1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
6 #include "qemu/error-report.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "mmu-hash64.h"
12 #include "cpu-models.h"
15 #include "hw/ppc/spapr_ovec.h"
16 #include "qemu/error-report.h"
17 #include "mmu-book3s-v3.h"
25 static void do_spr_sync(CPUState
*cs
, run_on_cpu_data arg
)
27 struct SPRSyncState
*s
= arg
.host_ptr
;
28 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
29 CPUPPCState
*env
= &cpu
->env
;
31 cpu_synchronize_state(cs
);
32 env
->spr
[s
->spr
] &= ~s
->mask
;
33 env
->spr
[s
->spr
] |= s
->value
;
36 static void set_spr(CPUState
*cs
, int spr
, target_ulong value
,
39 struct SPRSyncState s
= {
44 run_on_cpu(cs
, do_spr_sync
, RUN_ON_CPU_HOST_PTR(&s
));
47 static bool has_spr(PowerPCCPU
*cpu
, int spr
)
49 /* We can test whether the SPR is defined by checking for a valid name */
50 return cpu
->env
.spr_cb
[spr
].name
!= NULL
;
53 static inline bool valid_ptex(PowerPCCPU
*cpu
, target_ulong ptex
)
56 * hash value/pteg group index is normalized by HPT mask
58 if (((ptex
& ~7ULL) / HPTES_PER_GROUP
) & ~ppc_hash64_hpt_mask(cpu
)) {
64 static bool is_ram_address(sPAPRMachineState
*spapr
, hwaddr addr
)
66 MachineState
*machine
= MACHINE(spapr
);
67 MemoryHotplugState
*hpms
= &spapr
->hotplug_memory
;
69 if (addr
< machine
->ram_size
) {
72 if ((addr
>= hpms
->base
)
73 && ((addr
- hpms
->base
) < memory_region_size(&hpms
->mr
))) {
80 static target_ulong
h_enter(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
81 target_ulong opcode
, target_ulong
*args
)
83 target_ulong flags
= args
[0];
84 target_ulong ptex
= args
[1];
85 target_ulong pteh
= args
[2];
86 target_ulong ptel
= args
[3];
90 const ppc_hash_pte64_t
*hptes
;
92 apshift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pteh
, ptel
);
94 /* Bad page size encoding */
98 raddr
= (ptel
& HPTE64_R_RPN
) & ~((1ULL << apshift
) - 1);
100 if (is_ram_address(spapr
, raddr
)) {
101 /* Regular RAM - should have WIMG=0010 */
102 if ((ptel
& HPTE64_R_WIMG
) != HPTE64_R_M
) {
106 target_ulong wimg_flags
;
107 /* Looks like an IO address */
108 /* FIXME: What WIMG combinations could be sensible for IO?
109 * For now we allow WIMG=010x, but are there others? */
110 /* FIXME: Should we check against registered IO addresses? */
111 wimg_flags
= (ptel
& (HPTE64_R_W
| HPTE64_R_I
| HPTE64_R_M
));
113 if (wimg_flags
!= HPTE64_R_I
&&
114 wimg_flags
!= (HPTE64_R_I
| HPTE64_R_M
)) {
121 if (!valid_ptex(cpu
, ptex
)) {
128 if (likely((flags
& H_EXACT
) == 0)) {
129 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
130 for (slot
= 0; slot
< 8; slot
++) {
131 if (!(ppc_hash64_hpte0(cpu
, hptes
, slot
) & HPTE64_V_VALID
)) {
135 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
140 hptes
= ppc_hash64_map_hptes(cpu
, ptex
+ slot
, 1);
141 if (ppc_hash64_hpte0(cpu
, hptes
, 0) & HPTE64_V_VALID
) {
142 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
+ slot
, 1);
145 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
148 ppc_hash64_store_hpte(cpu
, ptex
+ slot
, pteh
| HPTE64_V_HPTE_DIRTY
, ptel
);
150 args
[0] = ptex
+ slot
;
156 REMOVE_NOT_FOUND
= 1,
161 static RemoveResult
