fix test_path
[qemu.git] / target-i386 / kvm.c
blobae0a034ab0f2048adfe3aaa4148f0e5263f7b22b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
83 return cpuid;
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
131 break;
136 qemu_free(cpuid);
138 return ret;
141 #else
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
146 return -1U;
149 #endif
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 { -1, -1 }
168 static int get_para_features(CPUState *env)
170 int i, features = 0;
172 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
173 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
174 features |= (1 << para_features[i].feature);
177 return features;
179 #endif
181 #ifdef KVM_CAP_MCE
182 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
183 int *max_banks)
185 int r;
187 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
188 if (r > 0) {
189 *max_banks = r;
190 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
192 return -ENOSYS;
195 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
197 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
200 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
202 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
205 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
207 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
208 int r;
210 kmsrs->nmsrs = n;
211 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
212 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
213 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
214 free(kmsrs);
215 return r;
218 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
219 static int kvm_mce_in_exception(CPUState *env)
221 struct kvm_msr_entry msr_mcg_status = {
222 .index = MSR_MCG_STATUS,
224 int r;
226 r = kvm_get_msr(env, &msr_mcg_status, 1);
227 if (r == -1 || r == 0) {
228 return -1;
230 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
233 struct kvm_x86_mce_data
235 CPUState *env;
236 struct kvm_x86_mce *mce;
237 int abort_on_error;
240 static void kvm_do_inject_x86_mce(void *_data)
242 struct kvm_x86_mce_data *data = _data;
243 int r;
245 /* If there is an MCE exception being processed, ignore this SRAO MCE */
246 if ((data->env->mcg_cap & MCG_SER_P) &&
247 !(data->mce->status & MCI_STATUS_AR)) {
248 r = kvm_mce_in_exception(data->env);
249 if (r == -1) {
250 fprintf(stderr, "Failed to get MCE status\n");
251 } else if (r) {
252 return;
256 r = kvm_set_mce(data->env, data->mce);
257 if (r < 0) {
258 perror("kvm_set_mce FAILED");
259 if (data->abort_on_error) {
260 abort();
264 #endif
266 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
267 uint64_t mcg_status, uint64_t addr, uint64_t misc,
268 int abort_on_error)
270 #ifdef KVM_CAP_MCE
271 struct kvm_x86_mce mce = {
272 .bank = bank,
273 .status = status,
274 .mcg_status = mcg_status,
275 .addr = addr,
276 .misc = misc,
278 struct kvm_x86_mce_data data = {
279 .env = cenv,
280 .mce = &mce,
283 if (!cenv->mcg_cap) {
284 fprintf(stderr, "MCE support is not enabled!\n");
285 return;
288 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
289 #else
290 if (abort_on_error)
291 abort();
292 #endif
295 int kvm_arch_init_vcpu(CPUState *env)
297 struct {
298 struct kvm_cpuid2 cpuid;
299 struct kvm_cpuid_entry2 entries[100];
300 } __attribute__((packed)) cpuid_data;
301 uint32_t limit, i, j, cpuid_i;
302 uint32_t unused;
303 struct kvm_cpuid_entry2 *c;
304 #ifdef KVM_CPUID_SIGNATURE
305 uint32_t signature[3];
306 #endif
308 env->mp_state = KVM_MP_STATE_RUNNABLE;
310 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
312 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
313 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
314 env->cpuid_ext_features |= i;
316 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
317 0, R_EDX);
318 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
319 0, R_ECX);
320 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
321 0, R_EDX);
324 cpuid_i = 0;
326 #ifdef CONFIG_KVM_PARA
327 /* Paravirtualization CPUIDs */
328 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
329 c = &cpuid_data.entries[cpuid_i++];
330 memset(c, 0, sizeof(*c));
331 c->function = KVM_CPUID_SIGNATURE;
332 c->eax = 0;
333 c->ebx = signature[0];
334 c->ecx = signature[1];
335 c->edx = signature[2];
337 c = &cpuid_data.entries[cpuid_i++];
338 memset(c, 0, sizeof(*c));
339 c->function = KVM_CPUID_FEATURES;
340 c->eax = env->cpuid_kvm_features & get_para_features(env);
341 #endif
343 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
345 for (i = 0; i <= limit; i++) {
346 c = &cpuid_data.entries[cpuid_i++];
348 switch (i) {
349 case 2: {
350 /* Keep reading function 2 till all the input is received */
351 int times;
353 c->function = i;
354 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
355 KVM_CPUID_FLAG_STATE_READ_NEXT;
