s, uint32_t insn)
5112 int mask = extract32(insn, 0, 4);
5113 int o2 = extract32(insn, 4, 1);
5114 int rn = extract32(insn, 5, 5);
5115 int imm6 = extract32(insn, 15, 6);
5116 int sf_op_s = extract32(insn, 29, 3);
5117 TCGv_i64 tcg_rn;
5118 TCGv_i32 nzcv;
5120 if (sf_op_s != 5 || o2 != 0 || !dc_isar_feature(aa64_condm_4, s)) {
5121 unallocated_encoding(s);
5122 return;
5125 tcg_rn = read_cpu_reg(s, rn, 1);
5126 tcg_gen_rotri_i64(tcg_rn, tcg_rn, imm6);
5128 nzcv = tcg_temp_new_i32();
5129 tcg_gen_extrl_i64_i32(nzcv, tcg_rn);
5131 if (mask & 8) { /* N */
5132 tcg_gen_shli_i32(cpu_NF, nzcv, 31 - 3);
5134 if (mask & 4) { /* Z */
5135 tcg_gen_not_i32(cpu_ZF, nzcv);
5136 tcg_gen_andi_i32(cpu_ZF, cpu_ZF, 4);
5138 if (mask & 2) { /* C */
5139 tcg_gen_extract_i32(cpu_CF, nzcv, 1, 1);
5141 if (mask & 1) { /* V */
5142 tcg_gen_shli_i32(cpu_VF, nzcv, 31 - 0);
5145 tcg_temp_free_i32(nzcv);
5149 * Evaluate into flags
5150 * 31 30 29 21 15 14 10 5 4 0
5151 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5152 * |sf|op| S| 1 1 0 1 0 0 0 0 | opcode2 | sz | 0 0 1 0 | Rn |o3| mask |
5153 * +--+--+--+-----------------+---------+----+---------+------+--+------+
5155 static void disas_evaluate_into_flags(DisasContext *s, uint32_t insn)
5157 int o3_mask = extract32(insn, 0, 5);
5158 int rn = extract32(insn, 5, 5);
5159 int o2 = extract32(insn, 15, 6);
5160 int sz = extract32(insn, 14, 1);
5161 int sf_op_s = extract32(insn, 29, 3);
5162 TCGv_i32 tmp;
5163 int shift;
5165 if (sf_op_s != 1 || o2 != 0 || o3_mask != 0xd ||
5166 !dc_isar_feature(aa64_condm_4, s)) {
5167 unallocated_encoding(s);
5168 return;
5170 shift = sz ? 16 : 24; /* SETF16 or SETF8 */
5172 tmp = tcg_temp_new_i32();
5173 tcg_gen_extrl_i64_i32(tmp, cpu_reg(s, rn));
5174 tcg_gen_shli_i32(cpu_NF, tmp, shift);
5175 tcg_gen_shli_i32(cpu_VF, tmp, shift - 1);
5176 tcg_gen_mov_i32(cpu_ZF, cpu_NF);
5177 tcg_gen_xor_i32(cpu_VF, cpu_VF, cpu_NF);
5178 tcg_temp_free_i32(tmp);
5181 /* Conditional compare (immediate / register)
5182 * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
5183 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5184 * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv |
5185 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+
5186 * [1] y [0] [0]
5188 static void disas_cc(DisasContext *s, uint32_t insn)
5190 unsigned int sf, op, y, cond, rn, nzcv, is_imm;
5191 TCGv_i32 tcg_t0, tcg_t1, tcg_t2;
5192 TCGv_i64 tcg_tmp, tcg_y, tcg_rn;
5193 DisasCompare c;
5195 if (!extract32(insn, 29, 1)) {
5196 unallocated_encoding(s);
5197 return;
5199 if (insn & (1 << 10 | 1 << 4)) {
5200 unallocated_encoding(s);
5201 return;
5203 sf = extract32(insn, 31, 1);
5204 op = extract32(insn, 30, 1);
5205 is_imm = extract32(insn, 11, 1);
5206 y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */
5207 cond = extract32(insn, 12, 4);
5208 rn = extract32(insn, 5, 5);
5209 nzcv = extract32(insn, 0, 4);
5211 /* Set T0 = !COND. */
5212 tcg_t0 = tcg_temp_new_i32();
5213 arm_test_cc(&c, cond);
5214 tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0);
5215 arm_free_cc(&c);
5217 /* Load the arguments for the new comparison. */
5218 if (is_imm) {
5219 tcg_y = new_tmp_a64(s);
5220 tcg_gen_movi_i64(tcg_y, y);
5221 } else {
5222 tcg_y = cpu_reg(s, y);
5224 tcg_rn = cpu_reg(s, rn);
5226 /* Set the flags for the new comparison. */
5227 tcg_tmp = tcg_temp_new_i64();
5228 if (op) {
5229 gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5230 } else {
5231 gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y);
5233 tcg_temp_free_i64(tcg_tmp);
5235 /* If COND was false, force the flags to #nzcv. Compute two masks
5236 * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0).
5237 * For tcg hosts that support ANDC, we can make do with just T1.
5238 * In either case, allow the tcg optimizer to delete any unused mask.
5240 tcg_t1 = tcg_temp_new_i32();
5241 tcg_t2 = tcg_temp_new_i32();
5242 tcg_gen_neg_i32(tcg_t1, tcg_t0);
5243 tcg_gen_subi_i32(tcg_t2, tcg_t0, 1);
5245 if (nzcv & 8) { /* N */
5246 tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1);
5247 } else {
5248 if (TCG_TARGET_HAS_andc_i32) {
5249 tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1);
5250 } else {
5251 tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2);
5254 if (nzcv & 4) { /* Z */
5255 if (TCG_TARGET_HAS_andc_i32) {
5256 tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1);
5257 } else {
5258 tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2);
5260 } else {
5261 tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0);
5263 if (nzcv & 2) { /* C */
5264 tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0);
5265 } else {
5266 if (TCG_TARGET_HAS_andc_i32) {
5267 tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1);
5268 } else {
5269 tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2);
5272 if (nzcv & 1) { /* V */
5273 tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1);
5274 } else {
5275 if (TCG_TARGET_HAS_andc_i32) {
5276 tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1);
5277 } else {
5278 tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2);
5281 tcg_temp_free_i32(tcg_t0);
5282 tcg_temp_free_i32(tcg_t1);
5283 tcg_temp_free_i32(tcg_t2);
5286 /* Conditional select
5287 * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0
5288 * +----+----+---+-----------------+------+------+-----+------+------+
5289 * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd |
5290 * +----+----+---+-----------------+------+------+-----+------+------+
5292 static void disas_cond_select(DisasContext *s, uint32_t insn)
5294 unsigned int sf, else_inv, rm, cond, else_inc, rn, rd;
5295 TCGv_i64 tcg_rd, zero;
5296 DisasCompare64 c;
5298 if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) {
5299 /* S == 1 or op2<1> == 1 */
5300 unallocated_encoding(s);
5301 return;
5303 sf = extract32(insn, 31, 1);
5304 else_inv = extract32(insn, 30, 1);
5305 rm = extract32(insn, 16, 5);
5306 cond = extract32(insn, 12, 4);
5307 else_inc = extract32(insn, 10, 1);
5308 rn = extract32(insn, 5, 5);
5309 rd = extract32(insn, 0, 5);
5311 tcg_rd = cpu_reg(s, rd);
5313 a64_test_cc(&c, cond);
5314 zero = tcg_const_i64(0);
5316 if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) {
5317 /* CSET & CSETM. */
5318 tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero);
5319 if (else_inv) {
5320 tcg_gen_neg_i64(tcg_rd, tcg_rd);
5322 } else {
5323 TCGv_i64 t_true = cpu_reg(s, rn);
5324 TCGv_i64 t_false = read_cpu_reg(s, rm, 1);
5325 if (else_inv && else_inc) {
5326 tcg_gen_neg_i64(t_false, t_false);
5327 } else if (else_inv) {
5328 tcg_gen_not_i64(t_false, t_false);
5329 } else if (else_inc) {
5330 tcg_gen_addi_i64(t_false, t_false, 1);
5332 tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false);
5335 tcg_temp_free_i64(zero);
5336 a64_free_cc(&c);
5338 if (!sf) {
5339 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5343 static void handle_clz(DisasContext *s, unsigned int sf,
5344 unsigned int rn, unsigned int rd)
5346 TCGv_i64 tcg_rd, tcg_rn;
5347 tcg_rd = cpu_reg(s, rd);
5348 tcg_rn = cpu_reg(s, rn);
5350 if (sf) {
5351 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
5352 } else {
5353 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5354 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5355 tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32);
5356 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5357 tcg_temp_free_i32(tcg_tmp32);
5361 static void handle_cls(DisasContext *s, unsigned int sf,
5362 unsigned int rn, unsigned int rd)
5364 TCGv_i64 tcg_rd, tcg_rn;
5365 tcg_rd = cpu_reg(s, rd);
5366 tcg_rn = cpu_reg(s, rn);
5368 if (sf) {
5369 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
5370 } else {
5371 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5372 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5373 tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32);
5374 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5375 tcg_temp_free_i32(tcg_tmp32);
5379 static void handle_rbit(DisasContext *s, unsigned int sf,
5380 unsigned int rn, unsigned int rd)
5382 TCGv_i64 tcg_rd, tcg_rn;
5383 tcg_rd = cpu_reg(s, rd);
5384 tcg_rn = cpu_reg(s, rn);
5386 if (sf) {
5387 gen_helper_rbit64(tcg_rd, tcg_rn);
5388 } else {
5389 TCGv_i32 tcg_tmp32 = tcg_temp_new_i32();
5390 tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn);
5391 gen_helper_rbit(tcg_tmp32, tcg_tmp32);
5392 tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32);
5393 tcg_temp_free_i32(tcg_tmp32);
5397 /* REV with sf==1, opcode==3 ("REV64") */
5398 static void handle_rev64(DisasContext *s, unsigned int sf,
5399 unsigned int rn, unsigned int rd)
5401 if (!sf) {
5402 unallocated_encoding(s);
5403 return;
5405 tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn));
5408 /* REV with sf==0, opcode==2
5409 * REV32 (sf==1, opcode==2)
5411 static void handle_rev32(DisasContext *s, unsigned int sf,
5412 unsigned int rn, unsigned int rd)
5414 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5415 TCGv_i64 tcg_rn = cpu_reg(s, rn);
5417 if (sf) {
5418 tcg_gen_bswap64_i64(tcg_rd, tcg_rn);
5419 tcg_gen_rotri_i64(tcg_rd, tcg_rd, 32);
5420 } else {
5421 tcg_gen_bswap32_i64(tcg_rd, tcg_rn, TCG_BSWAP_OZ);
5425 /* REV16 (opcode==1) */
5426 static void handle_rev16(DisasContext *s, unsigned int sf,
5427 unsigned int rn, unsigned int rd)
5429 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5430 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
5431 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5432 TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff);
5434 tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8);
5435 tcg_gen_and_i64(tcg_rd, tcg_rn, mask);
5436 tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask);
5437 tcg_gen_shli_i64(tcg_rd, tcg_rd, 8);
5438 tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp);
5440 tcg_temp_free_i64(mask);
5441 tcg_temp_free_i64(tcg_tmp);
5444 /* Data-processing (1 source)
5445 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5446 * +----+---+---+-----------------+---------+--------+------+------+
5447 * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd |
5448 * +----+---+---+-----------------+---------+--------+------+------+
5450 static void disas_data_proc_1src(DisasContext *s, uint32_t insn)
5452 unsigned int sf, opcode, opcode2, rn, rd;
5453 TCGv_i64 tcg_rd;
5455 if (extract32(insn, 29, 1)) {
5456 unallocated_encoding(s);
5457 return;
5460 sf = extract32(insn, 31, 1);
5461 opcode = extract32(insn, 10, 6);
5462 opcode2 = extract32(insn, 16, 5);
5463 rn = extract32(insn, 5, 5);
5464 rd = extract32(insn, 0, 5);
5466 #define MAP(SF, O2, O1) ((SF) | (O1 << 1) | (O2 << 7))
5468 switch (MAP(sf, opcode2, opcode)) {
5469 case MAP(0, 0x00, 0x00): /* RBIT */
5470 case MAP(1, 0x00, 0x00):
5471 handle_rbit(s, sf, rn, rd);
5472 break;
5473 case MAP(0, 0x00, 0x01): /* REV16 */
5474 case MAP(1, 0x00, 0x01):
5475 handle_rev16(s, sf, rn, rd);
5476 break;
5477 case MAP(0, 0x00, 0x02): /* REV/REV32 */
5478 case MAP(1, 0x00, 0x02):
5479 handle_rev32(s, sf, rn, rd);
5480 break;
5481 case MAP(1, 0x00, 0x03): /* REV64 */
5482 handle_rev64(s, sf, rn, rd);
5483 break;
5484 case MAP(0, 0x00, 0x04): /* CLZ */
5485 case MAP(1, 0x00, 0x04):
5486 handle_clz(s, sf, rn, rd);
5487 break;
5488 case MAP(0, 0x00, 0x05): /* CLS */
5489 case MAP(1, 0x00, 0x05):
5490 handle_cls(s, sf, rn, rd);
5491 break;
5492 case MAP(1, 0x01, 0x00): /* PACIA */
5493 if (s->pauth_active) {
5494 tcg_rd = cpu_reg(s, rd);
5495 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5496 } else if (!dc_isar_feature(aa64_pauth, s)) {
5497 goto do_unallocated;
5499 break;
5500 case MAP(1, 0x01, 0x01): /* PACIB */
5501 if (s->pauth_active) {
5502 tcg_rd = cpu_reg(s, rd);
5503 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5504 } else if (!dc_isar_feature(aa64_pauth, s)) {
5505 goto do_unallocated;
5507 break;
5508 case MAP(1, 0x01, 0x02): /* PACDA */
5509 if (s->pauth_active) {
5510 tcg_rd = cpu_reg(s, rd);
5511 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5512 } else if (!dc_isar_feature(aa64_pauth, s)) {
5513 goto do_unallocated;
5515 break;
5516 case MAP(1, 0x01, 0x03): /* PACDB */
5517 if (s->pauth_active) {
5518 tcg_rd = cpu_reg(s, rd);
5519 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5520 } else if (!dc_isar_feature(aa64_pauth, s)) {
5521 goto do_unallocated;
5523 break;
5524 case MAP(1, 0x01, 0x04): /* AUTIA */
5525 if (s->pauth_active) {
5526 tcg_rd = cpu_reg(s, rd);
5527 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5528 } else if (!dc_isar_feature(aa64_pauth, s)) {
5529 goto do_unallocated;
5531 break;
5532 case MAP(1, 0x01, 0x05): /* AUTIB */
5533 if (s->pauth_active) {
5534 tcg_rd = cpu_reg(s, rd);
5535 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5536 } else if (!dc_isar_feature(aa64_pauth, s)) {
5537 goto do_unallocated;
5539 break;
5540 case MAP(1, 0x01, 0x06): /* AUTDA */
5541 if (s->pauth_active) {
5542 tcg_rd = cpu_reg(s, rd);
5543 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5544 } else if (!dc_isar_feature(aa64_pauth, s)) {
5545 goto do_unallocated;
5547 break;
5548 case MAP(1, 0x01, 0x07): /* AUTDB */
5549 if (s->pauth_active) {
5550 tcg_rd = cpu_reg(s, rd);
5551 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, cpu_reg_sp(s, rn));
5552 } else if (!dc_isar_feature(aa64_pauth, s)) {
5553 goto do_unallocated;
5555 break;
5556 case MAP(1, 0x01, 0x08): /* PACIZA */
5557 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5558 goto do_unallocated;
5559 } else if (s->pauth_active) {
5560 tcg_rd = cpu_reg(s, rd);
5561 gen_helper_pacia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5563 break;
5564 case MAP(1, 0x01, 0x09): /* PACIZB */
5565 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5566 goto do_unallocated;
5567 } else if (s->pauth_active) {
5568 tcg_rd = cpu_reg(s, rd);
5569 gen_helper_pacib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5571 break;
5572 case MAP(1, 0x01, 0x0a): /* PACDZA */
5573 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5574 goto do_unallocated;
5575 } else if (s->pauth_active) {
5576 tcg_rd = cpu_reg(s, rd);
5577 gen_helper_pacda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5579 break;
5580 case MAP(1, 0x01, 0x0b): /* PACDZB */
5581 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5582 goto do_unallocated;
5583 } else if (s->pauth_active) {
5584 tcg_rd = cpu_reg(s, rd);
5585 gen_helper_pacdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5587 break;
5588 case MAP(1, 0x01, 0x0c): /* AUTIZA */
5589 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5590 goto do_unallocated;
5591 } else if (s->pauth_active) {
5592 tcg_rd = cpu_reg(s, rd);
5593 gen_helper_autia(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5595 break;
5596 case MAP(1, 0x01, 0x0d): /* AUTIZB */
5597 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5598 goto do_unallocated;
5599 } else if (s->pauth_active) {
5600 tcg_rd = cpu_reg(s, rd);
5601 gen_helper_autib(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5603 break;
5604 case MAP(1, 0x01, 0x0e): /* AUTDZA */
5605 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5606 goto do_unallocated;
5607 } else if (s->pauth_active) {
5608 tcg_rd = cpu_reg(s, rd);
5609 gen_helper_autda(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5611 break;
5612 case MAP(1, 0x01, 0x0f): /* AUTDZB */
5613 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5614 goto do_unallocated;
5615 } else if (s->pauth_active) {
5616 tcg_rd = cpu_reg(s, rd);
5617 gen_helper_autdb(tcg_rd, cpu_env, tcg_rd, new_tmp_a64_zero(s));
5619 break;
5620 case MAP(1, 0x01, 0x10): /* XPACI */
5621 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5622 goto do_unallocated;
5623 } else if (s->pauth_active) {
5624 tcg_rd = cpu_reg(s, rd);
5625 gen_helper_xpaci(tcg_rd, cpu_env, tcg_rd);
5627 break;
5628 case MAP(1, 0x01, 0x11): /* XPACD */
5629 if (!dc_isar_feature(aa64_pauth, s) || rn != 31) {
5630 goto do_unallocated;
5631 } else if (s->pauth_active) {
5632 tcg_rd = cpu_reg(s, rd);
5633 gen_helper_xpacd(tcg_rd, cpu_env, tcg_rd);
5635 break;
5636 default:
5637 do_unallocated:
5638 unallocated_encoding(s);
5639 break;
5642 #undef MAP
5645 static void handle_div(DisasContext *s, bool is_signed, unsigned int sf,
5646 unsigned int rm, unsigned int rn, unsigned int rd)
5648 TCGv_i64 tcg_n, tcg_m, tcg_rd;
5649 tcg_rd = cpu_reg(s, rd);
5651 if (!sf && is_signed) {
5652 tcg_n = new_tmp_a64(s);
5653 tcg_m = new_tmp_a64(s);
5654 tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn));
5655 tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm));
5656 } else {
5657 tcg_n = read_cpu_reg(s, rn, sf);
5658 tcg_m = read_cpu_reg(s, rm, sf);
5661 if (is_signed) {
5662 gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m);
5663 } else {
5664 gen_helper_udiv64(tcg_rd, tcg_n, tcg_m);
5667 if (!sf) { /* zero extend final result */
5668 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
5672 /* LSLV, LSRV, ASRV, RORV */
5673 static void handle_shift_reg(DisasContext *s,
5674 enum a64_shift_type shift_type, unsigned int sf,
5675 unsigned int rm, unsigned int rn, unsigned int rd)
5677 TCGv_i64 tcg_shift = tcg_temp_new_i64();
5678 TCGv_i64 tcg_rd = cpu_reg(s, rd);
5679 TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf);
5681 tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31);
5682 shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift);
5683 tcg_temp_free_i64(tcg_shift);
5686 /* CRC32[BHWX], CRC32C[BHWX] */
5687 static void handle_crc32(DisasContext *s,
5688 unsigned int sf, unsigned int sz, bool crc32c,
5689 unsigned int rm, unsigned int rn, unsigned int rd)
5691 TCGv_i64 tcg_acc, tcg_val;
5692 TCGv_i32 tcg_bytes;
5694 if (!dc_isar_feature(aa64_crc32, s)
5695 || (sf == 1 && sz != 3)
5696 || (sf == 0 && sz == 3)) {
5697 unallocated_encoding(s);
5698 return;
5701 if (sz == 3) {
5702 tcg_val = cpu_reg(s, rm);
5703 } else {
5704 uint64_t mask;
5705 switch (sz) {
5706 case 0:
5707 mask = 0xFF;
5708 break;
5709 case 1:
5710 mask = 0xFFFF;
5711 break;
5712 case 2:
5713 mask = 0xFFFFFFFF;
5714 break;
5715 default:
5716 g_assert_not_reached();
5718 tcg_val = new_tmp_a64(s);
5719 tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask);
5722 tcg_acc = cpu_reg(s, rn);
5723 tcg_bytes = tcg_const_i32(1 << sz);
5725 if (crc32c) {
5726 gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5727 } else {
5728 gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes);
5731 tcg_temp_free_i32(tcg_bytes);
5734 /* Data-processing (2 source)
5735 * 31 30 29 28 21 20 16 15 10 9 5 4 0
5736 * +----+---+---+-----------------+------+--------+------+------+
5737 * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd |
5738 * +----+---+---+-----------------+------+--------+------+------+
5740 static void disas_data_proc_2src(DisasContext *s, uint32_t insn)
5742 unsigned int sf, rm, opcode, rn, rd, setflag;
5743 sf = extract32(insn, 31, 1);
5744 setflag = extract32(insn, 29, 1);
5745 rm = extract32(insn, 16, 5);
5746 opcode = extract32(insn, 10, 6);
5747 rn = extract32(insn, 5, 5);
5748 rd = extract32(insn, 0, 5);
5750 if (setflag && opcode != 0) {
5751 unallocated_encoding(s);
5752 return;
5755 switch (opcode) {
5756 case 0: /* SUBP(S) */
5757 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5758 goto do_unallocated;
5759 } else {
5760 TCGv_i64 tcg_n, tcg_m, tcg_d;
5762 tcg_n = read_cpu_reg_sp(s, rn, true);
5763 tcg_m = read_cpu_reg_sp(s, rm, true);
5764 tcg_gen_sextract_i64(tcg_n, tcg_n, 0, 56);
5765 tcg_gen_sextract_i64(tcg_m, tcg_m, 0, 56);
5766 tcg_d = cpu_reg(s, rd);
5768 if (setflag) {
5769 gen_sub_CC(true, tcg_d, tcg_n, tcg_m);
5770 } else {
5771 tcg_gen_sub_i64(tcg_d, tcg_n, tcg_m);
5774 break;
5775 case 2: /* UDIV */
5776 handle_div(s, false, sf, rm, rn, rd);
5777 break;
5778 case 3: /* SDIV */
5779 handle_div(s, true, sf, rm, rn, rd);
5780 break;
5781 case 4: /* IRG */
5782 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5783 goto do_unallocated;
5785 if (s->ata) {
5786 gen_helper_irg(cpu_reg_sp(s, rd), cpu_env,
5787 cpu_reg_sp(s, rn), cpu_reg(s, rm));
5788 } else {
5789 gen_address_with_allocation_tag0(cpu_reg_sp(s, rd),
5790 cpu_reg_sp(s, rn));
5792 break;
5793 case 5: /* GMI */
5794 if (sf == 0 || !dc_isar_feature(aa64_mte_insn_reg, s)) {
5795 goto do_unallocated;
5796 } else {
5797 TCGv_i64 t1 = tcg_const_i64(1);
5798 TCGv_i64 t2 = tcg_temp_new_i64();
5800 tcg_gen_extract_i64(t2, cpu_reg_sp(s, rn), 56, 4);
5801 tcg_gen_shl_i64(t1, t1, t2);
5802 tcg_gen_or_i64(cpu_reg(s, rd), cpu_reg(s, rm), t1);
5804 tcg_temp_free_i64(t1);
5805 tcg_temp_free_i64(t2);
5807 break;
5808 case 8: /* LSLV */
5809 handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd);
5810 break;
5811 case 9: /* LSRV */
5812 handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd);
5813 break;
5814 case 10: /* ASRV */
5815 handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd);
5816 break;
5817 case 11: /* RORV */
5818 handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd);
5819 break;
5820 case 12: /* PACGA */
5821 if (sf == 0 || !dc_isar_feature(aa64_pauth, s)) {
5822 goto do_unallocated;
5824 gen_helper_pacga(cpu_reg(s, rd), cpu_env,
5825 cpu_reg(s, rn), cpu_reg_sp(s, rm));
5826 break;
5827 case 16:
5828 case 17:
5829 case 18:
5830 case 19:
5831 case 20:
5832 case 21:
5833 case 22:
5834 case 23: /* CRC32 */
5836 int sz = extract32(opcode, 0, 2);
5837 bool crc32c = extract32(opcode, 2, 1);
5838 handle_crc32(s, sf, sz, crc32c, rm, rn, rd);
5839 break;
5841 default:
5842 do_unallocated:
5843 unallocated_encoding(s);
5844 break;
5849 * Data processing - register
5850 * 31 30 29 28 25 21 20 16 10 0
5851 * +--+---+--+---+-------+-----+-------+-------+---------+
5852 * | |op0| |op1| 1 0 1 | op2 | | op3 | |
5853 * +--+---+--+---+-------+-----+-------+-------+---------+
5855 static void disas_data_proc_reg(DisasContext *s, uint32_t insn)
5857 int op0 = extract32(insn, 30, 1);
5858 int op1 = extract32(insn, 28, 1);
5859 int op2 = extract32(insn, 21, 4);
5860 int op3 = extract32(insn, 10, 6);
5862 if (!op1) {
5863 if (op2 & 8) {
5864 if (op2 & 1) {
5865 /* Add/sub (extended register) */
5866 disas_add_sub_ext_reg(s, insn);
5867 } else {
5868 /* Add/sub (shifted register) */
5869 disas_add_sub_reg(s, insn);
5871 } else {
5872 /* Logical (shifted register) */
5873 disas_logic_reg(s, insn);
5875 return;
5878 switch (op2) {
5879 case 0x0:
5880 switch (op3) {
5881 case 0x00: /* Add/subtract (with carry) */
5882 disas_adc_sbc(s, insn);
5883 break;
5885 case 0x01: /* Rotate right into flags */
5886 case 0x21:
5887 disas_rotate_right_into_flags(s, insn);
5888 break;
5890 case 0x02: /* Evaluate into flags */
5891 case 0x12:
5892 case 0x22:
5893 case 0x32:
5894 disas_evaluate_into_flags(s, insn);
5895 break;
5897 default:
5898 goto do_unallocated;
5900 break;
5902 case 0x2: /* Conditional compare */
5903 disas_cc(s, insn); /* both imm and reg forms */
5904 break;
5906 case 0x4: /* Conditional select */
5907 disas_cond_select(s, insn);
5908 break;
5910 case 0x6: /* Data-processing */
5911 if (op0) { /* (1 source) */
5912 disas_data_proc_1src(s, insn);
5913 } else { /* (2 source) */
5914 disas_data_proc_2src(s, insn);
5916 break;
5917 case 0x8 ... 0xf: /* (3 source) */
5918 disas_data_proc_3src(s, insn);
5919 break;
5921 default:
5922 do_unallocated:
5923 unallocated_encoding(s);
5924 break;
5928 static void handle_fp_compare(DisasContext *s, int size,
5929 unsigned int rn, unsigned int rm,
5930 bool cmp_with_zero, bool signal_all_nans)
5932 TCGv_i64 tcg_flags = tcg_temp_new_i64();
5933 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
5935 if (size == MO_64) {
5936 TCGv_i64 tcg_vn, tcg_vm;
5938 tcg_vn = read_fp_dreg(s, rn);
5939 if (cmp_with_zero) {
5940 tcg_vm = tcg_const_i64(0);
5941 } else {
5942 tcg_vm = read_fp_dreg(s, rm);
5944 if (signal_all_nans) {
5945 gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5946 } else {
5947 gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5949 tcg_temp_free_i64(tcg_vn);
5950 tcg_temp_free_i64(tcg_vm);
5951 } else {
5952 TCGv_i32 tcg_vn = tcg_temp_new_i32();
5953 TCGv_i32 tcg_vm = tcg_temp_new_i32();
5955 read_vec_element_i32(s, tcg_vn, rn, 0, size);
5956 if (cmp_with_zero) {
5957 tcg_gen_movi_i32(tcg_vm, 0);
5958 } else {
5959 read_vec_element_i32(s, tcg_vm, rm, 0, size);
5962 switch (size) {
5963 case MO_32:
5964 if (signal_all_nans) {
5965 gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5966 } else {
5967 gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5969 break;
5970 case MO_16:
5971 if (signal_all_nans) {
5972 gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5973 } else {
5974 gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
5976 break;
5977 default:
5978 g_assert_not_reached();
5981 tcg_temp_free_i32(tcg_vn);
5982 tcg_temp_free_i32(tcg_vm);
5985 tcg_temp_free_ptr(fpst);
5987 gen_set_nzcv(tcg_flags);
5989 tcg_temp_free_i64(tcg_flags);
5992 /* Floating point compare
5993 * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
5994 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5995 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 |
5996 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+
5998 static void disas_fp_compare(DisasContext *s, uint32_t insn)
6000 unsigned int mos, type, rm, op, rn, opc, op2r;
6001 int size;
6003 mos = extract32(insn, 29, 3);
6004 type = extract32(insn, 22, 2);
6005 rm = extract32(insn, 16, 5);
6006 op = extract32(insn, 14, 2);
6007 rn = extract32(insn, 5, 5);
6008 opc = extract32(insn, 3, 2);
6009 op2r = extract32(insn, 0, 3);
6011 if (mos || op || op2r) {
6012 unallocated_encoding(s);
6013 return;
6016 switch (type) {
6017 case 0:
6018 size = MO_32;
6019 break;
6020 case 1:
6021 size = MO_64;
6022 break;
6023 case 3:
6024 size = MO_16;
6025 if (dc_isar_feature(aa64_fp16, s)) {
6026 break;
6028 /* fallthru */
6029 default:
6030 unallocated_encoding(s);
6031 return;
6034 if (!fp_access_check(s)) {
6035 return;
6038 handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2);
6041 /* Floating point conditional compare
6042 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0
6043 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6044 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv |
6045 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+
6047 static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
6049 unsigned int mos, type, rm, cond, rn, op, nzcv;
6050 TCGv_i64 tcg_flags;
6051 TCGLabel *label_continue = NULL;
6052 int size;
6054 mos = extract32(insn, 29, 3);
6055 type = extract32(insn, 22, 2);
6056 rm = extract32(insn, 16, 5);
6057 cond = extract32(insn, 12, 4);
6058 rn = extract32(insn, 5, 5);
6059 op = extract32(insn, 4, 1);
6060 nzcv = extract32(insn, 0, 4);
6062 if (mos) {
6063 unallocated_encoding(s);
6064 return;
6067 switch (type) {
6068 case 0:
6069 size = MO_32;
6070 break;
6071 case 1:
6072 size = MO_64;
6073 break;
6074 case 3:
6075 size = MO_16;
6076 if (dc_isar_feature(aa64_fp16, s)) {
6077 break;
6079 /* fallthru */
6080 default:
6081 unallocated_encoding(s);
6082 return;
6085 if (!fp_access_check(s)) {
6086 return;
6089 if (cond < 0x0e) { /* not always */
6090 TCGLabel *label_match = gen_new_label();
6091 label_continue = gen_new_label();
6092 arm_gen_test_cc(cond, label_match);
6093 /* nomatch: */
6094 tcg_flags = tcg_const_i64(nzcv << 28);
6095 gen_set_nzcv(tcg_flags);
6096 tcg_temp_free_i64(tcg_flags);
6097 tcg_gen_br(label_continue);
6098 gen_set_label(label_match);
6101 handle_fp_compare(s, size, rn, rm, false, op);
6103 if (cond < 0x0e) {
6104 gen_set_label(label_continue);
6108 /* Floating point conditional select
6109 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6110 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6111 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd |
6112 * +---+---+---+-----------+------+---+------+------+-----+------+------+
6114 static void disas_fp_csel(DisasContext *s, uint32_t insn)
6116 unsigned int mos, type, rm, cond, rn, rd;
6117 TCGv_i64 t_true, t_false, t_zero;
6118 DisasCompare64 c;
6119 MemOp sz;
6121 mos = extract32(insn, 29, 3);
6122 type = extract32(insn, 22, 2);
6123 rm = extract32(insn, 16, 5);
6124 cond = extract32(insn, 12, 4);
6125 rn = extract32(insn, 5, 5);
6126 rd = extract32(insn, 0, 5);
6128 if (mos) {
6129 unallocated_encoding(s);
6130 return;
6133 switch (type) {
6134 case 0:
6135 sz = MO_32;
6136 break;
6137 case 1:
6138 sz = MO_64;
6139 break;
6140 case 3:
6141 sz = MO_16;
6142 if (dc_isar_feature(aa64_fp16, s)) {
6143 break;
6145 /* fallthru */
6146 default:
6147 unallocated_encoding(s);
6148 return;
6151 if (!fp_access_check(s)) {
6152 return;
6155 /* Zero extend sreg & hreg inputs to 64 bits now. */
6156 t_true = tcg_temp_new_i64();
6157 t_false = tcg_temp_new_i64();
6158 read_vec_element(s, t_true, rn, 0, sz);
6159 read_vec_element(s, t_false, rm, 0, sz);
6161 a64_test_cc(&c, cond);
6162 t_zero = tcg_const_i64(0);
6163 tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false);
6164 tcg_temp_free_i64(t_zero);
6165 tcg_temp_free_i64(t_false);
6166 a64_free_cc(&c);
6168 /* Note that sregs & hregs write back zeros to the high bits,
6169 and we've already done the zero-extension. */
6170 write_fp_dreg(s, rd, t_true);
6171 tcg_temp_free_i64(t_true);
6174 /* Floating-point data-processing (1 source) - half precision */
6175 static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn)
6177 TCGv_ptr fpst = NULL;
6178 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
6179 TCGv_i32 tcg_res = tcg_temp_new_i32();
6181 switch (opcode) {
6182 case 0x0: /* FMOV */
6183 tcg_gen_mov_i32(tcg_res, tcg_op);
6184 break;
6185 case 0x1: /* FABS */
6186 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
6187 break;
6188 case 0x2: /* FNEG */
6189 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
6190 break;
6191 case 0x3: /* FSQRT */
6192 fpst = fpstatus_ptr(FPST_FPCR_F16);
6193 gen_helper_sqrt_f16(tcg_res, tcg_op, fpst);
6194 break;
6195 case 0x8: /* FRINTN */
6196 case 0x9: /* FRINTP */
6197 case 0xa: /* FRINTM */
6198 case 0xb: /* FRINTZ */
6199 case 0xc: /* FRINTA */
6201 TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
6202 fpst = fpstatus_ptr(FPST_FPCR_F16);
6204 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6205 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6207 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6208 tcg_temp_free_i32(tcg_rmode);
6209 break;
6211 case 0xe: /* FRINTX */
6212 fpst = fpstatus_ptr(FPST_FPCR_F16);
6213 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst);
6214 break;
6215 case 0xf: /* FRINTI */
6216 fpst = fpstatus_ptr(FPST_FPCR_F16);
6217 gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst);
6218 break;
6219 default:
6220 abort();
6223 write_fp_sreg(s, rd, tcg_res);
6225 if (fpst) {
6226 tcg_temp_free_ptr(fpst);
6228 tcg_temp_free_i32(tcg_op);
6229 tcg_temp_free_i32(tcg_res);
6232 /* Floating-point data-processing (1 source) - single precision */
6233 static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
6235 void (*gen_fpst)(TCGv_i32, TCGv_i32, TCGv_ptr);
6236 TCGv_i32 tcg_op, tcg_res;
6237 TCGv_ptr fpst;
6238 int rmode = -1;
6240 tcg_op = read_fp_sreg(s, rn);
6241 tcg_res = tcg_temp_new_i32();
6243 switch (opcode) {
6244 case 0x0: /* FMOV */
6245 tcg_gen_mov_i32(tcg_res, tcg_op);
6246 goto done;
6247 case 0x1: /* FABS */
6248 gen_helper_vfp_abss(tcg_res, tcg_op);
6249 goto done;
6250 case 0x2: /* FNEG */
6251 gen_helper_vfp_negs(tcg_res, tcg_op);
6252 goto done;
6253 case 0x3: /* FSQRT */
6254 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
6255 goto done;
6256 case 0x6: /* BFCVT */
6257 gen_fpst = gen_helper_bfcvt;
6258 break;
6259 case 0x8: /* FRINTN */
6260 case 0x9: /* FRINTP */
6261 case 0xa: /* FRINTM */
6262 case 0xb: /* FRINTZ */
6263 case 0xc: /* FRINTA */
6264 rmode = arm_rmode_to_sf(opcode & 7);
6265 gen_fpst = gen_helper_rints;
6266 break;
6267 case 0xe: /* FRINTX */
6268 gen_fpst = gen_helper_rints_exact;
6269 break;
6270 case 0xf: /* FRINTI */
6271 gen_fpst = gen_helper_rints;
6272 break;
6273 case 0x10: /* FRINT32Z */
6274 rmode = float_round_to_zero;
6275 gen_fpst = gen_helper_frint32_s;
6276 break;
6277 case 0x11: /* FRINT32X */
6278 gen_fpst = gen_helper_frint32_s;
6279 break;
6280 case 0x12: /* FRINT64Z */
6281 rmode = float_round_to_zero;