remove_hpte(PowerPCCPU
*cpu
, target_ulong ptex
,
164 target_ulong
*vp
, target_ulong
*rp
)
166 const ppc_hash_pte64_t
*hptes
;
169 if (!valid_ptex(cpu
, ptex
)) {
173 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
174 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
175 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
176 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
178 if ((v
& HPTE64_V_VALID
) == 0 ||
179 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
) ||
180 ((flags
& H_ANDCOND
) && (v
& avpn
) != 0)) {
181 return REMOVE_NOT_FOUND
;
185 ppc_hash64_store_hpte(cpu
, ptex
, HPTE64_V_HPTE_DIRTY
, 0);
186 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
187 return REMOVE_SUCCESS
;
190 static target_ulong
h_remove(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
191 target_ulong opcode
, target_ulong
*args
)
193 CPUPPCState
*env
= &cpu
->env
;
194 target_ulong flags
= args
[0];
195 target_ulong ptex
= args
[1];
196 target_ulong avpn
= args
[2];
199 ret
= remove_hpte(cpu
, ptex
, avpn
, flags
,
204 check_tlb_flush(env
, true);
207 case REMOVE_NOT_FOUND
:
217 g_assert_not_reached();
220 #define H_BULK_REMOVE_TYPE 0xc000000000000000ULL
221 #define H_BULK_REMOVE_REQUEST 0x4000000000000000ULL
222 #define H_BULK_REMOVE_RESPONSE 0x8000000000000000ULL
223 #define H_BULK_REMOVE_END 0xc000000000000000ULL
224 #define H_BULK_REMOVE_CODE 0x3000000000000000ULL
225 #define H_BULK_REMOVE_SUCCESS 0x0000000000000000ULL
226 #define H_BULK_REMOVE_NOT_FOUND 0x1000000000000000ULL
227 #define H_BULK_REMOVE_PARM 0x2000000000000000ULL
228 #define H_BULK_REMOVE_HW 0x3000000000000000ULL
229 #define H_BULK_REMOVE_RC 0x0c00000000000000ULL
230 #define H_BULK_REMOVE_FLAGS 0x0300000000000000ULL
231 #define H_BULK_REMOVE_ABSOLUTE 0x0000000000000000ULL
232 #define H_BULK_REMOVE_ANDCOND 0x0100000000000000ULL
233 #define H_BULK_REMOVE_AVPN 0x0200000000000000ULL
234 #define H_BULK_REMOVE_PTEX 0x00ffffffffffffffULL
236 #define H_BULK_REMOVE_MAX_BATCH 4
238 static target_ulong
h_bulk_remove(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
239 target_ulong opcode
, target_ulong
*args
)
241 CPUPPCState
*env
= &cpu
->env
;
243 target_ulong rc
= H_SUCCESS
;
245 for (i
= 0; i
< H_BULK_REMOVE_MAX_BATCH
; i
++) {
246 target_ulong
*tsh
= &args
[i
*2];
247 target_ulong tsl
= args
[i
*2 + 1];
248 target_ulong v
, r
, ret
;
250 if ((*tsh
& H_BULK_REMOVE_TYPE
) == H_BULK_REMOVE_END
) {
252 } else if ((*tsh
& H_BULK_REMOVE_TYPE
) != H_BULK_REMOVE_REQUEST
) {
256 *tsh
&= H_BULK_REMOVE_PTEX
| H_BULK_REMOVE_FLAGS
;
257 *tsh
|= H_BULK_REMOVE_RESPONSE
;
259 if ((*tsh
& H_BULK_REMOVE_ANDCOND
) && (*tsh
& H_BULK_REMOVE_AVPN
)) {
260 *tsh
|= H_BULK_REMOVE_PARM
;
264 ret
= remove_hpte(cpu
, *tsh
& H_BULK_REMOVE_PTEX
, tsl
,
265 (*tsh
& H_BULK_REMOVE_FLAGS
) >> 26,
272 *tsh
|= (r
& (HPTE64_R_C
| HPTE64_R_R
)) << 43;
285 check_tlb_flush(env
, true);
290 static target_ulong
h_protect(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
291 target_ulong opcode
, target_ulong
*args
)
293 CPUPPCState
*env
= &cpu
->env
;
294 target_ulong flags
= args
[0];
295 target_ulong ptex
= args
[1];
296 target_ulong avpn
= args