356 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
357 times = c->eax & 0xff;
359 for (j = 1; j < times; ++j) {
360 c = &cpuid_data.entries[cpuid_i++];
361 c->function = i;
362 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
363 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
365 break;
367 case 4:
368 case 0xb:
369 case 0xd:
370 for (j = 0; ; j++) {
371 c->function = i;
372 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
373 c->index = j;
374 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
376 if (i == 4 && c->eax == 0)
377 break;
378 if (i == 0xb && !(c->ecx & 0xff00))
379 break;
380 if (i == 0xd && c->eax == 0)
381 break;
383 c = &cpuid_data.entries[cpuid_i++];
385 break;
386 default:
387 c->function = i;
388 c->flags = 0;
389 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
390 break;
393 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
395 for (i = 0x80000000; i <= limit; i++) {
396 c = &cpuid_data.entries[cpuid_i++];
398 c->function = i;
399 c->flags = 0;
400 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
403 cpuid_data.cpuid.nent = cpuid_i;
405 #ifdef KVM_CAP_MCE
406 if (((env->cpuid_version >> 8)&0xF) >= 6
407 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
408 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
409 uint64_t mcg_cap;
410 int banks;
412 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
413 perror("kvm_get_mce_cap_supported FAILED");
414 else {
415 if (banks > MCE_BANKS_DEF)
416 banks = MCE_BANKS_DEF;
417 mcg_cap &= MCE_CAP_DEF;
418 mcg_cap |= banks;
419 if (kvm_setup_mce(env, &mcg_cap))
420 perror("kvm_setup_mce FAILED");
421 else
422 env->mcg_cap = mcg_cap;
425 #endif
427 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
430 void kvm_arch_reset_vcpu(CPUState *env)
432 env->exception_injected = -1;
433 env->interrupt_injected = -1;
434 env->nmi_injected = 0;
435 env->nmi_pending = 0;
436 if (kvm_irqchip_in_kernel()) {
437 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
438 KVM_MP_STATE_UNINITIALIZED;
439 } else {
440 env->mp_state = KVM_MP_STATE_RUNNABLE;
444 int has_msr_star;
445 int has_msr_hsave_pa;
447 static void kvm_supported_msrs(CPUState *env)
449 static int kvm_supported_msrs;
450 int ret;
452 /* first time */
453 if (kvm_supported_msrs == 0) {
454 struct kvm_msr_list msr_list, *kvm_msr_list;
456 kvm_supported_msrs = -1;
458 /* Obtain MSR list from KVM. These are the MSRs that we must
459 * save/restore */
460 msr_list.nmsrs = 0;
461 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
462 if (ret < 0 && ret != -E2BIG) {
463 return;
465 /* Old kernel modules had a bug and could write beyond the provided
466 memory. Allocate at least a safe amount of 1K. */
467 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
468 msr_list.nmsrs *
469 sizeof(msr_list.indices[0])));
471 kvm_msr_list->nmsrs = msr_list.nmsrs;
472 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
473 if (ret >= 0) {
474 int i;
476 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
477 if (kvm_msr_list->indices[i] == MSR_STAR) {
478 has_msr_star = 1;
479 continue;
481 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
482 has_msr_hsave_pa = 1;
483 continue;
488 free(kvm_msr_list);
491 return;
494 static int kvm_has_msr_hsave_pa(CPUState *env)
496 kvm_supported_msrs(env);
497 return has_msr_hsave_pa;
500 static int kvm_has_msr_star(CPUState *env)
502 kvm_supported_msrs(env);
503 return has_msr_star;
506 static int kvm_init_identity_map_page(KVMState *s)
508 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
509 int ret;
510 uint64_t addr = 0xfffbc000;
512 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
513 return 0;
516 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
517 if (ret < 0) {
518 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
519 return ret;
521 #endif
522 return 0;
525 int kvm_arch_init(KVMState *s, int smp_cpus)
527 int ret;
529 struct utsname utsname;
531 uname(&utsname);
532 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
534 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
535 * directly. In order to use vm86 mode, a TSS is needed. Since this
536 * must be part of guest physical memory, we need to allocate it. Older
537 * versions of KVM just assumed that it would be at the end of physical
538 * memory but that doesn't work with more than 4GB of memory. We simply
539 * refuse to work with those older versions of KVM. */
540 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
541 if (ret <= 0) {
542 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
543 return ret;
546 /* this address is 3 pages before the bios, and the bios should present
547 * as unavaible memory. FIXME, need to ensure the e820 map deals with
548 * this?
551 * Tell fw_cfg to notify the BIOS to reserve the range.