6282 gen_fpst = gen_helper_frint64_s;
6283 break;
6284 case 0x13: /* FRINT64X */
6285 gen_fpst = gen_helper_frint64_s;
6286 break;
6287 default:
6288 g_assert_not_reached();
6291 fpst = fpstatus_ptr(FPST_FPCR);
6292 if (rmode >= 0) {
6293 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6294 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6295 gen_fpst(tcg_res, tcg_op, fpst);
6296 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6297 tcg_temp_free_i32(tcg_rmode);
6298 } else {
6299 gen_fpst(tcg_res, tcg_op, fpst);
6301 tcg_temp_free_ptr(fpst);
6303 done:
6304 write_fp_sreg(s, rd, tcg_res);
6305 tcg_temp_free_i32(tcg_op);
6306 tcg_temp_free_i32(tcg_res);
6309 /* Floating-point data-processing (1 source) - double precision */
6310 static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
6312 void (*gen_fpst)(TCGv_i64, TCGv_i64, TCGv_ptr);
6313 TCGv_i64 tcg_op, tcg_res;
6314 TCGv_ptr fpst;
6315 int rmode = -1;
6317 switch (opcode) {
6318 case 0x0: /* FMOV */
6319 gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0);
6320 return;
6323 tcg_op = read_fp_dreg(s, rn);
6324 tcg_res = tcg_temp_new_i64();
6326 switch (opcode) {
6327 case 0x1: /* FABS */
6328 gen_helper_vfp_absd(tcg_res, tcg_op);
6329 goto done;
6330 case 0x2: /* FNEG */
6331 gen_helper_vfp_negd(tcg_res, tcg_op);
6332 goto done;
6333 case 0x3: /* FSQRT */
6334 gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
6335 goto done;
6336 case 0x8: /* FRINTN */
6337 case 0x9: /* FRINTP */
6338 case 0xa: /* FRINTM */
6339 case 0xb: /* FRINTZ */
6340 case 0xc: /* FRINTA */
6341 rmode = arm_rmode_to_sf(opcode & 7);
6342 gen_fpst = gen_helper_rintd;
6343 break;
6344 case 0xe: /* FRINTX */
6345 gen_fpst = gen_helper_rintd_exact;
6346 break;
6347 case 0xf: /* FRINTI */
6348 gen_fpst = gen_helper_rintd;
6349 break;
6350 case 0x10: /* FRINT32Z */
6351 rmode = float_round_to_zero;
6352 gen_fpst = gen_helper_frint32_d;
6353 break;
6354 case 0x11: /* FRINT32X */
6355 gen_fpst = gen_helper_frint32_d;
6356 break;
6357 case 0x12: /* FRINT64Z */
6358 rmode = float_round_to_zero;
6359 gen_fpst = gen_helper_frint64_d;
6360 break;
6361 case 0x13: /* FRINT64X */
6362 gen_fpst = gen_helper_frint64_d;
6363 break;
6364 default:
6365 g_assert_not_reached();
6368 fpst = fpstatus_ptr(FPST_FPCR);
6369 if (rmode >= 0) {
6370 TCGv_i32 tcg_rmode = tcg_const_i32(rmode);
6371 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6372 gen_fpst(tcg_res, tcg_op, fpst);
6373 gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst);
6374 tcg_temp_free_i32(tcg_rmode);
6375 } else {
6376 gen_fpst(tcg_res, tcg_op, fpst);
6378 tcg_temp_free_ptr(fpst);
6380 done:
6381 write_fp_dreg(s, rd, tcg_res);
6382 tcg_temp_free_i64(tcg_op);
6383 tcg_temp_free_i64(tcg_res);
6386 static void handle_fp_fcvt(DisasContext *s, int opcode,
6387 int rd, int rn, int dtype, int ntype)
6389 switch (ntype) {
6390 case 0x0:
6392 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6393 if (dtype == 1) {
6394 /* Single to double */
6395 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6396 gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
6397 write_fp_dreg(s, rd, tcg_rd);
6398 tcg_temp_free_i64(tcg_rd);
6399 } else {
6400 /* Single to half */
6401 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6402 TCGv_i32 ahp = get_ahp_flag();
6403 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6405 gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6406 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6407 write_fp_sreg(s, rd, tcg_rd);
6408 tcg_temp_free_i32(tcg_rd);
6409 tcg_temp_free_i32(ahp);
6410 tcg_temp_free_ptr(fpst);
6412 tcg_temp_free_i32(tcg_rn);
6413 break;
6415 case 0x1:
6417 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
6418 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6419 if (dtype == 0) {
6420 /* Double to single */
6421 gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
6422 } else {
6423 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6424 TCGv_i32 ahp = get_ahp_flag();
6425 /* Double to half */
6426 gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp);
6427 /* write_fp_sreg is OK here because top half of tcg_rd is zero */
6428 tcg_temp_free_ptr(fpst);
6429 tcg_temp_free_i32(ahp);
6431 write_fp_sreg(s, rd, tcg_rd);
6432 tcg_temp_free_i32(tcg_rd);
6433 tcg_temp_free_i64(tcg_rn);
6434 break;
6436 case 0x3:
6438 TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
6439 TCGv_ptr tcg_fpst = fpstatus_ptr(FPST_FPCR);
6440 TCGv_i32 tcg_ahp = get_ahp_flag();
6441 tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
6442 if (dtype == 0) {
6443 /* Half to single */
6444 TCGv_i32 tcg_rd = tcg_temp_new_i32();
6445 gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6446 write_fp_sreg(s, rd, tcg_rd);
6447 tcg_temp_free_i32(tcg_rd);
6448 } else {
6449 /* Half to double */
6450 TCGv_i64 tcg_rd = tcg_temp_new_i64();
6451 gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp);
6452 write_fp_dreg(s, rd, tcg_rd);
6453 tcg_temp_free_i64(tcg_rd);
6455 tcg_temp_free_i32(tcg_rn);
6456 tcg_temp_free_ptr(tcg_fpst);
6457 tcg_temp_free_i32(tcg_ahp);
6458 break;
6460 default:
6461 abort();
6465 /* Floating point data-processing (1 source)
6466 * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
6467 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6468 * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
6469 * +---+---+---+-----------+------+---+--------+-----------+------+------+
6471 static void disas_fp_1src(DisasContext *s, uint32_t insn)
6473 int mos = extract32(insn, 29, 3);
6474 int type = extract32(insn, 22, 2);
6475 int opcode = extract32(insn, 15, 6);
6476 int rn = extract32(insn, 5, 5);
6477 int rd = extract32(insn, 0, 5);
6479 if (mos) {
6480 goto do_unallocated;
6483 switch (opcode) {
6484 case 0x4: case 0x5: case 0x7:
6486 /* FCVT between half, single and double precision */
6487 int dtype = extract32(opcode, 0, 2);
6488 if (type == 2 || dtype == type) {
6489 goto do_unallocated;
6491 if (!fp_access_check(s)) {
6492 return;
6495 handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
6496 break;
6499 case 0x10 ... 0x13: /* FRINT{32,64}{X,Z} */
6500 if (type > 1 || !dc_isar_feature(aa64_frint, s)) {
6501 goto do_unallocated;
6503 /* fall through */
6504 case 0x0 ... 0x3:
6505 case 0x8 ... 0xc:
6506 case 0xe ... 0xf:
6507 /* 32-to-32 and 64-to-64 ops */
6508 switch (type) {
6509 case 0:
6510 if (!fp_access_check(s)) {
6511 return;
6513 handle_fp_1src_single(s, opcode, rd, rn);
6514 break;
6515 case 1:
6516 if (!fp_access_check(s)) {
6517 return;
6519 handle_fp_1src_double(s, opcode, rd, rn);
6520 break;
6521 case 3:
6522 if (!dc_isar_feature(aa64_fp16, s)) {
6523 goto do_unallocated;
6526 if (!fp_access_check(s)) {
6527 return;
6529 handle_fp_1src_half(s, opcode, rd, rn);
6530 break;
6531 default:
6532 goto do_unallocated;
6534 break;
6536 case 0x6:
6537 switch (type) {
6538 case 1: /* BFCVT */
6539 if (!dc_isar_feature(aa64_bf16, s)) {
6540 goto do_unallocated;
6542 if (!fp_access_check(s)) {
6543 return;
6545 handle_fp_1src_single(s, opcode, rd, rn);
6546 break;
6547 default:
6548 goto do_unallocated;
6550 break;
6552 default:
6553 do_unallocated:
6554 unallocated_encoding(s);
6555 break;
6559 /* Floating-point data-processing (2 source) - single precision */
6560 static void handle_fp_2src_single(DisasContext *s, int opcode,
6561 int rd, int rn, int rm)
6563 TCGv_i32 tcg_op1;
6564 TCGv_i32 tcg_op2;
6565 TCGv_i32 tcg_res;
6566 TCGv_ptr fpst;
6568 tcg_res = tcg_temp_new_i32();
6569 fpst = fpstatus_ptr(FPST_FPCR);
6570 tcg_op1 = read_fp_sreg(s, rn);
6571 tcg_op2 = read_fp_sreg(s, rm);
6573 switch (opcode) {
6574 case 0x0: /* FMUL */
6575 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6576 break;
6577 case 0x1: /* FDIV */
6578 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
6579 break;
6580 case 0x2: /* FADD */
6581 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
6582 break;
6583 case 0x3: /* FSUB */
6584 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
6585 break;
6586 case 0x4: /* FMAX */
6587 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
6588 break;
6589 case 0x5: /* FMIN */
6590 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
6591 break;
6592 case 0x6: /* FMAXNM */
6593 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
6594 break;
6595 case 0x7: /* FMINNM */
6596 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
6597 break;
6598 case 0x8: /* FNMUL */
6599 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
6600 gen_helper_vfp_negs(tcg_res, tcg_res);
6601 break;
6604 write_fp_sreg(s, rd, tcg_res);
6606 tcg_temp_free_ptr(fpst);
6607 tcg_temp_free_i32(tcg_op1);
6608 tcg_temp_free_i32(tcg_op2);
6609 tcg_temp_free_i32(tcg_res);
6612 /* Floating-point data-processing (2 source) - double precision */
6613 static void handle_fp_2src_double(DisasContext *s, int opcode,
6614 int rd, int rn, int rm)
6616 TCGv_i64 tcg_op1;
6617 TCGv_i64 tcg_op2;
6618 TCGv_i64 tcg_res;
6619 TCGv_ptr fpst;
6621 tcg_res = tcg_temp_new_i64();
6622 fpst = fpstatus_ptr(FPST_FPCR);
6623 tcg_op1 = read_fp_dreg(s, rn);
6624 tcg_op2 = read_fp_dreg(s, rm);
6626 switch (opcode) {
6627 case 0x0: /* FMUL */
6628 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6629 break;
6630 case 0x1: /* FDIV */
6631 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
6632 break;
6633 case 0x2: /* FADD */
6634 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
6635 break;
6636 case 0x3: /* FSUB */
6637 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
6638 break;
6639 case 0x4: /* FMAX */
6640 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
6641 break;
6642 case 0x5: /* FMIN */
6643 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
6644 break;
6645 case 0x6: /* FMAXNM */
6646 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6647 break;
6648 case 0x7: /* FMINNM */
6649 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
6650 break;
6651 case 0x8: /* FNMUL */
6652 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
6653 gen_helper_vfp_negd(tcg_res, tcg_res);
6654 break;
6657 write_fp_dreg(s, rd, tcg_res);
6659 tcg_temp_free_ptr(fpst);
6660 tcg_temp_free_i64(tcg_op1);
6661 tcg_temp_free_i64(tcg_op2);
6662 tcg_temp_free_i64(tcg_res);
6665 /* Floating-point data-processing (2 source) - half precision */
6666 static void handle_fp_2src_half(DisasContext *s, int opcode,
6667 int rd, int rn, int rm)
6669 TCGv_i32 tcg_op1;
6670 TCGv_i32 tcg_op2;
6671 TCGv_i32 tcg_res;
6672 TCGv_ptr fpst;
6674 tcg_res = tcg_temp_new_i32();
6675 fpst = fpstatus_ptr(FPST_FPCR_F16);
6676 tcg_op1 = read_fp_hreg(s, rn);
6677 tcg_op2 = read_fp_hreg(s, rm);
6679 switch (opcode) {
6680 case 0x0: /* FMUL */
6681 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6682 break;
6683 case 0x1: /* FDIV */
6684 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
6685 break;
6686 case 0x2: /* FADD */
6687 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
6688 break;
6689 case 0x3: /* FSUB */
6690 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
6691 break;
6692 case 0x4: /* FMAX */
6693 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
6694 break;
6695 case 0x5: /* FMIN */
6696 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
6697 break;
6698 case 0x6: /* FMAXNM */
6699 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6700 break;
6701 case 0x7: /* FMINNM */
6702 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
6703 break;
6704 case 0x8: /* FNMUL */
6705 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
6706 tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000);
6707 break;
6708 default:
6709 g_assert_not_reached();
6712 write_fp_sreg(s, rd, tcg_res);
6714 tcg_temp_free_ptr(fpst);
6715 tcg_temp_free_i32(tcg_op1);
6716 tcg_temp_free_i32(tcg_op2);
6717 tcg_temp_free_i32(tcg_res);
6720 /* Floating point data-processing (2 source)
6721 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
6722 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6723 * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
6724 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
6726 static void disas_fp_2src(DisasContext *s, uint32_t insn)
6728 int mos = extract32(insn, 29, 3);
6729 int type = extract32(insn, 22, 2);
6730 int rd = extract32(insn, 0, 5);
6731 int rn = extract32(insn, 5, 5);
6732 int rm = extract32(insn, 16, 5);
6733 int opcode = extract32(insn, 12, 4);
6735 if (opcode > 8 || mos) {
6736 unallocated_encoding(s);
6737 return;
6740 switch (type) {
6741 case 0:
6742 if (!fp_access_check(s)) {
6743 return;
6745 handle_fp_2src_single(s, opcode, rd, rn, rm);
6746 break;
6747 case 1:
6748 if (!fp_access_check(s)) {
6749 return;
6751 handle_fp_2src_double(s, opcode, rd, rn, rm);
6752 break;
6753 case 3:
6754 if (!dc_isar_feature(aa64_fp16, s)) {
6755 unallocated_encoding(s);
6756 return;
6758 if (!fp_access_check(s)) {
6759 return;
6761 handle_fp_2src_half(s, opcode, rd, rn, rm);
6762 break;
6763 default:
6764 unallocated_encoding(s);
6768 /* Floating-point data-processing (3 source) - single precision */
6769 static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
6770 int rd, int rn, int rm, int ra)
6772 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6773 TCGv_i32 tcg_res = tcg_temp_new_i32();
6774 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6776 tcg_op1 = read_fp_sreg(s, rn);
6777 tcg_op2 = read_fp_sreg(s, rm);
6778 tcg_op3 = read_fp_sreg(s, ra);
6780 /* These are fused multiply-add, and must be done as one
6781 * floating point operation with no rounding between the
6782 * multiplication and addition steps.
6783 * NB that doing the negations here as separate steps is
6784 * correct : an input NaN should come out with its sign bit
6785 * flipped if it is a negated-input.
6787 if (o1 == true) {
6788 gen_helper_vfp_negs(tcg_op3, tcg_op3);
6791 if (o0 != o1) {
6792 gen_helper_vfp_negs(tcg_op1, tcg_op1);
6795 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6797 write_fp_sreg(s, rd, tcg_res);
6799 tcg_temp_free_ptr(fpst);
6800 tcg_temp_free_i32(tcg_op1);
6801 tcg_temp_free_i32(tcg_op2);
6802 tcg_temp_free_i32(tcg_op3);
6803 tcg_temp_free_i32(tcg_res);
6806 /* Floating-point data-processing (3 source) - double precision */
6807 static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
6808 int rd, int rn, int rm, int ra)
6810 TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
6811 TCGv_i64 tcg_res = tcg_temp_new_i64();
6812 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
6814 tcg_op1 = read_fp_dreg(s, rn);
6815 tcg_op2 = read_fp_dreg(s, rm);
6816 tcg_op3 = read_fp_dreg(s, ra);
6818 /* These are fused multiply-add, and must be done as one
6819 * floating point operation with no rounding between the
6820 * multiplication and addition steps.
6821 * NB that doing the negations here as separate steps is
6822 * correct : an input NaN should come out with its sign bit
6823 * flipped if it is a negated-input.
6825 if (o1 == true) {
6826 gen_helper_vfp_negd(tcg_op3, tcg_op3);
6829 if (o0 != o1) {
6830 gen_helper_vfp_negd(tcg_op1, tcg_op1);
6833 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6835 write_fp_dreg(s, rd, tcg_res);
6837 tcg_temp_free_ptr(fpst);
6838 tcg_temp_free_i64(tcg_op1);
6839 tcg_temp_free_i64(tcg_op2);
6840 tcg_temp_free_i64(tcg_op3);
6841 tcg_temp_free_i64(tcg_res);
6844 /* Floating-point data-processing (3 source) - half precision */
6845 static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1,
6846 int rd, int rn, int rm, int ra)
6848 TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
6849 TCGv_i32 tcg_res = tcg_temp_new_i32();
6850 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR_F16);
6852 tcg_op1 = read_fp_hreg(s, rn);
6853 tcg_op2 = read_fp_hreg(s, rm);
6854 tcg_op3 = read_fp_hreg(s, ra);
6856 /* These are fused multiply-add, and must be done as one
6857 * floating point operation with no rounding between the
6858 * multiplication and addition steps.
6859 * NB that doing the negations here as separate steps is
6860 * correct : an input NaN should come out with its sign bit
6861 * flipped if it is a negated-input.
6863 if (o1 == true) {
6864 tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000);
6867 if (o0 != o1) {
6868 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
6871 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
6873 write_fp_sreg(s, rd, tcg_res);
6875 tcg_temp_free_ptr(fpst);
6876 tcg_temp_free_i32(tcg_op1);
6877 tcg_temp_free_i32(tcg_op2);
6878 tcg_temp_free_i32(tcg_op3);
6879 tcg_temp_free_i32(tcg_res);
6882 /* Floating point data-processing (3 source)
6883 * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
6884 * +---+---+---+-----------+------+----+------+----+------+------+------+
6885 * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
6886 * +---+---+---+-----------+------+----+------+----+------+------+------+
6888 static void disas_fp_3src(DisasContext *s, uint32_t insn)
6890 int mos = extract32(insn, 29, 3);
6891 int type = extract32(insn, 22, 2);
6892 int rd = extract32(insn, 0, 5);
6893 int rn = extract32(insn, 5, 5);
6894 int ra = extract32(insn, 10, 5);
6895 int rm = extract32(insn, 16, 5);
6896 bool o0 = extract32(insn, 15, 1);
6897 bool o1 = extract32(insn, 21, 1);
6899 if (mos) {
6900 unallocated_encoding(s);
6901 return;
6904 switch (type) {
6905 case 0:
6906 if (!fp_access_check(s)) {
6907 return;
6909 handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
6910 break;
6911 case 1:
6912 if (!fp_access_check(s)) {
6913 return;
6915 handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
6916 break;
6917 case 3:
6918 if (!dc_isar_feature(aa64_fp16, s)) {
6919 unallocated_encoding(s);
6920 return;
6922 if (!fp_access_check(s)) {
6923 return;
6925 handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra);
6926 break;
6927 default:
6928 unallocated_encoding(s);
6932 /* Floating point immediate
6933 * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
6934 * +---+---+---+-----------+------+---+------------+-------+------+------+
6935 * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
6936 * +---+---+---+-----------+------+---+------------+-------+------+------+
6938 static void disas_fp_imm(DisasContext *s, uint32_t insn)
6940 int rd = extract32(insn, 0, 5);
6941 int imm5 = extract32(insn, 5, 5);
6942 int imm8 = extract32(insn, 13, 8);
6943 int type = extract32(insn, 22, 2);
6944 int mos = extract32(insn, 29, 3);
6945 uint64_t imm;
6946 TCGv_i64 tcg_res;
6947 MemOp sz;
6949 if (mos || imm5) {
6950 unallocated_encoding(s);
6951 return;
6954 switch (type) {
6955 case 0:
6956 sz = MO_32;
6957 break;
6958 case 1:
6959 sz = MO_64;
6960 break;
6961 case 3:
6962 sz = MO_16;
6963 if (dc_isar_feature(aa64_fp16, s)) {
6964 break;
6966 /* fallthru */
6967 default:
6968 unallocated_encoding(s);
6969 return;
6972 if (!fp_access_check(s)) {
6973 return;
6976 imm = vfp_expand_imm(sz, imm8);
6978 tcg_res = tcg_const_i64(imm);
6979 write_fp_dreg(s, rd, tcg_res);
6980 tcg_temp_free_i64(tcg_res);
6983 /* Handle floating point <=> fixed point conversions. Note that we can
6984 * also deal with fp <=> integer conversions as a special case (scale == 64)
6985 * OPTME: consider handling that special case specially or at least skipping
6986 * the call to scalbn in the helpers for zero shifts.
6988 static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
6989 bool itof, int rmode, int scale, int sf, int type)
6991 bool is_signed = !(opcode & 1);
6992 TCGv_ptr tcg_fpstatus;
6993 TCGv_i32 tcg_shift, tcg_single;
6994 TCGv_i64 tcg_double;
6996 tcg_fpstatus = fpstatus_ptr(type == 3 ? FPST_FPCR_F16 : FPST_FPCR);
6998 tcg_shift = tcg_const_i32(64 - scale);
7000 if (itof) {
7001 TCGv_i64 tcg_int = cpu_reg(s, rn);
7002 if (!sf) {
7003 TCGv_i64 tcg_extend = new_tmp_a64(s);
7005 if (is_signed) {
7006 tcg_gen_ext32s_i64(tcg_extend, tcg_int);
7007 } else {
7008 tcg_gen_ext32u_i64(tcg_extend, tcg_int);
7011 tcg_int = tcg_extend;
7014 switch (type) {
7015 case 1: /* float64 */
7016 tcg_double = tcg_temp_new_i64();
7017 if (is_signed) {
7018 gen_helper_vfp_sqtod(tcg_double, tcg_int,
7019 tcg_shift, tcg_fpstatus);
7020 } else {
7021 gen_helper_vfp_uqtod(tcg_double, tcg_int,
7022 tcg_shift, tcg_fpstatus);
7024 write_fp_dreg(s, rd, tcg_double);
7025 tcg_temp_free_i64(tcg_double);
7026 break;
7028 case 0: /* float32 */
7029 tcg_single = tcg_temp_new_i32();
7030 if (is_signed) {
7031 gen_helper_vfp_sqtos(tcg_single, tcg_int,
7032 tcg_shift, tcg_fpstatus);
7033 } else {
7034 gen_helper_vfp_uqtos(tcg_single, tcg_int,
7035 tcg_shift, tcg_fpstatus);
7037 write_fp_sreg(s, rd, tcg_single);
7038 tcg_temp_free_i32(tcg_single);
7039 break;
7041 case 3: /* float16 */
7042 tcg_single = tcg_temp_new_i32();
7043 if (is_signed) {
7044 gen_helper_vfp_sqtoh(tcg_single, tcg_int,
7045 tcg_shift, tcg_fpstatus);
7046 } else {
7047 gen_helper_vfp_uqtoh(tcg_single, tcg_int,
7048 tcg_shift, tcg_fpstatus);
7050 write_fp_sreg(s, rd, tcg_single);
7051 tcg_temp_free_i32(tcg_single);
7052 break;
7054 default:
7055 g_assert_not_reached();
7057 } else {
7058 TCGv_i64 tcg_int = cpu_reg(s, rd);
7059 TCGv_i32 tcg_rmode;
7061 if (extract32(opcode, 2, 1)) {
7062 /* There are too many rounding modes to all fit into rmode,
7063 * so FCVTA[US] is a special case.
7065 rmode = FPROUNDING_TIEAWAY;
7068 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
7070 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7072 switch (type) {
7073 case 1: /* float64 */
7074 tcg_double = read_fp_dreg(s, rn);
7075 if (is_signed) {
7076 if (!sf) {
7077 gen_helper_vfp_tosld(tcg_int, tcg_double,
7078 tcg_shift, tcg_fpstatus);
7079 } else {
7080 gen_helper_vfp_tosqd(tcg_int, tcg_double,
7081 tcg_shift, tcg_fpstatus);
7083 } else {
7084 if (!sf) {
7085 gen_helper_vfp_tould(tcg_int, tcg_double,
7086 tcg_shift, tcg_fpstatus);
7087 } else {
7088 gen_helper_vfp_touqd(tcg_int, tcg_double,
7089 tcg_shift, tcg_fpstatus);
7092 if (!sf) {
7093 tcg_gen_ext32u_i64(tcg_int, tcg_int);
7095 tcg_temp_free_i64(tcg_double);
7096 break;
7098 case 0: /* float32 */
7099 tcg_single = read_fp_sreg(s, rn);
7100 if (sf) {
7101 if (is_signed) {
7102 gen_helper_vfp_tosqs(tcg_int, tcg_single,
7103 tcg_shift, tcg_fpstatus);
7104 } else {
7105 gen_helper_vfp_touqs(tcg_int, tcg_single,
7106 tcg_shift, tcg_fpstatus);
7108 } else {
7109 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7110 if (is_signed) {
7111 gen_helper_vfp_tosls(tcg_dest, tcg_single,
7112 tcg_shift, tcg_fpstatus);
7113 } else {
7114 gen_helper_vfp_touls(tcg_dest, tcg_single,
7115 tcg_shift, tcg_fpstatus);
7117 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7118 tcg_temp_free_i32(tcg_dest);
7120 tcg_temp_free_i32(tcg_single);
7121 break;
7123 case 3: /* float16 */
7124 tcg_single = read_fp_sreg(s, rn);
7125 if (sf) {
7126 if (is_signed) {
7127 gen_helper_vfp_tosqh(tcg_int, tcg_single,
7128 tcg_shift, tcg_fpstatus);
7129 } else {
7130 gen_helper_vfp_touqh(tcg_int, tcg_single,
7131 tcg_shift, tcg_fpstatus);
7133 } else {
7134 TCGv_i32 tcg_dest = tcg_temp_new_i32();
7135 if (is_signed) {
7136 gen_helper_vfp_toslh(tcg_dest, tcg_single,
7137 tcg_shift, tcg_fpstatus);
7138 } else {
7139 gen_helper_vfp_toulh(tcg_dest, tcg_single,
7140 tcg_shift, tcg_fpstatus);
7142 tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
7143 tcg_temp_free_i32(tcg_dest);
7145 tcg_temp_free_i32(tcg_single);
7146 break;
7148 default:
7149 g_assert_not_reached();
7152 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
7153 tcg_temp_free_i32(tcg_rmode);
7156 tcg_temp_free_ptr(tcg_fpstatus);
7157 tcg_temp_free_i32(tcg_shift);
7160 /* Floating point <-> fixed point conversions
7161 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7162 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7163 * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
7164 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
7166 static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
7168 int rd = extract32(insn, 0, 5);
7169 int rn = extract32(insn, 5, 5);
7170 int scale = extract32(insn, 10, 6);
7171 int opcode = extract32(insn, 16, 3);
7172 int rmode = extract32(insn, 19, 2);
7173 int type = extract32(insn, 22, 2);
7174 bool sbit = extract32(insn, 29, 1);
7175 bool sf = extract32(insn, 31, 1);
7176 bool itof;
7178 if (sbit || (!sf && scale < 32)) {
7179 unallocated_encoding(s);
7180 return;
7183 switch (type) {
7184 case 0: /* float32 */
7185 case 1: /* float64 */
7186 break;
7187 case 3: /* float16 */
7188 if (dc_isar_feature(aa64_fp16, s)) {
7189 break;
7191 /* fallthru */
7192 default:
7193 unallocated_encoding(s);
7194 return;
7197 switch ((rmode << 3) | opcode) {
7198 case 0x2: /* SCVTF */
7199 case 0x3: /* UCVTF */
7200 itof = true;
7201 break;
7202 case 0x18: /* FCVTZS */
7203 case 0x19: /* FCVTZU */
7204 itof = false;
7205 break;
7206 default:
7207 unallocated_encoding(s);
7208 return;
7211 if (!fp_access_check(s)) {
7212 return;
7215 handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
7218 static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
7220 /* FMOV: gpr to or from float, double, or top half of quad fp reg,
7221 * without conversion.
7224 if (itof) {
7225 TCGv_i64 tcg_rn = cpu_reg(s, rn);
7226 TCGv_i64 tmp;
7228 switch (type) {
7229 case 0:
7230 /* 32 bit */
7231 tmp = tcg_temp_new_i64();
7232 tcg_gen_ext32u_i64(tmp, tcg_rn);
7233 write_fp_dreg(s, rd, tmp);
7234 tcg_temp_free_i64(tmp);
7235 break;
7236 case 1:
7237 /* 64 bit */
7238 write_fp_dreg(s, rd, tcg_rn);
7239 break;
7240 case 2:
7241 /* 64 bit to top half. */
7242 tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd));
7243 clear_vec_high(s, true, rd);
7244 break;
7245 case 3:
7246 /* 16 bit */
7247 tmp = tcg_temp_new_i64();
7248 tcg_gen_ext16u_i64(tmp, tcg_rn);
7249 write_fp_dreg(s, rd, tmp);
7250 tcg_temp_free_i64(tmp);
7251 break;
7252 default:
7253 g_assert_not_reached();
7255 } else {
7256 TCGv_i64 tcg_rd = cpu_reg(s, rd);
7258 switch (type) {
7259 case 0:
7260 /* 32 bit */
7261 tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32));
7262 break;
7263 case 1:
7264 /* 64 bit */
7265 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64));
7266 break;
7267 case 2:
7268 /* 64 bits from top half */
7269 tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn));
7270 break;
7271 case 3:
7272 /* 16 bit */
7273 tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16));
7274 break;
7275 default:
7276 g_assert_not_reached();
7281 static void handle_fjcvtzs(DisasContext *s, int rd, int rn)
7283 TCGv_i64 t = read_fp_dreg(s, rn);
7284 TCGv_ptr fpstatus = fpstatus_ptr(FPST_FPCR);
7286 gen_helper_fjcvtzs(t, t, fpstatus);
7288 tcg_temp_free_ptr(fpstatus);
7290 tcg_gen_ext32u_i64(cpu_reg(s, rd), t);
7291 tcg_gen_extrh_i64_i32(cpu_ZF, t);
7292 tcg_gen_movi_i32(cpu_CF, 0);
7293 tcg_gen_movi_i32(cpu_NF, 0);
7294 tcg_gen_movi_i32(cpu_VF, 0);
7296 tcg_temp_free_i64(t);
7299 /* Floating point <-> integer conversions
7300 * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
7301 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7302 * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
7303 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
7305 static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
7307 int rd = extract32(insn, 0, 5);
7308 int rn = extract32(insn, 5, 5);
7309 int opcode = extract32(insn, 16, 3);
7310 int rmode = extract32(insn, 19, 2);
7311 int type = extract32(insn, 22, 2);
7312 bool sbit = extract32(insn, 29, 1);
7313 bool sf = extract32(insn, 31, 1);
7314 bool itof = false;
7316 if (sbit) {
7317 goto do_unallocated;
7320 switch (opcode) {
7321 case 2: /* SCVTF */
7322 case 3: /* UCVTF */
7323 itof = true;
7324 /* fallthru */
7325 case 4: /* FCVTAS */
7326 case 5: /* FCVTAU */
7327 if (rmode != 0) {
7328 goto do_unallocated;
7330 /* fallthru */
7331 case 0: /* FCVT[NPMZ]S */
7332 case 1: /* FCVT[NPMZ]U */
7333 switch (type) {
7334 case 0: /* float32 */
7335 case 1: /* float64 */
7336 break;
7337 case 3: /* float16 */
7338 if (!dc_isar_feature(aa64_fp16, s)) {
7339 goto do_unallocated;
7341 break;
7342 default:
7343 goto do_unallocated;
7345 if (!fp_access_check(s)) {
7346 return;
7348 handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
7349 break;
7351 default:
7352 switch (sf << 7 | type << 5 | rmode << 3 | opcode) {
7353 case 0b01100110: /* FMOV half <-> 32-bit int */
7354 case 0b01100111:
7355 case 0b11100110: /* FMOV half <-> 64-bit int */
7356 case 0b11100111:
7357 if (!dc_isar_feature(aa64_fp16, s)) {
7358 goto do_unallocated;
7360 /* fallthru */
7361 case 0b00000110: /* FMOV 32-bit */
7362 case 0b00000111:
7363 case 0b10100110: /* FMOV 64-bit */
7364 case 0b10100111:
7365 case 0b11001110: /* FMOV top half of 128-bit */
7366 case 0b11001111:
7367 if (!fp_access_check(s)) {
7368 return;
7370 itof = opcode & 1;
7371 handle_fmov(s, rd, rn, type, itof);
7372 break;
7374 case 0b00111110: /* FJCVTZS */
7375 if (!dc_isar_feature(aa64_jscvt, s)) {
7376 goto do_unallocated;
7377 } else if (fp_access_check(s)) {
7378 handle_fjcvtzs(s, rd, rn);
7380 break;
7382 default:
7383 do_unallocated:
7384 unallocated_encoding(s);
7385 return;
7387 break;
7391 /* FP-specific subcases of table C3-6 (SIMD and FP data processing)
7392 * 31 30 29 28 25 24 0
7393 * +---+---+---+---------+-----------------------------+
7394 * | | 0 | | 1 1 1 1 | |
7395 * +---+---+---+---------+-----------------------------+
7397 static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
7399 if (extract32(insn, 24, 1)) {
7400 /* Floating point data-processing (3 source) */
7401 disas_fp_3src(s, insn);
7402 } else if (extract32(insn, 21, 1) == 0) {
7403 /* Floating point to fixed point conversions */
7404 disas_fp_fixed_conv(s, insn);
7405 } else {
7406 switch (extract32(insn, 10, 2)) {
7407 case 1:
7408 /* Floating point conditional compare */
7409 disas_fp_ccomp(s, insn);
7410 break;
7411 case 2:
7412 /* Floating point data-processing (2 source) */
7413 disas_fp_2src(s, insn);
7414 break;
7415 case 3:
7416 /* Floating point conditional select */
7417 disas_fp_csel(s, insn);
7418 break;
7419 case 0:
7420 switch (ctz32(extract32(insn, 12, 4))) {
7421 case 0: /* [15:12] == xxx1 */
7422 /* Floating point immediate */
7423 disas_fp_imm(s, insn);
7424 break;
7425 case 1: /* [15:12] == xx10 */
7426 /* Floating point compare */
7427 disas_fp_compare(s, insn);
7428 break;
7429 case 2: /* [15:12] == x100 */
7430 /* Floating point data-processing (1 source) */
7431 disas_fp_1src(s, insn);
7432 break;
7433 case 3: /* [15:12] == 1000 */
7434 unallocated_encoding(s);
7435 break;
7436 default: /* [15:12] == 0000 */
7437 /* Floating point <-> integer conversions */
7438 disas_fp_int_conv(s, insn);
7439 break;
7441 break;
7446 static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
7447 int pos)
7449 /* Extract 64 bits from the middle of two concatenated 64 bit
7450 * vector register slices left:right. The extracted bits start
7451 * at 'pos' bits into the right (least significant) side.
7452 * We return the result in tcg_right, and guarantee not to
7453 * trash tcg_left.
7455 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
7456 assert(pos > 0 && pos < 64);
7458 tcg_gen_shri_i64(tcg_right, tcg_right, pos);
7459 tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
7460 tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
7462 tcg_temp_free_i64(tcg_tmp);
7465 /* EXT
7466 * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
7467 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7468 * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
7469 * +---+---+-------------+-----+---+------+---+------+---+------+------+
7471 static void disas_simd_ext(DisasContext *s, uint32_t insn)
7473 int is_q = extract32(insn, 30, 1);
7474 int op2 = extract32(insn, 22, 2);
7475 int imm4 = extract32(insn, 11, 4);
7476 int rm = extract32(insn, 16, 5);
7477 int rn = extract32(insn, 5, 5);
7478 int rd = extract32(insn, 0, 5);
7479 int pos = imm4 << 3;
7480 TCGv_i64 tcg_resl, tcg_resh;
7482 if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
7483 unallocated_encoding(s);
7484 return;
7487 if (!fp_access_check(s)) {
7488 return;
7491 tcg_resh = tcg_temp_new_i64();
7492 tcg_resl = tcg_temp_new_i64();
7494 /* Vd gets bits starting at pos bits into Vm:Vn. This is
7495 * either extracting 128 bits from a 128:128 concatenation, or
7496 * extracting 64 bits from a 64:64 concatenation.