[2];
297 const ppc_hash_pte64_t
*hptes
;
300 if (!valid_ptex(cpu
, ptex
)) {
304 hptes
= ppc_hash64_map_hptes(cpu
, ptex
, 1);
305 v
= ppc_hash64_hpte0(cpu
, hptes
, 0);
306 r
= ppc_hash64_hpte1(cpu
, hptes
, 0);
307 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, 1);
309 if ((v
& HPTE64_V_VALID
) == 0 ||
310 ((flags
& H_AVPN
) && (v
& ~0x7fULL
) != avpn
)) {
314 r
&= ~(HPTE64_R_PP0
| HPTE64_R_PP
| HPTE64_R_N
|
315 HPTE64_R_KEY_HI
| HPTE64_R_KEY_LO
);
316 r
|= (flags
<< 55) & HPTE64_R_PP0
;
317 r
|= (flags
<< 48) & HPTE64_R_KEY_HI
;
318 r
|= flags
& (HPTE64_R_PP
| HPTE64_R_N
| HPTE64_R_KEY_LO
);
319 ppc_hash64_store_hpte(cpu
, ptex
,
320 (v
& ~HPTE64_V_VALID
) | HPTE64_V_HPTE_DIRTY
, 0);
321 ppc_hash64_tlb_flush_hpte(cpu
, ptex
, v
, r
);
323 check_tlb_flush(env
, true);
324 /* Don't need a memory barrier, due to qemu's global lock */
325 ppc_hash64_store_hpte(cpu
, ptex
, v
| HPTE64_V_HPTE_DIRTY
, r
);
329 static target_ulong
h_read(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
330 target_ulong opcode
, target_ulong
*args
)
332 target_ulong flags
= args
[0];
333 target_ulong ptex
= args
[1];
335 int i
, ridx
, n_entries
= 1;
337 if (!valid_ptex(cpu
, ptex
)) {
341 if (flags
& H_READ_4
) {
342 /* Clear the two low order bits */
347 hpte
= spapr
->htab
+ (ptex
* HASH_PTE_SIZE_64
);
349 for (i
= 0, ridx
= 0; i
< n_entries
; i
++) {
350 args
[ridx
++] = ldq_p(hpte
);
351 args
[ridx
++] = ldq_p(hpte
+ (HASH_PTE_SIZE_64
/2));
352 hpte
+= HASH_PTE_SIZE_64
;
358 struct sPAPRPendingHPT
{
359 /* These fields are read-only after initialization */
363 /* These fields are protected by the BQL */
366 /* These fields are private to the preparation thread if
367 * !complete, otherwise protected by the BQL */
372 static void free_pending_hpt(sPAPRPendingHPT
*pending
)
375 qemu_vfree(pending
->hpt
);
381 static void *hpt_prepare_thread(void *opaque
)
383 sPAPRPendingHPT
*pending
= opaque
;
384 size_t size
= 1ULL << pending
->shift
;
386 pending
->hpt
= qemu_memalign(size
, size
);
388 memset(pending
->hpt
, 0, size
);
389 pending
->ret
= H_SUCCESS
;
391 pending
->ret
= H_NO_MEM
;
394 qemu_mutex_lock_iothread();
396 if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt
== pending
) {
398 pending
->complete
= true;
400 /* We've been cancelled, clean ourselves up */
401 free_pending_hpt(pending
);
404 qemu_mutex_unlock_iothread();
408 /* Must be called with BQL held */
409 static void cancel_hpt_prepare(sPAPRMachineState
*spapr
)
411 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
413 /* Let the thread know it's cancelled */
414 spapr
->pending_hpt
= NULL
;
421 if (!pending
->complete
) {
422 /* thread will clean itself up */
426 free_pending_hpt(pending
);
429 /* Convert a return code from the KVM ioctl()s implementing resize HPT
430 * into a PAPR hypercall return code */
431 static target_ulong
resize_hpt_convert_rc(int ret
)
434 return H_LONG_BUSY_ORDER_100_SEC
;
435 } else if (ret
>= 10000) {
436 return H_LONG_BUSY_ORDER_10_SEC
;
437 } else if (ret
>= 1000) {
438 return H_LONG_BUSY_ORDER_1_SEC
;
439 } else if (ret
>= 100) {
440 return H_LONG_BUSY_ORDER_100_MSEC
;
441 } else if (ret
>= 10) {