553 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
554 perror("e820_add_entry() table is full");
555 exit(1);
557 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
558 if (ret < 0) {
559 return ret;
562 return kvm_init_identity_map_page(s);
565 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
567 lhs->selector = rhs->selector;
568 lhs->base = rhs->base;
569 lhs->limit = rhs->limit;
570 lhs->type = 3;
571 lhs->present = 1;
572 lhs->dpl = 3;
573 lhs->db = 0;
574 lhs->s = 1;
575 lhs->l = 0;
576 lhs->g = 0;
577 lhs->avl = 0;
578 lhs->unusable = 0;
581 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
583 unsigned flags = rhs->flags;
584 lhs->selector = rhs->selector;
585 lhs->base = rhs->base;
586 lhs->limit = rhs->limit;
587 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
588 lhs->present = (flags & DESC_P_MASK) != 0;
589 lhs->dpl = rhs->selector & 3;
590 lhs->db = (flags >> DESC_B_SHIFT) & 1;
591 lhs->s = (flags & DESC_S_MASK) != 0;
592 lhs->l = (flags >> DESC_L_SHIFT) & 1;
593 lhs->g = (flags & DESC_G_MASK) != 0;
594 lhs->avl = (flags & DESC_AVL_MASK) != 0;
595 lhs->unusable = 0;
598 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
600 lhs->selector = rhs->selector;
601 lhs->base = rhs->base;
602 lhs->limit = rhs->limit;
603 lhs->flags =
604 (rhs->type << DESC_TYPE_SHIFT)
605 | (rhs->present * DESC_P_MASK)
606 | (rhs->dpl << DESC_DPL_SHIFT)
607 | (rhs->db << DESC_B_SHIFT)
608 | (rhs->s * DESC_S_MASK)
609 | (rhs->l << DESC_L_SHIFT)
610 | (rhs->g * DESC_G_MASK)
611 | (rhs->avl * DESC_AVL_MASK);
614 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
616 if (set)
617 *kvm_reg = *qemu_reg;
618 else
619 *qemu_reg = *kvm_reg;
622 static int kvm_getput_regs(CPUState *env, int set)
624 struct kvm_regs regs;
625 int ret = 0;
627 if (!set) {
628 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
629 if (ret < 0)
630 return ret;
633 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
634 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
635 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
636 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
637 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
638 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
639 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
640 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
641 #ifdef TARGET_X86_64
642 kvm_getput_reg(&regs.r8, &env->regs[8], set);
643 kvm_getput_reg(&regs.r9, &env->regs[9], set);
644 kvm_getput_reg(&regs.r10, &env->regs[10], set);
645 kvm_getput_reg(&regs.r11, &env->regs[11], set);
646 kvm_getput_reg(&regs.r12, &env->regs[12], set);
647 kvm_getput_reg(&regs.r13, &env->regs[13], set);
648 kvm_getput_reg(&regs.r14, &env->regs[14], set);
649 kvm_getput_reg(&regs.r15, &env->regs[15], set);
650 #endif
652 kvm_getput_reg(&regs.rflags, &env->eflags, set);
653 kvm_getput_reg(&regs.rip, &env->eip, set);
655 if (set)
656 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
658 return ret;
661 static int kvm_put_fpu(CPUState *env)
663 struct kvm_fpu fpu;
664 int i;
666 memset(&fpu, 0, sizeof fpu);
667 fpu.fsw = env->fpus & ~(7 << 11);
668 fpu.fsw |= (env->fpstt & 7) << 11;
669 fpu.fcw = env->fpuc;
670 for (i = 0; i < 8; ++i)
671 fpu.ftwx |= (!env->fptags[i]) << i;
672 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
673 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
674 fpu.mxcsr = env->mxcsr;
676 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
679 #ifdef KVM_CAP_XSAVE
680 #define XSAVE_CWD_RIP 2
681 #define XSAVE_CWD_RDP 4
682 #define XSAVE_MXCSR 6
683 #define XSAVE_ST_SPACE 8
684 #define XSAVE_XMM_SPACE 40
685 #define XSAVE_XSTATE_BV 128
686 #define XSAVE_YMMH_SPACE 144
687 #endif
689 static int kvm_put_xsave(CPUState *env)
691 #ifdef KVM_CAP_XSAVE
692 int i, r;
693 struct kvm_xsave* xsave;
694 uint16_t cwd, swd, twd, fop;
696 if (!kvm_has_xsave())
697 return kvm_put_fpu(env);
699 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
700 memset(xsave, 0, sizeof(struct kvm_xsave));
701 cwd = swd = twd = fop = 0;
702 swd = env->fpus & ~(7 << 11);
703 swd |= (env->fpstt & 7) << 11;
704 cwd = env->fpuc;
705 for (i = 0; i < 8; ++i)
706 twd |= (!env->fptags[i]) << i;
707 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
708 xsave->region[1] = (uint32_t)(fop << 16) + twd;
709 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
710 sizeof env->fpregs);
711 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
712 sizeof env->xmm_regs);
713 xsave->region[XSAVE_MXCSR] = env->mxcsr;
714 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
715 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
716 sizeof env->ymmh_regs);
717 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
718 qemu_free(xsave);
719 return r;
720 #else
721 return kvm_put_fpu(env);
722 #endif
725 static int kvm_put_xcrs(CPUState *env)
727 #ifdef KVM_CAP_XCRS
728 struct kvm_xcrs xcrs;
730 if (!kvm_has_xcrs())
731 return 0;
733 xcrs.nr_xcrs = 1;
734 xcrs.flags = 0;
735 xcrs.xcrs[0].xcr = 0;
736 xcrs.xcrs[0].value = env->xcr0;
737 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
738 #else
739 return 0;
740 #endif
743 static int kvm_put_sregs(CPUState *env)
745 struct kvm_sregs sregs;
747 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
748 if (env->interrupt_injected >= 0) {
749 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
750 (uint64_t)1 << (env->interrupt_injected % 64);
753 if ((env->eflags & VM_MASK)) {
754 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
755 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
756 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
757 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
758 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
759 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
760 } else {
761 set_seg(&sregs.cs, &env->segs[R_CS]);
762 set_seg(&sregs.ds, &env->segs[R_DS]);
763 set_seg(&sregs.es, &env->segs[R_ES]);
764 set_seg(&sregs.fs, &env->segs[R_FS]);
765 set_seg(&sregs.gs, &env->segs[R_GS]);
766 set_seg(&sregs.ss, &env->segs[R_SS]);
768 if (env->cr[0] & CR0_PE_MASK) {
769 /* force ss cpl to cs cpl */
770 sregs.ss.selector = (sregs.ss.selector & ~3) |
771 (sregs.cs.selector & 3);
772 sregs.ss.dpl = sregs.ss.selector & 3;
776 set_seg(&sregs.tr, &env->tr);
777 set_seg(&sregs.ldt, &env->ldt);
779 sregs.idt.limit = env->idt.limit;
780 sregs.idt.base = env->idt.base;
781 sregs.gdt.limit = env->gdt.limit;
782 sregs.gdt.base = env->gdt.base;
784 sregs.cr0 = env->cr[0];
785 sregs.cr2 = env->cr[2];
786 sregs.cr3 = env->cr[3];
787 sregs.cr4 = env->cr[4];
789 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
790 sregs.apic_base = cpu_get_apic_base(env->apic_state);
792 sregs.efer = env->efer;
794 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
797 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
798 uint32_t index, uint64_t value)
800 entry->index = index;
801 entry->data = value;
804 static int kvm_put_msrs(CPUState *env, int level)
806 struct {
807 struct kvm_msrs info;
808 struct kvm_msr_entry entries[100];
809 } msr_data;
810 struct kvm_msr_entry *msrs = msr_data.entries;
811 int n = 0;
813 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
814 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
815 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
816 if (kvm_has_msr_star(env))
817 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
818 if (kvm_has_msr_hsave_pa(env))
819 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
820 #ifdef TARGET_X86_64
821 if (lm_capable_kernel) {
822 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
823 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
824 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
825 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
827 #endif
828 if (level == KVM_PUT_FULL_STATE) {
830 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
831 * writeback. Until this is fixed, we only write the offset to SMP
832 * guests after migration, desynchronizing the VCPUs, but avoiding
833 * huge jump-backs that would occur without any writeback at all.