7498 if (!is_q) {
7499 read_vec_element(s, tcg_resl, rn, 0, MO_64);
7500 if (pos != 0) {
7501 read_vec_element(s, tcg_resh, rm, 0, MO_64);
7502 do_ext64(s, tcg_resh, tcg_resl, pos);
7504 } else {
7505 TCGv_i64 tcg_hh;
7506 typedef struct {
7507 int reg;
7508 int elt;
7509 } EltPosns;
7510 EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
7511 EltPosns *elt = eltposns;
7513 if (pos >= 64) {
7514 elt++;
7515 pos -= 64;
7518 read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
7519 elt++;
7520 read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
7521 elt++;
7522 if (pos != 0) {
7523 do_ext64(s, tcg_resh, tcg_resl, pos);
7524 tcg_hh = tcg_temp_new_i64();
7525 read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
7526 do_ext64(s, tcg_hh, tcg_resh, pos);
7527 tcg_temp_free_i64(tcg_hh);
7531 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7532 tcg_temp_free_i64(tcg_resl);
7533 if (is_q) {
7534 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7536 tcg_temp_free_i64(tcg_resh);
7537 clear_vec_high(s, is_q, rd);
7540 /* TBL/TBX
7541 * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
7542 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7543 * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
7544 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
7546 static void disas_simd_tb(DisasContext *s, uint32_t insn)
7548 int op2 = extract32(insn, 22, 2);
7549 int is_q = extract32(insn, 30, 1);
7550 int rm = extract32(insn, 16, 5);
7551 int rn = extract32(insn, 5, 5);
7552 int rd = extract32(insn, 0, 5);
7553 int is_tbx = extract32(insn, 12, 1);
7554 int len = (extract32(insn, 13, 2) + 1) * 16;
7556 if (op2 != 0) {
7557 unallocated_encoding(s);
7558 return;
7561 if (!fp_access_check(s)) {
7562 return;
7565 tcg_gen_gvec_2_ptr(vec_full_reg_offset(s, rd),
7566 vec_full_reg_offset(s, rm), cpu_env,
7567 is_q ? 16 : 8, vec_full_reg_size(s),
7568 (len << 6) | (is_tbx << 5) | rn,
7569 gen_helper_simd_tblx);
7572 /* ZIP/UZP/TRN
7573 * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
7574 * +---+---+-------------+------+---+------+---+------------------+------+
7575 * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
7576 * +---+---+-------------+------+---+------+---+------------------+------+
7578 static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
7580 int rd = extract32(insn, 0, 5);
7581 int rn = extract32(insn, 5, 5);
7582 int rm = extract32(insn, 16, 5);
7583 int size = extract32(insn, 22, 2);
7584 /* opc field bits [1:0] indicate ZIP/UZP/TRN;
7585 * bit 2 indicates 1 vs 2 variant of the insn.
7587 int opcode = extract32(insn, 12, 2);
7588 bool part = extract32(insn, 14, 1);
7589 bool is_q = extract32(insn, 30, 1);
7590 int esize = 8 << size;
7591 int i, ofs;
7592 int datasize = is_q ? 128 : 64;
7593 int elements = datasize / esize;
7594 TCGv_i64 tcg_res, tcg_resl, tcg_resh;
7596 if (opcode == 0 || (size == 3 && !is_q)) {
7597 unallocated_encoding(s);
7598 return;
7601 if (!fp_access_check(s)) {
7602 return;
7605 tcg_resl = tcg_const_i64(0);
7606 tcg_resh = is_q ? tcg_const_i64(0) : NULL;
7607 tcg_res = tcg_temp_new_i64();
7609 for (i = 0; i < elements; i++) {
7610 switch (opcode) {
7611 case 1: /* UZP1/2 */
7613 int midpoint = elements / 2;
7614 if (i < midpoint) {
7615 read_vec_element(s, tcg_res, rn, 2 * i + part, size);
7616 } else {
7617 read_vec_element(s, tcg_res, rm,
7618 2 * (i - midpoint) + part, size);
7620 break;
7622 case 2: /* TRN1/2 */
7623 if (i & 1) {
7624 read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
7625 } else {
7626 read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
7628 break;
7629 case 3: /* ZIP1/2 */
7631 int base = part * elements / 2;
7632 if (i & 1) {
7633 read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
7634 } else {
7635 read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
7637 break;
7639 default:
7640 g_assert_not_reached();
7643 ofs = i * esize;
7644 if (ofs < 64) {
7645 tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
7646 tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
7647 } else {
7648 tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
7649 tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
7653 tcg_temp_free_i64(tcg_res);
7655 write_vec_element(s, tcg_resl, rd, 0, MO_64);
7656 tcg_temp_free_i64(tcg_resl);
7658 if (is_q) {
7659 write_vec_element(s, tcg_resh, rd, 1, MO_64);
7660 tcg_temp_free_i64(tcg_resh);
7662 clear_vec_high(s, is_q, rd);
7666 * do_reduction_op helper
7668 * This mirrors the Reduce() pseudocode in the ARM ARM. It is
7669 * important for correct NaN propagation that we do these
7670 * operations in exactly the order specified by the pseudocode.
7672 * This is a recursive function, TCG temps should be freed by the
7673 * calling function once it is done with the values.
7675 static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn,
7676 int esize, int size, int vmap, TCGv_ptr fpst)
7678 if (esize == size) {
7679 int element;
7680 MemOp msize = esize == 16 ? MO_16 : MO_32;
7681 TCGv_i32 tcg_elem;
7683 /* We should have one register left here */
7684 assert(ctpop8(vmap) == 1);
7685 element = ctz32(vmap);
7686 assert(element < 8);
7688 tcg_elem = tcg_temp_new_i32();
7689 read_vec_element_i32(s, tcg_elem, rn, element, msize);
7690 return tcg_elem;
7691 } else {
7692 int bits = size / 2;
7693 int shift = ctpop8(vmap) / 2;
7694 int vmap_lo = (vmap >> shift) & vmap;
7695 int vmap_hi = (vmap & ~vmap_lo);
7696 TCGv_i32 tcg_hi, tcg_lo, tcg_res;
7698 tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst);
7699 tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst);
7700 tcg_res = tcg_temp_new_i32();
7702 switch (fpopcode) {
7703 case 0x0c: /* fmaxnmv half-precision */
7704 gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7705 break;
7706 case 0x0f: /* fmaxv half-precision */
7707 gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst);
7708 break;
7709 case 0x1c: /* fminnmv half-precision */
7710 gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst);
7711 break;
7712 case 0x1f: /* fminv half-precision */
7713 gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst);
7714 break;
7715 case 0x2c: /* fmaxnmv */
7716 gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst);
7717 break;
7718 case 0x2f: /* fmaxv */
7719 gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst);
7720 break;
7721 case 0x3c: /* fminnmv */
7722 gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst);
7723 break;
7724 case 0x3f: /* fminv */
7725 gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst);
7726 break;
7727 default:
7728 g_assert_not_reached();
7731 tcg_temp_free_i32(tcg_hi);
7732 tcg_temp_free_i32(tcg_lo);
7733 return tcg_res;
7737 /* AdvSIMD across lanes
7738 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
7739 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7740 * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
7741 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
7743 static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
7745 int rd = extract32(insn, 0, 5);
7746 int rn = extract32(insn, 5, 5);
7747 int size = extract32(insn, 22, 2);
7748 int opcode = extract32(insn, 12, 5);
7749 bool is_q = extract32(insn, 30, 1);
7750 bool is_u = extract32(insn, 29, 1);
7751 bool is_fp = false;
7752 bool is_min = false;
7753 int esize;
7754 int elements;
7755 int i;
7756 TCGv_i64 tcg_res, tcg_elt;
7758 switch (opcode) {
7759 case 0x1b: /* ADDV */
7760 if (is_u) {
7761 unallocated_encoding(s);
7762 return;
7764 /* fall through */
7765 case 0x3: /* SADDLV, UADDLV */
7766 case 0xa: /* SMAXV, UMAXV */
7767 case 0x1a: /* SMINV, UMINV */
7768 if (size == 3 || (size == 2 && !is_q)) {
7769 unallocated_encoding(s);
7770 return;
7772 break;
7773 case 0xc: /* FMAXNMV, FMINNMV */
7774 case 0xf: /* FMAXV, FMINV */
7775 /* Bit 1 of size field encodes min vs max and the actual size
7776 * depends on the encoding of the U bit. If not set (and FP16
7777 * enabled) then we do half-precision float instead of single
7778 * precision.
7780 is_min = extract32(size, 1, 1);
7781 is_fp = true;
7782 if (!is_u && dc_isar_feature(aa64_fp16, s)) {
7783 size = 1;
7784 } else if (!is_u || !is_q || extract32(size, 0, 1)) {
7785 unallocated_encoding(s);
7786 return;
7787 } else {
7788 size = 2;
7790 break;
7791 default:
7792 unallocated_encoding(s);
7793 return;
7796 if (!fp_access_check(s)) {
7797 return;
7800 esize = 8 << size;
7801 elements = (is_q ? 128 : 64) / esize;
7803 tcg_res = tcg_temp_new_i64();
7804 tcg_elt = tcg_temp_new_i64();
7806 /* These instructions operate across all lanes of a vector
7807 * to produce a single result. We can guarantee that a 64
7808 * bit intermediate is sufficient:
7809 * + for [US]ADDLV the maximum element size is 32 bits, and
7810 * the result type is 64 bits
7811 * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
7812 * same as the element size, which is 32 bits at most
7813 * For the integer operations we can choose to work at 64
7814 * or 32 bits and truncate at the end; for simplicity
7815 * we use 64 bits always. The floating point
7816 * ops do require 32 bit intermediates, though.
7818 if (!is_fp) {
7819 read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
7821 for (i = 1; i < elements; i++) {
7822 read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
7824 switch (opcode) {
7825 case 0x03: /* SADDLV / UADDLV */
7826 case 0x1b: /* ADDV */
7827 tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
7828 break;
7829 case 0x0a: /* SMAXV / UMAXV */
7830 if (is_u) {
7831 tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt);
7832 } else {
7833 tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt);
7835 break;
7836 case 0x1a: /* SMINV / UMINV */
7837 if (is_u) {
7838 tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt);
7839 } else {
7840 tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt);
7842 break;
7843 default:
7844 g_assert_not_reached();
7848 } else {
7849 /* Floating point vector reduction ops which work across 32
7850 * bit (single) or 16 bit (half-precision) intermediates.
7851 * Note that correct NaN propagation requires that we do these
7852 * operations in exactly the order specified by the pseudocode.
7854 TCGv_ptr fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
7855 int fpopcode = opcode | is_min << 4 | is_u << 5;
7856 int vmap = (1 << elements) - 1;
7857 TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize,
7858 (is_q ? 128 : 64), vmap, fpst);
7859 tcg_gen_extu_i32_i64(tcg_res, tcg_res32);
7860 tcg_temp_free_i32(tcg_res32);
7861 tcg_temp_free_ptr(fpst);
7864 tcg_temp_free_i64(tcg_elt);
7866 /* Now truncate the result to the width required for the final output */
7867 if (opcode == 0x03) {
7868 /* SADDLV, UADDLV: result is 2*esize */
7869 size++;
7872 switch (size) {
7873 case 0:
7874 tcg_gen_ext8u_i64(tcg_res, tcg_res);
7875 break;
7876 case 1:
7877 tcg_gen_ext16u_i64(tcg_res, tcg_res);
7878 break;
7879 case 2:
7880 tcg_gen_ext32u_i64(tcg_res, tcg_res);
7881 break;
7882 case 3:
7883 break;
7884 default:
7885 g_assert_not_reached();
7888 write_fp_dreg(s, rd, tcg_res);
7889 tcg_temp_free_i64(tcg_res);
7892 /* DUP (Element, Vector)
7894 * 31 30 29 21 20 16 15 10 9 5 4 0
7895 * +---+---+-------------------+--------+-------------+------+------+
7896 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7897 * +---+---+-------------------+--------+-------------+------+------+
7899 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7901 static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
7902 int imm5)
7904 int size = ctz32(imm5);
7905 int index;
7907 if (size > 3 || (size == 3 && !is_q)) {
7908 unallocated_encoding(s);
7909 return;
7912 if (!fp_access_check(s)) {
7913 return;
7916 index = imm5 >> (size + 1);
7917 tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd),
7918 vec_reg_offset(s, rn, index, size),
7919 is_q ? 16 : 8, vec_full_reg_size(s));
7922 /* DUP (element, scalar)
7923 * 31 21 20 16 15 10 9 5 4 0
7924 * +-----------------------+--------+-------------+------+------+
7925 * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
7926 * +-----------------------+--------+-------------+------+------+
7928 static void handle_simd_dupes(DisasContext *s, int rd, int rn,
7929 int imm5)
7931 int size = ctz32(imm5);
7932 int index;
7933 TCGv_i64 tmp;
7935 if (size > 3) {
7936 unallocated_encoding(s);
7937 return;
7940 if (!fp_access_check(s)) {
7941 return;
7944 index = imm5 >> (size + 1);
7946 /* This instruction just extracts the specified element and
7947 * zero-extends it into the bottom of the destination register.
7949 tmp = tcg_temp_new_i64();
7950 read_vec_element(s, tmp, rn, index, size);
7951 write_fp_dreg(s, rd, tmp);
7952 tcg_temp_free_i64(tmp);
7955 /* DUP (General)
7957 * 31 30 29 21 20 16 15 10 9 5 4 0
7958 * +---+---+-------------------+--------+-------------+------+------+
7959 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
7960 * +---+---+-------------------+--------+-------------+------+------+
7962 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7964 static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
7965 int imm5)
7967 int size = ctz32(imm5);
7968 uint32_t dofs, oprsz, maxsz;
7970 if (size > 3 || ((size == 3) && !is_q)) {
7971 unallocated_encoding(s);
7972 return;
7975 if (!fp_access_check(s)) {
7976 return;
7979 dofs = vec_full_reg_offset(s, rd);
7980 oprsz = is_q ? 16 : 8;
7981 maxsz = vec_full_reg_size(s);
7983 tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn));
7986 /* INS (Element)
7988 * 31 21 20 16 15 14 11 10 9 5 4 0
7989 * +-----------------------+--------+------------+---+------+------+
7990 * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
7991 * +-----------------------+--------+------------+---+------+------+
7993 * size: encoded in imm5 (see ARM ARM LowestSetBit())
7994 * index: encoded in imm5<4:size+1>
7996 static void handle_simd_inse(DisasContext *s, int rd, int rn,
7997 int imm4, int imm5)
7999 int size = ctz32(imm5);
8000 int src_index, dst_index;
8001 TCGv_i64 tmp;
8003 if (size > 3) {
8004 unallocated_encoding(s);
8005 return;
8008 if (!fp_access_check(s)) {
8009 return;
8012 dst_index = extract32(imm5, 1+size, 5);
8013 src_index = extract32(imm4, size, 4);
8015 tmp = tcg_temp_new_i64();
8017 read_vec_element(s, tmp, rn, src_index, size);
8018 write_vec_element(s, tmp, rd, dst_index, size);
8020 tcg_temp_free_i64(tmp);
8022 /* INS is considered a 128-bit write for SVE. */
8023 clear_vec_high(s, true, rd);
8027 /* INS (General)
8029 * 31 21 20 16 15 10 9 5 4 0
8030 * +-----------------------+--------+-------------+------+------+
8031 * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
8032 * +-----------------------+--------+-------------+------+------+
8034 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8035 * index: encoded in imm5<4:size+1>
8037 static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
8039 int size = ctz32(imm5);
8040 int idx;
8042 if (size > 3) {
8043 unallocated_encoding(s);
8044 return;
8047 if (!fp_access_check(s)) {
8048 return;
8051 idx = extract32(imm5, 1 + size, 4 - size);
8052 write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
8054 /* INS is considered a 128-bit write for SVE. */
8055 clear_vec_high(s, true, rd);
8059 * UMOV (General)
8060 * SMOV (General)
8062 * 31 30 29 21 20 16 15 12 10 9 5 4 0
8063 * +---+---+-------------------+--------+-------------+------+------+
8064 * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
8065 * +---+---+-------------------+--------+-------------+------+------+
8067 * U: unsigned when set
8068 * size: encoded in imm5 (see ARM ARM LowestSetBit())
8070 static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
8071 int rn, int rd, int imm5)
8073 int size = ctz32(imm5);
8074 int element;
8075 TCGv_i64 tcg_rd;
8077 /* Check for UnallocatedEncodings */
8078 if (is_signed) {
8079 if (size > 2 || (size == 2 && !is_q)) {
8080 unallocated_encoding(s);
8081 return;
8083 } else {
8084 if (size > 3
8085 || (size < 3 && is_q)
8086 || (size == 3 && !is_q)) {
8087 unallocated_encoding(s);
8088 return;
8092 if (!fp_access_check(s)) {
8093 return;
8096 element = extract32(imm5, 1+size, 4);
8098 tcg_rd = cpu_reg(s, rd);
8099 read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
8100 if (is_signed && !is_q) {
8101 tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
8105 /* AdvSIMD copy
8106 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8107 * +---+---+----+-----------------+------+---+------+---+------+------+
8108 * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8109 * +---+---+----+-----------------+------+---+------+---+------+------+
8111 static void disas_simd_copy(DisasContext *s, uint32_t insn)
8113 int rd = extract32(insn, 0, 5);
8114 int rn = extract32(insn, 5, 5);
8115 int imm4 = extract32(insn, 11, 4);
8116 int op = extract32(insn, 29, 1);
8117 int is_q = extract32(insn, 30, 1);
8118 int imm5 = extract32(insn, 16, 5);
8120 if (op) {
8121 if (is_q) {
8122 /* INS (element) */
8123 handle_simd_inse(s, rd, rn, imm4, imm5);
8124 } else {
8125 unallocated_encoding(s);
8127 } else {
8128 switch (imm4) {
8129 case 0:
8130 /* DUP (element - vector) */
8131 handle_simd_dupe(s, is_q, rd, rn, imm5);
8132 break;
8133 case 1:
8134 /* DUP (general) */
8135 handle_simd_dupg(s, is_q, rd, rn, imm5);
8136 break;
8137 case 3:
8138 if (is_q) {
8139 /* INS (general) */
8140 handle_simd_insg(s, rd, rn, imm5);
8141 } else {
8142 unallocated_encoding(s);
8144 break;
8145 case 5:
8146 case 7:
8147 /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
8148 handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
8149 break;
8150 default:
8151 unallocated_encoding(s);
8152 break;
8157 /* AdvSIMD modified immediate
8158 * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
8159 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8160 * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
8161 * +---+---+----+---------------------+-----+-------+----+---+-------+------+
8163 * There are a number of operations that can be carried out here:
8164 * MOVI - move (shifted) imm into register
8165 * MVNI - move inverted (shifted) imm into register
8166 * ORR - bitwise OR of (shifted) imm with register
8167 * BIC - bitwise clear of (shifted) imm with register
8168 * With ARMv8.2 we also have:
8169 * FMOV half-precision
8171 static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
8173 int rd = extract32(insn, 0, 5);
8174 int cmode = extract32(insn, 12, 4);
8175 int o2 = extract32(insn, 11, 1);
8176 uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
8177 bool is_neg = extract32(insn, 29, 1);
8178 bool is_q = extract32(insn, 30, 1);
8179 uint64_t imm = 0;
8181 if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
8182 /* Check for FMOV (vector, immediate) - half-precision */
8183 if (!(dc_isar_feature(aa64_fp16, s) && o2 && cmode == 0xf)) {
8184 unallocated_encoding(s);
8185 return;
8189 if (!fp_access_check(s)) {
8190 return;
8193 if (cmode == 15 && o2 && !is_neg) {
8194 /* FMOV (vector, immediate) - half-precision */
8195 imm = vfp_expand_imm(MO_16, abcdefgh);
8196 /* now duplicate across the lanes */
8197 imm = dup_const(MO_16, imm);
8198 } else {
8199 imm = asimd_imm_const(abcdefgh, cmode, is_neg);
8202 if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) {
8203 /* MOVI or MVNI, with MVNI negation handled above. */
8204 tcg_gen_gvec_dup_imm(MO_64, vec_full_reg_offset(s, rd), is_q ? 16 : 8,
8205 vec_full_reg_size(s), imm);
8206 } else {
8207 /* ORR or BIC, with BIC negation to AND handled above. */
8208 if (is_neg) {
8209 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64);
8210 } else {
8211 gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64);
8216 /* AdvSIMD scalar copy
8217 * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
8218 * +-----+----+-----------------+------+---+------+---+------+------+
8219 * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
8220 * +-----+----+-----------------+------+---+------+---+------+------+
8222 static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
8224 int rd = extract32(insn, 0, 5);
8225 int rn = extract32(insn, 5, 5);
8226 int imm4 = extract32(insn, 11, 4);
8227 int imm5 = extract32(insn, 16, 5);
8228 int op = extract32(insn, 29, 1);
8230 if (op != 0 || imm4 != 0) {
8231 unallocated_encoding(s);
8232 return;
8235 /* DUP (element, scalar) */
8236 handle_simd_dupes(s, rd, rn, imm5);
8239 /* AdvSIMD scalar pairwise
8240 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
8241 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8242 * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
8243 * +-----+---+-----------+------+-----------+--------+-----+------+------+
8245 static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
8247 int u = extract32(insn, 29, 1);
8248 int size = extract32(insn, 22, 2);
8249 int opcode = extract32(insn, 12, 5);
8250 int rn = extract32(insn, 5, 5);
8251 int rd = extract32(insn, 0, 5);
8252 TCGv_ptr fpst;
8254 /* For some ops (the FP ones), size[1] is part of the encoding.
8255 * For ADDP strictly it is not but size[1] is always 1 for valid
8256 * encodings.
8258 opcode |= (extract32(size, 1, 1) << 5);
8260 switch (opcode) {
8261 case 0x3b: /* ADDP */
8262 if (u || size != 3) {
8263 unallocated_encoding(s);
8264 return;
8266 if (!fp_access_check(s)) {
8267 return;
8270 fpst = NULL;
8271 break;
8272 case 0xc: /* FMAXNMP */
8273 case 0xd: /* FADDP */
8274 case 0xf: /* FMAXP */
8275 case 0x2c: /* FMINNMP */
8276 case 0x2f: /* FMINP */
8277 /* FP op, size[0] is 32 or 64 bit*/
8278 if (!u) {
8279 if (!dc_isar_feature(aa64_fp16, s)) {
8280 unallocated_encoding(s);
8281 return;
8282 } else {
8283 size = MO_16;
8285 } else {
8286 size = extract32(size, 0, 1) ? MO_64 : MO_32;
8289 if (!fp_access_check(s)) {
8290 return;
8293 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8294 break;
8295 default:
8296 unallocated_encoding(s);
8297 return;
8300 if (size == MO_64) {
8301 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
8302 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
8303 TCGv_i64 tcg_res = tcg_temp_new_i64();
8305 read_vec_element(s, tcg_op1, rn, 0, MO_64);
8306 read_vec_element(s, tcg_op2, rn, 1, MO_64);
8308 switch (opcode) {
8309 case 0x3b: /* ADDP */
8310 tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
8311 break;
8312 case 0xc: /* FMAXNMP */
8313 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8314 break;
8315 case 0xd: /* FADDP */
8316 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
8317 break;
8318 case 0xf: /* FMAXP */
8319 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
8320 break;
8321 case 0x2c: /* FMINNMP */
8322 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
8323 break;
8324 case 0x2f: /* FMINP */
8325 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
8326 break;
8327 default:
8328 g_assert_not_reached();
8331 write_fp_dreg(s, rd, tcg_res);
8333 tcg_temp_free_i64(tcg_op1);
8334 tcg_temp_free_i64(tcg_op2);
8335 tcg_temp_free_i64(tcg_res);
8336 } else {
8337 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
8338 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
8339 TCGv_i32 tcg_res = tcg_temp_new_i32();
8341 read_vec_element_i32(s, tcg_op1, rn, 0, size);
8342 read_vec_element_i32(s, tcg_op2, rn, 1, size);
8344 if (size == MO_16) {
8345 switch (opcode) {
8346 case 0xc: /* FMAXNMP */
8347 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8348 break;
8349 case 0xd: /* FADDP */
8350 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
8351 break;
8352 case 0xf: /* FMAXP */
8353 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
8354 break;
8355 case 0x2c: /* FMINNMP */
8356 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
8357 break;
8358 case 0x2f: /* FMINP */
8359 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
8360 break;
8361 default:
8362 g_assert_not_reached();
8364 } else {
8365 switch (opcode) {
8366 case 0xc: /* FMAXNMP */
8367 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
8368 break;
8369 case 0xd: /* FADDP */
8370 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
8371 break;
8372 case 0xf: /* FMAXP */
8373 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
8374 break;
8375 case 0x2c: /* FMINNMP */
8376 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
8377 break;
8378 case 0x2f: /* FMINP */
8379 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
8380 break;
8381 default:
8382 g_assert_not_reached();
8386 write_fp_sreg(s, rd, tcg_res);
8388 tcg_temp_free_i32(tcg_op1);
8389 tcg_temp_free_i32(tcg_op2);
8390 tcg_temp_free_i32(tcg_res);
8393 if (fpst) {
8394 tcg_temp_free_ptr(fpst);
8399 * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
8401 * This code is handles the common shifting code and is used by both
8402 * the vector and scalar code.
8404 static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
8405 TCGv_i64 tcg_rnd, bool accumulate,
8406 bool is_u, int size, int shift)
8408 bool extended_result = false;
8409 bool round = tcg_rnd != NULL;
8410 int ext_lshift = 0;
8411 TCGv_i64 tcg_src_hi;
8413 if (round && size == 3) {
8414 extended_result = true;
8415 ext_lshift = 64 - shift;
8416 tcg_src_hi = tcg_temp_new_i64();
8417 } else if (shift == 64) {
8418 if (!accumulate && is_u) {
8419 /* result is zero */
8420 tcg_gen_movi_i64(tcg_res, 0);
8421 return;
8425 /* Deal with the rounding step */
8426 if (round) {
8427 if (extended_result) {
8428 TCGv_i64 tcg_zero = tcg_const_i64(0);
8429 if (!is_u) {
8430 /* take care of sign extending tcg_res */
8431 tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
8432 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8433 tcg_src, tcg_src_hi,
8434 tcg_rnd, tcg_zero);
8435 } else {
8436 tcg_gen_add2_i64(tcg_src, tcg_src_hi,
8437 tcg_src, tcg_zero,
8438 tcg_rnd, tcg_zero);
8440 tcg_temp_free_i64(tcg_zero);
8441 } else {
8442 tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
8446 /* Now do the shift right */
8447 if (round && extended_result) {
8448 /* extended case, >64 bit precision required */
8449 if (ext_lshift == 0) {
8450 /* special case, only high bits matter */
8451 tcg_gen_mov_i64(tcg_src, tcg_src_hi);
8452 } else {
8453 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8454 tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
8455 tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
8457 } else {
8458 if (is_u) {
8459 if (shift == 64) {
8460 /* essentially shifting in 64 zeros */
8461 tcg_gen_movi_i64(tcg_src, 0);
8462 } else {
8463 tcg_gen_shri_i64(tcg_src, tcg_src, shift);
8465 } else {
8466 if (shift == 64) {
8467 /* effectively extending the sign-bit */
8468 tcg_gen_sari_i64(tcg_src, tcg_src, 63);
8469 } else {
8470 tcg_gen_sari_i64(tcg_src, tcg_src, shift);
8475 if (accumulate) {
8476 tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
8477 } else {
8478 tcg_gen_mov_i64(tcg_res, tcg_src);
8481 if (extended_result) {
8482 tcg_temp_free_i64(tcg_src_hi);
8486 /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
8487 static void handle_scalar_simd_shri(DisasContext *s,
8488 bool is_u, int immh, int immb,
8489 int opcode, int rn, int rd)
8491 const int size = 3;
8492 int immhb = immh << 3 | immb;
8493 int shift = 2 * (8 << size) - immhb;
8494 bool accumulate = false;
8495 bool round = false;
8496 bool insert = false;
8497 TCGv_i64 tcg_rn;
8498 TCGv_i64 tcg_rd;
8499 TCGv_i64 tcg_round;
8501 if (!extract32(immh, 3, 1)) {
8502 unallocated_encoding(s);
8503 return;
8506 if (!fp_access_check(s)) {
8507 return;
8510 switch (opcode) {
8511 case 0x02: /* SSRA / USRA (accumulate) */
8512 accumulate = true;
8513 break;
8514 case 0x04: /* SRSHR / URSHR (rounding) */
8515 round = true;
8516 break;
8517 case 0x06: /* SRSRA / URSRA (accum + rounding) */
8518 accumulate = round = true;
8519 break;
8520 case 0x08: /* SRI */
8521 insert = true;
8522 break;
8525 if (round) {
8526 uint64_t round_const = 1ULL << (shift - 1);
8527 tcg_round = tcg_const_i64(round_const);
8528 } else {
8529 tcg_round = NULL;
8532 tcg_rn = read_fp_dreg(s, rn);
8533 tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8535 if (insert) {
8536 /* shift count same as element size is valid but does nothing;
8537 * special case to avoid potential shift by 64.
8539 int esize = 8 << size;
8540 if (shift != esize) {
8541 tcg_gen_shri_i64(tcg_rn, tcg_rn, shift);
8542 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift);
8544 } else {
8545 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8546 accumulate, is_u, size, shift);
8549 write_fp_dreg(s, rd, tcg_rd);
8551 tcg_temp_free_i64(tcg_rn);
8552 tcg_temp_free_i64(tcg_rd);
8553 if (round) {
8554 tcg_temp_free_i64(tcg_round);
8558 /* SHL/SLI - Scalar shift left */
8559 static void handle_scalar_simd_shli(DisasContext *s, bool insert,
8560 int immh, int immb, int opcode,
8561 int rn, int rd)
8563 int size = 32 - clz32(immh) - 1;
8564 int immhb = immh << 3 | immb;
8565 int shift = immhb - (8 << size);
8566 TCGv_i64 tcg_rn;
8567 TCGv_i64 tcg_rd;
8569 if (!extract32(immh, 3, 1)) {
8570 unallocated_encoding(s);
8571 return;
8574 if (!fp_access_check(s)) {
8575 return;
8578 tcg_rn = read_fp_dreg(s, rn);
8579 tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
8581 if (insert) {
8582 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift);
8583 } else {
8584 tcg_gen_shli_i64(tcg_rd, tcg_rn, shift);
8587 write_fp_dreg(s, rd, tcg_rd);
8589 tcg_temp_free_i64(tcg_rn);
8590 tcg_temp_free_i64(tcg_rd);
8593 /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with
8594 * (signed/unsigned) narrowing */
8595 static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q,
8596 bool is_u_shift, bool is_u_narrow,
8597 int immh, int immb, int opcode,
8598 int rn, int rd)
8600 int immhb = immh << 3 | immb;
8601 int size = 32 - clz32(immh) - 1;
8602 int esize = 8 << size;
8603 int shift = (2 * esize) - immhb;
8604 int elements = is_scalar ? 1 : (64 / esize);
8605 bool round = extract32(opcode, 0, 1);
8606 MemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN);
8607 TCGv_i64 tcg_rn, tcg_rd, tcg_round;
8608 TCGv_i32 tcg_rd_narrowed;
8609 TCGv_i64 tcg_final;
8611 static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = {
8612 { gen_helper_neon_narrow_sat_s8,
8613 gen_helper_neon_unarrow_sat8 },
8614 { gen_helper_neon_narrow_sat_s16,
8615 gen_helper_neon_unarrow_sat16 },
8616 { gen_helper_neon_narrow_sat_s32,
8617 gen_helper_neon_unarrow_sat32 },
8618 { NULL, NULL },
8620 static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = {
8621 gen_helper_neon_narrow_sat_u8,
8622 gen_helper_neon_narrow_sat_u16,
8623 gen_helper_neon_narrow_sat_u32,
8624 NULL
8626 NeonGenNarrowEnvFn *narrowfn;
8628 int i;
8630 assert(size < 4);
8632 if (extract32(immh, 3, 1)) {
8633 unallocated_encoding(s);
8634 return;
8637 if (!fp_access_check(s)) {
8638 return;
8641 if (is_u_shift) {
8642 narrowfn = unsigned_narrow_fns[size];
8643 } else {
8644 narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0];
8647 tcg_rn = tcg_temp_new_i64();
8648 tcg_rd = tcg_temp_new_i64();
8649 tcg_rd_narrowed = tcg_temp_new_i32();
8650 tcg_final = tcg_const_i64(0);
8652 if (round) {
8653 uint64_t round_const = 1ULL << (shift - 1);
8654 tcg_round = tcg_const_i64(round_const);
8655 } else {
8656 tcg_round = NULL;
8659 for (i = 0; i < elements; i++) {
8660 read_vec_element(s, tcg_rn, rn, i, ldop);
8661 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
8662 false, is_u_shift, size+1, shift);
8663 narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd);
8664 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed);
8665 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
8668 if (!is_q) {
8669 write_vec_element(s, tcg_final, rd, 0, MO_64);
8670 } else {
8671 write_vec_element(s, tcg_final, rd, 1, MO_64);
8674 if (round) {
8675 tcg_temp_free_i64(tcg_round);
8677 tcg_temp_free_i64(tcg_rn);
8678 tcg_temp_free_i64(tcg_rd);
8679 tcg_temp_free_i32(tcg_rd_narrowed);
8680 tcg_temp_free_i64(tcg_final);
8682 clear_vec_high(s, is_q, rd);
8685 /* SQSHLU, UQSHL, SQSHL: saturating left shifts */
8686 static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q,
8687 bool src_unsigned, bool dst_unsigned,
8688 int immh, int immb, int rn, int rd)
8690 int immhb = immh << 3 | immb;
8691 int size = 32 - clz32(immh) - 1;
8692 int shift = immhb - (8 << size);
8693 int pass;
8695 assert(immh != 0);
8696 assert(!(scalar && is_q));
8698 if (!scalar) {
8699 if (!is_q && extract32(immh, 3, 1)) {
8700 unallocated_encoding(s);
8701 return;
8704 /* Since we use the variable-shift helpers we must
8705 * replicate the shift count into each element of
8706 * the tcg_shift value.