442 return H_LONG_BUSY_ORDER_10_MSEC
;
443 } else if (ret
> 0) {
444 return H_LONG_BUSY_ORDER_1_MSEC
;
467 static target_ulong
h_resize_hpt_prepare(PowerPCCPU
*cpu
,
468 sPAPRMachineState
*spapr
,
472 target_ulong flags
= args
[0];
474 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
475 uint64_t current_ram_size
= MACHINE(spapr
)->ram_size
;
478 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
482 if (!spapr
->htab_shift
) {
483 /* Radix guest, no HPT */
484 return H_NOT_AVAILABLE
;
487 trace_spapr_h_resize_hpt_prepare(flags
, shift
);
493 if (shift
&& ((shift
< 18) || (shift
> 46))) {
497 current_ram_size
= pc_existing_dimms_capacity(&error_fatal
);
499 /* We only allow the guest to allocate an HPT one order above what
500 * we'd normally give them (to stop a small guest claiming a huge
501 * chunk of resources in the HPT */
502 if (shift
> (spapr_hpt_shift_for_ramsize(current_ram_size
) + 1)) {
506 rc
= kvmppc_resize_hpt_prepare(cpu
, flags
, shift
);
508 return resize_hpt_convert_rc(rc
);
512 /* something already in progress */
513 if (pending
->shift
== shift
) {
514 /* and it's suitable */
515 if (pending
->complete
) {
518 return H_LONG_BUSY_ORDER_100_MSEC
;
522 /* not suitable, cancel and replace */
523 cancel_hpt_prepare(spapr
);
531 /* start new prepare */
533 pending
= g_new0(sPAPRPendingHPT
, 1);
534 pending
->shift
= shift
;
535 pending
->ret
= H_HARDWARE
;
537 qemu_thread_create(&pending
->thread
, "sPAPR HPT prepare",
538 hpt_prepare_thread
, pending
, QEMU_THREAD_DETACHED
);
540 spapr
->pending_hpt
= pending
;
542 /* In theory we could estimate the time more accurately based on
543 * the new size, but there's not much point */
544 return H_LONG_BUSY_ORDER_100_MSEC
;
547 static uint64_t new_hpte_load0(void *htab
, uint64_t pteg
, int slot
)
549 uint8_t *addr
= htab
;
551 addr
+= pteg
* HASH_PTEG_SIZE_64
;
552 addr
+= slot
* HASH_PTE_SIZE_64
;
556 static void new_hpte_store(void *htab
, uint64_t pteg
, int slot
,
557 uint64_t pte0
, uint64_t pte1
)
559 uint8_t *addr
= htab
;
561 addr
+= pteg
* HASH_PTEG_SIZE_64
;
562 addr
+= slot
* HASH_PTE_SIZE_64
;
565 stq_p(addr
+ HASH_PTE_SIZE_64
/ 2, pte1
);
568 static int rehash_hpte(PowerPCCPU
*cpu
,
569 const ppc_hash_pte64_t
*hptes
,
570 void *old_hpt
, uint64_t oldsize
,
571 void *new_hpt
, uint64_t newsize
,
572 uint64_t pteg
, int slot
)
574 uint64_t old_hash_mask
= (oldsize
>> 7) - 1;
575 uint64_t new_hash_mask
= (newsize
>> 7) - 1;
576 target_ulong pte0
= ppc_hash64_hpte0(cpu
, hptes
, slot
);
579 unsigned base_pg_shift
;
580 uint64_t hash
, new_pteg
, replace_pte0
;
582 if (!(pte0
& HPTE64_V_VALID
) || !(pte0
& HPTE64_V_BOLTED
)) {
586 pte1
= ppc_hash64_hpte1(cpu
, hptes
, slot
);
588 base_pg_shift
= ppc_hash64_hpte_page_shift_noslb(cpu
, pte0
, pte1
);
589 assert(base_pg_shift
); /* H_ENTER shouldn't allow a bad encoding */
590 avpn
= HPTE64_V_AVPN_VAL(pte0
) & ~(((1ULL << base_pg_shift
) - 1) >> 23);
592 if (pte0
& HPTE64_V_SECONDARY
) {
596 if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_256M
) {
597 uint64_t offset
, vsid
;
599 /* We only have 28 - 23 bits of offset in avpn */
600 offset
= (avpn
& 0x1f) << 23;