835 if (smp_cpus == 1 || env->tsc != 0) {
836 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
838 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
839 env->system_time_msr);
840 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
842 #ifdef KVM_CAP_MCE
843 if (env->mcg_cap) {
844 int i;
845 if (level == KVM_PUT_RESET_STATE)
846 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
847 else if (level == KVM_PUT_FULL_STATE) {
848 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
849 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
850 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
851 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
854 #endif
856 msr_data.info.nmsrs = n;
858 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
863 static int kvm_get_fpu(CPUState *env)
865 struct kvm_fpu fpu;
866 int i, ret;
868 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
869 if (ret < 0)
870 return ret;
872 env->fpstt = (fpu.fsw >> 11) & 7;
873 env->fpus = fpu.fsw;
874 env->fpuc = fpu.fcw;
875 for (i = 0; i < 8; ++i)
876 env->fptags[i] = !((fpu.ftwx >> i) & 1);
877 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
878 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
879 env->mxcsr = fpu.mxcsr;
881 return 0;
884 static int kvm_get_xsave(CPUState *env)
886 #ifdef KVM_CAP_XSAVE
887 struct kvm_xsave* xsave;
888 int ret, i;
889 uint16_t cwd, swd, twd, fop;
891 if (!kvm_has_xsave())
892 return kvm_get_fpu(env);
894 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
895 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
896 if (ret < 0) {
897 qemu_free(xsave);
898 return ret;
901 cwd = (uint16_t)xsave->region[0];
902 swd = (uint16_t)(xsave->region[0] >> 16);
903 twd = (uint16_t)xsave->region[1];
904 fop = (uint16_t)(xsave->region[1] >> 16);
905 env->fpstt = (swd >> 11) & 7;
906 env->fpus = swd;
907 env->fpuc = cwd;
908 for (i = 0; i < 8; ++i)
909 env->fptags[i] = !((twd >> i) & 1);
910 env->mxcsr = xsave->region[XSAVE_MXCSR];
911 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
912 sizeof env->fpregs);
913 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
914 sizeof env->xmm_regs);
915 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
916 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
917 sizeof env->ymmh_regs);
918 qemu_free(xsave);
919 return 0;
920 #else
921 return kvm_get_fpu(env);
922 #endif
925 static int kvm_get_xcrs(CPUState *env)
927 #ifdef KVM_CAP_XCRS
928 int i, ret;
929 struct kvm_xcrs xcrs;
931 if (!kvm_has_xcrs())
932 return 0;
934 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
935 if (ret < 0)
936 return ret;
938 for (i = 0; i < xcrs.nr_xcrs; i++)
939 /* Only support xcr0 now */
940 if (xcrs.xcrs[0].xcr == 0) {
941 env->xcr0 = xcrs.xcrs[0].value;
942 break;
944 return 0;
945 #else
946 return 0;
947 #endif
950 static int kvm_get_sregs(CPUState *env)
952 struct kvm_sregs sregs;
953 uint32_t hflags;
954 int bit, i, ret;
956 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
957 if (ret < 0)
958 return ret;
960 /* There can only be one pending IRQ set in the bitmap at a time, so try
961 to find it and save its number instead (-1 for none). */
962 env->interrupt_injected = -1;
963 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
964 if (sregs.interrupt_bitmap[i]) {
965 bit = ctz64(sregs.interrupt_bitmap[i]);
966 env->interrupt_injected = i * 64 + bit;
967 break;
971 get_seg(&env->segs[R_CS], &sregs.cs);
972 get_seg(&env->segs[R_DS], &sregs.ds);
973 get_seg(&env->segs[R_ES], &sregs.es);
974 get_seg(&env->segs[R_FS], &sregs.fs);
975 get_seg(&env->segs[R_GS], &sregs.gs);
976 get_seg(&env->segs[R_SS], &sregs.ss);
978 get_seg(&env->tr, &sregs.tr);
979 get_seg(&env->ldt, &sregs.ldt);
981 env->idt.limit = sregs.idt.limit;
982 env->idt.base = sregs.idt.base;
983 env->gdt.limit = sregs.gdt.limit;
984 env->gdt.base = sregs.gdt.base;
986 env->cr[0] = sregs.cr0;
987 env->cr[2] = sregs.cr2;
988 env->cr[3] = sregs.cr3;
989 env->cr[4] = sregs.cr4;
991 cpu_set_apic_base(env->apic_state, sregs.apic_base);
993 env->efer = sregs.efer;
994 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
996 #define HFLAG_COPY_MASK ~( \
997 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
998 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
999 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1000 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1004 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1005 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1006 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1007 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1008 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1009 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1010 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1012 if (env->efer & MSR_EFER_LMA) {