8708 switch (size) {
8709 case 0:
8710 shift |= shift << 8;
8711 /* fall through */
8712 case 1:
8713 shift |= shift << 16;
8714 break;
8715 case 2:
8716 case 3:
8717 break;
8718 default:
8719 g_assert_not_reached();
8723 if (!fp_access_check(s)) {
8724 return;
8727 if (size == 3) {
8728 TCGv_i64 tcg_shift = tcg_const_i64(shift);
8729 static NeonGenTwo64OpEnvFn * const fns[2][2] = {
8730 { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 },
8731 { NULL, gen_helper_neon_qshl_u64 },
8733 NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned];
8734 int maxpass = is_q ? 2 : 1;
8736 for (pass = 0; pass < maxpass; pass++) {
8737 TCGv_i64 tcg_op = tcg_temp_new_i64();
8739 read_vec_element(s, tcg_op, rn, pass, MO_64);
8740 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8741 write_vec_element(s, tcg_op, rd, pass, MO_64);
8743 tcg_temp_free_i64(tcg_op);
8745 tcg_temp_free_i64(tcg_shift);
8746 clear_vec_high(s, is_q, rd);
8747 } else {
8748 TCGv_i32 tcg_shift = tcg_const_i32(shift);
8749 static NeonGenTwoOpEnvFn * const fns[2][2][3] = {
8751 { gen_helper_neon_qshl_s8,
8752 gen_helper_neon_qshl_s16,
8753 gen_helper_neon_qshl_s32 },
8754 { gen_helper_neon_qshlu_s8,
8755 gen_helper_neon_qshlu_s16,
8756 gen_helper_neon_qshlu_s32 }
8757 }, {
8758 { NULL, NULL, NULL },
8759 { gen_helper_neon_qshl_u8,
8760 gen_helper_neon_qshl_u16,
8761 gen_helper_neon_qshl_u32 }
8764 NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size];
8765 MemOp memop = scalar ? size : MO_32;
8766 int maxpass = scalar ? 1 : is_q ? 4 : 2;
8768 for (pass = 0; pass < maxpass; pass++) {
8769 TCGv_i32 tcg_op = tcg_temp_new_i32();
8771 read_vec_element_i32(s, tcg_op, rn, pass, memop);
8772 genfn(tcg_op, cpu_env, tcg_op, tcg_shift);
8773 if (scalar) {
8774 switch (size) {
8775 case 0:
8776 tcg_gen_ext8u_i32(tcg_op, tcg_op);
8777 break;
8778 case 1:
8779 tcg_gen_ext16u_i32(tcg_op, tcg_op);
8780 break;
8781 case 2:
8782 break;
8783 default:
8784 g_assert_not_reached();
8786 write_fp_sreg(s, rd, tcg_op);
8787 } else {
8788 write_vec_element_i32(s, tcg_op, rd, pass, MO_32);
8791 tcg_temp_free_i32(tcg_op);
8793 tcg_temp_free_i32(tcg_shift);
8795 if (!scalar) {
8796 clear_vec_high(s, is_q, rd);
8801 /* Common vector code for handling integer to FP conversion */
8802 static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn,
8803 int elements, int is_signed,
8804 int fracbits, int size)
8806 TCGv_ptr tcg_fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8807 TCGv_i32 tcg_shift = NULL;
8809 MemOp mop = size | (is_signed ? MO_SIGN : 0);
8810 int pass;
8812 if (fracbits || size == MO_64) {
8813 tcg_shift = tcg_const_i32(fracbits);
8816 if (size == MO_64) {
8817 TCGv_i64 tcg_int64 = tcg_temp_new_i64();
8818 TCGv_i64 tcg_double = tcg_temp_new_i64();
8820 for (pass = 0; pass < elements; pass++) {
8821 read_vec_element(s, tcg_int64, rn, pass, mop);
8823 if (is_signed) {
8824 gen_helper_vfp_sqtod(tcg_double, tcg_int64,
8825 tcg_shift, tcg_fpst);
8826 } else {
8827 gen_helper_vfp_uqtod(tcg_double, tcg_int64,
8828 tcg_shift, tcg_fpst);
8830 if (elements == 1) {
8831 write_fp_dreg(s, rd, tcg_double);
8832 } else {
8833 write_vec_element(s, tcg_double, rd, pass, MO_64);
8837 tcg_temp_free_i64(tcg_int64);
8838 tcg_temp_free_i64(tcg_double);
8840 } else {
8841 TCGv_i32 tcg_int32 = tcg_temp_new_i32();
8842 TCGv_i32 tcg_float = tcg_temp_new_i32();
8844 for (pass = 0; pass < elements; pass++) {
8845 read_vec_element_i32(s, tcg_int32, rn, pass, mop);
8847 switch (size) {
8848 case MO_32:
8849 if (fracbits) {
8850 if (is_signed) {
8851 gen_helper_vfp_sltos(tcg_float, tcg_int32,
8852 tcg_shift, tcg_fpst);
8853 } else {
8854 gen_helper_vfp_ultos(tcg_float, tcg_int32,
8855 tcg_shift, tcg_fpst);
8857 } else {
8858 if (is_signed) {
8859 gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst);
8860 } else {
8861 gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst);
8864 break;
8865 case MO_16:
8866 if (fracbits) {
8867 if (is_signed) {
8868 gen_helper_vfp_sltoh(tcg_float, tcg_int32,
8869 tcg_shift, tcg_fpst);
8870 } else {
8871 gen_helper_vfp_ultoh(tcg_float, tcg_int32,
8872 tcg_shift, tcg_fpst);
8874 } else {
8875 if (is_signed) {
8876 gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst);
8877 } else {
8878 gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst);
8881 break;
8882 default:
8883 g_assert_not_reached();
8886 if (elements == 1) {
8887 write_fp_sreg(s, rd, tcg_float);
8888 } else {
8889 write_vec_element_i32(s, tcg_float, rd, pass, size);
8893 tcg_temp_free_i32(tcg_int32);
8894 tcg_temp_free_i32(tcg_float);
8897 tcg_temp_free_ptr(tcg_fpst);
8898 if (tcg_shift) {
8899 tcg_temp_free_i32(tcg_shift);
8902 clear_vec_high(s, elements << size == 16, rd);
8905 /* UCVTF/SCVTF - Integer to FP conversion */
8906 static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar,
8907 bool is_q, bool is_u,
8908 int immh, int immb, int opcode,
8909 int rn, int rd)
8911 int size, elements, fracbits;
8912 int immhb = immh << 3 | immb;
8914 if (immh & 8) {
8915 size = MO_64;
8916 if (!is_scalar && !is_q) {
8917 unallocated_encoding(s);
8918 return;
8920 } else if (immh & 4) {
8921 size = MO_32;
8922 } else if (immh & 2) {
8923 size = MO_16;
8924 if (!dc_isar_feature(aa64_fp16, s)) {
8925 unallocated_encoding(s);
8926 return;
8928 } else {
8929 /* immh == 0 would be a failure of the decode logic */
8930 g_assert(immh == 1);
8931 unallocated_encoding(s);
8932 return;
8935 if (is_scalar) {
8936 elements = 1;
8937 } else {
8938 elements = (8 << is_q) >> size;
8940 fracbits = (16 << size) - immhb;
8942 if (!fp_access_check(s)) {
8943 return;
8946 handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size);
8949 /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */
8950 static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar,
8951 bool is_q, bool is_u,
8952 int immh, int immb, int rn, int rd)
8954 int immhb = immh << 3 | immb;
8955 int pass, size, fracbits;
8956 TCGv_ptr tcg_fpstatus;
8957 TCGv_i32 tcg_rmode, tcg_shift;
8959 if (immh & 0x8) {
8960 size = MO_64;
8961 if (!is_scalar && !is_q) {
8962 unallocated_encoding(s);
8963 return;
8965 } else if (immh & 0x4) {
8966 size = MO_32;
8967 } else if (immh & 0x2) {
8968 size = MO_16;
8969 if (!dc_isar_feature(aa64_fp16, s)) {
8970 unallocated_encoding(s);
8971 return;
8973 } else {
8974 /* Should have split out AdvSIMD modified immediate earlier. */
8975 assert(immh == 1);
8976 unallocated_encoding(s);
8977 return;
8980 if (!fp_access_check(s)) {
8981 return;
8984 assert(!(is_scalar && is_q));
8986 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO));
8987 tcg_fpstatus = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
8988 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
8989 fracbits = (16 << size) - immhb;
8990 tcg_shift = tcg_const_i32(fracbits);
8992 if (size == MO_64) {
8993 int maxpass = is_scalar ? 1 : 2;
8995 for (pass = 0; pass < maxpass; pass++) {
8996 TCGv_i64 tcg_op = tcg_temp_new_i64();
8998 read_vec_element(s, tcg_op, rn, pass, MO_64);
8999 if (is_u) {
9000 gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9001 } else {
9002 gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9004 write_vec_element(s, tcg_op, rd, pass, MO_64);
9005 tcg_temp_free_i64(tcg_op);
9007 clear_vec_high(s, is_q, rd);
9008 } else {
9009 void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
9010 int maxpass = is_scalar ? 1 : ((8 << is_q) >> size);
9012 switch (size) {
9013 case MO_16:
9014 if (is_u) {
9015 fn = gen_helper_vfp_touhh;
9016 } else {
9017 fn = gen_helper_vfp_toshh;
9019 break;
9020 case MO_32:
9021 if (is_u) {
9022 fn = gen_helper_vfp_touls;
9023 } else {
9024 fn = gen_helper_vfp_tosls;
9026 break;
9027 default:
9028 g_assert_not_reached();
9031 for (pass = 0; pass < maxpass; pass++) {
9032 TCGv_i32 tcg_op = tcg_temp_new_i32();
9034 read_vec_element_i32(s, tcg_op, rn, pass, size);
9035 fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus);
9036 if (is_scalar) {
9037 write_fp_sreg(s, rd, tcg_op);
9038 } else {
9039 write_vec_element_i32(s, tcg_op, rd, pass, size);
9041 tcg_temp_free_i32(tcg_op);
9043 if (!is_scalar) {
9044 clear_vec_high(s, is_q, rd);
9048 tcg_temp_free_i32(tcg_shift);
9049 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
9050 tcg_temp_free_ptr(tcg_fpstatus);
9051 tcg_temp_free_i32(tcg_rmode);
9054 /* AdvSIMD scalar shift by immediate
9055 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
9056 * +-----+---+-------------+------+------+--------+---+------+------+
9057 * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
9058 * +-----+---+-------------+------+------+--------+---+------+------+
9060 * This is the scalar version so it works on a fixed sized registers
9062 static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
9064 int rd = extract32(insn, 0, 5);
9065 int rn = extract32(insn, 5, 5);
9066 int opcode = extract32(insn, 11, 5);
9067 int immb = extract32(insn, 16, 3);
9068 int immh = extract32(insn, 19, 4);
9069 bool is_u = extract32(insn, 29, 1);
9071 if (immh == 0) {
9072 unallocated_encoding(s);
9073 return;
9076 switch (opcode) {
9077 case 0x08: /* SRI */
9078 if (!is_u) {
9079 unallocated_encoding(s);
9080 return;
9082 /* fall through */
9083 case 0x00: /* SSHR / USHR */
9084 case 0x02: /* SSRA / USRA */
9085 case 0x04: /* SRSHR / URSHR */
9086 case 0x06: /* SRSRA / URSRA */
9087 handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
9088 break;
9089 case 0x0a: /* SHL / SLI */
9090 handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
9091 break;
9092 case 0x1c: /* SCVTF, UCVTF */
9093 handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb,
9094 opcode, rn, rd);
9095 break;
9096 case 0x10: /* SQSHRUN, SQSHRUN2 */
9097 case 0x11: /* SQRSHRUN, SQRSHRUN2 */
9098 if (!is_u) {
9099 unallocated_encoding(s);
9100 return;
9102 handle_vec_simd_sqshrn(s, true, false, false, true,
9103 immh, immb, opcode, rn, rd);
9104 break;
9105 case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */
9106 case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */
9107 handle_vec_simd_sqshrn(s, true, false, is_u, is_u,
9108 immh, immb, opcode, rn, rd);
9109 break;
9110 case 0xc: /* SQSHLU */
9111 if (!is_u) {
9112 unallocated_encoding(s);
9113 return;
9115 handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd);
9116 break;
9117 case 0xe: /* SQSHL, UQSHL */
9118 handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd);
9119 break;
9120 case 0x1f: /* FCVTZS, FCVTZU */
9121 handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd);
9122 break;
9123 default:
9124 unallocated_encoding(s);
9125 break;
9129 /* AdvSIMD scalar three different
9130 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
9131 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9132 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
9133 * +-----+---+-----------+------+---+------+--------+-----+------+------+
9135 static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
9137 bool is_u = extract32(insn, 29, 1);
9138 int size = extract32(insn, 22, 2);
9139 int opcode = extract32(insn, 12, 4);
9140 int rm = extract32(insn, 16, 5);
9141 int rn = extract32(insn, 5, 5);
9142 int rd = extract32(insn, 0, 5);
9144 if (is_u) {
9145 unallocated_encoding(s);
9146 return;
9149 switch (opcode) {
9150 case 0x9: /* SQDMLAL, SQDMLAL2 */
9151 case 0xb: /* SQDMLSL, SQDMLSL2 */
9152 case 0xd: /* SQDMULL, SQDMULL2 */
9153 if (size == 0 || size == 3) {
9154 unallocated_encoding(s);
9155 return;
9157 break;
9158 default:
9159 unallocated_encoding(s);
9160 return;
9163 if (!fp_access_check(s)) {
9164 return;
9167 if (size == 2) {
9168 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9169 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9170 TCGv_i64 tcg_res = tcg_temp_new_i64();
9172 read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
9173 read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
9175 tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
9176 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
9178 switch (opcode) {
9179 case 0xd: /* SQDMULL, SQDMULL2 */
9180 break;
9181 case 0xb: /* SQDMLSL, SQDMLSL2 */
9182 tcg_gen_neg_i64(tcg_res, tcg_res);
9183 /* fall through */
9184 case 0x9: /* SQDMLAL, SQDMLAL2 */
9185 read_vec_element(s, tcg_op1, rd, 0, MO_64);
9186 gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
9187 tcg_res, tcg_op1);
9188 break;
9189 default:
9190 g_assert_not_reached();
9193 write_fp_dreg(s, rd, tcg_res);
9195 tcg_temp_free_i64(tcg_op1);
9196 tcg_temp_free_i64(tcg_op2);
9197 tcg_temp_free_i64(tcg_res);
9198 } else {
9199 TCGv_i32 tcg_op1 = read_fp_hreg(s, rn);
9200 TCGv_i32 tcg_op2 = read_fp_hreg(s, rm);
9201 TCGv_i64 tcg_res = tcg_temp_new_i64();
9203 gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
9204 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
9206 switch (opcode) {
9207 case 0xd: /* SQDMULL, SQDMULL2 */
9208 break;
9209 case 0xb: /* SQDMLSL, SQDMLSL2 */
9210 gen_helper_neon_negl_u32(tcg_res, tcg_res);
9211 /* fall through */
9212 case 0x9: /* SQDMLAL, SQDMLAL2 */
9214 TCGv_i64 tcg_op3 = tcg_temp_new_i64();
9215 read_vec_element(s, tcg_op3, rd, 0, MO_32);
9216 gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
9217 tcg_res, tcg_op3);
9218 tcg_temp_free_i64(tcg_op3);
9219 break;
9221 default:
9222 g_assert_not_reached();
9225 tcg_gen_ext32u_i64(tcg_res, tcg_res);
9226 write_fp_dreg(s, rd, tcg_res);
9228 tcg_temp_free_i32(tcg_op1);
9229 tcg_temp_free_i32(tcg_op2);
9230 tcg_temp_free_i64(tcg_res);
9234 static void handle_3same_64(DisasContext *s, int opcode, bool u,
9235 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
9237 /* Handle 64x64->64 opcodes which are shared between the scalar
9238 * and vector 3-same groups. We cover every opcode where size == 3
9239 * is valid in either the three-reg-same (integer, not pairwise)
9240 * or scalar-three-reg-same groups.
9242 TCGCond cond;
9244 switch (opcode) {
9245 case 0x1: /* SQADD */
9246 if (u) {
9247 gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9248 } else {
9249 gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9251 break;
9252 case 0x5: /* SQSUB */
9253 if (u) {
9254 gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9255 } else {
9256 gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9258 break;
9259 case 0x6: /* CMGT, CMHI */
9260 /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
9261 * We implement this using setcond (test) and then negating.
9263 cond = u ? TCG_COND_GTU : TCG_COND_GT;
9264 do_cmop:
9265 tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
9266 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9267 break;
9268 case 0x7: /* CMGE, CMHS */
9269 cond = u ? TCG_COND_GEU : TCG_COND_GE;
9270 goto do_cmop;
9271 case 0x11: /* CMTST, CMEQ */
9272 if (u) {
9273 cond = TCG_COND_EQ;
9274 goto do_cmop;
9276 gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm);
9277 break;
9278 case 0x8: /* SSHL, USHL */
9279 if (u) {
9280 gen_ushl_i64(tcg_rd, tcg_rn, tcg_rm);
9281 } else {
9282 gen_sshl_i64(tcg_rd, tcg_rn, tcg_rm);
9284 break;
9285 case 0x9: /* SQSHL, UQSHL */
9286 if (u) {
9287 gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9288 } else {
9289 gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9291 break;
9292 case 0xa: /* SRSHL, URSHL */
9293 if (u) {
9294 gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
9295 } else {
9296 gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
9298 break;
9299 case 0xb: /* SQRSHL, UQRSHL */
9300 if (u) {
9301 gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9302 } else {
9303 gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
9305 break;
9306 case 0x10: /* ADD, SUB */
9307 if (u) {
9308 tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
9309 } else {
9310 tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
9312 break;
9313 default:
9314 g_assert_not_reached();
9318 /* Handle the 3-same-operands float operations; shared by the scalar
9319 * and vector encodings. The caller must filter out any encodings
9320 * not allocated for the encoding it is dealing with.
9322 static void handle_3same_float(DisasContext *s, int size, int elements,
9323 int fpopcode, int rd, int rn, int rm)
9325 int pass;
9326 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
9328 for (pass = 0; pass < elements; pass++) {
9329 if (size) {
9330 /* Double */
9331 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
9332 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
9333 TCGv_i64 tcg_res = tcg_temp_new_i64();
9335 read_vec_element(s, tcg_op1, rn, pass, MO_64);
9336 read_vec_element(s, tcg_op2, rm, pass, MO_64);
9338 switch (fpopcode) {
9339 case 0x39: /* FMLS */
9340 /* As usual for ARM, separate negation for fused multiply-add */
9341 gen_helper_vfp_negd(tcg_op1, tcg_op1);
9342 /* fall through */
9343 case 0x19: /* FMLA */
9344 read_vec_element(s, tcg_res, rd, pass, MO_64);
9345 gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
9346 tcg_res, fpst);
9347 break;
9348 case 0x18: /* FMAXNM */
9349 gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9350 break;
9351 case 0x1a: /* FADD */
9352 gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
9353 break;
9354 case 0x1b: /* FMULX */
9355 gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
9356 break;
9357 case 0x1c: /* FCMEQ */
9358 gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9359 break;
9360 case 0x1e: /* FMAX */
9361 gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
9362 break;
9363 case 0x1f: /* FRECPS */
9364 gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9365 break;
9366 case 0x38: /* FMINNM */
9367 gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
9368 break;
9369 case 0x3a: /* FSUB */
9370 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9371 break;
9372 case 0x3e: /* FMIN */
9373 gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
9374 break;
9375 case 0x3f: /* FRSQRTS */
9376 gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9377 break;
9378 case 0x5b: /* FMUL */
9379 gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
9380 break;
9381 case 0x5c: /* FCMGE */
9382 gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9383 break;
9384 case 0x5d: /* FACGE */
9385 gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9386 break;
9387 case 0x5f: /* FDIV */
9388 gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
9389 break;
9390 case 0x7a: /* FABD */
9391 gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
9392 gen_helper_vfp_absd(tcg_res, tcg_res);
9393 break;
9394 case 0x7c: /* FCMGT */
9395 gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9396 break;
9397 case 0x7d: /* FACGT */
9398 gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
9399 break;
9400 default:
9401 g_assert_not_reached();
9404 write_vec_element(s, tcg_res, rd, pass, MO_64);
9406 tcg_temp_free_i64(tcg_res);
9407 tcg_temp_free_i64(tcg_op1);
9408 tcg_temp_free_i64(tcg_op2);
9409 } else {
9410 /* Single */
9411 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
9412 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
9413 TCGv_i32 tcg_res = tcg_temp_new_i32();
9415 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
9416 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
9418 switch (fpopcode) {
9419 case 0x39: /* FMLS */
9420 /* As usual for ARM, separate negation for fused multiply-add */
9421 gen_helper_vfp_negs(tcg_op1, tcg_op1);
9422 /* fall through */
9423 case 0x19: /* FMLA */
9424 read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9425 gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
9426 tcg_res, fpst);
9427 break;
9428 case 0x1a: /* FADD */
9429 gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
9430 break;
9431 case 0x1b: /* FMULX */
9432 gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
9433 break;
9434 case 0x1c: /* FCMEQ */
9435 gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9436 break;
9437 case 0x1e: /* FMAX */
9438 gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
9439 break;
9440 case 0x1f: /* FRECPS */
9441 gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9442 break;
9443 case 0x18: /* FMAXNM */
9444 gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
9445 break;
9446 case 0x38: /* FMINNM */
9447 gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
9448 break;
9449 case 0x3a: /* FSUB */
9450 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9451 break;
9452 case 0x3e: /* FMIN */
9453 gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
9454 break;
9455 case 0x3f: /* FRSQRTS */
9456 gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9457 break;
9458 case 0x5b: /* FMUL */
9459 gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
9460 break;
9461 case 0x5c: /* FCMGE */
9462 gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9463 break;
9464 case 0x5d: /* FACGE */
9465 gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9466 break;
9467 case 0x5f: /* FDIV */
9468 gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
9469 break;
9470 case 0x7a: /* FABD */
9471 gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
9472 gen_helper_vfp_abss(tcg_res, tcg_res);
9473 break;
9474 case 0x7c: /* FCMGT */
9475 gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9476 break;
9477 case 0x7d: /* FACGT */
9478 gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
9479 break;
9480 default:
9481 g_assert_not_reached();
9484 if (elements == 1) {
9485 /* scalar single so clear high part */
9486 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
9488 tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
9489 write_vec_element(s, tcg_tmp, rd, pass, MO_64);
9490 tcg_temp_free_i64(tcg_tmp);
9491 } else {
9492 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
9495 tcg_temp_free_i32(tcg_res);
9496 tcg_temp_free_i32(tcg_op1);
9497 tcg_temp_free_i32(tcg_op2);
9501 tcg_temp_free_ptr(fpst);
9503 clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd);
9506 /* AdvSIMD scalar three same
9507 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
9508 * +-----+---+-----------+------+---+------+--------+---+------+------+
9509 * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
9510 * +-----+---+-----------+------+---+------+--------+---+------+------+
9512 static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
9514 int rd = extract32(insn, 0, 5);
9515 int rn = extract32(insn, 5, 5);
9516 int opcode = extract32(insn, 11, 5);
9517 int rm = extract32(insn, 16, 5);
9518 int size = extract32(insn, 22, 2);
9519 bool u = extract32(insn, 29, 1);
9520 TCGv_i64 tcg_rd;
9522 if (opcode >= 0x18) {
9523 /* Floating point: U, size[1] and opcode indicate operation */
9524 int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
9525 switch (fpopcode) {
9526 case 0x1b: /* FMULX */
9527 case 0x1f: /* FRECPS */
9528 case 0x3f: /* FRSQRTS */
9529 case 0x5d: /* FACGE */
9530 case 0x7d: /* FACGT */
9531 case 0x1c: /* FCMEQ */
9532 case 0x5c: /* FCMGE */
9533 case 0x7c: /* FCMGT */
9534 case 0x7a: /* FABD */
9535 break;
9536 default:
9537 unallocated_encoding(s);
9538 return;
9541 if (!fp_access_check(s)) {
9542 return;
9545 handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
9546 return;
9549 switch (opcode) {
9550 case 0x1: /* SQADD, UQADD */
9551 case 0x5: /* SQSUB, UQSUB */
9552 case 0x9: /* SQSHL, UQSHL */
9553 case 0xb: /* SQRSHL, UQRSHL */
9554 break;
9555 case 0x8: /* SSHL, USHL */
9556 case 0xa: /* SRSHL, URSHL */
9557 case 0x6: /* CMGT, CMHI */
9558 case 0x7: /* CMGE, CMHS */
9559 case 0x11: /* CMTST, CMEQ */
9560 case 0x10: /* ADD, SUB (vector) */
9561 if (size != 3) {
9562 unallocated_encoding(s);
9563 return;
9565 break;
9566 case 0x16: /* SQDMULH, SQRDMULH (vector) */
9567 if (size != 1 && size != 2) {
9568 unallocated_encoding(s);
9569 return;
9571 break;
9572 default:
9573 unallocated_encoding(s);
9574 return;
9577 if (!fp_access_check(s)) {
9578 return;
9581 tcg_rd = tcg_temp_new_i64();
9583 if (size == 3) {
9584 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
9585 TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
9587 handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
9588 tcg_temp_free_i64(tcg_rn);
9589 tcg_temp_free_i64(tcg_rm);
9590 } else {
9591 /* Do a single operation on the lowest element in the vector.
9592 * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
9593 * no side effects for all these operations.
9594 * OPTME: special-purpose helpers would avoid doing some
9595 * unnecessary work in the helper for the 8 and 16 bit cases.
9597 NeonGenTwoOpEnvFn *genenvfn;
9598 TCGv_i32 tcg_rn = tcg_temp_new_i32();
9599 TCGv_i32 tcg_rm = tcg_temp_new_i32();
9600 TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
9602 read_vec_element_i32(s, tcg_rn, rn, 0, size);
9603 read_vec_element_i32(s, tcg_rm, rm, 0, size);
9605 switch (opcode) {
9606 case 0x1: /* SQADD, UQADD */
9608 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9609 { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
9610 { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
9611 { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
9613 genenvfn = fns[size][u];
9614 break;
9616 case 0x5: /* SQSUB, UQSUB */
9618 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9619 { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
9620 { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
9621 { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
9623 genenvfn = fns[size][u];
9624 break;
9626 case 0x9: /* SQSHL, UQSHL */
9628 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9629 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
9630 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
9631 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
9633 genenvfn = fns[size][u];
9634 break;
9636 case 0xb: /* SQRSHL, UQRSHL */
9638 static NeonGenTwoOpEnvFn * const fns[3][2] = {
9639 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
9640 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
9641 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
9643 genenvfn = fns[size][u];
9644 break;
9646 case 0x16: /* SQDMULH, SQRDMULH */
9648 static NeonGenTwoOpEnvFn * const fns[2][2] = {
9649 { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
9650 { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
9652 assert(size == 1 || size == 2);
9653 genenvfn = fns[size - 1][u];
9654 break;
9656 default:
9657 g_assert_not_reached();
9660 genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
9661 tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
9662 tcg_temp_free_i32(tcg_rd32);
9663 tcg_temp_free_i32(tcg_rn);
9664 tcg_temp_free_i32(tcg_rm);
9667 write_fp_dreg(s, rd, tcg_rd);
9669 tcg_temp_free_i64(tcg_rd);
9672 /* AdvSIMD scalar three same FP16
9673 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
9674 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9675 * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
9676 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+
9677 * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400
9678 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400
9680 static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s,
9681 uint32_t insn)
9683 int rd = extract32(insn, 0, 5);
9684 int rn = extract32(insn, 5, 5);
9685 int opcode = extract32(insn, 11, 3);
9686 int rm = extract32(insn, 16, 5);
9687 bool u = extract32(insn, 29, 1);
9688 bool a = extract32(insn, 23, 1);
9689 int fpopcode = opcode | (a << 3) | (u << 4);
9690 TCGv_ptr fpst;
9691 TCGv_i32 tcg_op1;
9692 TCGv_i32 tcg_op2;
9693 TCGv_i32 tcg_res;
9695 switch (fpopcode) {
9696 case 0x03: /* FMULX */
9697 case 0x04: /* FCMEQ (reg) */
9698 case 0x07: /* FRECPS */
9699 case 0x0f: /* FRSQRTS */
9700 case 0x14: /* FCMGE (reg) */
9701 case 0x15: /* FACGE */
9702 case 0x1a: /* FABD */
9703 case 0x1c: /* FCMGT (reg) */
9704 case 0x1d: /* FACGT */
9705 break;
9706 default:
9707 unallocated_encoding(s);
9708 return;
9711 if (!dc_isar_feature(aa64_fp16, s)) {
9712 unallocated_encoding(s);
9715 if (!fp_access_check(s)) {
9716 return;
9719 fpst = fpstatus_ptr(FPST_FPCR_F16);
9721 tcg_op1 = read_fp_hreg(s, rn);
9722 tcg_op2 = read_fp_hreg(s, rm);
9723 tcg_res = tcg_temp_new_i32();
9725 switch (fpopcode) {
9726 case 0x03: /* FMULX */
9727 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
9728 break;
9729 case 0x04: /* FCMEQ (reg) */
9730 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9731 break;
9732 case 0x07: /* FRECPS */
9733 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9734 break;
9735 case 0x0f: /* FRSQRTS */
9736 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9737 break;
9738 case 0x14: /* FCMGE (reg) */
9739 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9740 break;
9741 case 0x15: /* FACGE */
9742 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9743 break;
9744 case 0x1a: /* FABD */
9745 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
9746 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
9747 break;
9748 case 0x1c: /* FCMGT (reg) */
9749 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9750 break;
9751 case 0x1d: /* FACGT */
9752 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
9753 break;
9754 default:
9755 g_assert_not_reached();
9758 write_fp_sreg(s, rd, tcg_res);
9761 tcg_temp_free_i32(tcg_res);
9762 tcg_temp_free_i32(tcg_op1);
9763 tcg_temp_free_i32(tcg_op2);
9764 tcg_temp_free_ptr(fpst);
9767 /* AdvSIMD scalar three same extra
9768 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
9769 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9770 * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
9771 * +-----+---+-----------+------+---+------+---+--------+---+----+----+
9773 static void disas_simd_scalar_three_reg_same_extra(DisasContext *s,
9774 uint32_t insn)
9776 int rd = extract32(insn, 0, 5);
9777 int rn = extract32(insn, 5, 5);
9778 int opcode = extract32(insn, 11, 4);
9779 int rm = extract32(insn, 16, 5);
9780 int size = extract32(insn, 22, 2);
9781 bool u = extract32(insn, 29, 1);
9782 TCGv_i32 ele1, ele2, ele3;
9783 TCGv_i64 res;
9784 bool feature;
9786 switch (u * 16 + opcode) {
9787 case 0x10: /* SQRDMLAH (vector) */
9788 case 0x11: /* SQRDMLSH (vector) */
9789 if (size != 1 && size != 2) {
9790 unallocated_encoding(s);
9791 return;
9793 feature = dc_isar_feature(aa64_rdm, s);
9794 break;
9795 default:
9796 unallocated_encoding(s);
9797 return;
9799 if (!feature) {
9800 unallocated_encoding(s);
9801 return;
9803 if (!fp_access_check(s)) {
9804 return;
9807 /* Do a single operation on the lowest element in the vector.
9808 * We use the standard Neon helpers and rely on 0 OP 0 == 0
9809 * with no side effects for all these operations.
9810 * OPTME: special-purpose helpers would avoid doing some
9811 * unnecessary work in the helper for the 16 bit cases.
9813 ele1 = tcg_temp_new_i32();
9814 ele2 = tcg_temp_new_i32();
9815 ele3 = tcg_temp_new_i32();
9817 read_vec_element_i32(s, ele1, rn, 0, size);
9818 read_vec_element_i32(s, ele2, rm, 0, size);
9819 read_vec_element_i32(s, ele3, rd, 0, size);
9821 switch (opcode) {
9822 case 0x0: /* SQRDMLAH */
9823 if (size == 1) {
9824 gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3);
9825 } else {
9826 gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3);
9828 break;
9829 case 0x1: /* SQRDMLSH */
9830 if (size == 1) {
9831 gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3);
9832 } else {
9833 gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3);
9835 break;
9836 default:
9837 g_assert_not_reached();
9839 tcg_temp_free_i32(ele1);
9840 tcg_temp_free_i32(ele2);
9842 res = tcg_temp_new_i64();
9843 tcg_gen_extu_i32_i64(res, ele3);
9844 tcg_temp_free_i32(ele3);
9846 write_fp_dreg(s, rd, res);
9847 tcg_temp_free_i64(res);
9850 static void handle_2misc_64(DisasContext *s, int opcode, bool u,
9851 TCGv_i64 tcg_rd, TCGv_i64 tcg_rn,
9852 TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus)
9854 /* Handle 64->64 opcodes which are shared between the scalar and
9855 * vector 2-reg-misc groups. We cover every integer opcode where size == 3
9856 * is valid in either group and also the double-precision fp ops.
9857 * The caller only need provide tcg_rmode and tcg_fpstatus if the op
9858 * requires them.
9860 TCGCond cond;
9862 switch (opcode) {
9863 case 0x4: /* CLS, CLZ */
9864 if (u) {
9865 tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64);
9866 } else {
9867 tcg_gen_clrsb_i64(tcg_rd, tcg_rn);
9869 break;
9870 case 0x5: /* NOT */
9871 /* This opcode is shared with CNT and RBIT but we have earlier
9872 * enforced that size == 3 if and only if this is the NOT insn.
9874 tcg_gen_not_i64(tcg_rd, tcg_rn);
9875 break;
9876 case 0x7: /* SQABS, SQNEG */
9877 if (u) {
9878 gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn);
9879 } else {
9880 gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn);
9882 break;
9883 case 0xa: /* CMLT */
9884 /* 64 bit integer comparison against zero, result is
9885 * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
9886 * subtracting 1.
9888 cond = TCG_COND_LT;
9889 do_cmop:
9890 tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
9891 tcg_gen_neg_i64(tcg_rd, tcg_rd);
9892 break;
9893 case 0x8: /* CMGT, CMGE */
9894 cond = u ? TCG_COND_GE : TCG_COND_GT;
9895 goto do_cmop;
9896 case 0x9: /* CMEQ, CMLE */
9897 cond = u ? TCG_COND_LE : TCG_COND_EQ;
9898 goto do_cmop;
9899 case 0xb: /* ABS, NEG */
9900 if (u) {
9901 tcg_gen_neg_i64(tcg_rd, tcg_rn);
9902 } else {
9903 tcg_gen_abs_i64(tcg_rd, tcg_rn);
9905 break;
9906 case 0x2f: /* FABS */
9907 gen_helper_vfp_absd(tcg_rd, tcg_rn);
9908 break;
9909 case 0x6f: /* FNEG */
9910 gen_helper_vfp_negd(tcg_rd, tcg_rn);
9911 break;
9912 case 0x7f: /* FSQRT */
9913 gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env);
9914 break;
9915 case 0x1a: /* FCVTNS */
9916 case 0x1b: /* FCVTMS */
9917 case 0x1c: /* FCVTAS */
9918 case 0x3a: /* FCVTPS */
9919 case 0x3b: /* FCVTZS */
9921 TCGv_i32 tcg_shift = tcg_const_i32(0);
9922 gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9923 tcg_temp_free_i32(tcg_shift);
9924 break;
9926 case 0x5a: /* FCVTNU */
9927 case 0x5b: /* FCVTMU */
9928 case 0x5c: /* FCVTAU */
9929 case 0x7a: /* FCVTPU */
9930 case 0x7b: /* FCVTZU */
9932 TCGv_i32 tcg_shift = tcg_const_i32(0);
9933 gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
9934 tcg_temp_free_i32(tcg_shift);
9935 break;
9937 case 0x18: /* FRINTN */
9938 case 0x19: /* FRINTM */
9939 case 0x38: /* FRINTP */
9940 case 0x39: /* FRINTZ */
9941 case 0x58: /* FRINTA */
9942 case 0x79: /* FRINTI */
9943 gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus);
9944 break;
9945 case 0x59: /* FRINTX */
9946 gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus);
9947 break;
9948 case 0x1e: /* FRINT32Z */
9949 case 0x5e: /* FRINT32X */
9950 gen_helper_frint32_d(tcg_rd, tcg_rn, tcg_fpstatus);
9951 break;
9952 case 0x1f: /* FRINT64Z */
9953 case 0x5f: /* FRINT64X */
9954 gen_helper_frint64_d(tcg_rd, tcg_rn, tcg_fpstatus);
9955 break;
9956 default:
9957 g_assert_not_reached();
9961 static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
9962 bool is_scalar, bool is_u, bool is_q,
9963 int size, int rn, int rd)
9965 bool is_double = (size == MO_64);
9966 TCGv_ptr fpst;
9968 if (!fp_access_check(s)) {
9969 return;
9972 fpst = fpstatus_ptr(size == MO_16 ? FPST_FPCR_F16 : FPST_FPCR);
9974 if (is_double) {
9975 TCGv_i64 tcg_op = tcg_temp_new_i64();
9976 TCGv_i64 tcg_zero = tcg_const_i64(0);
9977 TCGv_i64 tcg_res = tcg_temp_new_i64();
9978 NeonGenTwoDoubleOpFn *genfn;
9979 bool swap = false;
9980 int pass;
9982 switch (opcode) {
9983 case 0x2e: /* FCMLT (zero) */
9984 swap = true;
9985 /* fallthrough */
9986 case 0x2c: /* FCMGT (zero) */
9987 genfn = gen_helper_neon_cgt_f64;
9988 break;
9989 case 0x2d: /* FCMEQ (zero) */
9990 genfn = gen_helper_neon_ceq_f64;
9991 break;
9992 case 0x6d: /* FCMLE (zero) */
9993 swap = true;
9994 /* fall through */
9995 case 0x6c: /* FCMGE (zero) */
9996 genfn = gen_helper_neon_cge_f64;
9997 break;
9998 default:
9999 g_assert_not_reached();
10002 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10003 read_vec_element(s, tcg_op, rn, pass, MO_64);
10004 if (swap) {
10005 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10006 } else {
10007 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10009 write_vec_element(s, tcg_res, rd, pass, MO_64);
10011 tcg_temp_free_i64(tcg_res);
10012 tcg_temp_free_i64(tcg_zero);
10013 tcg_temp_free_i64(tcg_op);
10015 clear_vec_high(s, !is_scalar, rd);
10016 } else {
10017 TCGv_i32 tcg_op = tcg_temp_new_i32();
10018 TCGv_i32 tcg_zero = tcg_const_i32(0);
10019 TCGv_i32 tcg_res = tcg_temp_new_i32();
10020 NeonGenTwoSingleOpFn *genfn;
10021 bool swap = false;
10022 int pass, maxpasses;
10024 if (size == MO_16) {
10025 switch (opcode) {
10026 case 0x2e: /* FCMLT (zero) */
10027 swap = true;
10028 /* fall through */
10029 case 0x2c: /* FCMGT (zero) */
10030 genfn = gen_helper_advsimd_cgt_f16;
10031 break;
10032 case 0x2d: /* FCMEQ (zero) */
10033 genfn = gen_helper_advsimd_ceq_f16;
10034 break;
10035 case 0x6d: /* FCMLE (zero) */
10036 swap = true;
10037 /* fall through */
10038 case 0x6c: /* FCMGE (zero) */
10039 genfn = gen_helper_advsimd_cge_f16;
10040 break;
10041 default:
10042 g_assert_not_reached();
10044 } else {
10045 switch (opcode) {
10046 case 0x2e: /* FCMLT (zero) */
10047 swap = true;
10048 /* fall through */
10049 case 0x2c: /* FCMGT (zero) */
10050 genfn = gen_helper_neon_cgt_f32;
10051 break;
10052 case 0x2d: /* FCMEQ (zero) */
10053 genfn = gen_helper_neon_ceq_f32;
10054 break;
10055 case 0x6d: /* FCMLE (zero) */
10056 swap = true;
10057 /* fall through */
10058 case 0x6c: /* FCMGE (zero) */
10059 genfn = gen_helper_neon_cge_f32;
10060 break;
10061 default:
10062 g_assert_not_reached();
10066 if (is_scalar) {
10067 maxpasses = 1;
10068 } else {
10069 int vector_size = 8 << is_q;
10070 maxpasses = vector_size >> size;
10073 for (pass = 0; pass < maxpasses; pass++) {
10074 read_vec_element_i32(s, tcg_op, rn, pass, size);
10075 if (swap) {
10076 genfn(tcg_res, tcg_zero, tcg_op, fpst);
10077 } else {
10078 genfn(tcg_res, tcg_op, tcg_zero, fpst);
10080 if (is_scalar) {
10081 write_fp_sreg(s, rd, tcg_res);
10082 } else {
10083 write_vec_element_i32(s, tcg_res, rd, pass, size);
10086 tcg_temp_free_i32(tcg_res);
10087 tcg_temp_free_i32(tcg_zero);
10088 tcg_temp_free_i32(tcg_op);
10089 if (!is_scalar) {
10090 clear_vec_high(s, is_q, rd);
10094 tcg_temp_free_ptr(fpst);
10097 static void handle_2misc_reciprocal(DisasContext *s, int opcode,
10098 bool is_scalar, bool is_u, bool is_q,
10099 int size, int rn, int rd)
10101 bool is_double = (size == 3);
10102 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10104 if (is_double) {
10105 TCGv_i64 tcg_op = tcg_temp_new_i64();
10106 TCGv_i64 tcg_res = tcg_temp_new_i64();
10107 int pass;
10109 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10110 read_vec_element(s, tcg_op, rn, pass, MO_64);
10111 switch (opcode) {
10112 case 0x3d: /* FRECPE */
10113 gen_helper_recpe_f64(tcg_res, tcg_op, fpst);
10114 break;
10115 case 0x3f: /* FRECPX */
10116 gen_helper_frecpx_f64(tcg_res, tcg_op, fpst);
10117 break;
10118 case 0x7d: /* FRSQRTE */
10119 gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst);
10120 break;
10121 default:
10122 g_assert_not_reached();
10124 write_vec_element(s, tcg_res, rd, pass, MO_64);
10126 tcg_temp_free_i64(tcg_res);
10127 tcg_temp_free_i64(tcg_op);
10128 clear_vec_high(s, !is_scalar, rd);
10129 } else {
10130 TCGv_i32 tcg_op = tcg_temp_new_i32();
10131 TCGv_i32 tcg_res = tcg_temp_new_i32();
10132 int pass, maxpasses;
10134 if (is_scalar) {
10135 maxpasses = 1;
10136 } else {
10137 maxpasses = is_q ? 4 : 2;
10140 for (pass = 0; pass < maxpasses; pass++) {
10141 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
10143 switch (opcode) {
10144 case 0x3c: /* URECPE */
10145 gen_helper_recpe_u32(tcg_res, tcg_op);
10146 break;
10147 case 0x3d: /* FRECPE */
10148 gen_helper_recpe_f32(tcg_res, tcg_op, fpst);
10149 break;
10150 case 0x3f: /* FRECPX */
10151 gen_helper_frecpx_f32(tcg_res, tcg_op, fpst);
10152 break;
10153 case 0x7d: /* FRSQRTE */
10154 gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst);
10155 break;
10156 default:
10157 g_assert_not_reached();
10160 if (is_scalar) {
10161 write_fp_sreg(s, rd, tcg_res);
10162 } else {
10163 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
10166 tcg_temp_free_i32(tcg_res);
10167 tcg_temp_free_i32(tcg_op);
10168 if (!is_scalar) {
10169 clear_vec_high(s, is_q, rd);
10172 tcg_temp_free_ptr(fpst);
10175 static void handle_2misc_narrow(DisasContext *s, bool scalar,
10176 int opcode, bool u, bool is_q,
10177 int size, int rn, int rd)
10179 /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
10180 * in the source becomes a size element in the destination).