602 /* We can find more bits from the pteg value */
603 if (base_pg_shift
< 23) {
604 offset
|= ((vsid
^ pteg
) & old_hash_mask
) << base_pg_shift
;
607 hash
= vsid
^ (offset
>> base_pg_shift
);
608 } else if ((pte0
& HPTE64_V_SSIZE
) == HPTE64_V_SSIZE_1T
) {
609 uint64_t offset
, vsid
;
611 /* We only have 40 - 23 bits of seg_off in avpn */
612 offset
= (avpn
& 0x1ffff) << 23;
614 if (base_pg_shift
< 23) {
615 offset
|= ((vsid
^ (vsid
<< 25) ^ pteg
) & old_hash_mask
)
619 hash
= vsid
^ (vsid
<< 25) ^ (offset
>> base_pg_shift
);
621 error_report("rehash_pte: Bad segment size in HPTE");
625 new_pteg
= hash
& new_hash_mask
;
626 if (pte0
& HPTE64_V_SECONDARY
) {
627 assert(~pteg
== (hash
& old_hash_mask
));
628 new_pteg
= ~new_pteg
;
630 assert(pteg
== (hash
& old_hash_mask
));
632 assert((oldsize
!= newsize
) || (pteg
== new_pteg
));
633 replace_pte0
= new_hpte_load0(new_hpt
, new_pteg
, slot
);
635 * Strictly speaking, we don't need all these tests, since we only
636 * ever rehash bolted HPTEs. We might in future handle non-bolted
637 * HPTEs, though so make the logic correct for those cases as
640 if (replace_pte0
& HPTE64_V_VALID
) {
641 assert(newsize
< oldsize
);
642 if (replace_pte0
& HPTE64_V_BOLTED
) {
643 if (pte0
& HPTE64_V_BOLTED
) {
644 /* Bolted collision, nothing we can do */
647 /* Discard this hpte */
653 new_hpte_store(new_hpt
, new_pteg
, slot
, pte0
, pte1
);
657 static int rehash_hpt(PowerPCCPU
*cpu
,
658 void *old_hpt
, uint64_t oldsize
,
659 void *new_hpt
, uint64_t newsize
)
661 uint64_t n_ptegs
= oldsize
>> 7;
666 for (pteg
= 0; pteg
< n_ptegs
; pteg
++) {
667 hwaddr ptex
= pteg
* HPTES_PER_GROUP
;
668 const ppc_hash_pte64_t
*hptes
669 = ppc_hash64_map_hptes(cpu
, ptex
, HPTES_PER_GROUP
);
675 for (slot
= 0; slot
< HPTES_PER_GROUP
; slot
++) {
676 rc
= rehash_hpte(cpu
, hptes
, old_hpt
, oldsize
, new_hpt
, newsize
,
678 if (rc
!= H_SUCCESS
) {
679 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
683 ppc_hash64_unmap_hptes(cpu
, hptes
, ptex
, HPTES_PER_GROUP
);
689 static target_ulong
h_resize_hpt_commit(PowerPCCPU
*cpu
,
690 sPAPRMachineState
*spapr
,
694 target_ulong flags
= args
[0];
695 target_ulong shift
= args
[1];
696 sPAPRPendingHPT
*pending
= spapr
->pending_hpt
;
700 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_DISABLED
) {
704 trace_spapr_h_resize_hpt_commit(flags
, shift
);
706 rc
= kvmppc_resize_hpt_commit(cpu
, flags
, shift
);
708 return resize_hpt_convert_rc(rc
);
715 if (!pending
|| (pending
->shift
!= shift
)) {
716 /* no matching prepare */
720 if (!pending
->complete
) {
721 /* prepare has not completed */
725 /* Shouldn't have got past PREPARE without an HPT */
726 g_assert(spapr
->htab_shift
);
728 newsize
= 1ULL << pending
->shift
;
729 rc
= rehash_hpt(cpu
, spapr
->htab
, HTAB_SIZE(spapr
),
730 pending
->hpt
, newsize
);
731 if (rc
== H_SUCCESS
) {
732 qemu_vfree(spapr
->htab
);
733 spapr
->htab
= pending
->hpt
;
734 spapr
->htab_shift
= pending
->shift
;
737 /* For KVM PR, update the HPT pointer */
738 target_ulong sdr1
= (target_ulong
)(uintptr_t)spapr
->htab
739 | (spapr
->htab_shift
- 18);
740 kvmppc_update_sdr1(sdr1
);
743 pending
->hpt
= NULL