1013 hflags |= HF_LMA_MASK;
1016 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1017 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1018 } else {
1019 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1020 (DESC_B_SHIFT - HF_CS32_SHIFT);
1021 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1022 (DESC_B_SHIFT - HF_SS32_SHIFT);
1023 if (!(env->cr[0] & CR0_PE_MASK) ||
1024 (env->eflags & VM_MASK) ||
1025 !(hflags & HF_CS32_MASK)) {
1026 hflags |= HF_ADDSEG_MASK;
1027 } else {
1028 hflags |= ((env->segs[R_DS].base |
1029 env->segs[R_ES].base |
1030 env->segs[R_SS].base) != 0) <<
1031 HF_ADDSEG_SHIFT;
1034 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1036 return 0;
1039 static int kvm_get_msrs(CPUState *env)
1041 struct {
1042 struct kvm_msrs info;
1043 struct kvm_msr_entry entries[100];
1044 } msr_data;
1045 struct kvm_msr_entry *msrs = msr_data.entries;
1046 int ret, i, n;
1048 n = 0;
1049 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1050 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1051 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1052 if (kvm_has_msr_star(env))
1053 msrs[n++].index = MSR_STAR;
1054 if (kvm_has_msr_hsave_pa(env))
1055 msrs[n++].index = MSR_VM_HSAVE_PA;
1056 msrs[n++].index = MSR_IA32_TSC;
1057 #ifdef TARGET_X86_64
1058 if (lm_capable_kernel) {
1059 msrs[n++].index = MSR_CSTAR;
1060 msrs[n++].index = MSR_KERNELGSBASE;
1061 msrs[n++].index = MSR_FMASK;
1062 msrs[n++].index = MSR_LSTAR;
1064 #endif
1065 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1066 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1068 #ifdef KVM_CAP_MCE
1069 if (env->mcg_cap) {
1070 msrs[n++].index = MSR_MCG_STATUS;
1071 msrs[n++].index = MSR_MCG_CTL;
1072 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1073 msrs[n++].index = MSR_MC0_CTL + i;
1075 #endif
1077 msr_data.info.nmsrs = n;
1078 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1079 if (ret < 0)
1080 return ret;
1082 for (i = 0; i < ret; i++) {
1083 switch (msrs[i].index) {
1084 case MSR_IA32_SYSENTER_CS:
1085 env->sysenter_cs = msrs[i].data;
1086 break;
1087 case MSR_IA32_SYSENTER_ESP:
1088 env->sysenter_esp = msrs[i].data;
1089 break;
1090 case MSR_IA32_SYSENTER_EIP:
1091 env->sysenter_eip = msrs[i].data;
1092 break;
1093 case MSR_STAR:
1094 env->star = msrs[i].data;
1095 break;
1096 #ifdef TARGET_X86_64
1097 case MSR_CSTAR:
1098 env->cstar = msrs[i].data;
1099 break;
1100 case MSR_KERNELGSBASE:
1101 env->kernelgsbase = msrs[i].data;
1102 break;
1103 case MSR_FMASK:
1104 env->fmask = msrs[i].data;
1105 break;
1106 case MSR_LSTAR:
1107 env->lstar = msrs[i].data;
1108 break;
1109 #endif
1110 case MSR_IA32_TSC:
1111 env->tsc = msrs[i].data;
1112 break;
1113 case MSR_VM_HSAVE_PA:
1114 env->vm_hsave = msrs[i].data;
1115 break;
1116 case MSR_KVM_SYSTEM_TIME:
1117 env->system_time_msr = msrs[i].data;
1118 break;
1119 case MSR_KVM_WALL_CLOCK:
1120 env->wall_clock_msr = msrs[i].data;
1121 break;
1122 #ifdef KVM_CAP_MCE
1123 case MSR_MCG_STATUS:
1124 env->mcg_status = msrs[i].data;
1125 break;
1126 case MSR_MCG_CTL:
1127 env->mcg_ctl = msrs[i].data;
1128 break;
1129 #endif
1130 default:
1131 #ifdef KVM_CAP_MCE
1132 if (msrs[i].index >= MSR_MC0_CTL &&
1133 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1134 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1136 #endif
1137 break;
1141 return 0;
1144 static int kvm_put_mp_state(CPUState *env)
1146 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1148 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1151 static int kvm_get_mp_state(CPUState *env)
1153 struct kvm_mp_state mp_state;
1154 int ret;
1156 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1157 if (ret < 0) {
1158 return ret;
1160 env->mp_state = mp_state.mp_state;
1161 return 0;
1164 static int kvm_put_vcpu_events(CPUState *env, int level)
1166 #ifdef KVM_CAP_VCPU_EVENTS
1167 struct kvm_vcpu_events events;
1169 if (!kvm_has_vcpu_events()) {
1170 return 0;
1173 events.exception.injected = (env->exception_injected >= 0);
1174 events.exception.nr = env->exception_injected;
1175 events.exception.has_error_code = env->has_error_code;
1176 events.exception.error_code = env->error_code;
1178 events.interrupt.injected = (env->interrupt_injected >= 0);
1179 events.interrupt.nr = env->interrupt_injected;
1180 events.interrupt.soft = env->soft_interrupt;
1182 events.nmi.injected = env->nmi_injected;
1183 events.nmi.pending = env->nmi_pending;
1184 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1186 events.sipi_vector = env->sipi_vector;
1188 events.flags = 0;
1189 if (level >= KVM_PUT_RESET_STATE) {
1190 events.flags |=
1191 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1194 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1195 #else
1196 return 0;
1197 #endif
1200 static int kvm_get_vcpu_events(CPUState *env)