10182 int pass;
10183 TCGv_i32 tcg_res[2];
10184 int destelt = is_q ? 2 : 0;
10185 int passes = scalar ? 1 : 2;
10187 if (scalar) {
10188 tcg_res[1] = tcg_const_i32(0);
10191 for (pass = 0; pass < passes; pass++) {
10192 TCGv_i64 tcg_op = tcg_temp_new_i64();
10193 NeonGenNarrowFn *genfn = NULL;
10194 NeonGenNarrowEnvFn *genenvfn = NULL;
10196 if (scalar) {
10197 read_vec_element(s, tcg_op, rn, pass, size + 1);
10198 } else {
10199 read_vec_element(s, tcg_op, rn, pass, MO_64);
10201 tcg_res[pass] = tcg_temp_new_i32();
10203 switch (opcode) {
10204 case 0x12: /* XTN, SQXTUN */
10206 static NeonGenNarrowFn * const xtnfns[3] = {
10207 gen_helper_neon_narrow_u8,
10208 gen_helper_neon_narrow_u16,
10209 tcg_gen_extrl_i64_i32,
10211 static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
10212 gen_helper_neon_unarrow_sat8,
10213 gen_helper_neon_unarrow_sat16,
10214 gen_helper_neon_unarrow_sat32,
10216 if (u) {
10217 genenvfn = sqxtunfns[size];
10218 } else {
10219 genfn = xtnfns[size];
10221 break;
10223 case 0x14: /* SQXTN, UQXTN */
10225 static NeonGenNarrowEnvFn * const fns[3][2] = {
10226 { gen_helper_neon_narrow_sat_s8,
10227 gen_helper_neon_narrow_sat_u8 },
10228 { gen_helper_neon_narrow_sat_s16,
10229 gen_helper_neon_narrow_sat_u16 },
10230 { gen_helper_neon_narrow_sat_s32,
10231 gen_helper_neon_narrow_sat_u32 },
10233 genenvfn = fns[size][u];
10234 break;
10236 case 0x16: /* FCVTN, FCVTN2 */
10237 /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */
10238 if (size == 2) {
10239 gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env);
10240 } else {
10241 TCGv_i32 tcg_lo = tcg_temp_new_i32();
10242 TCGv_i32 tcg_hi = tcg_temp_new_i32();
10243 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10244 TCGv_i32 ahp = get_ahp_flag();
10246 tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op);
10247 gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp);
10248 gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp);
10249 tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16);
10250 tcg_temp_free_i32(tcg_lo);
10251 tcg_temp_free_i32(tcg_hi);
10252 tcg_temp_free_ptr(fpst);
10253 tcg_temp_free_i32(ahp);
10255 break;
10256 case 0x36: /* BFCVTN, BFCVTN2 */
10258 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
10259 gen_helper_bfcvt_pair(tcg_res[pass], tcg_op, fpst);
10260 tcg_temp_free_ptr(fpst);
10262 break;
10263 case 0x56: /* FCVTXN, FCVTXN2 */
10264 /* 64 bit to 32 bit float conversion
10265 * with von Neumann rounding (round to odd)
10267 assert(size == 2);
10268 gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env);
10269 break;
10270 default:
10271 g_assert_not_reached();
10274 if (genfn) {
10275 genfn(tcg_res[pass], tcg_op);
10276 } else if (genenvfn) {
10277 genenvfn(tcg_res[pass], cpu_env, tcg_op);
10280 tcg_temp_free_i64(tcg_op);
10283 for (pass = 0; pass < 2; pass++) {
10284 write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
10285 tcg_temp_free_i32(tcg_res[pass]);
10287 clear_vec_high(s, is_q, rd);
10290 /* Remaining saturating accumulating ops */
10291 static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u,
10292 bool is_q, int size, int rn, int rd)
10294 bool is_double = (size == 3);
10296 if (is_double) {
10297 TCGv_i64 tcg_rn = tcg_temp_new_i64();
10298 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10299 int pass;
10301 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
10302 read_vec_element(s, tcg_rn, rn, pass, MO_64);
10303 read_vec_element(s, tcg_rd, rd, pass, MO_64);
10305 if (is_u) { /* USQADD */
10306 gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10307 } else { /* SUQADD */
10308 gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10310 write_vec_element(s, tcg_rd, rd, pass, MO_64);
10312 tcg_temp_free_i64(tcg_rd);
10313 tcg_temp_free_i64(tcg_rn);
10314 clear_vec_high(s, !is_scalar, rd);
10315 } else {
10316 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10317 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10318 int pass, maxpasses;
10320 if (is_scalar) {
10321 maxpasses = 1;
10322 } else {
10323 maxpasses = is_q ? 4 : 2;
10326 for (pass = 0; pass < maxpasses; pass++) {
10327 if (is_scalar) {
10328 read_vec_element_i32(s, tcg_rn, rn, pass, size);
10329 read_vec_element_i32(s, tcg_rd, rd, pass, size);
10330 } else {
10331 read_vec_element_i32(s, tcg_rn, rn, pass, MO_32);
10332 read_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10335 if (is_u) { /* USQADD */
10336 switch (size) {
10337 case 0:
10338 gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10339 break;
10340 case 1:
10341 gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10342 break;
10343 case 2:
10344 gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10345 break;
10346 default:
10347 g_assert_not_reached();
10349 } else { /* SUQADD */
10350 switch (size) {
10351 case 0:
10352 gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10353 break;
10354 case 1:
10355 gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10356 break;
10357 case 2:
10358 gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd);
10359 break;
10360 default:
10361 g_assert_not_reached();
10365 if (is_scalar) {
10366 TCGv_i64 tcg_zero = tcg_const_i64(0);
10367 write_vec_element(s, tcg_zero, rd, 0, MO_64);
10368 tcg_temp_free_i64(tcg_zero);
10370 write_vec_element_i32(s, tcg_rd, rd, pass, MO_32);
10372 tcg_temp_free_i32(tcg_rd);
10373 tcg_temp_free_i32(tcg_rn);
10374 clear_vec_high(s, is_q, rd);
10378 /* AdvSIMD scalar two reg misc
10379 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
10380 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10381 * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
10382 * +-----+---+-----------+------+-----------+--------+-----+------+------+
10384 static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
10386 int rd = extract32(insn, 0, 5);
10387 int rn = extract32(insn, 5, 5);
10388 int opcode = extract32(insn, 12, 5);
10389 int size = extract32(insn, 22, 2);
10390 bool u = extract32(insn, 29, 1);
10391 bool is_fcvt = false;
10392 int rmode;
10393 TCGv_i32 tcg_rmode;
10394 TCGv_ptr tcg_fpstatus;
10396 switch (opcode) {
10397 case 0x3: /* USQADD / SUQADD*/
10398 if (!fp_access_check(s)) {
10399 return;
10401 handle_2misc_satacc(s, true, u, false, size, rn, rd);
10402 return;
10403 case 0x7: /* SQABS / SQNEG */
10404 break;
10405 case 0xa: /* CMLT */
10406 if (u) {
10407 unallocated_encoding(s);
10408 return;
10410 /* fall through */
10411 case 0x8: /* CMGT, CMGE */
10412 case 0x9: /* CMEQ, CMLE */
10413 case 0xb: /* ABS, NEG */
10414 if (size != 3) {
10415 unallocated_encoding(s);
10416 return;
10418 break;
10419 case 0x12: /* SQXTUN */
10420 if (!u) {
10421 unallocated_encoding(s);
10422 return;
10424 /* fall through */
10425 case 0x14: /* SQXTN, UQXTN */
10426 if (size == 3) {
10427 unallocated_encoding(s);
10428 return;
10430 if (!fp_access_check(s)) {
10431 return;
10433 handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd);
10434 return;
10435 case 0xc ... 0xf:
10436 case 0x16 ... 0x1d:
10437 case 0x1f:
10438 /* Floating point: U, size[1] and opcode indicate operation;
10439 * size[0] indicates single or double precision.
10441 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
10442 size = extract32(size, 0, 1) ? 3 : 2;
10443 switch (opcode) {
10444 case 0x2c: /* FCMGT (zero) */
10445 case 0x2d: /* FCMEQ (zero) */
10446 case 0x2e: /* FCMLT (zero) */
10447 case 0x6c: /* FCMGE (zero) */
10448 case 0x6d: /* FCMLE (zero) */
10449 handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
10450 return;
10451 case 0x1d: /* SCVTF */
10452 case 0x5d: /* UCVTF */
10454 bool is_signed = (opcode == 0x1d);
10455 if (!fp_access_check(s)) {
10456 return;
10458 handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size);
10459 return;
10461 case 0x3d: /* FRECPE */
10462 case 0x3f: /* FRECPX */
10463 case 0x7d: /* FRSQRTE */
10464 if (!fp_access_check(s)) {
10465 return;
10467 handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd);
10468 return;
10469 case 0x1a: /* FCVTNS */
10470 case 0x1b: /* FCVTMS */
10471 case 0x3a: /* FCVTPS */
10472 case 0x3b: /* FCVTZS */
10473 case 0x5a: /* FCVTNU */
10474 case 0x5b: /* FCVTMU */
10475 case 0x7a: /* FCVTPU */
10476 case 0x7b: /* FCVTZU */
10477 is_fcvt = true;
10478 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
10479 break;
10480 case 0x1c: /* FCVTAS */
10481 case 0x5c: /* FCVTAU */
10482 /* TIEAWAY doesn't fit in the usual rounding mode encoding */
10483 is_fcvt = true;
10484 rmode = FPROUNDING_TIEAWAY;
10485 break;
10486 case 0x56: /* FCVTXN, FCVTXN2 */
10487 if (size == 2) {
10488 unallocated_encoding(s);
10489 return;
10491 if (!fp_access_check(s)) {
10492 return;
10494 handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd);
10495 return;
10496 default:
10497 unallocated_encoding(s);
10498 return;
10500 break;
10501 default:
10502 unallocated_encoding(s);
10503 return;
10506 if (!fp_access_check(s)) {
10507 return;
10510 if (is_fcvt) {
10511 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
10512 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
10513 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10514 } else {
10515 tcg_rmode = NULL;
10516 tcg_fpstatus = NULL;
10519 if (size == 3) {
10520 TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
10521 TCGv_i64 tcg_rd = tcg_temp_new_i64();
10523 handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus);
10524 write_fp_dreg(s, rd, tcg_rd);
10525 tcg_temp_free_i64(tcg_rd);
10526 tcg_temp_free_i64(tcg_rn);
10527 } else {
10528 TCGv_i32 tcg_rn = tcg_temp_new_i32();
10529 TCGv_i32 tcg_rd = tcg_temp_new_i32();
10531 read_vec_element_i32(s, tcg_rn, rn, 0, size);
10533 switch (opcode) {
10534 case 0x7: /* SQABS, SQNEG */
10536 NeonGenOneOpEnvFn *genfn;
10537 static NeonGenOneOpEnvFn * const fns[3][2] = {
10538 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
10539 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
10540 { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 },
10542 genfn = fns[size][u];
10543 genfn(tcg_rd, cpu_env, tcg_rn);
10544 break;
10546 case 0x1a: /* FCVTNS */
10547 case 0x1b: /* FCVTMS */
10548 case 0x1c: /* FCVTAS */
10549 case 0x3a: /* FCVTPS */
10550 case 0x3b: /* FCVTZS */
10552 TCGv_i32 tcg_shift = tcg_const_i32(0);
10553 gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10554 tcg_temp_free_i32(tcg_shift);
10555 break;
10557 case 0x5a: /* FCVTNU */
10558 case 0x5b: /* FCVTMU */
10559 case 0x5c: /* FCVTAU */
10560 case 0x7a: /* FCVTPU */
10561 case 0x7b: /* FCVTZU */
10563 TCGv_i32 tcg_shift = tcg_const_i32(0);
10564 gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus);
10565 tcg_temp_free_i32(tcg_shift);
10566 break;
10568 default:
10569 g_assert_not_reached();
10572 write_fp_sreg(s, rd, tcg_rd);
10573 tcg_temp_free_i32(tcg_rd);
10574 tcg_temp_free_i32(tcg_rn);
10577 if (is_fcvt) {
10578 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
10579 tcg_temp_free_i32(tcg_rmode);
10580 tcg_temp_free_ptr(tcg_fpstatus);
10584 /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
10585 static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
10586 int immh, int immb, int opcode, int rn, int rd)
10588 int size = 32 - clz32(immh) - 1;
10589 int immhb = immh << 3 | immb;
10590 int shift = 2 * (8 << size) - immhb;
10591 GVecGen2iFn *gvec_fn;
10593 if (extract32(immh, 3, 1) && !is_q) {
10594 unallocated_encoding(s);
10595 return;
10597 tcg_debug_assert(size <= 3);
10599 if (!fp_access_check(s)) {
10600 return;
10603 switch (opcode) {
10604 case 0x02: /* SSRA / USRA (accumulate) */
10605 gvec_fn = is_u ? gen_gvec_usra : gen_gvec_ssra;
10606 break;
10608 case 0x08: /* SRI */
10609 gvec_fn = gen_gvec_sri;
10610 break;
10612 case 0x00: /* SSHR / USHR */
10613 if (is_u) {
10614 if (shift == 8 << size) {
10615 /* Shift count the same size as element size produces zero. */
10616 tcg_gen_gvec_dup_imm(size, vec_full_reg_offset(s, rd),
10617 is_q ? 16 : 8, vec_full_reg_size(s), 0);
10618 return;
10620 gvec_fn = tcg_gen_gvec_shri;
10621 } else {
10622 /* Shift count the same size as element size produces all sign. */
10623 if (shift == 8 << size) {
10624 shift -= 1;
10626 gvec_fn = tcg_gen_gvec_sari;
10628 break;
10630 case 0x04: /* SRSHR / URSHR (rounding) */
10631 gvec_fn = is_u ? gen_gvec_urshr : gen_gvec_srshr;
10632 break;
10634 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10635 gvec_fn = is_u ? gen_gvec_ursra : gen_gvec_srsra;
10636 break;
10638 default:
10639 g_assert_not_reached();
10642 gen_gvec_fn2i(s, is_q, rd, rn, shift, gvec_fn, size);
10645 /* SHL/SLI - Vector shift left */
10646 static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
10647 int immh, int immb, int opcode, int rn, int rd)
10649 int size = 32 - clz32(immh) - 1;
10650 int immhb = immh << 3 | immb;
10651 int shift = immhb - (8 << size);
10653 /* Range of size is limited by decode: immh is a non-zero 4 bit field */
10654 assert(size >= 0 && size <= 3);
10656 if (extract32(immh, 3, 1) && !is_q) {
10657 unallocated_encoding(s);
10658 return;
10661 if (!fp_access_check(s)) {
10662 return;
10665 if (insert) {
10666 gen_gvec_fn2i(s, is_q, rd, rn, shift, gen_gvec_sli, size);
10667 } else {
10668 gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size);
10672 /* USHLL/SHLL - Vector shift left with widening */
10673 static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
10674 int immh, int immb, int opcode, int rn, int rd)
10676 int size = 32 - clz32(immh) - 1;
10677 int immhb = immh << 3 | immb;
10678 int shift = immhb - (8 << size);
10679 int dsize = 64;
10680 int esize = 8 << size;
10681 int elements = dsize/esize;
10682 TCGv_i64 tcg_rn = new_tmp_a64(s);
10683 TCGv_i64 tcg_rd = new_tmp_a64(s);
10684 int i;
10686 if (size >= 3) {
10687 unallocated_encoding(s);
10688 return;
10691 if (!fp_access_check(s)) {
10692 return;
10695 /* For the LL variants the store is larger than the load,
10696 * so if rd == rn we would overwrite parts of our input.
10697 * So load everything right now and use shifts in the main loop.
10699 read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
10701 for (i = 0; i < elements; i++) {
10702 tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
10703 ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
10704 tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
10705 write_vec_element(s, tcg_rd, rd, i, size + 1);
10709 /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */
10710 static void handle_vec_simd_shrn(DisasContext *s, bool is_q,
10711 int immh, int immb, int opcode, int rn, int rd)
10713 int immhb = immh << 3 | immb;
10714 int size = 32 - clz32(immh) - 1;
10715 int dsize = 64;
10716 int esize = 8 << size;
10717 int elements = dsize/esize;
10718 int shift = (2 * esize) - immhb;
10719 bool round = extract32(opcode, 0, 1);
10720 TCGv_i64 tcg_rn, tcg_rd, tcg_final;
10721 TCGv_i64 tcg_round;
10722 int i;
10724 if (extract32(immh, 3, 1)) {
10725 unallocated_encoding(s);
10726 return;
10729 if (!fp_access_check(s)) {
10730 return;
10733 tcg_rn = tcg_temp_new_i64();
10734 tcg_rd = tcg_temp_new_i64();
10735 tcg_final = tcg_temp_new_i64();
10736 read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64);
10738 if (round) {
10739 uint64_t round_const = 1ULL << (shift - 1);
10740 tcg_round = tcg_const_i64(round_const);
10741 } else {
10742 tcg_round = NULL;
10745 for (i = 0; i < elements; i++) {
10746 read_vec_element(s, tcg_rn, rn, i, size+1);
10747 handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
10748 false, true, size+1, shift);
10750 tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize);
10753 if (!is_q) {
10754 write_vec_element(s, tcg_final, rd, 0, MO_64);
10755 } else {
10756 write_vec_element(s, tcg_final, rd, 1, MO_64);
10758 if (round) {
10759 tcg_temp_free_i64(tcg_round);
10761 tcg_temp_free_i64(tcg_rn);
10762 tcg_temp_free_i64(tcg_rd);
10763 tcg_temp_free_i64(tcg_final);
10765 clear_vec_high(s, is_q, rd);
10769 /* AdvSIMD shift by immediate
10770 * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
10771 * +---+---+---+-------------+------+------+--------+---+------+------+
10772 * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
10773 * +---+---+---+-------------+------+------+--------+---+------+------+
10775 static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
10777 int rd = extract32(insn, 0, 5);
10778 int rn = extract32(insn, 5, 5);
10779 int opcode = extract32(insn, 11, 5);
10780 int immb = extract32(insn, 16, 3);
10781 int immh = extract32(insn, 19, 4);
10782 bool is_u = extract32(insn, 29, 1);
10783 bool is_q = extract32(insn, 30, 1);
10785 /* data_proc_simd[] has sent immh == 0 to disas_simd_mod_imm. */
10786 assert(immh != 0);
10788 switch (opcode) {
10789 case 0x08: /* SRI */
10790 if (!is_u) {
10791 unallocated_encoding(s);
10792 return;
10794 /* fall through */
10795 case 0x00: /* SSHR / USHR */
10796 case 0x02: /* SSRA / USRA (accumulate) */
10797 case 0x04: /* SRSHR / URSHR (rounding) */
10798 case 0x06: /* SRSRA / URSRA (accum + rounding) */
10799 handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
10800 break;
10801 case 0x0a: /* SHL / SLI */
10802 handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10803 break;
10804 case 0x10: /* SHRN */
10805 case 0x11: /* RSHRN / SQRSHRUN */
10806 if (is_u) {
10807 handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb,
10808 opcode, rn, rd);
10809 } else {
10810 handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd);
10812 break;
10813 case 0x12: /* SQSHRN / UQSHRN */
10814 case 0x13: /* SQRSHRN / UQRSHRN */
10815 handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb,
10816 opcode, rn, rd);
10817 break;
10818 case 0x14: /* SSHLL / USHLL */
10819 handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
10820 break;
10821 case 0x1c: /* SCVTF / UCVTF */
10822 handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb,
10823 opcode, rn, rd);
10824 break;
10825 case 0xc: /* SQSHLU */
10826 if (!is_u) {
10827 unallocated_encoding(s);
10828 return;
10830 handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd);
10831 break;
10832 case 0xe: /* SQSHL, UQSHL */
10833 handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd);
10834 break;
10835 case 0x1f: /* FCVTZS/ FCVTZU */
10836 handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd);
10837 return;
10838 default:
10839 unallocated_encoding(s);
10840 return;
10844 /* Generate code to do a "long" addition or subtraction, ie one done in
10845 * TCGv_i64 on vector lanes twice the width specified by size.
10847 static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res,
10848 TCGv_i64 tcg_op1, TCGv_i64 tcg_op2)
10850 static NeonGenTwo64OpFn * const fns[3][2] = {
10851 { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 },
10852 { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 },
10853 { tcg_gen_add_i64, tcg_gen_sub_i64 },
10855 NeonGenTwo64OpFn *genfn;
10856 assert(size < 3);
10858 genfn = fns[size][is_sub];
10859 genfn(tcg_res, tcg_op1, tcg_op2);
10862 static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
10863 int opcode, int rd, int rn, int rm)
10865 /* 3-reg-different widening insns: 64 x 64 -> 128 */
10866 TCGv_i64 tcg_res[2];
10867 int pass, accop;
10869 tcg_res[0] = tcg_temp_new_i64();
10870 tcg_res[1] = tcg_temp_new_i64();
10872 /* Does this op do an adding accumulate, a subtracting accumulate,
10873 * or no accumulate at all?
10875 switch (opcode) {
10876 case 5:
10877 case 8:
10878 case 9:
10879 accop = 1;
10880 break;
10881 case 10:
10882 case 11:
10883 accop = -1;
10884 break;
10885 default:
10886 accop = 0;
10887 break;
10890 if (accop != 0) {
10891 read_vec_element(s, tcg_res[0], rd, 0, MO_64);
10892 read_vec_element(s, tcg_res[1], rd, 1, MO_64);
10895 /* size == 2 means two 32x32->64 operations; this is worth special
10896 * casing because we can generally handle it inline.
10898 if (size == 2) {
10899 for (pass = 0; pass < 2; pass++) {
10900 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
10901 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
10902 TCGv_i64 tcg_passres;
10903 MemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
10905 int elt = pass + is_q * 2;
10907 read_vec_element(s, tcg_op1, rn, elt, memop);
10908 read_vec_element(s, tcg_op2, rm, elt, memop);
10910 if (accop == 0) {
10911 tcg_passres = tcg_res[pass];
10912 } else {
10913 tcg_passres = tcg_temp_new_i64();
10916 switch (opcode) {
10917 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10918 tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2);
10919 break;
10920 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10921 tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2);
10922 break;
10923 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
10924 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
10926 TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
10927 TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
10929 tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
10930 tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
10931 tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
10932 tcg_passres,
10933 tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
10934 tcg_temp_free_i64(tcg_tmp1);
10935 tcg_temp_free_i64(tcg_tmp2);
10936 break;
10938 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
10939 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
10940 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
10941 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10942 break;
10943 case 9: /* SQDMLAL, SQDMLAL2 */
10944 case 11: /* SQDMLSL, SQDMLSL2 */
10945 case 13: /* SQDMULL, SQDMULL2 */
10946 tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
10947 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
10948 tcg_passres, tcg_passres);
10949 break;
10950 default:
10951 g_assert_not_reached();
10954 if (opcode == 9 || opcode == 11) {
10955 /* saturating accumulate ops */
10956 if (accop < 0) {
10957 tcg_gen_neg_i64(tcg_passres, tcg_passres);
10959 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
10960 tcg_res[pass], tcg_passres);
10961 } else if (accop > 0) {
10962 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10963 } else if (accop < 0) {
10964 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
10967 if (accop != 0) {
10968 tcg_temp_free_i64(tcg_passres);
10971 tcg_temp_free_i64(tcg_op1);
10972 tcg_temp_free_i64(tcg_op2);
10974 } else {
10975 /* size 0 or 1, generally helper functions */
10976 for (pass = 0; pass < 2; pass++) {
10977 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
10978 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
10979 TCGv_i64 tcg_passres;
10980 int elt = pass + is_q * 2;
10982 read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
10983 read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
10985 if (accop == 0) {
10986 tcg_passres = tcg_res[pass];
10987 } else {
10988 tcg_passres = tcg_temp_new_i64();
10991 switch (opcode) {
10992 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
10993 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
10995 TCGv_i64 tcg_op2_64 = tcg_temp_new_i64();
10996 static NeonGenWidenFn * const widenfns[2][2] = {
10997 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
10998 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11000 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11002 widenfn(tcg_op2_64, tcg_op2);
11003 widenfn(tcg_passres, tcg_op1);
11004 gen_neon_addl(size, (opcode == 2), tcg_passres,
11005 tcg_passres, tcg_op2_64);
11006 tcg_temp_free_i64(tcg_op2_64);
11007 break;
11009 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11010 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11011 if (size == 0) {
11012 if (is_u) {
11013 gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
11014 } else {
11015 gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
11017 } else {
11018 if (is_u) {
11019 gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
11020 } else {
11021 gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
11024 break;
11025 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11026 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11027 case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
11028 if (size == 0) {
11029 if (is_u) {
11030 gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
11031 } else {
11032 gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
11034 } else {
11035 if (is_u) {
11036 gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
11037 } else {
11038 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11041 break;
11042 case 9: /* SQDMLAL, SQDMLAL2 */
11043 case 11: /* SQDMLSL, SQDMLSL2 */
11044 case 13: /* SQDMULL, SQDMULL2 */
11045 assert(size == 1);
11046 gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
11047 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
11048 tcg_passres, tcg_passres);
11049 break;
11050 default:
11051 g_assert_not_reached();
11053 tcg_temp_free_i32(tcg_op1);
11054 tcg_temp_free_i32(tcg_op2);
11056 if (accop != 0) {
11057 if (opcode == 9 || opcode == 11) {
11058 /* saturating accumulate ops */
11059 if (accop < 0) {
11060 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
11062 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
11063 tcg_res[pass],
11064 tcg_passres);
11065 } else {
11066 gen_neon_addl(size, (accop < 0), tcg_res[pass],
11067 tcg_res[pass], tcg_passres);
11069 tcg_temp_free_i64(tcg_passres);
11074 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
11075 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
11076 tcg_temp_free_i64(tcg_res[0]);
11077 tcg_temp_free_i64(tcg_res[1]);
11080 static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size,
11081 int opcode, int rd, int rn, int rm)
11083 TCGv_i64 tcg_res[2];
11084 int part = is_q ? 2 : 0;
11085 int pass;
11087 for (pass = 0; pass < 2; pass++) {
11088 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11089 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11090 TCGv_i64 tcg_op2_wide = tcg_temp_new_i64();
11091 static NeonGenWidenFn * const widenfns[3][2] = {
11092 { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 },
11093 { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 },
11094 { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 },
11096 NeonGenWidenFn *widenfn = widenfns[size][is_u];
11098 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11099 read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32);
11100 widenfn(tcg_op2_wide, tcg_op2);
11101 tcg_temp_free_i32(tcg_op2);
11102 tcg_res[pass] = tcg_temp_new_i64();
11103 gen_neon_addl(size, (opcode == 3),
11104 tcg_res[pass], tcg_op1, tcg_op2_wide);
11105 tcg_temp_free_i64(tcg_op1);
11106 tcg_temp_free_i64(tcg_op2_wide);
11109 for (pass = 0; pass < 2; pass++) {
11110 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11111 tcg_temp_free_i64(tcg_res[pass]);
11115 static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in)
11117 tcg_gen_addi_i64(in, in, 1U << 31);
11118 tcg_gen_extrh_i64_i32(res, in);
11121 static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size,
11122 int opcode, int rd, int rn, int rm)
11124 TCGv_i32 tcg_res[2];
11125 int part = is_q ? 2 : 0;
11126 int pass;
11128 for (pass = 0; pass < 2; pass++) {
11129 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11130 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11131 TCGv_i64 tcg_wideres = tcg_temp_new_i64();
11132 static NeonGenNarrowFn * const narrowfns[3][2] = {
11133 { gen_helper_neon_narrow_high_u8,
11134 gen_helper_neon_narrow_round_high_u8 },
11135 { gen_helper_neon_narrow_high_u16,
11136 gen_helper_neon_narrow_round_high_u16 },
11137 { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 },
11139 NeonGenNarrowFn *gennarrow = narrowfns[size][is_u];
11141 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11142 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11144 gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2);
11146 tcg_temp_free_i64(tcg_op1);
11147 tcg_temp_free_i64(tcg_op2);
11149 tcg_res[pass] = tcg_temp_new_i32();
11150 gennarrow(tcg_res[pass], tcg_wideres);
11151 tcg_temp_free_i64(tcg_wideres);
11154 for (pass = 0; pass < 2; pass++) {
11155 write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32);
11156 tcg_temp_free_i32(tcg_res[pass]);
11158 clear_vec_high(s, is_q, rd);
11161 /* AdvSIMD three different
11162 * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
11163 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11164 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
11165 * +---+---+---+-----------+------+---+------+--------+-----+------+------+
11167 static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
11169 /* Instructions in this group fall into three basic classes
11170 * (in each case with the operation working on each element in
11171 * the input vectors):
11172 * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
11173 * 128 bit input)
11174 * (2) wide 64 x 128 -> 128
11175 * (3) narrowing 128 x 128 -> 64
11176 * Here we do initial decode, catch unallocated cases and
11177 * dispatch to separate functions for each class.
11179 int is_q = extract32(insn, 30, 1);
11180 int is_u = extract32(insn, 29, 1);
11181 int size = extract32(insn, 22, 2);
11182 int opcode = extract32(insn, 12, 4);
11183 int rm = extract32(insn, 16, 5);
11184 int rn = extract32(insn, 5, 5);
11185 int rd = extract32(insn, 0, 5);
11187 switch (opcode) {
11188 case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
11189 case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
11190 /* 64 x 128 -> 128 */
11191 if (size == 3) {
11192 unallocated_encoding(s);
11193 return;
11195 if (!fp_access_check(s)) {
11196 return;
11198 handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm);
11199 break;
11200 case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
11201 case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
11202 /* 128 x 128 -> 64 */
11203 if (size == 3) {
11204 unallocated_encoding(s);
11205 return;
11207 if (!fp_access_check(s)) {
11208 return;
11210 handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm);
11211 break;
11212 case 14: /* PMULL, PMULL2 */
11213 if (is_u) {
11214 unallocated_encoding(s);
11215 return;
11217 switch (size) {
11218 case 0: /* PMULL.P8 */
11219 if (!fp_access_check(s)) {
11220 return;
11222 /* The Q field specifies lo/hi half input for this insn. */
11223 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11224 gen_helper_neon_pmull_h);
11225 break;
11227 case 3: /* PMULL.P64 */
11228 if (!dc_isar_feature(aa64_pmull, s)) {
11229 unallocated_encoding(s);
11230 return;
11232 if (!fp_access_check(s)) {
11233 return;
11235 /* The Q field specifies lo/hi half input for this insn. */
11236 gen_gvec_op3_ool(s, true, rd, rn, rm, is_q,
11237 gen_helper_gvec_pmull_q);
11238 break;
11240 default:
11241 unallocated_encoding(s);
11242 break;
11244 return;
11245 case 9: /* SQDMLAL, SQDMLAL2 */
11246 case 11: /* SQDMLSL, SQDMLSL2 */
11247 case 13: /* SQDMULL, SQDMULL2 */
11248 if (is_u || size == 0) {
11249 unallocated_encoding(s);
11250 return;
11252 /* fall through */
11253 case 0: /* SADDL, SADDL2, UADDL, UADDL2 */
11254 case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */
11255 case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
11256 case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
11257 case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
11258 case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
11259 case 12: /* SMULL, SMULL2, UMULL, UMULL2 */
11260 /* 64 x 64 -> 128 */
11261 if (size == 3) {
11262 unallocated_encoding(s);
11263 return;
11265 if (!fp_access_check(s)) {
11266 return;
11269 handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
11270 break;
11271 default:
11272 /* opcode 15 not allocated */
11273 unallocated_encoding(s);
11274 break;
11278 /* Logic op (opcode == 3) subgroup of C3.6.16. */
11279 static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
11281 int rd = extract32(insn, 0, 5);
11282 int rn = extract32(insn, 5, 5);
11283 int rm = extract32(insn, 16, 5);
11284 int size = extract32(insn, 22, 2);
11285 bool is_u = extract32(insn, 29, 1);
11286 bool is_q = extract32(insn, 30, 1);
11288 if (!fp_access_check(s)) {
11289 return;
11292 switch (size + 4 * is_u) {
11293 case 0: /* AND */
11294 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0);
11295 return;
11296 case 1: /* BIC */
11297 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0);
11298 return;
11299 case 2: /* ORR */
11300 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0);
11301 return;
11302 case 3: /* ORN */
11303 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0);
11304 return;
11305 case 4: /* EOR */
11306 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0);
11307 return;
11309 case 5: /* BSL bitwise select */
11310 gen_gvec_fn4(s, is_q, rd, rd, rn, rm, tcg_gen_gvec_bitsel, 0);
11311 return;
11312 case 6: /* BIT, bitwise insert if true */
11313 gen_gvec_fn4(s, is_q, rd, rm, rn, rd, tcg_gen_gvec_bitsel, 0);
11314 return;
11315 case 7: /* BIF, bitwise insert if false */
11316 gen_gvec_fn4(s, is_q, rd, rm, rd, rn, tcg_gen_gvec_bitsel, 0);
11317 return;
11319 default:
11320 g_assert_not_reached();
11324 /* Pairwise op subgroup of C3.6.16.
11326 * This is called directly or via the handle_3same_float for float pairwise
11327 * operations where the opcode and size are calculated differently.
11329 static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
11330 int size, int rn, int rm, int rd)
11332 TCGv_ptr fpst;
11333 int pass;
11335 /* Floating point operations need fpst */
11336 if (opcode >= 0x58) {
11337 fpst = fpstatus_ptr(FPST_FPCR);
11338 } else {
11339 fpst = NULL;
11342 if (!fp_access_check(s)) {
11343 return;
11346 /* These operations work on the concatenated rm:rn, with each pair of
11347 * adjacent elements being operated on to produce an element in the result.