; /* so it's not free()d */
747 spapr
->pending_hpt
= NULL
;
748 free_pending_hpt(pending
);
753 static target_ulong
h_set_sprg0(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
754 target_ulong opcode
, target_ulong
*args
)
756 cpu_synchronize_state(CPU(cpu
));
757 cpu
->env
.spr
[SPR_SPRG0
] = args
[0];
762 static target_ulong
h_set_dabr(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
763 target_ulong opcode
, target_ulong
*args
)
765 if (!has_spr(cpu
, SPR_DABR
)) {
766 return H_HARDWARE
; /* DABR register not available */
768 cpu_synchronize_state(CPU(cpu
));
770 if (has_spr(cpu
, SPR_DABRX
)) {
771 cpu
->env
.spr
[SPR_DABRX
] = 0x3; /* Use Problem and Privileged state */
772 } else if (!(args
[0] & 0x4)) { /* Breakpoint Translation set? */
773 return H_RESERVED_DABR
;
776 cpu
->env
.spr
[SPR_DABR
] = args
[0];
780 static target_ulong
h_set_xdabr(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
781 target_ulong opcode
, target_ulong
*args
)
783 target_ulong dabrx
= args
[1];
785 if (!has_spr(cpu
, SPR_DABR
) || !has_spr(cpu
, SPR_DABRX
)) {
789 if ((dabrx
& ~0xfULL
) != 0 || (dabrx
& H_DABRX_HYPERVISOR
) != 0
790 || (dabrx
& (H_DABRX_KERNEL
| H_DABRX_USER
)) == 0) {
794 cpu_synchronize_state(CPU(cpu
));
795 cpu
->env
.spr
[SPR_DABRX
] = dabrx
;
796 cpu
->env
.spr
[SPR_DABR
] = args
[0];
801 static target_ulong
h_page_init(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
802 target_ulong opcode
, target_ulong
*args
)
804 target_ulong flags
= args
[0];
805 hwaddr dst
= args
[1];
806 hwaddr src
= args
[2];
807 hwaddr len
= TARGET_PAGE_SIZE
;
808 uint8_t *pdst
, *psrc
;
809 target_long ret
= H_SUCCESS
;
811 if (flags
& ~(H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
812 | H_COPY_PAGE
| H_ZERO_PAGE
)) {
813 qemu_log_mask(LOG_UNIMP
, "h_page_init: Bad flags (" TARGET_FMT_lx
"\n",
818 /* Map-in destination */
819 if (!is_ram_address(spapr
, dst
) || (dst
& ~TARGET_PAGE_MASK
) != 0) {
822 pdst
= cpu_physical_memory_map(dst
, &len
, 1);
823 if (!pdst
|| len
!= TARGET_PAGE_SIZE
) {
827 if (flags
& H_COPY_PAGE
) {
828 /* Map-in source, copy to destination, and unmap source again */
829 if (!is_ram_address(spapr
, src
) || (src
& ~TARGET_PAGE_MASK
) != 0) {
833 psrc
= cpu_physical_memory_map(src
, &len
, 0);
834 if (!psrc
|| len
!= TARGET_PAGE_SIZE
) {
838 memcpy(pdst
, psrc
, len
);
839 cpu_physical_memory_unmap(psrc
, len
, 0, len
);
840 } else if (flags
& H_ZERO_PAGE
) {
841 memset(pdst
, 0, len
); /* Just clear the destination page */
844 if (kvm_enabled() && (flags
& H_ICACHE_SYNCHRONIZE
) != 0) {
845 kvmppc_dcbst_range(cpu
, pdst
, len
);
847 if (flags
& (H_ICACHE_SYNCHRONIZE
| H_ICACHE_INVALIDATE
)) {
849 kvmppc_icbi_range(cpu
, pdst
, len
);
856 cpu_physical_memory_unmap(pdst
, TARGET_PAGE_SIZE
, 1, len
);
860 #define FLAGS_REGISTER_VPA 0x0000200000000000ULL
861 #define FLAGS_REGISTER_DTL 0x0000400000000000ULL
862 #define FLAGS_REGISTER_SLBSHADOW 0x0000600000000000ULL
863 #define FLAGS_DEREGISTER_VPA 0x0000a00000000000ULL
864 #define FLAGS_DEREGISTER_DTL 0x0000c00000000000ULL
865 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
867 #define VPA_MIN_SIZE 640