1202 #ifdef KVM_CAP_VCPU_EVENTS
1203 struct kvm_vcpu_events events;
1204 int ret;
1206 if (!kvm_has_vcpu_events()) {
1207 return 0;
1210 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1211 if (ret < 0) {
1212 return ret;
1214 env->exception_injected =
1215 events.exception.injected ? events.exception.nr : -1;
1216 env->has_error_code = events.exception.has_error_code;
1217 env->error_code = events.exception.error_code;
1219 env->interrupt_injected =
1220 events.interrupt.injected ? events.interrupt.nr : -1;
1221 env->soft_interrupt = events.interrupt.soft;
1223 env->nmi_injected = events.nmi.injected;
1224 env->nmi_pending = events.nmi.pending;
1225 if (events.nmi.masked) {
1226 env->hflags2 |= HF2_NMI_MASK;
1227 } else {
1228 env->hflags2 &= ~HF2_NMI_MASK;
1231 env->sipi_vector = events.sipi_vector;
1232 #endif
1234 return 0;
1237 static int kvm_guest_debug_workarounds(CPUState *env)
1239 int ret = 0;
1240 #ifdef KVM_CAP_SET_GUEST_DEBUG
1241 unsigned long reinject_trap = 0;
1243 if (!kvm_has_vcpu_events()) {
1244 if (env->exception_injected == 1) {
1245 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1246 } else if (env->exception_injected == 3) {
1247 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1249 env->exception_injected = -1;
1253 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1254 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1255 * by updating the debug state once again if single-stepping is on.
1256 * Another reason to call kvm_update_guest_debug here is a pending debug
1257 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1258 * reinject them via SET_GUEST_DEBUG.
1260 if (reinject_trap ||
1261 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1262 ret = kvm_update_guest_debug(env, reinject_trap);
1264 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1265 return ret;
1268 static int kvm_put_debugregs(CPUState *env)
1270 #ifdef KVM_CAP_DEBUGREGS
1271 struct kvm_debugregs dbgregs;
1272 int i;
1274 if (!kvm_has_debugregs()) {
1275 return 0;
1278 for (i = 0; i < 4; i++) {
1279 dbgregs.db[i] = env->dr[i];
1281 dbgregs.dr6 = env->dr[6];
1282 dbgregs.dr7 = env->dr[7];
1283 dbgregs.flags = 0;
1285 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1286 #else
1287 return 0;
1288 #endif
1291 static int kvm_get_debugregs(CPUState *env)
1293 #ifdef KVM_CAP_DEBUGREGS
1294 struct kvm_debugregs dbgregs;
1295 int i, ret;
1297 if (!kvm_has_debugregs()) {
1298 return 0;
1301 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1302 if (ret < 0) {
1303 return ret;
1305 for (i = 0; i < 4; i++) {
1306 env->dr[i] = dbgregs.db[i];
1308 env->dr[4] = env->dr[6] = dbgregs.dr6;
1309 env->dr[5] = env->dr[7] = dbgregs.dr7;
1310 #endif
1312 return 0;
1315 int kvm_arch_put_registers(CPUState *env, int level)
1317 int ret;
1319 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1321 ret = kvm_getput_regs(env, 1);
1322 if (ret < 0)
1323 return ret;
1325 ret = kvm_put_xsave(env);
1326 if (ret < 0)
1327 return ret;
1329 ret = kvm_put_xcrs(env);
1330 if (ret < 0)
1331 return ret;
1333 ret = kvm_put_sregs(env);
1334 if (ret < 0)
1335 return ret;
1337 ret = kvm_put_msrs(env, level);
1338 if (ret < 0)
1339 return ret;
1341 if (level >= KVM_PUT_RESET_STATE) {
1342 ret = kvm_put_mp_state(env);
1343 if (ret < 0)
1344 return ret;
1347 ret = kvm_put_vcpu_events(env, level);
1348 if (ret < 0)
1349 return ret;
1351 /* must be last */
1352 ret = kvm_guest_debug_workarounds(env);
1353 if (ret < 0)
1354 return ret;
1356 ret = kvm_put_debugregs(env);
1357 if (ret < 0)
1358 return ret;
1360 return 0;
1363 int kvm_arch_get_registers(CPUState *env)
1365 int ret;
1367 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1369 ret = kvm_getput_regs(env, 0);
1370 if (ret < 0)
1371 return ret;
1373 ret = kvm_get_xsave(env);
1374 if (ret < 0)
1375 return ret;
1377 ret = kvm_get_xcrs(env);
1378 if (ret < 0)
1379 return ret;
1381 ret = kvm_get_sregs(env);
1382 if (ret < 0)
1383 return ret;
1385 ret = kvm_get_msrs(env);
1386 if (ret < 0)
1387 return ret;
1389 ret = kvm_get_mp_state(env);
1390 if (ret < 0)
1391 return ret;
1393 ret = kvm_get_vcpu_events(env);
1394 if (ret < 0)
1395 return ret;
1397 ret = kvm_get_debugregs(env);
1398 if (ret < 0)
1399 return ret;
1401 return 0;
1404 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1406 /* Try to inject an interrupt if the guest can accept it */
1407 if (run->ready_for_interrupt_injection &&
1408 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1409 (env->eflags & IF_MASK)) {
1410 int irq;
1412 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1413 irq = cpu_get_pic_interrupt(env);
1414 if (irq >= 0) {
1415 struct kvm_interrupt intr;
1416 intr.irq = irq;
1417 /* FIXME: errors */
1418 DPRINTF("injected interrupt %d\n", irq);