11349 if (size == 3) {
11350 TCGv_i64 tcg_res[2];
11352 for (pass = 0; pass < 2; pass++) {
11353 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11354 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11355 int passreg = (pass == 0) ? rn : rm;
11357 read_vec_element(s, tcg_op1, passreg, 0, MO_64);
11358 read_vec_element(s, tcg_op2, passreg, 1, MO_64);
11359 tcg_res[pass] = tcg_temp_new_i64();
11361 switch (opcode) {
11362 case 0x17: /* ADDP */
11363 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
11364 break;
11365 case 0x58: /* FMAXNMP */
11366 gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11367 break;
11368 case 0x5a: /* FADDP */
11369 gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11370 break;
11371 case 0x5e: /* FMAXP */
11372 gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11373 break;
11374 case 0x78: /* FMINNMP */
11375 gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11376 break;
11377 case 0x7e: /* FMINP */
11378 gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11379 break;
11380 default:
11381 g_assert_not_reached();
11384 tcg_temp_free_i64(tcg_op1);
11385 tcg_temp_free_i64(tcg_op2);
11388 for (pass = 0; pass < 2; pass++) {
11389 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
11390 tcg_temp_free_i64(tcg_res[pass]);
11392 } else {
11393 int maxpass = is_q ? 4 : 2;
11394 TCGv_i32 tcg_res[4];
11396 for (pass = 0; pass < maxpass; pass++) {
11397 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11398 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11399 NeonGenTwoOpFn *genfn = NULL;
11400 int passreg = pass < (maxpass / 2) ? rn : rm;
11401 int passelt = (is_q && (pass & 1)) ? 2 : 0;
11403 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
11404 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
11405 tcg_res[pass] = tcg_temp_new_i32();
11407 switch (opcode) {
11408 case 0x17: /* ADDP */
11410 static NeonGenTwoOpFn * const fns[3] = {
11411 gen_helper_neon_padd_u8,
11412 gen_helper_neon_padd_u16,
11413 tcg_gen_add_i32,
11415 genfn = fns[size];
11416 break;
11418 case 0x14: /* SMAXP, UMAXP */
11420 static NeonGenTwoOpFn * const fns[3][2] = {
11421 { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
11422 { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
11423 { tcg_gen_smax_i32, tcg_gen_umax_i32 },
11425 genfn = fns[size][u];
11426 break;
11428 case 0x15: /* SMINP, UMINP */
11430 static NeonGenTwoOpFn * const fns[3][2] = {
11431 { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
11432 { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
11433 { tcg_gen_smin_i32, tcg_gen_umin_i32 },
11435 genfn = fns[size][u];
11436 break;
11438 /* The FP operations are all on single floats (32 bit) */
11439 case 0x58: /* FMAXNMP */
11440 gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11441 break;
11442 case 0x5a: /* FADDP */
11443 gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11444 break;
11445 case 0x5e: /* FMAXP */
11446 gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11447 break;
11448 case 0x78: /* FMINNMP */
11449 gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11450 break;
11451 case 0x7e: /* FMINP */
11452 gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11453 break;
11454 default:
11455 g_assert_not_reached();
11458 /* FP ops called directly, otherwise call now */
11459 if (genfn) {
11460 genfn(tcg_res[pass], tcg_op1, tcg_op2);
11463 tcg_temp_free_i32(tcg_op1);
11464 tcg_temp_free_i32(tcg_op2);
11467 for (pass = 0; pass < maxpass; pass++) {
11468 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
11469 tcg_temp_free_i32(tcg_res[pass]);
11471 clear_vec_high(s, is_q, rd);
11474 if (fpst) {
11475 tcg_temp_free_ptr(fpst);
11479 /* Floating point op subgroup of C3.6.16. */
11480 static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
11482 /* For floating point ops, the U, size[1] and opcode bits
11483 * together indicate the operation. size[0] indicates single
11484 * or double.
11486 int fpopcode = extract32(insn, 11, 5)
11487 | (extract32(insn, 23, 1) << 5)
11488 | (extract32(insn, 29, 1) << 6);
11489 int is_q = extract32(insn, 30, 1);
11490 int size = extract32(insn, 22, 1);
11491 int rm = extract32(insn, 16, 5);
11492 int rn = extract32(insn, 5, 5);
11493 int rd = extract32(insn, 0, 5);
11495 int datasize = is_q ? 128 : 64;
11496 int esize = 32 << size;
11497 int elements = datasize / esize;
11499 if (size == 1 && !is_q) {
11500 unallocated_encoding(s);
11501 return;
11504 switch (fpopcode) {
11505 case 0x58: /* FMAXNMP */
11506 case 0x5a: /* FADDP */
11507 case 0x5e: /* FMAXP */
11508 case 0x78: /* FMINNMP */
11509 case 0x7e: /* FMINP */
11510 if (size && !is_q) {
11511 unallocated_encoding(s);
11512 return;
11514 handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
11515 rn, rm, rd);
11516 return;
11517 case 0x1b: /* FMULX */
11518 case 0x1f: /* FRECPS */
11519 case 0x3f: /* FRSQRTS */
11520 case 0x5d: /* FACGE */
11521 case 0x7d: /* FACGT */
11522 case 0x19: /* FMLA */
11523 case 0x39: /* FMLS */
11524 case 0x18: /* FMAXNM */
11525 case 0x1a: /* FADD */
11526 case 0x1c: /* FCMEQ */
11527 case 0x1e: /* FMAX */
11528 case 0x38: /* FMINNM */
11529 case 0x3a: /* FSUB */
11530 case 0x3e: /* FMIN */
11531 case 0x5b: /* FMUL */
11532 case 0x5c: /* FCMGE */
11533 case 0x5f: /* FDIV */
11534 case 0x7a: /* FABD */
11535 case 0x7c: /* FCMGT */
11536 if (!fp_access_check(s)) {
11537 return;
11539 handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
11540 return;
11542 case 0x1d: /* FMLAL */
11543 case 0x3d: /* FMLSL */
11544 case 0x59: /* FMLAL2 */
11545 case 0x79: /* FMLSL2 */
11546 if (size & 1 || !dc_isar_feature(aa64_fhm, s)) {
11547 unallocated_encoding(s);
11548 return;
11550 if (fp_access_check(s)) {
11551 int is_s = extract32(insn, 23, 1);
11552 int is_2 = extract32(insn, 29, 1);
11553 int data = (is_2 << 1) | is_s;
11554 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
11555 vec_full_reg_offset(s, rn),
11556 vec_full_reg_offset(s, rm), cpu_env,
11557 is_q ? 16 : 8, vec_full_reg_size(s),
11558 data, gen_helper_gvec_fmlal_a64);
11560 return;
11562 default:
11563 unallocated_encoding(s);
11564 return;
11568 /* Integer op subgroup of C3.6.16. */
11569 static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
11571 int is_q = extract32(insn, 30, 1);
11572 int u = extract32(insn, 29, 1);
11573 int size = extract32(insn, 22, 2);
11574 int opcode = extract32(insn, 11, 5);
11575 int rm = extract32(insn, 16, 5);
11576 int rn = extract32(insn, 5, 5);
11577 int rd = extract32(insn, 0, 5);
11578 int pass;
11579 TCGCond cond;
11581 switch (opcode) {
11582 case 0x13: /* MUL, PMUL */
11583 if (u && size != 0) {
11584 unallocated_encoding(s);
11585 return;
11587 /* fall through */
11588 case 0x0: /* SHADD, UHADD */
11589 case 0x2: /* SRHADD, URHADD */
11590 case 0x4: /* SHSUB, UHSUB */
11591 case 0xc: /* SMAX, UMAX */
11592 case 0xd: /* SMIN, UMIN */
11593 case 0xe: /* SABD, UABD */
11594 case 0xf: /* SABA, UABA */
11595 case 0x12: /* MLA, MLS */
11596 if (size == 3) {
11597 unallocated_encoding(s);
11598 return;
11600 break;
11601 case 0x16: /* SQDMULH, SQRDMULH */
11602 if (size == 0 || size == 3) {
11603 unallocated_encoding(s);
11604 return;
11606 break;
11607 default:
11608 if (size == 3 && !is_q) {
11609 unallocated_encoding(s);
11610 return;
11612 break;
11615 if (!fp_access_check(s)) {
11616 return;
11619 switch (opcode) {
11620 case 0x01: /* SQADD, UQADD */
11621 if (u) {
11622 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqadd_qc, size);
11623 } else {
11624 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqadd_qc, size);
11626 return;
11627 case 0x05: /* SQSUB, UQSUB */
11628 if (u) {
11629 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uqsub_qc, size);
11630 } else {
11631 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqsub_qc, size);
11633 return;
11634 case 0x08: /* SSHL, USHL */
11635 if (u) {
11636 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_ushl, size);
11637 } else {
11638 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sshl, size);
11640 return;
11641 case 0x0c: /* SMAX, UMAX */
11642 if (u) {
11643 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umax, size);
11644 } else {
11645 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smax, size);
11647 return;
11648 case 0x0d: /* SMIN, UMIN */
11649 if (u) {
11650 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_umin, size);
11651 } else {
11652 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_smin, size);
11654 return;
11655 case 0xe: /* SABD, UABD */
11656 if (u) {
11657 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uabd, size);
11658 } else {
11659 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sabd, size);
11661 return;
11662 case 0xf: /* SABA, UABA */
11663 if (u) {
11664 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_uaba, size);
11665 } else {
11666 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_saba, size);
11668 return;
11669 case 0x10: /* ADD, SUB */
11670 if (u) {
11671 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size);
11672 } else {
11673 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size);
11675 return;
11676 case 0x13: /* MUL, PMUL */
11677 if (!u) { /* MUL */
11678 gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size);
11679 } else { /* PMUL */
11680 gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, gen_helper_gvec_pmul_b);
11682 return;
11683 case 0x12: /* MLA, MLS */
11684 if (u) {
11685 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mls, size);
11686 } else {
11687 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_mla, size);
11689 return;
11690 case 0x16: /* SQDMULH, SQRDMULH */
11692 static gen_helper_gvec_3_ptr * const fns[2][2] = {
11693 { gen_helper_neon_sqdmulh_h, gen_helper_neon_sqrdmulh_h },
11694 { gen_helper_neon_sqdmulh_s, gen_helper_neon_sqrdmulh_s },
11696 gen_gvec_op3_qc(s, is_q, rd, rn, rm, fns[size - 1][u]);
11698 return;
11699 case 0x11:
11700 if (!u) { /* CMTST */
11701 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_cmtst, size);
11702 return;
11704 /* else CMEQ */
11705 cond = TCG_COND_EQ;
11706 goto do_gvec_cmp;
11707 case 0x06: /* CMGT, CMHI */
11708 cond = u ? TCG_COND_GTU : TCG_COND_GT;
11709 goto do_gvec_cmp;
11710 case 0x07: /* CMGE, CMHS */
11711 cond = u ? TCG_COND_GEU : TCG_COND_GE;
11712 do_gvec_cmp:
11713 tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd),
11714 vec_full_reg_offset(s, rn),
11715 vec_full_reg_offset(s, rm),
11716 is_q ? 16 : 8, vec_full_reg_size(s));
11717 return;
11720 if (size == 3) {
11721 assert(is_q);
11722 for (pass = 0; pass < 2; pass++) {
11723 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
11724 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
11725 TCGv_i64 tcg_res = tcg_temp_new_i64();
11727 read_vec_element(s, tcg_op1, rn, pass, MO_64);
11728 read_vec_element(s, tcg_op2, rm, pass, MO_64);
11730 handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
11732 write_vec_element(s, tcg_res, rd, pass, MO_64);
11734 tcg_temp_free_i64(tcg_res);
11735 tcg_temp_free_i64(tcg_op1);
11736 tcg_temp_free_i64(tcg_op2);
11738 } else {
11739 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
11740 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11741 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11742 TCGv_i32 tcg_res = tcg_temp_new_i32();
11743 NeonGenTwoOpFn *genfn = NULL;
11744 NeonGenTwoOpEnvFn *genenvfn = NULL;
11746 read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
11747 read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
11749 switch (opcode) {
11750 case 0x0: /* SHADD, UHADD */
11752 static NeonGenTwoOpFn * const fns[3][2] = {
11753 { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
11754 { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
11755 { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
11757 genfn = fns[size][u];
11758 break;
11760 case 0x2: /* SRHADD, URHADD */
11762 static NeonGenTwoOpFn * const fns[3][2] = {
11763 { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
11764 { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
11765 { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
11767 genfn = fns[size][u];
11768 break;
11770 case 0x4: /* SHSUB, UHSUB */
11772 static NeonGenTwoOpFn * const fns[3][2] = {
11773 { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
11774 { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
11775 { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
11777 genfn = fns[size][u];
11778 break;
11780 case 0x9: /* SQSHL, UQSHL */
11782 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11783 { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
11784 { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
11785 { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
11787 genenvfn = fns[size][u];
11788 break;
11790 case 0xa: /* SRSHL, URSHL */
11792 static NeonGenTwoOpFn * const fns[3][2] = {
11793 { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
11794 { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
11795 { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
11797 genfn = fns[size][u];
11798 break;
11800 case 0xb: /* SQRSHL, UQRSHL */
11802 static NeonGenTwoOpEnvFn * const fns[3][2] = {
11803 { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
11804 { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
11805 { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
11807 genenvfn = fns[size][u];
11808 break;
11810 default:
11811 g_assert_not_reached();
11814 if (genenvfn) {
11815 genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
11816 } else {
11817 genfn(tcg_res, tcg_op1, tcg_op2);
11820 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
11822 tcg_temp_free_i32(tcg_res);
11823 tcg_temp_free_i32(tcg_op1);
11824 tcg_temp_free_i32(tcg_op2);
11827 clear_vec_high(s, is_q, rd);
11830 /* AdvSIMD three same
11831 * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
11832 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11833 * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
11834 * +---+---+---+-----------+------+---+------+--------+---+------+------+
11836 static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
11838 int opcode = extract32(insn, 11, 5);
11840 switch (opcode) {
11841 case 0x3: /* logic ops */
11842 disas_simd_3same_logic(s, insn);
11843 break;
11844 case 0x17: /* ADDP */
11845 case 0x14: /* SMAXP, UMAXP */
11846 case 0x15: /* SMINP, UMINP */
11848 /* Pairwise operations */
11849 int is_q = extract32(insn, 30, 1);
11850 int u = extract32(insn, 29, 1);
11851 int size = extract32(insn, 22, 2);
11852 int rm = extract32(insn, 16, 5);
11853 int rn = extract32(insn, 5, 5);
11854 int rd = extract32(insn, 0, 5);
11855 if (opcode == 0x17) {
11856 if (u || (size == 3 && !is_q)) {
11857 unallocated_encoding(s);
11858 return;
11860 } else {
11861 if (size == 3) {
11862 unallocated_encoding(s);
11863 return;
11866 handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
11867 break;
11869 case 0x18 ... 0x31:
11870 /* floating point ops, sz[1] and U are part of opcode */
11871 disas_simd_3same_float(s, insn);
11872 break;
11873 default:
11874 disas_simd_3same_int(s, insn);
11875 break;
11880 * Advanced SIMD three same (ARMv8.2 FP16 variants)
11882 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0
11883 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11884 * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd |
11885 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+
11887 * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE
11888 * (register), FACGE, FABD, FCMGT (register) and FACGT.
11891 static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn)
11893 int opcode = extract32(insn, 11, 3);
11894 int u = extract32(insn, 29, 1);
11895 int a = extract32(insn, 23, 1);
11896 int is_q = extract32(insn, 30, 1);
11897 int rm = extract32(insn, 16, 5);
11898 int rn = extract32(insn, 5, 5);
11899 int rd = extract32(insn, 0, 5);
11901 * For these floating point ops, the U, a and opcode bits
11902 * together indicate the operation.
11904 int fpopcode = opcode | (a << 3) | (u << 4);
11905 int datasize = is_q ? 128 : 64;
11906 int elements = datasize / 16;
11907 bool pairwise;
11908 TCGv_ptr fpst;
11909 int pass;
11911 switch (fpopcode) {
11912 case 0x0: /* FMAXNM */
11913 case 0x1: /* FMLA */
11914 case 0x2: /* FADD */
11915 case 0x3: /* FMULX */
11916 case 0x4: /* FCMEQ */
11917 case 0x6: /* FMAX */
11918 case 0x7: /* FRECPS */
11919 case 0x8: /* FMINNM */
11920 case 0x9: /* FMLS */
11921 case 0xa: /* FSUB */
11922 case 0xe: /* FMIN */
11923 case 0xf: /* FRSQRTS */
11924 case 0x13: /* FMUL */
11925 case 0x14: /* FCMGE */
11926 case 0x15: /* FACGE */
11927 case 0x17: /* FDIV */
11928 case 0x1a: /* FABD */
11929 case 0x1c: /* FCMGT */
11930 case 0x1d: /* FACGT */
11931 pairwise = false;
11932 break;
11933 case 0x10: /* FMAXNMP */
11934 case 0x12: /* FADDP */
11935 case 0x16: /* FMAXP */
11936 case 0x18: /* FMINNMP */
11937 case 0x1e: /* FMINP */
11938 pairwise = true;
11939 break;
11940 default:
11941 unallocated_encoding(s);
11942 return;
11945 if (!dc_isar_feature(aa64_fp16, s)) {
11946 unallocated_encoding(s);
11947 return;
11950 if (!fp_access_check(s)) {
11951 return;
11954 fpst = fpstatus_ptr(FPST_FPCR_F16);
11956 if (pairwise) {
11957 int maxpass = is_q ? 8 : 4;
11958 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
11959 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
11960 TCGv_i32 tcg_res[8];
11962 for (pass = 0; pass < maxpass; pass++) {
11963 int passreg = pass < (maxpass / 2) ? rn : rm;
11964 int passelt = (pass << 1) & (maxpass - 1);
11966 read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16);
11967 read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16);
11968 tcg_res[pass] = tcg_temp_new_i32();
11970 switch (fpopcode) {
11971 case 0x10: /* FMAXNMP */
11972 gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2,
11973 fpst);
11974 break;
11975 case 0x12: /* FADDP */
11976 gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11977 break;
11978 case 0x16: /* FMAXP */
11979 gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11980 break;
11981 case 0x18: /* FMINNMP */
11982 gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2,
11983 fpst);
11984 break;
11985 case 0x1e: /* FMINP */
11986 gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst);
11987 break;
11988 default:
11989 g_assert_not_reached();
11993 for (pass = 0; pass < maxpass; pass++) {
11994 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16);
11995 tcg_temp_free_i32(tcg_res[pass]);
11998 tcg_temp_free_i32(tcg_op1);
11999 tcg_temp_free_i32(tcg_op2);
12001 } else {
12002 for (pass = 0; pass < elements; pass++) {
12003 TCGv_i32 tcg_op1 = tcg_temp_new_i32();
12004 TCGv_i32 tcg_op2 = tcg_temp_new_i32();
12005 TCGv_i32 tcg_res = tcg_temp_new_i32();
12007 read_vec_element_i32(s, tcg_op1, rn, pass, MO_16);
12008 read_vec_element_i32(s, tcg_op2, rm, pass, MO_16);
12010 switch (fpopcode) {
12011 case 0x0: /* FMAXNM */
12012 gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12013 break;
12014 case 0x1: /* FMLA */
12015 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12016 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12017 fpst);
12018 break;
12019 case 0x2: /* FADD */
12020 gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst);
12021 break;
12022 case 0x3: /* FMULX */
12023 gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst);
12024 break;
12025 case 0x4: /* FCMEQ */
12026 gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12027 break;
12028 case 0x6: /* FMAX */
12029 gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst);
12030 break;
12031 case 0x7: /* FRECPS */
12032 gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12033 break;
12034 case 0x8: /* FMINNM */
12035 gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst);
12036 break;
12037 case 0x9: /* FMLS */
12038 /* As usual for ARM, separate negation for fused multiply-add */
12039 tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000);
12040 read_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12041 gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res,
12042 fpst);
12043 break;
12044 case 0xa: /* FSUB */
12045 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12046 break;
12047 case 0xe: /* FMIN */
12048 gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst);
12049 break;
12050 case 0xf: /* FRSQRTS */
12051 gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12052 break;
12053 case 0x13: /* FMUL */
12054 gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst);
12055 break;
12056 case 0x14: /* FCMGE */
12057 gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12058 break;
12059 case 0x15: /* FACGE */
12060 gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12061 break;
12062 case 0x17: /* FDIV */
12063 gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst);
12064 break;
12065 case 0x1a: /* FABD */
12066 gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst);
12067 tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff);
12068 break;
12069 case 0x1c: /* FCMGT */
12070 gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12071 break;
12072 case 0x1d: /* FACGT */
12073 gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst);
12074 break;
12075 default:
12076 g_assert_not_reached();
12079 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
12080 tcg_temp_free_i32(tcg_res);
12081 tcg_temp_free_i32(tcg_op1);
12082 tcg_temp_free_i32(tcg_op2);
12086 tcg_temp_free_ptr(fpst);
12088 clear_vec_high(s, is_q, rd);
12091 /* AdvSIMD three same extra
12092 * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0
12093 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12094 * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd |
12095 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+
12097 static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn)
12099 int rd = extract32(insn, 0, 5);
12100 int rn = extract32(insn, 5, 5);
12101 int opcode = extract32(insn, 11, 4);
12102 int rm = extract32(insn, 16, 5);
12103 int size = extract32(insn, 22, 2);
12104 bool u = extract32(insn, 29, 1);
12105 bool is_q = extract32(insn, 30, 1);
12106 bool feature;
12107 int rot;
12109 switch (u * 16 + opcode) {
12110 case 0x10: /* SQRDMLAH (vector) */
12111 case 0x11: /* SQRDMLSH (vector) */
12112 if (size != 1 && size != 2) {
12113 unallocated_encoding(s);
12114 return;
12116 feature = dc_isar_feature(aa64_rdm, s);
12117 break;
12118 case 0x02: /* SDOT (vector) */
12119 case 0x12: /* UDOT (vector) */
12120 if (size != MO_32) {
12121 unallocated_encoding(s);
12122 return;
12124 feature = dc_isar_feature(aa64_dp, s);
12125 break;
12126 case 0x03: /* USDOT */
12127 if (size != MO_32) {
12128 unallocated_encoding(s);
12129 return;
12131 feature = dc_isar_feature(aa64_i8mm, s);
12132 break;
12133 case 0x04: /* SMMLA */
12134 case 0x14: /* UMMLA */
12135 case 0x05: /* USMMLA */
12136 if (!is_q || size != MO_32) {
12137 unallocated_encoding(s);
12138 return;
12140 feature = dc_isar_feature(aa64_i8mm, s);
12141 break;
12142 case 0x18: /* FCMLA, #0 */
12143 case 0x19: /* FCMLA, #90 */
12144 case 0x1a: /* FCMLA, #180 */
12145 case 0x1b: /* FCMLA, #270 */
12146 case 0x1c: /* FCADD, #90 */
12147 case 0x1e: /* FCADD, #270 */
12148 if (size == 0
12149 || (size == 1 && !dc_isar_feature(aa64_fp16, s))
12150 || (size == 3 && !is_q)) {
12151 unallocated_encoding(s);
12152 return;
12154 feature = dc_isar_feature(aa64_fcma, s);
12155 break;
12156 case 0x1d: /* BFMMLA */
12157 if (size != MO_16 || !is_q) {
12158 unallocated_encoding(s);
12159 return;
12161 feature = dc_isar_feature(aa64_bf16, s);
12162 break;
12163 case 0x1f:
12164 switch (size) {
12165 case 1: /* BFDOT */
12166 case 3: /* BFMLAL{B,T} */
12167 feature = dc_isar_feature(aa64_bf16, s);
12168 break;
12169 default:
12170 unallocated_encoding(s);
12171 return;
12173 break;
12174 default:
12175 unallocated_encoding(s);
12176 return;
12178 if (!feature) {
12179 unallocated_encoding(s);
12180 return;
12182 if (!fp_access_check(s)) {
12183 return;
12186 switch (opcode) {
12187 case 0x0: /* SQRDMLAH (vector) */
12188 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlah_qc, size);
12189 return;
12191 case 0x1: /* SQRDMLSH (vector) */
12192 gen_gvec_fn3(s, is_q, rd, rn, rm, gen_gvec_sqrdmlsh_qc, size);
12193 return;
12195 case 0x2: /* SDOT / UDOT */
12196 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0,
12197 u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b);
12198 return;
12200 case 0x3: /* USDOT */
12201 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_usdot_b);
12202 return;
12204 case 0x04: /* SMMLA, UMMLA */
12205 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0,
12206 u ? gen_helper_gvec_ummla_b
12207 : gen_helper_gvec_smmla_b);
12208 return;
12209 case 0x05: /* USMMLA */
12210 gen_gvec_op4_ool(s, 1, rd, rn, rm, rd, 0, gen_helper_gvec_usmmla_b);
12211 return;
12213 case 0x8: /* FCMLA, #0 */
12214 case 0x9: /* FCMLA, #90 */
12215 case 0xa: /* FCMLA, #180 */
12216 case 0xb: /* FCMLA, #270 */
12217 rot = extract32(opcode, 0, 2);
12218 switch (size) {
12219 case 1:
12220 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, true, rot,
12221 gen_helper_gvec_fcmlah);
12222 break;
12223 case 2:
12224 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12225 gen_helper_gvec_fcmlas);
12226 break;
12227 case 3:
12228 gen_gvec_op4_fpst(s, is_q, rd, rn, rm, rd, false, rot,
12229 gen_helper_gvec_fcmlad);
12230 break;
12231 default:
12232 g_assert_not_reached();
12234 return;
12236 case 0xc: /* FCADD, #90 */
12237 case 0xe: /* FCADD, #270 */
12238 rot = extract32(opcode, 1, 1);
12239 switch (size) {
12240 case 1:
12241 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12242 gen_helper_gvec_fcaddh);
12243 break;
12244 case 2:
12245 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12246 gen_helper_gvec_fcadds);
12247 break;
12248 case 3:
12249 gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot,
12250 gen_helper_gvec_fcaddd);
12251 break;
12252 default:
12253 g_assert_not_reached();
12255 return;
12257 case 0xd: /* BFMMLA */
12258 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfmmla);
12259 return;
12260 case 0xf:
12261 switch (size) {
12262 case 1: /* BFDOT */
12263 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, 0, gen_helper_gvec_bfdot);
12264 break;
12265 case 3: /* BFMLAL{B,T} */
12266 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, false, is_q,
12267 gen_helper_gvec_bfmlal);
12268 break;
12269 default:
12270 g_assert_not_reached();
12272 return;
12274 default:
12275 g_assert_not_reached();
12279 static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q,
12280 int size, int rn, int rd)
12282 /* Handle 2-reg-misc ops which are widening (so each size element
12283 * in the source becomes a 2*size element in the destination.
12284 * The only instruction like this is FCVTL.
12286 int pass;
12288 if (size == 3) {
12289 /* 32 -> 64 bit fp conversion */
12290 TCGv_i64 tcg_res[2];
12291 int srcelt = is_q ? 2 : 0;
12293 for (pass = 0; pass < 2; pass++) {
12294 TCGv_i32 tcg_op = tcg_temp_new_i32();
12295 tcg_res[pass] = tcg_temp_new_i64();
12297 read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32);
12298 gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env);
12299 tcg_temp_free_i32(tcg_op);
12301 for (pass = 0; pass < 2; pass++) {
12302 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12303 tcg_temp_free_i64(tcg_res[pass]);
12305 } else {
12306 /* 16 -> 32 bit fp conversion */
12307 int srcelt = is_q ? 4 : 0;
12308 TCGv_i32 tcg_res[4];
12309 TCGv_ptr fpst = fpstatus_ptr(FPST_FPCR);
12310 TCGv_i32 ahp = get_ahp_flag();
12312 for (pass = 0; pass < 4; pass++) {
12313 tcg_res[pass] = tcg_temp_new_i32();
12315 read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16);
12316 gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass],
12317 fpst, ahp);
12319 for (pass = 0; pass < 4; pass++) {
12320 write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
12321 tcg_temp_free_i32(tcg_res[pass]);
12324 tcg_temp_free_ptr(fpst);
12325 tcg_temp_free_i32(ahp);
12329 static void handle_rev(DisasContext *s, int opcode, bool u,
12330 bool is_q, int size, int rn, int rd)
12332 int op = (opcode << 1) | u;
12333 int opsz = op + size;
12334 int grp_size = 3 - opsz;
12335 int dsize = is_q ? 128 : 64;
12336 int i;
12338 if (opsz >= 3) {
12339 unallocated_encoding(s);
12340 return;
12343 if (!fp_access_check(s)) {
12344 return;
12347 if (size == 0) {
12348 /* Special case bytes, use bswap op on each group of elements */
12349 int groups = dsize / (8 << grp_size);
12351 for (i = 0; i < groups; i++) {
12352 TCGv_i64 tcg_tmp = tcg_temp_new_i64();
12354 read_vec_element(s, tcg_tmp, rn, i, grp_size);
12355 switch (grp_size) {
12356 case MO_16:
12357 tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12358 break;
12359 case MO_32:
12360 tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp, TCG_BSWAP_IZ);
12361 break;
12362 case MO_64:
12363 tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
12364 break;
12365 default:
12366 g_assert_not_reached();
12368 write_vec_element(s, tcg_tmp, rd, i, grp_size);
12369 tcg_temp_free_i64(tcg_tmp);
12371 clear_vec_high(s, is_q, rd);
12372 } else {
12373 int revmask = (1 << grp_size) - 1;
12374 int esize = 8 << size;
12375 int elements = dsize / esize;
12376 TCGv_i64 tcg_rn = tcg_temp_new_i64();
12377 TCGv_i64 tcg_rd = tcg_const_i64(0);
12378 TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
12380 for (i = 0; i < elements; i++) {
12381 int e_rev = (i & 0xf) ^ revmask;
12382 int off = e_rev * esize;
12383 read_vec_element(s, tcg_rn, rn, i, size);
12384 if (off >= 64) {
12385 tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
12386 tcg_rn, off - 64, esize);
12387 } else {
12388 tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
12391 write_vec_element(s, tcg_rd, rd, 0, MO_64);
12392 write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
12394 tcg_temp_free_i64(tcg_rd_hi);
12395 tcg_temp_free_i64(tcg_rd);
12396 tcg_temp_free_i64(tcg_rn);
12400 static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u,
12401 bool is_q, int size, int rn, int rd)
12403 /* Implement the pairwise operations from 2-misc:
12404 * SADDLP, UADDLP, SADALP, UADALP.
12405 * These all add pairs of elements in the input to produce a
12406 * double-width result element in the output (possibly accumulating).
12408 bool accum = (opcode == 0x6);
12409 int maxpass = is_q ? 2 : 1;
12410 int pass;
12411 TCGv_i64 tcg_res[2];
12413 if (size == 2) {
12414 /* 32 + 32 -> 64 op */
12415 MemOp memop = size + (u ? 0 : MO_SIGN);
12417 for (pass = 0; pass < maxpass; pass++) {
12418 TCGv_i64 tcg_op1 = tcg_temp_new_i64();
12419 TCGv_i64 tcg_op2 = tcg_temp_new_i64();
12421 tcg_res[pass] = tcg_temp_new_i64();
12423 read_vec_element(s, tcg_op1, rn, pass * 2, memop);
12424 read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop);
12425 tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
12426 if (accum) {
12427 read_vec_element(s, tcg_op1, rd, pass, MO_64);
12428 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
12431 tcg_temp_free_i64(tcg_op1);
12432 tcg_temp_free_i64(tcg_op2);
12434 } else {
12435 for (pass = 0; pass < maxpass; pass++) {
12436 TCGv_i64 tcg_op = tcg_temp_new_i64();
12437 NeonGenOne64OpFn *genfn;
12438 static NeonGenOne64OpFn * const fns[2][2] = {
12439 { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 },
12440 { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 },
12443 genfn = fns[size][u];
12445 tcg_res[pass] = tcg_temp_new_i64();
12447 read_vec_element(s, tcg_op, rn, pass, MO_64);
12448 genfn(tcg_res[pass], tcg_op);
12450 if (accum) {
12451 read_vec_element(s, tcg_op, rd, pass, MO_64);
12452 if (size == 0) {
12453 gen_helper_neon_addl_u16(tcg_res[pass],
12454 tcg_res[pass], tcg_op);
12455 } else {
12456 gen_helper_neon_addl_u32(tcg_res[pass],
12457 tcg_res[pass], tcg_op);
12460 tcg_temp_free_i64(tcg_op);
12463 if (!is_q) {
12464 tcg_res[1] = tcg_const_i64(0);
12466 for (pass = 0; pass < 2; pass++) {
12467 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12468 tcg_temp_free_i64(tcg_res[pass]);
12472 static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd)
12474 /* Implement SHLL and SHLL2 */
12475 int pass;
12476 int part = is_q ? 2 : 0;
12477 TCGv_i64 tcg_res[2];
12479 for (pass = 0; pass < 2; pass++) {
12480 static NeonGenWidenFn * const widenfns[3] = {
12481 gen_helper_neon_widen_u8,
12482 gen_helper_neon_widen_u16,
12483 tcg_gen_extu_i32_i64,
12485 NeonGenWidenFn *widenfn = widenfns[size];
12486 TCGv_i32 tcg_op = tcg_temp_new_i32();
12488 read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32);
12489 tcg_res[pass] = tcg_temp_new_i64();
12490 widenfn(tcg_res[pass], tcg_op);
12491 tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size);
12493 tcg_temp_free_i32(tcg_op);
12496 for (pass = 0; pass < 2; pass++) {
12497 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
12498 tcg_temp_free_i64(tcg_res[pass]);
12502 /* AdvSIMD two reg misc
12503 * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
12504 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12505 * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
12506 * +---+---+---+-----------+------+-----------+--------+-----+------+------+
12508 static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
12510 int size = extract32(insn, 22, 2);
12511 int opcode = extract32(insn, 12, 5);
12512 bool u = extract32(insn, 29, 1);
12513 bool is_q = extract32(insn, 30, 1);
12514 int rn = extract32(insn, 5, 5);
12515 int rd = extract32(insn, 0, 5);
12516 bool need_fpstatus = false;
12517 bool need_rmode = false;
12518 int rmode = -1;
12519 TCGv_i32 tcg_rmode;
12520 TCGv_ptr tcg_fpstatus;
12522 switch (opcode) {
12523 case 0x0: /* REV64, REV32 */
12524 case 0x1: /* REV16 */
12525 handle_rev(s, opcode, u, is_q, size, rn, rd);
12526 return;
12527 case 0x5: /* CNT, NOT, RBIT */
12528 if (u && size == 0) {
12529 /* NOT */
12530 break;
12531 } else if (u && size == 1) {
12532 /* RBIT */
12533 break;
12534 } else if (!u && size == 0) {
12535 /* CNT */
12536 break;
12538 unallocated_encoding(s);
12539 return;
12540 case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
12541 case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
12542 if (size == 3) {
12543 unallocated_encoding(s);
12544 return;
12546 if (!fp_access_check(s)) {
12547 return;
12550 handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd);
12551 return;
12552 case 0x4: /* CLS, CLZ */
12553 if (size == 3) {
12554 unallocated_encoding(s);
12555 return;
12557 break;
12558 case 0x2: /* SADDLP, UADDLP */
12559 case 0x6: /* SADALP, UADALP */
12560 if (size == 3) {
12561 unallocated_encoding(s);
12562 return;
12564 if (!fp_access_check(s)) {
12565 return;
12567 handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd);
12568 return;
12569 case 0x13: /* SHLL, SHLL2 */
12570 if (u == 0 || size == 3) {
12571 unallocated_encoding(s);
12572 return;
12574 if (!fp_access_check(s)) {
12575 return;
12577 handle_shll(s, is_q, size, rn, rd);
12578 return;
12579 case 0xa: /* CMLT */
12580 if (u == 1) {
12581 unallocated_encoding(s);
12582 return;
12584 /* fall through */
12585 case 0x8: /* CMGT, CMGE */
12586 case 0x9: /* CMEQ, CMLE */
12587 case 0xb: /* ABS, NEG */
12588 if (size == 3 && !is_q) {
12589 unallocated_encoding(s);
12590 return;
12592 break;
12593 case 0x3: /* SUQADD, USQADD */
12594 if (size == 3 && !is_q) {
12595 unallocated_encoding(s);
12596 return;
12598 if (!fp_access_check(s)) {
12599 return;
12601 handle_2misc_satacc(s, false, u, is_q, size, rn, rd);
12602 return;
12603 case 0x7: /* SQABS, SQNEG */
12604 if (size == 3 && !is_q) {
12605 unallocated_encoding(s);
12606 return;
12608 break;
12609 case 0xc ... 0xf:
12610 case 0x16 ... 0x1f:
12612 /* Floating point: U, size[1] and opcode indicate operation;
12613 * size[0] indicates single or double precision.