1419 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1423 /* If we have an interrupt but the guest is not ready to receive an
1424 * interrupt, request an interrupt window exit. This will
1425 * cause a return to userspace as soon as the guest is ready to
1426 * receive interrupts. */
1427 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1428 run->request_interrupt_window = 1;
1429 else
1430 run->request_interrupt_window = 0;
1432 DPRINTF("setting tpr\n");
1433 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1435 return 0;
1438 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1440 if (run->if_flag)
1441 env->eflags |= IF_MASK;
1442 else
1443 env->eflags &= ~IF_MASK;
1445 cpu_set_apic_tpr(env->apic_state, run->cr8);
1446 cpu_set_apic_base(env->apic_state, run->apic_base);
1448 return 0;
1451 int kvm_arch_process_irqchip_events(CPUState *env)
1453 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1454 kvm_cpu_synchronize_state(env);
1455 do_cpu_init(env);
1456 env->exception_index = EXCP_HALTED;
1459 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1460 kvm_cpu_synchronize_state(env);
1461 do_cpu_sipi(env);
1464 return env->halted;
1467 static int kvm_handle_halt(CPUState *env)
1469 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1470 (env->eflags & IF_MASK)) &&
1471 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1472 env->halted = 1;
1473 env->exception_index = EXCP_HLT;
1474 return 0;
1477 return 1;
1480 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1482 int ret = 0;
1484 switch (run->exit_reason) {
1485 case KVM_EXIT_HLT:
1486 DPRINTF("handle_hlt\n");
1487 ret = kvm_handle_halt(env);
1488 break;
1491 return ret;
1494 #ifdef KVM_CAP_SET_GUEST_DEBUG
1495 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1497 static const uint8_t int3 = 0xcc;
1499 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1500 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1501 return -EINVAL;
1502 return 0;
1505 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1507 uint8_t int3;
1509 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1510 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1511 return -EINVAL;
1512 return 0;
1515 static struct {
1516 target_ulong addr;
1517 int len;
1518 int type;
1519 } hw_breakpoint[4];
1521 static int nb_hw_breakpoint;
1523 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1525 int n;
1527 for (n = 0; n < nb_hw_breakpoint; n++)
1528 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1529 (hw_breakpoint[n].len == len || len == -1))
1530 return n;
1531 return -1;
1534 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1535 target_ulong len, int type)
1537 switch (type) {
1538 case GDB_BREAKPOINT_HW:
1539 len = 1;
1540 break;
1541 case GDB_WATCHPOINT_WRITE:
1542 case GDB_WATCHPOINT_ACCESS:
1543 switch (len) {
1544 case 1:
1545 break;
1546 case 2:
1547 case 4:
1548 case 8:
1549 if (addr & (len - 1))
1550 return -EINVAL;
1551 break;
1552 default:
1553 return -EINVAL;
1555 break;
1556 default:
1557 return -ENOSYS;
1560 if (nb_hw_breakpoint == 4)
1561 return -ENOBUFS;
1563 if (find_hw_breakpoint(addr, len, type) >= 0)
1564 return -EEXIST;
1566 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1567 hw_breakpoint[nb_hw_breakpoint].len = len;
1568 hw_breakpoint[nb_hw_breakpoint].type = type;
1569 nb_hw_breakpoint++;
1571 return 0;
1574 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1575 target_ulong len, int type)
1577 int n;
1579 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1580 if (n < 0)
1581 return -ENOENT;
1583 nb_hw_breakpoint--;
1584 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1586 return 0;
1589 void kvm_arch_remove_all_hw_breakpoints(void)
1591 nb_hw_breakpoint = 0;
1594 static CPUWatchpoint hw_watchpoint;
1596 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1598 int handle = 0;
1599 int n;
1601 if (arch_info->exception == 1) {
1602 if (arch_info->dr6 & (1 << 14)) {
1603 if (cpu_single_env->singlestep_enabled)
1604 handle = 1;
1605 } else {
1606 for (n = 0; n < 4; n++)
1607 if (arch_info->dr6 & (1 << n))
1608 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1609 case 0x0:
1610 handle = 1;
1611 break;
1612 case 0x1:
1613 handle = 1;
1614 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1615 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1616 hw_watchpoint.flags = BP_MEM_WRITE;
1617 break;
1618 case 0x3:
1619 handle = 1;
1620 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1621 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1622 hw_watchpoint.flags = BP_MEM_ACCESS;
1623 break;
1626 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1627 handle = 1;
1629 if (!handle) {
1630 cpu_synchronize_state(cpu_single_env);
1631 assert(cpu_single_env->exception_injected == -1);
1633 cpu_single_env->exception_injected = arch_info->exception;
1634 cpu_single_env->has_error_code = 0;
1637 return handle;
1640 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1642 const uint8_t type_code[] = {
1643 [GDB_BREAKPOINT_HW] = 0x0,
1644 [GDB_WATCHPOINT_WRITE] = 0x1,
1645 [GDB_WATCHPOINT_ACCESS] = 0x3
1647 const uint8_t len_code[] = {
1648 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1650 int n;
1652 if (kvm_sw_breakpoints_active(env))
1653 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1655 if (nb_hw_breakpoint > 0) {
1656 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1657 dbg->arch.debugreg[7] = 0x0600;
1658 for (n = 0; n < nb_hw_breakpoint; n++) {
1659 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1660 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1661 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1662 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1665 /* Legal xcr0 for loading */
1666 env->xcr0 = 1;
1668 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1670 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1672 return !(env->cr[0] & CR0_PE_MASK) ||
1673 ((env->segs[R_CS].selector & 3) != 3);
1676 static void hardware_memory_error(void)
1678 fprintf(stderr, "Hardware memory error!\n");
1679 exit(1);
1682 #ifdef KVM_CAP_MCE
1683 static void kvm_mce_broadcast_rest(CPUState *env)
1685 CPUState *cenv;
1686 int family, model, cpuver = env->cpuid_version;
1688 family = (cpuver >> 8) & 0xf;
1689 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1691 /* Broadcast MCA signal for processor version 06H_EH and above */
1692 if ((family == 6 && model >= 14) || family > 6) {
1693 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1694 if (cenv == env) {
1695 continue;
1697 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1698 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1702 #endif
1704 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1706 #if defined(KVM_CAP_MCE)
1707 struct kvm_x86_mce mce = {
1708 .bank = 9,
1710 void *vaddr;
1711 ram_addr_t ram_addr;
1712 target_phys_addr_t paddr;
1713 int r;
1715 if ((env->mcg_cap & MCG_SER_P) && addr
1716 && (code == BUS_MCEERR_AR
1717 || code == BUS_MCEERR_AO)) {
1718 if (code == BUS_MCEERR_AR) {
1719 /* Fake an Intel architectural Data Load SRAR UCR */
1720 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1721 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1722 | MCI_STATUS_AR | 0x134;
1723 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1724 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1725 } else {
1727 * If there is an MCE excpetion being processed, ignore
1728 * this SRAO MCE
1730 r = kvm_mce_in_exception(env);
1731 if (r == -1) {
1732 fprintf(stderr, "Failed to get MCE status\n");
1733 } else if (r) {
1734 return 0;
1736 /* Fake an Intel architectural Memory scrubbing UCR */
1737 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1738 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1739 | 0xc0;
1740 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1741 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1743 vaddr = (void *)addr;
1744 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1745 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1746 fprintf(stderr, "Hardware memory error for memory used by "
1747 "QEMU itself instead of guest system!\n");
1748 /* Hope we are lucky for AO MCE */
1749 if (code == BUS_MCEERR_AO) {
1750 return 0;
1751 } else {
1752 hardware_memory_error();
1755 mce.addr = paddr;
1756 r = kvm_set_mce(env, &mce);
1757 if (r < 0) {
1758 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1759 abort();
1761 kvm_mce_broadcast_rest(env);
1762 } else
1763 #endif
1765 if (code == BUS_MCEERR_AO) {
1766 return 0;
1767 } else if (code == BUS_MCEERR_AR) {
1768 hardware_memory_error();
1769 } else {
1770 return 1;
1773 return 0;
1776 int kvm_on_sigbus(int code, void *addr)
1778 #if defined(KVM_CAP_MCE)
1779 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1780 uint64_t status;
1781 void *vaddr;
1782 ram_addr_t ram_addr;
1783 target_phys_addr_t paddr;
1785 /* Hope we are lucky for AO MCE */
1786 vaddr = addr;
1787 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1788 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1789 fprintf(stderr, "Hardware memory error for memory used by "
1790 "QEMU itself instead of guest system!: %p\n", addr);
1791 return 0;
1793 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1794 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1795 | 0xc0;
1796 kvm_inject_x86_mce(first_cpu, 9, status,
1797 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1798 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1799 kvm_mce_broadcast_rest(first_cpu);
1800 } else
1801 #endif
1803 if (code == BUS_MCEERR_AO) {
1804 return 0;
1805 } else if (code == BUS_MCEERR_AR) {
1806 hardware_memory_error();
1807 } else {
1808 return 1;
1811 return 0;