12615 int is_double = extract32(size, 0, 1);
12616 opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
12617 size = is_double ? 3 : 2;
12618 switch (opcode) {
12619 case 0x2f: /* FABS */
12620 case 0x6f: /* FNEG */
12621 if (size == 3 && !is_q) {
12622 unallocated_encoding(s);
12623 return;
12625 break;
12626 case 0x1d: /* SCVTF */
12627 case 0x5d: /* UCVTF */
12629 bool is_signed = (opcode == 0x1d) ? true : false;
12630 int elements = is_double ? 2 : is_q ? 4 : 2;
12631 if (is_double && !is_q) {
12632 unallocated_encoding(s);
12633 return;
12635 if (!fp_access_check(s)) {
12636 return;
12638 handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size);
12639 return;
12641 case 0x2c: /* FCMGT (zero) */
12642 case 0x2d: /* FCMEQ (zero) */
12643 case 0x2e: /* FCMLT (zero) */
12644 case 0x6c: /* FCMGE (zero) */
12645 case 0x6d: /* FCMLE (zero) */
12646 if (size == 3 && !is_q) {
12647 unallocated_encoding(s);
12648 return;
12650 handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
12651 return;
12652 case 0x7f: /* FSQRT */
12653 if (size == 3 && !is_q) {
12654 unallocated_encoding(s);
12655 return;
12657 break;
12658 case 0x1a: /* FCVTNS */
12659 case 0x1b: /* FCVTMS */
12660 case 0x3a: /* FCVTPS */
12661 case 0x3b: /* FCVTZS */
12662 case 0x5a: /* FCVTNU */
12663 case 0x5b: /* FCVTMU */
12664 case 0x7a: /* FCVTPU */
12665 case 0x7b: /* FCVTZU */
12666 need_fpstatus = true;
12667 need_rmode = true;
12668 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12669 if (size == 3 && !is_q) {
12670 unallocated_encoding(s);
12671 return;
12673 break;
12674 case 0x5c: /* FCVTAU */
12675 case 0x1c: /* FCVTAS */
12676 need_fpstatus = true;
12677 need_rmode = true;
12678 rmode = FPROUNDING_TIEAWAY;
12679 if (size == 3 && !is_q) {
12680 unallocated_encoding(s);
12681 return;
12683 break;
12684 case 0x3c: /* URECPE */
12685 if (size == 3) {
12686 unallocated_encoding(s);
12687 return;
12689 /* fall through */
12690 case 0x3d: /* FRECPE */
12691 case 0x7d: /* FRSQRTE */
12692 if (size == 3 && !is_q) {
12693 unallocated_encoding(s);
12694 return;
12696 if (!fp_access_check(s)) {
12697 return;
12699 handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd);
12700 return;
12701 case 0x56: /* FCVTXN, FCVTXN2 */
12702 if (size == 2) {
12703 unallocated_encoding(s);
12704 return;
12706 /* fall through */
12707 case 0x16: /* FCVTN, FCVTN2 */
12708 /* handle_2misc_narrow does a 2*size -> size operation, but these
12709 * instructions encode the source size rather than dest size.
12711 if (!fp_access_check(s)) {
12712 return;
12714 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12715 return;
12716 case 0x36: /* BFCVTN, BFCVTN2 */
12717 if (!dc_isar_feature(aa64_bf16, s) || size != 2) {
12718 unallocated_encoding(s);
12719 return;
12721 if (!fp_access_check(s)) {
12722 return;
12724 handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd);
12725 return;
12726 case 0x17: /* FCVTL, FCVTL2 */
12727 if (!fp_access_check(s)) {
12728 return;
12730 handle_2misc_widening(s, opcode, is_q, size, rn, rd);
12731 return;
12732 case 0x18: /* FRINTN */
12733 case 0x19: /* FRINTM */
12734 case 0x38: /* FRINTP */
12735 case 0x39: /* FRINTZ */
12736 need_rmode = true;
12737 rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1);
12738 /* fall through */
12739 case 0x59: /* FRINTX */
12740 case 0x79: /* FRINTI */
12741 need_fpstatus = true;
12742 if (size == 3 && !is_q) {
12743 unallocated_encoding(s);
12744 return;
12746 break;
12747 case 0x58: /* FRINTA */
12748 need_rmode = true;
12749 rmode = FPROUNDING_TIEAWAY;
12750 need_fpstatus = true;
12751 if (size == 3 && !is_q) {
12752 unallocated_encoding(s);
12753 return;
12755 break;
12756 case 0x7c: /* URSQRTE */
12757 if (size == 3) {
12758 unallocated_encoding(s);
12759 return;
12761 break;
12762 case 0x1e: /* FRINT32Z */
12763 case 0x1f: /* FRINT64Z */
12764 need_rmode = true;
12765 rmode = FPROUNDING_ZERO;
12766 /* fall through */
12767 case 0x5e: /* FRINT32X */
12768 case 0x5f: /* FRINT64X */
12769 need_fpstatus = true;
12770 if ((size == 3 && !is_q) || !dc_isar_feature(aa64_frint, s)) {
12771 unallocated_encoding(s);
12772 return;
12774 break;
12775 default:
12776 unallocated_encoding(s);
12777 return;
12779 break;
12781 default:
12782 unallocated_encoding(s);
12783 return;
12786 if (!fp_access_check(s)) {
12787 return;
12790 if (need_fpstatus || need_rmode) {
12791 tcg_fpstatus = fpstatus_ptr(FPST_FPCR);
12792 } else {
12793 tcg_fpstatus = NULL;
12795 if (need_rmode) {
12796 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
12797 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12798 } else {
12799 tcg_rmode = NULL;
12802 switch (opcode) {
12803 case 0x5:
12804 if (u && size == 0) { /* NOT */
12805 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0);
12806 return;
12808 break;
12809 case 0x8: /* CMGT, CMGE */
12810 if (u) {
12811 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cge0, size);
12812 } else {
12813 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cgt0, size);
12815 return;
12816 case 0x9: /* CMEQ, CMLE */
12817 if (u) {
12818 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_cle0, size);
12819 } else {
12820 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_ceq0, size);
12822 return;
12823 case 0xa: /* CMLT */
12824 gen_gvec_fn2(s, is_q, rd, rn, gen_gvec_clt0, size);
12825 return;
12826 case 0xb:
12827 if (u) { /* ABS, NEG */
12828 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size);
12829 } else {
12830 gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_abs, size);
12832 return;
12835 if (size == 3) {
12836 /* All 64-bit element operations can be shared with scalar 2misc */
12837 int pass;
12839 /* Coverity claims (size == 3 && !is_q) has been eliminated
12840 * from all paths leading to here.
12842 tcg_debug_assert(is_q);
12843 for (pass = 0; pass < 2; pass++) {
12844 TCGv_i64 tcg_op = tcg_temp_new_i64();
12845 TCGv_i64 tcg_res = tcg_temp_new_i64();
12847 read_vec_element(s, tcg_op, rn, pass, MO_64);
12849 handle_2misc_64(s, opcode, u, tcg_res, tcg_op,
12850 tcg_rmode, tcg_fpstatus);
12852 write_vec_element(s, tcg_res, rd, pass, MO_64);
12854 tcg_temp_free_i64(tcg_res);
12855 tcg_temp_free_i64(tcg_op);
12857 } else {
12858 int pass;
12860 for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
12861 TCGv_i32 tcg_op = tcg_temp_new_i32();
12862 TCGv_i32 tcg_res = tcg_temp_new_i32();
12864 read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
12866 if (size == 2) {
12867 /* Special cases for 32 bit elements */
12868 switch (opcode) {
12869 case 0x4: /* CLS */
12870 if (u) {
12871 tcg_gen_clzi_i32(tcg_res, tcg_op, 32);
12872 } else {
12873 tcg_gen_clrsb_i32(tcg_res, tcg_op);
12875 break;
12876 case 0x7: /* SQABS, SQNEG */
12877 if (u) {
12878 gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op);
12879 } else {
12880 gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op);
12882 break;
12883 case 0x2f: /* FABS */
12884 gen_helper_vfp_abss(tcg_res, tcg_op);
12885 break;
12886 case 0x6f: /* FNEG */
12887 gen_helper_vfp_negs(tcg_res, tcg_op);
12888 break;
12889 case 0x7f: /* FSQRT */
12890 gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
12891 break;
12892 case 0x1a: /* FCVTNS */
12893 case 0x1b: /* FCVTMS */
12894 case 0x1c: /* FCVTAS */
12895 case 0x3a: /* FCVTPS */
12896 case 0x3b: /* FCVTZS */
12898 TCGv_i32 tcg_shift = tcg_const_i32(0);
12899 gen_helper_vfp_tosls(tcg_res, tcg_op,
12900 tcg_shift, tcg_fpstatus);
12901 tcg_temp_free_i32(tcg_shift);
12902 break;
12904 case 0x5a: /* FCVTNU */
12905 case 0x5b: /* FCVTMU */
12906 case 0x5c: /* FCVTAU */
12907 case 0x7a: /* FCVTPU */
12908 case 0x7b: /* FCVTZU */
12910 TCGv_i32 tcg_shift = tcg_const_i32(0);
12911 gen_helper_vfp_touls(tcg_res, tcg_op,
12912 tcg_shift, tcg_fpstatus);
12913 tcg_temp_free_i32(tcg_shift);
12914 break;
12916 case 0x18: /* FRINTN */
12917 case 0x19: /* FRINTM */
12918 case 0x38: /* FRINTP */
12919 case 0x39: /* FRINTZ */
12920 case 0x58: /* FRINTA */
12921 case 0x79: /* FRINTI */
12922 gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus);
12923 break;
12924 case 0x59: /* FRINTX */
12925 gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus);
12926 break;
12927 case 0x7c: /* URSQRTE */
12928 gen_helper_rsqrte_u32(tcg_res, tcg_op);
12929 break;
12930 case 0x1e: /* FRINT32Z */
12931 case 0x5e: /* FRINT32X */
12932 gen_helper_frint32_s(tcg_res, tcg_op, tcg_fpstatus);
12933 break;
12934 case 0x1f: /* FRINT64Z */
12935 case 0x5f: /* FRINT64X */
12936 gen_helper_frint64_s(tcg_res, tcg_op, tcg_fpstatus);
12937 break;
12938 default:
12939 g_assert_not_reached();
12941 } else {
12942 /* Use helpers for 8 and 16 bit elements */
12943 switch (opcode) {
12944 case 0x5: /* CNT, RBIT */
12945 /* For these two insns size is part of the opcode specifier
12946 * (handled earlier); they always operate on byte elements.
12948 if (u) {
12949 gen_helper_neon_rbit_u8(tcg_res, tcg_op);
12950 } else {
12951 gen_helper_neon_cnt_u8(tcg_res, tcg_op);
12953 break;
12954 case 0x7: /* SQABS, SQNEG */
12956 NeonGenOneOpEnvFn *genfn;
12957 static NeonGenOneOpEnvFn * const fns[2][2] = {
12958 { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 },
12959 { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 },
12961 genfn = fns[size][u];
12962 genfn(tcg_res, cpu_env, tcg_op);
12963 break;
12965 case 0x4: /* CLS, CLZ */
12966 if (u) {
12967 if (size == 0) {
12968 gen_helper_neon_clz_u8(tcg_res, tcg_op);
12969 } else {
12970 gen_helper_neon_clz_u16(tcg_res, tcg_op);
12972 } else {
12973 if (size == 0) {
12974 gen_helper_neon_cls_s8(tcg_res, tcg_op);
12975 } else {
12976 gen_helper_neon_cls_s16(tcg_res, tcg_op);
12979 break;
12980 default:
12981 g_assert_not_reached();
12985 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
12987 tcg_temp_free_i32(tcg_res);
12988 tcg_temp_free_i32(tcg_op);
12991 clear_vec_high(s, is_q, rd);
12993 if (need_rmode) {
12994 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
12995 tcg_temp_free_i32(tcg_rmode);
12997 if (need_fpstatus) {
12998 tcg_temp_free_ptr(tcg_fpstatus);
13002 /* AdvSIMD [scalar] two register miscellaneous (FP16)
13004 * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0
13005 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13006 * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd |
13007 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+
13008 * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00
13009 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800
13011 * This actually covers two groups where scalar access is governed by
13012 * bit 28. A bunch of the instructions (float to integral) only exist
13013 * in the vector form and are un-allocated for the scalar decode. Also
13014 * in the scalar decode Q is always 1.
13016 static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn)
13018 int fpop, opcode, a, u;
13019 int rn, rd;
13020 bool is_q;
13021 bool is_scalar;
13022 bool only_in_vector = false;
13024 int pass;
13025 TCGv_i32 tcg_rmode = NULL;
13026 TCGv_ptr tcg_fpstatus = NULL;
13027 bool need_rmode = false;
13028 bool need_fpst = true;
13029 int rmode;
13031 if (!dc_isar_feature(aa64_fp16, s)) {
13032 unallocated_encoding(s);
13033 return;
13036 rd = extract32(insn, 0, 5);
13037 rn = extract32(insn, 5, 5);
13039 a = extract32(insn, 23, 1);
13040 u = extract32(insn, 29, 1);
13041 is_scalar = extract32(insn, 28, 1);
13042 is_q = extract32(insn, 30, 1);
13044 opcode = extract32(insn, 12, 5);
13045 fpop = deposit32(opcode, 5, 1, a);
13046 fpop = deposit32(fpop, 6, 1, u);
13048 switch (fpop) {
13049 case 0x1d: /* SCVTF */
13050 case 0x5d: /* UCVTF */
13052 int elements;
13054 if (is_scalar) {
13055 elements = 1;
13056 } else {
13057 elements = (is_q ? 8 : 4);
13060 if (!fp_access_check(s)) {
13061 return;
13063 handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16);
13064 return;
13066 break;
13067 case 0x2c: /* FCMGT (zero) */
13068 case 0x2d: /* FCMEQ (zero) */
13069 case 0x2e: /* FCMLT (zero) */
13070 case 0x6c: /* FCMGE (zero) */
13071 case 0x6d: /* FCMLE (zero) */
13072 handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd);
13073 return;
13074 case 0x3d: /* FRECPE */
13075 case 0x3f: /* FRECPX */
13076 break;
13077 case 0x18: /* FRINTN */
13078 need_rmode = true;
13079 only_in_vector = true;
13080 rmode = FPROUNDING_TIEEVEN;
13081 break;
13082 case 0x19: /* FRINTM */
13083 need_rmode = true;
13084 only_in_vector = true;
13085 rmode = FPROUNDING_NEGINF;
13086 break;
13087 case 0x38: /* FRINTP */
13088 need_rmode = true;
13089 only_in_vector = true;
13090 rmode = FPROUNDING_POSINF;
13091 break;
13092 case 0x39: /* FRINTZ */
13093 need_rmode = true;
13094 only_in_vector = true;
13095 rmode = FPROUNDING_ZERO;
13096 break;
13097 case 0x58: /* FRINTA */
13098 need_rmode = true;
13099 only_in_vector = true;
13100 rmode = FPROUNDING_TIEAWAY;
13101 break;
13102 case 0x59: /* FRINTX */
13103 case 0x79: /* FRINTI */
13104 only_in_vector = true;
13105 /* current rounding mode */
13106 break;
13107 case 0x1a: /* FCVTNS */
13108 need_rmode = true;
13109 rmode = FPROUNDING_TIEEVEN;
13110 break;
13111 case 0x1b: /* FCVTMS */
13112 need_rmode = true;
13113 rmode = FPROUNDING_NEGINF;
13114 break;
13115 case 0x1c: /* FCVTAS */
13116 need_rmode = true;
13117 rmode = FPROUNDING_TIEAWAY;
13118 break;
13119 case 0x3a: /* FCVTPS */
13120 need_rmode = true;
13121 rmode = FPROUNDING_POSINF;
13122 break;
13123 case 0x3b: /* FCVTZS */
13124 need_rmode = true;
13125 rmode = FPROUNDING_ZERO;
13126 break;
13127 case 0x5a: /* FCVTNU */
13128 need_rmode = true;
13129 rmode = FPROUNDING_TIEEVEN;
13130 break;
13131 case 0x5b: /* FCVTMU */
13132 need_rmode = true;
13133 rmode = FPROUNDING_NEGINF;
13134 break;
13135 case 0x5c: /* FCVTAU */
13136 need_rmode = true;
13137 rmode = FPROUNDING_TIEAWAY;
13138 break;
13139 case 0x7a: /* FCVTPU */
13140 need_rmode = true;
13141 rmode = FPROUNDING_POSINF;
13142 break;
13143 case 0x7b: /* FCVTZU */
13144 need_rmode = true;
13145 rmode = FPROUNDING_ZERO;
13146 break;
13147 case 0x2f: /* FABS */
13148 case 0x6f: /* FNEG */
13149 need_fpst = false;
13150 break;
13151 case 0x7d: /* FRSQRTE */
13152 case 0x7f: /* FSQRT (vector) */
13153 break;
13154 default:
13155 unallocated_encoding(s);
13156 return;
13160 /* Check additional constraints for the scalar encoding */
13161 if (is_scalar) {
13162 if (!is_q) {
13163 unallocated_encoding(s);
13164 return;
13166 /* FRINTxx is only in the vector form */
13167 if (only_in_vector) {
13168 unallocated_encoding(s);
13169 return;
13173 if (!fp_access_check(s)) {
13174 return;
13177 if (need_rmode || need_fpst) {
13178 tcg_fpstatus = fpstatus_ptr(FPST_FPCR_F16);
13181 if (need_rmode) {
13182 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
13183 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13186 if (is_scalar) {
13187 TCGv_i32 tcg_op = read_fp_hreg(s, rn);
13188 TCGv_i32 tcg_res = tcg_temp_new_i32();
13190 switch (fpop) {
13191 case 0x1a: /* FCVTNS */
13192 case 0x1b: /* FCVTMS */
13193 case 0x1c: /* FCVTAS */
13194 case 0x3a: /* FCVTPS */
13195 case 0x3b: /* FCVTZS */
13196 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13197 break;
13198 case 0x3d: /* FRECPE */
13199 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13200 break;
13201 case 0x3f: /* FRECPX */
13202 gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus);
13203 break;
13204 case 0x5a: /* FCVTNU */
13205 case 0x5b: /* FCVTMU */
13206 case 0x5c: /* FCVTAU */
13207 case 0x7a: /* FCVTPU */
13208 case 0x7b: /* FCVTZU */
13209 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13210 break;
13211 case 0x6f: /* FNEG */
13212 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13213 break;
13214 case 0x7d: /* FRSQRTE */
13215 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13216 break;
13217 default:
13218 g_assert_not_reached();
13221 /* limit any sign extension going on */
13222 tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff);
13223 write_fp_sreg(s, rd, tcg_res);
13225 tcg_temp_free_i32(tcg_res);
13226 tcg_temp_free_i32(tcg_op);
13227 } else {
13228 for (pass = 0; pass < (is_q ? 8 : 4); pass++) {
13229 TCGv_i32 tcg_op = tcg_temp_new_i32();
13230 TCGv_i32 tcg_res = tcg_temp_new_i32();
13232 read_vec_element_i32(s, tcg_op, rn, pass, MO_16);
13234 switch (fpop) {
13235 case 0x1a: /* FCVTNS */
13236 case 0x1b: /* FCVTMS */
13237 case 0x1c: /* FCVTAS */
13238 case 0x3a: /* FCVTPS */
13239 case 0x3b: /* FCVTZS */
13240 gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus);
13241 break;
13242 case 0x3d: /* FRECPE */
13243 gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus);
13244 break;
13245 case 0x5a: /* FCVTNU */
13246 case 0x5b: /* FCVTMU */
13247 case 0x5c: /* FCVTAU */
13248 case 0x7a: /* FCVTPU */
13249 case 0x7b: /* FCVTZU */
13250 gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus);
13251 break;
13252 case 0x18: /* FRINTN */
13253 case 0x19: /* FRINTM */
13254 case 0x38: /* FRINTP */
13255 case 0x39: /* FRINTZ */
13256 case 0x58: /* FRINTA */
13257 case 0x79: /* FRINTI */
13258 gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus);
13259 break;
13260 case 0x59: /* FRINTX */
13261 gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus);
13262 break;
13263 case 0x2f: /* FABS */
13264 tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff);
13265 break;
13266 case 0x6f: /* FNEG */
13267 tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000);
13268 break;
13269 case 0x7d: /* FRSQRTE */
13270 gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus);
13271 break;
13272 case 0x7f: /* FSQRT */
13273 gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus);
13274 break;
13275 default:
13276 g_assert_not_reached();
13279 write_vec_element_i32(s, tcg_res, rd, pass, MO_16);
13281 tcg_temp_free_i32(tcg_res);
13282 tcg_temp_free_i32(tcg_op);
13285 clear_vec_high(s, is_q, rd);
13288 if (tcg_rmode) {
13289 gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus);
13290 tcg_temp_free_i32(tcg_rmode);
13293 if (tcg_fpstatus) {
13294 tcg_temp_free_ptr(tcg_fpstatus);
13298 /* AdvSIMD scalar x indexed element
13299 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13300 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13301 * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13302 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
13303 * AdvSIMD vector x indexed element
13304 * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
13305 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13306 * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
13307 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
13309 static void disas_simd_indexed(DisasContext *s, uint32_t insn)
13311 /* This encoding has two kinds of instruction:
13312 * normal, where we perform elt x idxelt => elt for each
13313 * element in the vector
13314 * long, where we perform elt x idxelt and generate a result of
13315 * double the width of the input element
13316 * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
13318 bool is_scalar = extract32(insn, 28, 1);
13319 bool is_q = extract32(insn, 30, 1);
13320 bool u = extract32(insn, 29, 1);
13321 int size = extract32(insn, 22, 2);
13322 int l = extract32(insn, 21, 1);
13323 int m = extract32(insn, 20, 1);
13324 /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
13325 int rm = extract32(insn, 16, 4);
13326 int opcode = extract32(insn, 12, 4);
13327 int h = extract32(insn, 11, 1);
13328 int rn = extract32(insn, 5, 5);
13329 int rd = extract32(insn, 0, 5);
13330 bool is_long = false;
13331 int is_fp = 0;
13332 bool is_fp16 = false;
13333 int index;
13334 TCGv_ptr fpst;
13336 switch (16 * u + opcode) {
13337 case 0x08: /* MUL */
13338 case 0x10: /* MLA */
13339 case 0x14: /* MLS */
13340 if (is_scalar) {
13341 unallocated_encoding(s);
13342 return;
13344 break;
13345 case 0x02: /* SMLAL, SMLAL2 */
13346 case 0x12: /* UMLAL, UMLAL2 */
13347 case 0x06: /* SMLSL, SMLSL2 */
13348 case 0x16: /* UMLSL, UMLSL2 */
13349 case 0x0a: /* SMULL, SMULL2 */
13350 case 0x1a: /* UMULL, UMULL2 */
13351 if (is_scalar) {
13352 unallocated_encoding(s);
13353 return;
13355 is_long = true;
13356 break;
13357 case 0x03: /* SQDMLAL, SQDMLAL2 */
13358 case 0x07: /* SQDMLSL, SQDMLSL2 */
13359 case 0x0b: /* SQDMULL, SQDMULL2 */
13360 is_long = true;
13361 break;
13362 case 0x0c: /* SQDMULH */
13363 case 0x0d: /* SQRDMULH */
13364 break;
13365 case 0x01: /* FMLA */
13366 case 0x05: /* FMLS */
13367 case 0x09: /* FMUL */
13368 case 0x19: /* FMULX */
13369 is_fp = 1;
13370 break;
13371 case 0x1d: /* SQRDMLAH */
13372 case 0x1f: /* SQRDMLSH */
13373 if (!dc_isar_feature(aa64_rdm, s)) {
13374 unallocated_encoding(s);
13375 return;
13377 break;
13378 case 0x0e: /* SDOT */
13379 case 0x1e: /* UDOT */
13380 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_dp, s)) {
13381 unallocated_encoding(s);
13382 return;
13384 break;
13385 case 0x0f:
13386 switch (size) {
13387 case 0: /* SUDOT */
13388 case 2: /* USDOT */
13389 if (is_scalar || !dc_isar_feature(aa64_i8mm, s)) {
13390 unallocated_encoding(s);
13391 return;
13393 size = MO_32;
13394 break;
13395 case 1: /* BFDOT */
13396 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13397 unallocated_encoding(s);
13398 return;
13400 size = MO_32;
13401 break;
13402 case 3: /* BFMLAL{B,T} */
13403 if (is_scalar || !dc_isar_feature(aa64_bf16, s)) {
13404 unallocated_encoding(s);
13405 return;
13407 /* can't set is_fp without other incorrect size checks */
13408 size = MO_16;
13409 break;
13410 default:
13411 unallocated_encoding(s);
13412 return;
13414 break;
13415 case 0x11: /* FCMLA #0 */
13416 case 0x13: /* FCMLA #90 */
13417 case 0x15: /* FCMLA #180 */
13418 case 0x17: /* FCMLA #270 */
13419 if (is_scalar || !dc_isar_feature(aa64_fcma, s)) {
13420 unallocated_encoding(s);
13421 return;
13423 is_fp = 2;
13424 break;
13425 case 0x00: /* FMLAL */
13426 case 0x04: /* FMLSL */
13427 case 0x18: /* FMLAL2 */
13428 case 0x1c: /* FMLSL2 */
13429 if (is_scalar || size != MO_32 || !dc_isar_feature(aa64_fhm, s)) {
13430 unallocated_encoding(s);
13431 return;
13433 size = MO_16;
13434 /* is_fp, but we pass cpu_env not fp_status. */
13435 break;
13436 default:
13437 unallocated_encoding(s);
13438 return;
13441 switch (is_fp) {
13442 case 1: /* normal fp */
13443 /* convert insn encoded size to MemOp size */
13444 switch (size) {
13445 case 0: /* half-precision */
13446 size = MO_16;
13447 is_fp16 = true;
13448 break;
13449 case MO_32: /* single precision */
13450 case MO_64: /* double precision */
13451 break;
13452 default:
13453 unallocated_encoding(s);
13454 return;
13456 break;
13458 case 2: /* complex fp */
13459 /* Each indexable element is a complex pair. */
13460 size += 1;
13461 switch (size) {
13462 case MO_32:
13463 if (h && !is_q) {
13464 unallocated_encoding(s);
13465 return;
13467 is_fp16 = true;
13468 break;
13469 case MO_64:
13470 break;
13471 default:
13472 unallocated_encoding(s);
13473 return;
13475 break;
13477 default: /* integer */
13478 switch (size) {
13479 case MO_8:
13480 case MO_64:
13481 unallocated_encoding(s);
13482 return;
13484 break;
13486 if (is_fp16 && !dc_isar_feature(aa64_fp16, s)) {
13487 unallocated_encoding(s);
13488 return;
13491 /* Given MemOp size, adjust register and indexing. */
13492 switch (size) {
13493 case MO_16:
13494 index = h << 2 | l << 1 | m;
13495 break;
13496 case MO_32:
13497 index = h << 1 | l;
13498 rm |= m << 4;
13499 break;
13500 case MO_64:
13501 if (l || !is_q) {
13502 unallocated_encoding(s);
13503 return;
13505 index = h;
13506 rm |= m << 4;
13507 break;
13508 default:
13509 g_assert_not_reached();
13512 if (!fp_access_check(s)) {
13513 return;
13516 if (is_fp) {
13517 fpst = fpstatus_ptr(is_fp16 ? FPST_FPCR_F16 : FPST_FPCR);
13518 } else {
13519 fpst = NULL;
13522 switch (16 * u + opcode) {
13523 case 0x0e: /* SDOT */
13524 case 0x1e: /* UDOT */
13525 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13526 u ? gen_helper_gvec_udot_idx_b
13527 : gen_helper_gvec_sdot_idx_b);
13528 return;
13529 case 0x0f:
13530 switch (extract32(insn, 22, 2)) {
13531 case 0: /* SUDOT */
13532 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13533 gen_helper_gvec_sudot_idx_b);
13534 return;
13535 case 1: /* BFDOT */
13536 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13537 gen_helper_gvec_bfdot_idx);
13538 return;
13539 case 2: /* USDOT */
13540 gen_gvec_op4_ool(s, is_q, rd, rn, rm, rd, index,
13541 gen_helper_gvec_usdot_idx_b);
13542 return;
13543 case 3: /* BFMLAL{B,T} */
13544 gen_gvec_op4_fpst(s, 1, rd, rn, rm, rd, 0, (index << 1) | is_q,
13545 gen_helper_gvec_bfmlal_idx);
13546 return;
13548 g_assert_not_reached();
13549 case 0x11: /* FCMLA #0 */
13550 case 0x13: /* FCMLA #90 */
13551 case 0x15: /* FCMLA #180 */
13552 case 0x17: /* FCMLA #270 */
13554 int rot = extract32(insn, 13, 2);
13555 int data = (index << 2) | rot;
13556 tcg_gen_gvec_4_ptr(vec_full_reg_offset(s, rd),
13557 vec_full_reg_offset(s, rn),
13558 vec_full_reg_offset(s, rm),
13559 vec_full_reg_offset(s, rd), fpst,
13560 is_q ? 16 : 8, vec_full_reg_size(s), data,
13561 size == MO_64
13562 ? gen_helper_gvec_fcmlas_idx
13563 : gen_helper_gvec_fcmlah_idx);
13564 tcg_temp_free_ptr(fpst);
13566 return;
13568 case 0x00: /* FMLAL */
13569 case 0x04: /* FMLSL */
13570 case 0x18: /* FMLAL2 */
13571 case 0x1c: /* FMLSL2 */
13573 int is_s = extract32(opcode, 2, 1);
13574 int is_2 = u;
13575 int data = (index << 2) | (is_2 << 1) | is_s;
13576 tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd),
13577 vec_full_reg_offset(s, rn),
13578 vec_full_reg_offset(s, rm), cpu_env,
13579 is_q ? 16 : 8, vec_full_reg_size(s),
13580 data, gen_helper_gvec_fmlal_idx_a64);
13582 return;
13584 case 0x08: /* MUL */
13585 if (!is_long && !is_scalar) {
13586 static gen_helper_gvec_3 * const fns[3] = {
13587 gen_helper_gvec_mul_idx_h,
13588 gen_helper_gvec_mul_idx_s,
13589 gen_helper_gvec_mul_idx_d,
13591 tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd),
13592 vec_full_reg_offset(s, rn),
13593 vec_full_reg_offset(s, rm),
13594 is_q ? 16 : 8, vec_full_reg_size(s),
13595 index, fns[size - 1]);
13596 return;
13598 break;
13600 case 0x10: /* MLA */
13601 if (!is_long && !is_scalar) {
13602 static gen_helper_gvec_4 * const fns[3] = {
13603 gen_helper_gvec_mla_idx_h,
13604 gen_helper_gvec_mla_idx_s,
13605 gen_helper_gvec_mla_idx_d,
13607 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13608 vec_full_reg_offset(s, rn),
13609 vec_full_reg_offset(s, rm),
13610 vec_full_reg_offset(s, rd),
13611 is_q ? 16 : 8, vec_full_reg_size(s),
13612 index, fns[size - 1]);
13613 return;
13615 break;
13617 case 0x14: /* MLS */
13618 if (!is_long && !is_scalar) {
13619 static gen_helper_gvec_4 * const fns[3] = {
13620 gen_helper_gvec_mls_idx_h,
13621 gen_helper_gvec_mls_idx_s,
13622 gen_helper_gvec_mls_idx_d,
13624 tcg_gen_gvec_4_ool(vec_full_reg_offset(s, rd),
13625 vec_full_reg_offset(s, rn),
13626 vec_full_reg_offset(s, rm),
13627 vec_full_reg_offset(s, rd),
13628 is_q ? 16 : 8, vec_full_reg_size(s),
13629 index, fns[size - 1]);
13630 return;
13632 break;
13635 if (size == 3) {
13636 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13637 int pass;
13639 assert(is_fp && is_q && !is_long);
13641 read_vec_element(s, tcg_idx, rm, index, MO_64);
13643 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13644 TCGv_i64 tcg_op = tcg_temp_new_i64();
13645 TCGv_i64 tcg_res = tcg_temp_new_i64();
13647 read_vec_element(s, tcg_op, rn, pass, MO_64);
13649 switch (16 * u + opcode) {
13650 case 0x05: /* FMLS */
13651 /* As usual for ARM, separate negation for fused multiply-add */
13652 gen_helper_vfp_negd(tcg_op, tcg_op);
13653 /* fall through */
13654 case 0x01: /* FMLA */
13655 read_vec_element(s, tcg_res, rd, pass, MO_64);
13656 gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
13657 break;
13658 case 0x09: /* FMUL */
13659 gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
13660 break;
13661 case 0x19: /* FMULX */
13662 gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
13663 break;
13664 default:
13665 g_assert_not_reached();
13668 write_vec_element(s, tcg_res, rd, pass, MO_64);
13669 tcg_temp_free_i64(tcg_op);
13670 tcg_temp_free_i64(tcg_res);
13673 tcg_temp_free_i64(tcg_idx);
13674 clear_vec_high(s, !is_scalar, rd);
13675 } else if (!is_long) {
13676 /* 32 bit floating point, or 16 or 32 bit integer.
13677 * For the 16 bit scalar case we use the usual Neon helpers and
13678 * rely on the fact that 0 op 0 == 0 with no side effects.
13680 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13681 int pass, maxpasses;
13683 if (is_scalar) {
13684 maxpasses = 1;
13685 } else {
13686 maxpasses = is_q ? 4 : 2;
13689 read_vec_element_i32(s, tcg_idx, rm, index, size);
13691 if (size == 1 && !is_scalar) {
13692 /* The simplest way to handle the 16x16 indexed ops is to duplicate
13693 * the index into both halves of the 32 bit tcg_idx and then use
13694 * the usual Neon helpers.
13696 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13699 for (pass = 0; pass < maxpasses; pass++) {
13700 TCGv_i32 tcg_op = tcg_temp_new_i32();
13701 TCGv_i32 tcg_res = tcg_temp_new_i32();
13703 read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
13705 switch (16 * u + opcode) {
13706 case 0x08: /* MUL */
13707 case 0x10: /* MLA */
13708 case 0x14: /* MLS */
13710 static NeonGenTwoOpFn * const fns[2][2] = {
13711 { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
13712 { tcg_gen_add_i32, tcg_gen_sub_i32 },
13714 NeonGenTwoOpFn *genfn;
13715 bool is_sub = opcode == 0x4;
13717 if (size == 1) {
13718 gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
13719 } else {
13720 tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
13722 if (opcode == 0x8) {
13723 break;
13725 read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
13726 genfn = fns[size - 1][is_sub];
13727 genfn(tcg_res, tcg_op, tcg_res);
13728 break;
13730 case 0x05: /* FMLS */
13731 case 0x01: /* FMLA */
13732 read_vec_element_i32(s, tcg_res, rd, pass,
13733 is_scalar ? size : MO_32);
13734 switch (size) {
13735 case 1:
13736 if (opcode == 0x5) {
13737 /* As usual for ARM, separate negation for fused
13738 * multiply-add */
13739 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000);
13741 if (is_scalar) {
13742 gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx,
13743 tcg_res, fpst);
13744 } else {
13745 gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx,
13746 tcg_res, fpst);
13748 break;
13749 case 2:
13750 if (opcode == 0x5) {
13751 /* As usual for ARM, separate negation for
13752 * fused multiply-add */
13753 tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000);
13755 gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx,
13756 tcg_res, fpst);
13757 break;
13758 default:
13759 g_assert_not_reached();
13761 break;
13762 case 0x09: /* FMUL */
13763 switch (size) {
13764 case 1:
13765 if (is_scalar) {
13766 gen_helper_advsimd_mulh(tcg_res, tcg_op,
13767 tcg_idx, fpst);
13768 } else {
13769 gen_helper_advsimd_mul2h(tcg_res, tcg_op,
13770 tcg_idx, fpst);
13772 break;
13773 case 2:
13774 gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
13775 break;
13776 default:
13777 g_assert_not_reached();
13779 break;
13780 case 0x19: /* FMULX */
13781 switch (size) {
13782 case 1:
13783 if (is_scalar) {
13784 gen_helper_advsimd_mulxh(tcg_res, tcg_op,
13785 tcg_idx, fpst);
13786 } else {
13787 gen_helper_advsimd_mulx2h(tcg_res, tcg_op,
13788 tcg_idx, fpst);
13790 break;
13791 case 2:
13792 gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
13793 break;
13794 default:
13795 g_assert_not_reached();
13797 break;
13798 case 0x0c: /* SQDMULH */
13799 if (size == 1) {
13800 gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
13801 tcg_op, tcg_idx);
13802 } else {
13803 gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
13804 tcg_op, tcg_idx);
13806 break;
13807 case 0x0d: /* SQRDMULH */
13808 if (size == 1) {
13809 gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
13810 tcg_op, tcg_idx);
13811 } else {
13812 gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
13813 tcg_op, tcg_idx);
13815 break;
13816 case 0x1d: /* SQRDMLAH */
13817 read_vec_element_i32(s, tcg_res, rd, pass,
13818 is_scalar ? size : MO_32);
13819 if (size == 1) {
13820 gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env,
13821 tcg_op, tcg_idx, tcg_res);
13822 } else {
13823 gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env,
13824 tcg_op, tcg_idx, tcg_res);
13826 break;
13827 case 0x1f: /* SQRDMLSH */
13828 read_vec_element_i32(s, tcg_res, rd, pass,
13829 is_scalar ? size : MO_32);
13830 if (size == 1) {
13831 gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env,
13832 tcg_op, tcg_idx, tcg_res);
13833 } else {
13834 gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env,
13835 tcg_op, tcg_idx, tcg_res);
13837 break;
13838 default:
13839 g_assert_not_reached();
13842 if (is_scalar) {
13843 write_fp_sreg(s, rd, tcg_res);
13844 } else {
13845 write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
13848 tcg_temp_free_i32(tcg_op);
13849 tcg_temp_free_i32(tcg_res);
13852 tcg_temp_free_i32(tcg_idx);
13853 clear_vec_high(s, is_q, rd);
13854 } else {
13855 /* long ops: 16x16->32 or 32x32->64 */
13856 TCGv_i64 tcg_res[2];
13857 int pass;
13858 bool satop = extract32(opcode, 0, 1);
13859 MemOp memop = MO_32;
13861 if (satop || !u) {
13862 memop |= MO_SIGN;
13865 if (size == 2) {
13866 TCGv_i64 tcg_idx = tcg_temp_new_i64();
13868 read_vec_element(s, tcg_idx, rm, index, memop);
13870 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13871 TCGv_i64 tcg_op = tcg_temp_new_i64();
13872 TCGv_i64 tcg_passres;
13873 int passelt;
13875 if (is_scalar) {
13876 passelt = 0;
13877 } else {
13878 passelt = pass + (is_q * 2);
13881 read_vec_element(s, tcg_op, rn, passelt, memop);
13883 tcg_res[pass] = tcg_temp_new_i64();
13885 if (opcode == 0xa || opcode == 0xb) {
13886 /* Non-accumulating ops */
13887 tcg_passres = tcg_res[pass];
13888 } else {
13889 tcg_passres = tcg_temp_new_i64();
13892 tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
13893 tcg_temp_free_i64(tcg_op);
13895 if (satop) {
13896 /* saturating, doubling */
13897 gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
13898 tcg_passres, tcg_passres);
13901 if (opcode == 0xa || opcode == 0xb) {
13902 continue;
13905 /* Accumulating op: handle accumulate step */
13906 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13908 switch (opcode) {
13909 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13910 tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13911 break;
13912 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13913 tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
13914 break;
13915 case 0x7: /* SQDMLSL, SQDMLSL2 */
13916 tcg_gen_neg_i64(tcg_passres, tcg_passres);
13917 /* fall through */
13918 case 0x3: /* SQDMLAL, SQDMLAL2 */
13919 gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
13920 tcg_res[pass],
13921 tcg_passres);
13922 break;
13923 default:
13924 g_assert_not_reached();
13926 tcg_temp_free_i64(tcg_passres);
13928 tcg_temp_free_i64(tcg_idx);
13930 clear_vec_high(s, !is_scalar, rd);
13931 } else {
13932 TCGv_i32 tcg_idx = tcg_temp_new_i32();
13934 assert(size == 1);
13935 read_vec_element_i32(s, tcg_idx, rm, index, size);
13937 if (!is_scalar) {
13938 /* The simplest way to handle the 16x16 indexed ops is to
13939 * duplicate the index into both halves of the 32 bit tcg_idx
13940 * and then use the usual Neon helpers.
13942 tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
13945 for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
13946 TCGv_i32 tcg_op = tcg_temp_new_i32();
13947 TCGv_i64 tcg_passres;
13949 if (is_scalar) {
13950 read_vec_element_i32(s, tcg_op, rn, pass, size);
13951 } else {
13952 read_vec_element_i32(s, tcg_op, rn,
13953 pass + (is_q * 2), MO_32);
13956 tcg_res[pass] = tcg_temp_new_i64();
13958 if (opcode == 0xa || opcode == 0xb) {
13959 /* Non-accumulating ops */
13960 tcg_passres = tcg_res[pass];
13961 } else {
13962 tcg_passres = tcg_temp_new_i64();
13965 if (memop & MO_SIGN) {
13966 gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
13967 } else {
13968 gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
13970 if (satop) {
13971 gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
13972 tcg_passres, tcg_passres);
13974 tcg_temp_free_i32(tcg_op);
13976 if (opcode == 0xa || opcode == 0xb) {
13977 continue;
13980 /* Accumulating op: handle accumulate step */
13981 read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
13983 switch (opcode) {
13984 case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
13985 gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
13986 tcg_passres);
13987 break;
13988 case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
13989 gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
13990 tcg_passres);
13991 break;
13992 case 0x7: /* SQDMLSL, SQDMLSL2 */
13993 gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
13994 /* fall through */
13995 case 0x3: /* SQDMLAL, SQDMLAL2 */
13996 gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
13997 tcg_res[pass],
13998 tcg_passres);
13999 break;
14000 default:
14001 g_assert_not_reached();
14003 tcg_temp_free_i64(tcg_passres);
14005 tcg_temp_free_i32(tcg_idx);
14007 if (is_scalar) {
14008 tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
14012 if (is_scalar) {
14013 tcg_res[1] = tcg_const_i64(0);
14016 for (pass = 0; pass < 2; pass++) {
14017 write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
14018 tcg_temp_free_i64(tcg_res[pass]);
14022 if (fpst) {
14023 tcg_temp_free_ptr(fpst);
14027 /* Crypto AES
14028 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14029 * +-----------------+------+-----------+--------+-----+------+------+
14030 * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14031 * +-----------------+------+-----------+--------+-----+------+------+
14033 static void disas_crypto_aes(DisasContext *s, uint32_t insn)
14035 int size = extract32(insn, 22, 2);
14036 int opcode = extract32(insn, 12, 5);
14037 int rn = extract32(insn, 5, 5);
14038 int rd = extract32(insn, 0, 5);
14039 int decrypt;
14040 gen_helper_gvec_2 *genfn2 = NULL;
14041 gen_helper_gvec_3 *genfn3 = NULL;
14043 if (!dc_isar_feature(aa64_aes, s) || size != 0) {
14044 unallocated_encoding(s);
14045 return;
14048 switch (opcode) {
14049 case 0x4: /* AESE */
14050 decrypt = 0;
14051 genfn3 = gen_helper_crypto_aese;
14052 break;
14053 case 0x6: /* AESMC */
14054 decrypt = 0;
14055 genfn2 = gen_helper_crypto_aesmc;
14056 break;
14057 case 0x5: /* AESD */
14058 decrypt = 1;
14059 genfn3 = gen_helper_crypto_aese;
14060 break;
14061 case 0x7: /* AESIMC */
14062 decrypt = 1;
14063 genfn2 = gen_helper_crypto_aesmc;
14064 break;
14065 default:
14066 unallocated_encoding(s);
14067 return;
14070 if (!fp_access_check(s)) {
14071 return;
14073 if (genfn2) {
14074 gen_gvec_op2_ool(s, true, rd, rn, decrypt, genfn2);
14075 } else {
14076 gen_gvec_op3_ool(s, true, rd, rd, rn, decrypt, genfn3);
14080 /* Crypto three-reg SHA
14081 * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
14082 * +-----------------+------+---+------+---+--------+-----+------+------+
14083 * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
14084 * +-----------------+------+---+------+---+--------+-----+------+------+
14086 static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
14088 int size = extract32(insn, 22, 2);
14089 int opcode = extract32(insn, 12, 3);
14090 int rm = extract32(insn, 16, 5);
14091 int rn = extract32(insn, 5, 5);
14092 int rd = extract32(insn, 0, 5);
14093 gen_helper_gvec_3 *genfn;
14094 bool feature;
14096 if (size != 0) {
14097 unallocated_encoding(s);
14098 return;
14101 switch (opcode) {
14102 case 0: /* SHA1C */
14103 genfn = gen_helper_crypto_sha1c;
14104 feature = dc_isar_feature(aa64_sha1, s);
14105 break;
14106 case 1: /* SHA1P */
14107 genfn = gen_helper_crypto_sha1p;
14108 feature = dc_isar_feature(aa64_sha1, s);
14109 break;
14110 case 2: /* SHA1M */
14111 genfn = gen_helper_crypto_sha1m;
14112 feature = dc_isar_feature(aa64_sha1, s);
14113 break;
14114 case 3: /* SHA1SU0 */
14115 genfn = gen_helper_crypto_sha1su0;
14116 feature = dc_isar_feature(aa64_sha1, s);
14117 break;
14118 case 4: /* SHA256H */
14119 genfn = gen_helper_crypto_sha256h;
14120 feature = dc_isar_feature(aa64_sha256, s);
14121 break;
14122 case 5: /* SHA256H2 */
14123 genfn = gen_helper_crypto_sha256h2;
14124 feature = dc_isar_feature(aa64_sha256, s);
14125 break;
14126 case 6: /* SHA256SU1 */
14127 genfn = gen_helper_crypto_sha256su1;
14128 feature = dc_isar_feature(aa64_sha256, s);
14129 break;
14130 default:
14131 unallocated_encoding(s);
14132 return;
14135 if (!feature) {
14136 unallocated_encoding(s);
14137 return;
14140 if (!fp_access_check(s)) {
14141 return;
14143 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, genfn);
14146 /* Crypto two-reg SHA
14147 * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
14148 * +-----------------+------+-----------+--------+-----+------+------+
14149 * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
14150 * +-----------------+------+-----------+--------+-----+------+------+
14152 static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
14154 int size = extract32(insn, 22, 2);
14155 int opcode = extract32(insn, 12, 5);
14156 int rn = extract32(insn, 5, 5);
14157 int rd = extract32(insn, 0, 5);
14158 gen_helper_gvec_2 *genfn;
14159 bool feature;
14161 if (size != 0) {
14162 unallocated_encoding(s);
14163 return;
14166 switch (opcode) {
14167 case 0: /* SHA1H */
14168 feature = dc_isar_feature(aa64_sha1, s);
14169 genfn = gen_helper_crypto_sha1h;
14170 break;
14171 case 1: /* SHA1SU1 */
14172 feature = dc_isar_feature(aa64_sha1, s);
14173 genfn = gen_helper_crypto_sha1su1;
14174 break;
14175 case 2: /* SHA256SU0 */
14176 feature = dc_isar_feature(aa64_sha256, s);
14177 genfn = gen_helper_crypto_sha256su0;
14178 break;
14179 default:
14180 unallocated_encoding(s);
14181 return;
14184 if (!feature) {
14185 unallocated_encoding(s);
14186 return;
14189 if (!fp_access_check(s)) {
14190 return;
14192 gen_gvec_op2_ool(s, true, rd, rn, 0, genfn);
14195 static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
14197 tcg_gen_rotli_i64(d, m, 1);
14198 tcg_gen_xor_i64(d, d, n);
14201 static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
14203 tcg_gen_rotli_vec(vece, d, m, 1);
14204 tcg_gen_xor_vec(vece, d, d, n);
14207 void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
14208 uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
14210 static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
14211 static const GVecGen3 op = {
14212 .fni8 = gen_rax1_i64,
14213 .fniv = gen_rax1_vec,
14214 .opt_opc = vecop_list,
14215 .fno = gen_helper_crypto_rax1,
14216 .vece = MO_64,
14218 tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
14221 /* Crypto three-reg SHA512
14222 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14223 * +-----------------------+------+---+---+-----+--------+------+------+
14224 * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd |
14225 * +-----------------------+------+---+---+-----+--------+------+------+
14227 static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn)
14229 int opcode = extract32(insn, 10, 2);
14230 int o = extract32(insn, 14, 1);
14231 int rm = extract32(insn, 16, 5);
14232 int rn = extract32(insn, 5, 5);
14233 int rd = extract32(insn, 0, 5);
14234 bool feature;
14235 gen_helper_gvec_3 *oolfn = NULL;
14236 GVecGen3Fn *gvecfn = NULL;
14238 if (o == 0) {
14239 switch (opcode) {
14240 case 0: /* SHA512H */
14241 feature = dc_isar_feature(aa64_sha512, s);
14242 oolfn = gen_helper_crypto_sha512h;
14243 break;
14244 case 1: /* SHA512H2 */
14245 feature = dc_isar_feature(aa64_sha512, s);
14246 oolfn = gen_helper_crypto_sha512h2;
14247 break;
14248 case 2: /* SHA512SU1 */
14249 feature = dc_isar_feature(aa64_sha512, s);
14250 oolfn = gen_helper_crypto_sha512su1;
14251 break;
14252 case 3: /* RAX1 */
14253 feature = dc_isar_feature(aa64_sha3, s);
14254 gvecfn = gen_gvec_rax1;
14255 break;
14256 default:
14257 g_assert_not_reached();
14259 } else {
14260 switch (opcode) {
14261 case 0: /* SM3PARTW1 */
14262 feature = dc_isar_feature(aa64_sm3, s);
14263 oolfn = gen_helper_crypto_sm3partw1;
14264 break;
14265 case 1: /* SM3PARTW2 */
14266 feature = dc_isar_feature(aa64_sm3, s);
14267 oolfn = gen_helper_crypto_sm3partw2;
14268 break;
14269 case 2: /* SM4EKEY */
14270 feature = dc_isar_feature(aa64_sm4, s);
14271 oolfn = gen_helper_crypto_sm4ekey;
14272 break;
14273 default:
14274 unallocated_encoding(s);
14275 return;
14279 if (!feature) {
14280 unallocated_encoding(s);
14281 return;
14284 if (!fp_access_check(s)) {
14285 return;
14288 if (oolfn) {
14289 gen_gvec_op3_ool(s, true, rd, rn, rm, 0, oolfn);
14290 } else {
14291 gen_gvec_fn3(s, true, rd, rn, rm, gvecfn, MO_64);
14295 /* Crypto two-reg SHA512
14296 * 31 12 11 10 9 5 4 0
14297 * +-----------------------------------------+--------+------+------+
14298 * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd |
14299 * +-----------------------------------------+--------+------+------+
14301 static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn)
14303 int opcode = extract32(insn, 10, 2);
14304 int rn = extract32(insn, 5, 5);
14305 int rd = extract32(insn, 0, 5);
14306 bool feature;
14308 switch (opcode) {
14309 case 0: /* SHA512SU0 */
14310 feature = dc_isar_feature(aa64_sha512, s);
14311 break;
14312 case 1: /* SM4E */
14313 feature = dc_isar_feature(aa64_sm4, s);
14314 break;
14315 default:
14316 unallocated_encoding(s);
14317 return;
14320 if (!feature) {
14321 unallocated_encoding(s);
14322 return;
14325 if (!fp_access_check(s)) {
14326 return;
14329 switch (opcode) {
14330 case 0: /* SHA512SU0 */
14331 gen_gvec_op2_ool(s, true, rd, rn, 0, gen_helper_crypto_sha512su0);
14332 break;
14333 case 1: /* SM4E */
14334 gen_gvec_op3_ool(s, true, rd, rd, rn, 0, gen_helper_crypto_sm4e);
14335 break;
14336 default:
14337 g_assert_not_reached();
14341 /* Crypto four-register
14342 * 31 23 22 21 20 16 15 14 10 9 5 4 0
14343 * +-------------------+-----+------+---+------+------+------+
14344 * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd |
14345 * +-------------------+-----+------+---+------+------+------+
14347 static void disas_crypto_four_reg(DisasContext *s, uint32_t insn)
14349 int op0 = extract32(insn, 21, 2);
14350 int rm = extract32(insn, 16, 5);
14351 int ra = extract32(insn, 10, 5);
14352 int rn = extract32(insn, 5, 5);
14353 int rd = extract32(insn, 0, 5);
14354 bool feature;
14356 switch (op0) {
14357 case 0: /* EOR3 */
14358 case 1: /* BCAX */
14359 feature = dc_isar_feature(aa64_sha3, s);
14360 break;
14361 case 2: /* SM3SS1 */
14362 feature = dc_isar_feature(aa64_sm3, s);
14363 break;
14364 default:
14365 unallocated_encoding(s);
14366 return;
14369 if (!feature) {
14370 unallocated_encoding(s);
14371 return;
14374 if (!fp_access_check(s)) {
14375 return;
14378 if (op0 < 2) {
14379 TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2];
14380 int pass;
14382 tcg_op1 = tcg_temp_new_i64();
14383 tcg_op2 = tcg_temp_new_i64();
14384 tcg_op3 = tcg_temp_new_i64();
14385 tcg_res[0] = tcg_temp_new_i64();
14386 tcg_res[1] = tcg_temp_new_i64();
14388 for (pass = 0; pass < 2; pass++) {
14389 read_vec_element(s, tcg_op1, rn, pass, MO_64);
14390 read_vec_element(s, tcg_op2, rm, pass, MO_64);
14391 read_vec_element(s, tcg_op3, ra, pass, MO_64);
14393 if (op0 == 0) {
14394 /* EOR3 */
14395 tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3);
14396 } else {
14397 /* BCAX */
14398 tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3);
14400 tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
14402 write_vec_element(s, tcg_res[0], rd, 0, MO_64);
14403 write_vec_element(s, tcg_res[1], rd, 1, MO_64);
14405 tcg_temp_free_i64(tcg_op1);
14406 tcg_temp_free_i64(tcg_op2);
14407 tcg_temp_free_i64(tcg_op3);
14408 tcg_temp_free_i64(tcg_res[0]);
14409 tcg_temp_free_i64(tcg_res[1]);
14410 } else {
14411 TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero;
14413 tcg_op1 = tcg_temp_new_i32();
14414 tcg_op2 = tcg_temp_new_i32();
14415 tcg_op3 = tcg_temp_new_i32();
14416 tcg_res = tcg_temp_new_i32();
14417 tcg_zero = tcg_const_i32(0);
14419 read_vec_element_i32(s, tcg_op1, rn, 3, MO_32);
14420 read_vec_element_i32(s, tcg_op2, rm, 3, MO_32);
14421 read_vec_element_i32(s, tcg_op3, ra, 3, MO_32);
14423 tcg_gen_rotri_i32(tcg_res, tcg_op1, 20);
14424 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2);
14425 tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3);
14426 tcg_gen_rotri_i32(tcg_res, tcg_res, 25);
14428 write_vec_element_i32(s, tcg_zero, rd, 0, MO_32);
14429 write_vec_element_i32(s, tcg_zero, rd, 1, MO_32);
14430 write_vec_element_i32(s, tcg_zero, rd, 2, MO_32);
14431 write_vec_element_i32(s, tcg_res, rd, 3, MO_32);
14433 tcg_temp_free_i32(tcg_op1);
14434 tcg_temp_free_i32(tcg_op2);
14435 tcg_temp_free_i32(tcg_op3);
14436 tcg_temp_free_i32(tcg_res);
14437 tcg_temp_free_i32(tcg_zero);
14441 /* Crypto XAR
14442 * 31 21 20 16 15 10 9 5 4 0
14443 * +-----------------------+------+--------+------+------+
14444 * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd |
14445 * +-----------------------+------+--------+------+------+
14447 static void disas_crypto_xar(DisasContext *s, uint32_t insn)
14449 int rm = extract32(insn, 16, 5);
14450 int imm6 = extract32(insn, 10, 6);
14451 int rn = extract32(insn, 5, 5);
14452 int rd = extract32(insn, 0, 5);
14454 if (!dc_isar_feature(aa64_sha3, s)) {
14455 unallocated_encoding(s);
14456 return;
14459 if (!fp_access_check(s)) {
14460 return;
14463 gen_gvec_xar(MO_64, vec_full_reg_offset(s, rd),
14464 vec_full_reg_offset(s, rn),
14465 vec_full_reg_offset(s, rm), imm6, 16,
14466 vec_full_reg_size(s));
14469 /* Crypto three-reg imm2
14470 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0
14471 * +-----------------------+------+-----+------+--------+------+------+
14472 * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd |
14473 * +-----------------------+------+-----+------+--------+------+------+
14475 static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn)
14477 static gen_helper_gvec_3 * const fns[4] = {
14478 gen_helper_crypto_sm3tt1a, gen_helper_crypto_sm3tt1b,
14479 gen_helper_crypto_sm3tt2a, gen_helper_crypto_sm3tt2b,
14481 int opcode = extract32(insn, 10, 2);
14482 int imm2 = extract32(insn, 12, 2);
14483 int rm = extract32(insn, 16, 5);
14484 int rn = extract32(insn, 5, 5);
14485 int rd = extract32(insn, 0, 5);
14487 if (!dc_isar_feature(aa64_sm3, s)) {
14488 unallocated_encoding(s);
14489 return;
14492 if (!fp_access_check(s)) {
14493 return;
14496 gen_gvec_op3_ool(s, true, rd, rn, rm, imm2, fns[opcode]);
14499 /* C3.6 Data processing - SIMD, inc Crypto
14501 * As the decode gets a little complex we are using a table based
14502 * approach for this part of the decode.
14504 static const AArch64DecodeTable data_proc_simd[] = {
14505 /* pattern , mask , fn */
14506 { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
14507 { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra },
14508 { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
14509 { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
14510 { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
14511 { 0x0e000400, 0x9fe08400, disas_simd_copy },
14512 { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
14513 /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
14514 { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
14515 { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
14516 { 0x0e000000, 0xbf208c00, disas_simd_tb },
14517 { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
14518 { 0x2e000000, 0xbf208400, disas_simd_ext },
14519 { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
14520 { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra },
14521 { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
14522 { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
14523 { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
14524 { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
14525 { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
14526 { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
14527 { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
14528 { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
14529 { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
14530 { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 },
14531 { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 },
14532 { 0xce000000, 0xff808000, disas_crypto_four_reg },
14533 { 0xce800000, 0xffe00000, disas_crypto_xar },
14534 { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 },
14535 { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 },
14536 { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 },
14537 { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 },
14538 { 0x00000000, 0x00000000, NULL }
14541 static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
14543 /* Note that this is called with all non-FP cases from
14544 * table C3-6 so it must UNDEF for entries not specifically
14545 * allocated to instructions in that table.
14547 AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
14548 if (fn) {
14549 fn(s, insn);
14550 } else {
14551 unallocated_encoding(s);
14555 /* C3.6 Data processing - SIMD and floating point */
14556 static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn)
14558 if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) {
14559 disas_data_proc_fp(s, insn);
14560 } else {
14561 /* SIMD, including crypto */
14562 disas_data_proc_simd(s, insn);
14567 * is_guarded_page:
14568 * @env: The cpu environment
14569 * @s: The DisasContext
14571 * Return true if the page is guarded.
14573 static bool is_guarded_page(CPUARMState *env, DisasContext *s)
14575 uint64_t addr = s->base.pc_first;
14576 #ifdef CONFIG_USER_ONLY
14577 return page_get_flags(addr) & PAGE_BTI;
14578 #else
14579 int mmu_idx = arm_to_core_mmu_idx(s->mmu_idx);
14580 unsigned int index = tlb_index(env, mmu_idx, addr);
14581 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
14584 * We test this immediately after reading an insn, which means
14585 * that any normal page must be in the TLB. The only exception
14586 * would be for executing from flash or device memory, which
14587 * does not retain the TLB entry.
14589 * FIXME: Assume false for those, for now. We could use
14590 * arm_cpu_get_phys_page_attrs_debug to re-read the page
14591 * table entry even for that case.
14593 return (tlb_hit(entry->addr_code, addr) &&
14594 arm_tlb_bti_gp(&env_tlb(env)->d[mmu_idx].iotlb[index].attrs));
14595 #endif
14599 * btype_destination_ok:
14600 * @insn: The instruction at the branch destination
14601 * @bt: SCTLR_ELx.BT
14602 * @btype: PSTATE.BTYPE, and is non-zero
14604 * On a guarded page, there are a limited number of insns
14605 * that may be present at the branch target:
14606 * - branch target identifiers,
14607 * - paciasp, pacibsp,
14608 * - BRK insn
14609 * - HLT insn
14610 * Anything else causes a Branch Target Exception.
14612 * Return true if the branch is compatible, false to raise BTITRAP.
14614 static bool btype_destination_ok(uint32_t insn, bool bt, int btype)
14616 if ((insn & 0xfffff01fu) == 0xd503201fu) {
14617 /* HINT space */
14618 switch (extract32(insn, 5, 7)) {
14619 case 0b011001: /* PACIASP */
14620 case 0b011011: /* PACIBSP */
14622 * If SCTLR_ELx.BT, then PACI*SP are not compatible
14623 * with btype == 3. Otherwise all btype are ok.
14625 return !bt || btype != 3;
14626 case 0b100000: /* BTI */
14627 /* Not compatible with any btype. */
14628 return false;
14629 case 0b100010: /* BTI c */
14630 /* Not compatible with btype == 3 */
14631 return btype != 3;
14632 case 0b100100: /* BTI j */
14633 /* Not compatible with btype == 2 */
14634 return btype != 2;
14635 case 0b100110: /* BTI jc */
14636 /* Compatible with any btype. */
14637 return true;
14639 } else {
14640 switch (insn & 0xffe0001fu) {
14641 case 0xd4200000u: /* BRK */
14642 case 0xd4400000u: /* HLT */
14643 /* Give priority to the breakpoint exception. */
14644 return true;
14647 return false;
14650 static void aarch64_tr_init_disas_context(DisasContextBase *dcbase,
14651 CPUState *cpu)
14653 DisasContext *dc = container_of(dcbase, DisasContext, base);
14654 CPUARMState *env = cpu->env_ptr;
14655 ARMCPU *arm_cpu = env_archcpu(env);
14656 CPUARMTBFlags tb_flags = arm_tbflags_from_tb(dc->base.tb);
14657 int bound, core_mmu_idx;
14659 dc->isar = &arm_cpu->isar;
14660 dc->condjmp = 0;
14662 dc->aarch64 = 1;
14663 /* If we are coming from secure EL0 in a system with a 32-bit EL3, then
14664 * there is no secure EL1, so we route exceptions to EL3.
14666 dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) &&
14667 !arm_el_is_aa64(env, 3);
14668 dc->thumb = 0;
14669 dc->sctlr_b = 0;
14670 dc->be_data = EX_TBFLAG_ANY(tb_flags, BE_DATA) ? MO_BE : MO_LE;
14671 dc->condexec_mask = 0;
14672 dc->condexec_cond = 0;
14673 core_mmu_idx = EX_TBFLAG_ANY(tb_flags, MMUIDX);
14674 dc->mmu_idx = core_to_aa64_mmu_idx(core_mmu_idx);
14675 dc->tbii = EX_TBFLAG_A64(tb_flags, TBII);
14676 dc->tbid = EX_TBFLAG_A64(tb_flags, TBID);
14677 dc->tcma = EX_TBFLAG_A64(tb_flags, TCMA);
14678 dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx);
14679 #if !defined(CONFIG_USER_ONLY)
14680 dc->user = (dc->current_el == 0);
14681 #endif
14682 dc->fp_excp_el = EX_TBFLAG_ANY(tb_flags, FPEXC_EL);
14683 dc->align_mem = EX_TBFLAG_ANY(tb_flags, ALIGN_MEM);
14684 dc->pstate_il = EX_TBFLAG_ANY(tb_flags, PSTATE__IL);
14685 dc->sve_excp_el = EX_TBFLAG_A64(tb_flags, SVEEXC_EL);
14686 dc->sve_len = (EX_TBFLAG_A64(tb_flags, ZCR_LEN) + 1) * 16;
14687 dc->pauth_active = EX_TBFLAG_A64(tb_flags, PAUTH_ACTIVE);
14688 dc->bt = EX_TBFLAG_A64(tb_flags, BT);
14689 dc->btype = EX_TBFLAG_A64(tb_flags, BTYPE);
14690 dc->unpriv = EX_TBFLAG_A64(tb_flags, UNPRIV);
14691 dc->ata = EX_TBFLAG_A64(tb_flags, ATA);
14692 dc->mte_active[0] = EX_TBFLAG_A64(tb_flags, MTE_ACTIVE);
14693 dc->mte_active[1] = EX_TBFLAG_A64(tb_flags, MTE0_ACTIVE);
14694 dc->vec_len = 0;
14695 dc->vec_stride = 0;
14696 dc->cp_regs = arm_cpu->cp_regs;
14697 dc->features = env->features;
14698 dc->dcz_blocksize = arm_cpu->dcz_blocksize;
14700 #ifdef CONFIG_USER_ONLY
14701 /* In sve_probe_page, we assume TBI is enabled. */
14702 tcg_debug_assert(dc->tbid & 1);
14703 #endif
14705 /* Single step state. The code-generation logic here is:
14706 * SS_ACTIVE == 0:
14707 * generate code with no special handling for single-stepping (except
14708 * that anything that can make us go to SS_ACTIVE == 1 must end the TB;
14709 * this happens anyway because those changes are all system register or
14710 * PSTATE writes).
14711 * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending)
14712 * emit code for one insn
14713 * emit code to clear PSTATE.SS
14714 * emit code to generate software step exception for completed step
14715 * end TB (as usual for having generated an exception)
14716 * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending)
14717 * emit code to generate a software step exception
14718 * end the TB
14720 dc->ss_active = EX_TBFLAG_ANY(tb_flags, SS_ACTIVE);
14721 dc->pstate_ss = EX_TBFLAG_ANY(tb_flags, PSTATE__SS);
14722 dc->is_ldex = false;
14723 dc->debug_target_el = EX_TBFLAG_ANY(tb_flags, DEBUG_TARGET_EL);
14725 /* Bound the number of insns to execute to those left on the page. */
14726 bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4;
14728 /* If architectural single step active, limit to 1. */
14729 if (dc->ss_active) {
14730 bound = 1;
14732 dc->base.max_insns = MIN(dc->base.max_insns, bound);
14734 init_tmp_a64_array(dc);
14737 static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu)
14741 static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu)
14743 DisasContext *dc = container_of(dcbase, DisasContext, base);
14745 tcg_gen_insn_start(dc->base.pc_next, 0, 0);
14746 dc->insn_start = tcg_last_op();
14749 static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu)
14751 DisasContext *s = container_of(dcbase, DisasContext, base);
14752 CPUARMState *env = cpu->env_ptr;
14753 uint64_t pc = s->base.pc_next;
14754 uint32_t insn;
14756 /* Singlestep exceptions have the highest priority. */
14757 if (s->ss_active && !s->pstate_ss) {
14758 /* Singlestep state is Active-pending.
14759 * If we're in this state at the start of a TB then either
14760 * a) we just took an exception to an EL which is being debugged
14761 * and this is the first insn in the exception handler
14762 * b) debug exceptions were masked and we just unmasked them
14763 * without changing EL (eg by clearing PSTATE.D)
14764 * In either case we're going to take a swstep exception in the
14765 * "did not step an insn" case, and so the syndrome ISV and EX
14766 * bits should be zero.
14768 assert(s->base.num_insns == 1);
14769 gen_swstep_exception(s, 0, 0);
14770 s->base.is_jmp = DISAS_NORETURN;
14771 s->base.pc_next = pc + 4;
14772 return;
14775 if (pc & 3) {
14777 * PC alignment fault. This has priority over the instruction abort
14778 * that we would receive from a translation fault via arm_ldl_code.
14779 * This should only be possible after an indirect branch, at the
14780 * start of the TB.
14782 assert(s->base.num_insns == 1);
14783 gen_helper_exception_pc_alignment(cpu_env, tcg_constant_tl(pc));
14784 s->base.is_jmp = DISAS_NORETURN;
14785 s->base.pc_next = QEMU_ALIGN_UP(pc, 4);
14786 return;
14789 s->pc_curr = pc;
14790 insn = arm_ldl_code(env, &s->base, pc, s->sctlr_b);
14791 s->insn = insn;
14792 s->base.pc_next = pc + 4;
14794 s->fp_access_checked = false;
14795 s->sve_access_checked = false;
14797 if (s->pstate_il) {
14799 * Illegal execution state. This has priority over BTI
14800 * exceptions, but comes after instruction abort exceptions.
14802 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14803 syn_illegalstate(), default_exception_el(s));
14804 return;
14807 if (dc_isar_feature(aa64_bti, s)) {
14808 if (s->base.num_insns == 1) {
14810 * At the first insn of the TB, compute s->guarded_page.
14811 * We delayed computing this until successfully reading
14812 * the first insn of the TB, above. This (mostly) ensures
14813 * that the softmmu tlb entry has been populated, and the
14814 * page table GP bit is available.
14816 * Note that we need to compute this even if btype == 0,
14817 * because this value is used for BR instructions later
14818 * where ENV is not available.
14820 s->guarded_page = is_guarded_page(env, s);
14822 /* First insn can have btype set to non-zero. */
14823 tcg_debug_assert(s->btype >= 0);
14826 * Note that the Branch Target Exception has fairly high
14827 * priority -- below debugging exceptions but above most
14828 * everything else. This allows us to handle this now
14829 * instead of waiting until the insn is otherwise decoded.
14831 if (s->btype != 0
14832 && s->guarded_page
14833 && !btype_destination_ok(insn, s->bt, s->btype)) {
14834 gen_exception_insn(s, s->pc_curr, EXCP_UDEF,
14835 syn_btitrap(s->btype),
14836 default_exception_el(s));
14837 return;
14839 } else {
14840 /* Not the first insn: btype must be 0. */
14841 tcg_debug_assert(s->btype == 0);
14845 switch (extract32(insn, 25, 4)) {
14846 case 0x0: case 0x1: case 0x3: /* UNALLOCATED */
14847 unallocated_encoding(s);
14848 break;
14849 case 0x2:
14850 if (!dc_isar_feature(aa64_sve, s) || !disas_sve(s, insn)) {
14851 unallocated_encoding(s);
14853 break;
14854 case 0x8: case 0x9: /* Data processing - immediate */
14855 disas_data_proc_imm(s, insn);
14856 break;
14857 case 0xa: case 0xb: /* Branch, exception generation and system insns */
14858 disas_b_exc_sys(s, insn);
14859 break;
14860 case 0x4:
14861 case 0x6:
14862 case 0xc:
14863 case 0xe: /* Loads and stores */
14864 disas_ldst(s, insn);
14865 break;
14866 case 0x5:
14867 case 0xd: /* Data processing - register */
14868 disas_data_proc_reg(s, insn);
14869 break;
14870 case 0x7:
14871 case 0xf: /* Data processing - SIMD and floating point */
14872 disas_data_proc_simd_fp(s, insn);
14873 break;
14874 default:
14875 assert(FALSE); /* all 15 cases should be handled above */
14876 break;
14879 /* if we allocated any temporaries, free them here */
14880 free_tmp_a64(s);
14883 * After execution of most insns, btype is reset to 0.
14884 * Note that we set btype == -1 when the insn sets btype.
14886 if (s->btype > 0 && s->base.is_jmp != DISAS_NORETURN) {
14887 reset_btype(s);
14890 translator_loop_temp_check(&s->base);
14893 static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu)
14895 DisasContext *dc = container_of(dcbase, DisasContext, base);
14897 if (unlikely(dc->ss_active)) {
14898 /* Note that this means single stepping WFI doesn't halt the CPU.
14899 * For conditional branch insns this is harmless unreachable code as
14900 * gen_goto_tb() has already handled emitting the debug exception
14901 * (and thus a tb-jump is not possible when singlestepping).
14903 switch (dc->base.is_jmp) {
14904 default:
14905 gen_a64_set_pc_im(dc->base.pc_next);
14906 /* fall through */
14907 case DISAS_EXIT:
14908 case DISAS_JUMP:
14909 gen_step_complete_exception(dc);
14910 break;
14911 case DISAS_NORETURN:
14912 break;
14914 } else {
14915 switch (dc->base.is_jmp) {
14916 case DISAS_NEXT:
14917 case DISAS_TOO_MANY:
14918 gen_goto_tb(dc, 1, dc->base.pc_next);
14919 break;
14920 default:
14921 case DISAS_UPDATE_EXIT:
14922 gen_a64_set_pc_im(dc->base.pc_next);
14923 /* fall through */
14924 case DISAS_EXIT:
14925 tcg_gen_exit_tb(NULL, 0);
14926 break;
14927 case DISAS_UPDATE_NOCHAIN:
14928 gen_a64_set_pc_im(dc->base.pc_next);
14929 /* fall through */
14930 case DISAS_JUMP:
14931 tcg_gen_lookup_and_goto_ptr();
14932 break;
14933 case DISAS_NORETURN:
14934 case DISAS_SWI:
14935 break;
14936 case DISAS_WFE:
14937 gen_a64_set_pc_im(dc->base.pc_next);
14938 gen_helper_wfe(cpu_env);
14939 break;
14940 case DISAS_YIELD:
14941 gen_a64_set_pc_im(dc->base.pc_next);
14942 gen_helper_yield(cpu_env);
14943 break;
14944 case DISAS_WFI:
14946 /* This is a special case because we don't want to just halt the CPU
14947 * if trying to debug across a WFI.
14949 TCGv_i32 tmp = tcg_const_i32(4);
14951 gen_a64_set_pc_im(dc->base.pc_next);
14952 gen_helper_wfi(cpu_env, tmp);
14953 tcg_temp_free_i32(tmp);
14954 /* The helper doesn't necessarily throw an exception, but we
14955 * must go back to the main loop to check for interrupts anyway.
14957 tcg_gen_exit_tb(NULL, 0);
14958 break;
14964 static void aarch64_tr_disas_log(const DisasContextBase *dcbase,
14965 CPUState *cpu)
14967 DisasContext *dc = container_of(dcbase, DisasContext, base);
14969 qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first));
14970 log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size);
14973 const TranslatorOps aarch64_translator_ops = {
14974 .init_disas_context = aarch64_tr_init_disas_context,
14975 .tb_start = aarch64_tr_tb_start,
14976 .insn_start = aarch64_tr_insn_start,
14977 .translate_insn = aarch64_tr_translate_insn,
14978 .tb_stop = aarch64_tr_tb_stop,
14979 .disas_log = aarch64_tr_disas_log,