868 #define VPA_SIZE_OFFSET 0x4
869 #define VPA_SHARED_PROC_OFFSET 0x9
870 #define VPA_SHARED_PROC_VAL 0x2
872 static target_ulong
register_vpa(CPUPPCState
*env
, target_ulong vpa
)
874 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
879 hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
883 if (vpa
% env
->dcache_line_size
) {
886 /* FIXME: bounds check the address */
888 size
= lduw_be_phys(cs
->as
, vpa
+ 0x4);
890 if (size
< VPA_MIN_SIZE
) {
894 /* VPA is not allowed to cross a page boundary */
895 if ((vpa
/ 4096) != ((vpa
+ size
- 1) / 4096)) {
901 tmp
= ldub_phys(cs
->as
, env
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
);
902 tmp
|= VPA_SHARED_PROC_VAL
;
903 stb_phys(cs
->as
, env
->vpa_addr
+ VPA_SHARED_PROC_OFFSET
, tmp
);
908 static target_ulong
deregister_vpa(CPUPPCState
*env
, target_ulong vpa
)
910 if (env
->slb_shadow_addr
) {
922 static target_ulong
register_slb_shadow(CPUPPCState
*env
, target_ulong addr
)
924 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
928 hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
932 size
= ldl_be_phys(cs
->as
, addr
+ 0x4);
937 if ((addr
/ 4096) != ((addr
+ size
- 1) / 4096)) {
941 if (!env
->vpa_addr
) {
945 env
->slb_shadow_addr
= addr
;
946 env
->slb_shadow_size
= size
;
951 static target_ulong
deregister_slb_shadow(CPUPPCState
*env
, target_ulong addr
)
953 env
->slb_shadow_addr
= 0;
954 env
->slb_shadow_size
= 0;
958 static target_ulong
register_dtl(CPUPPCState
*env
, target_ulong addr
)
960 CPUState
*cs
= CPU(ppc_env_get_cpu(env
));
964 hcall_dprintf("Can't cope with DTL at logical 0\n");
968 size
= ldl_be_phys(cs
->as
, addr
+ 0x4);
974 if (!env
->vpa_addr
) {
978 env
->dtl_addr
= addr
;
979 env
->dtl_size
= size
;
984 static target_ulong
deregister_dtl(CPUPPCState
*env
, target_ulong addr
)
992 static target_ulong
h_register_vpa(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
993 target_ulong opcode
, target_ulong
*args
)
995 target_ulong flags
= args
[0];
996 target_ulong procno
= args
[1];
997 target_ulong vpa
= args
[2];
998 target_ulong ret
= H_PARAMETER
;
1002 tcpu
= ppc_get_vcpu_by_dt_id(procno
);
1009 case FLAGS_REGISTER_VPA
:
1010 ret
= register_vpa(tenv
, vpa
);
1013 case FLAGS_DEREGISTER_VPA
:
1014 ret
= deregister_vpa(tenv
, vpa
);
1017 case FLAGS_REGISTER_SLBSHADOW
:
1018 ret
= register_slb_shadow(tenv
, vpa
);
1021 case FLAGS_DEREGISTER_SLBSHADOW
:
1022 ret
= deregister_slb_shadow(tenv
, vpa
);
1025 case FLAGS_REGISTER_DTL
:
1026 ret
= register_dtl(tenv
, vpa
);
1029 case FLAGS_DEREGISTER_DTL
:
1030 ret
= deregister_dtl(tenv
, vpa
);
1037 static target_ulong
h_cede(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1038 target_ulong opcode
, target_ulong
*args
)
1040 CPUPPCState
*env
= &cpu
->env
;
1041 CPUState
*cs
= CPU(cpu
);
1043 env
->msr
|= (1ULL << MSR_EE
);
1044 hreg_compute_hflags(env
);
1045 if (!cpu_has_work(cs
)) {
1047 cs
->exception_index
= EXCP_HLT
;
1048 cs
->exit_request
= 1;
1053 static target_ulong
h_rtas(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1054 target_ulong opcode
, target_ulong
*args
)
1056 target_ulong rtas_r3
= args
[0];
1057 uint32_t token
= rtas_ld(rtas_r3
, 0);
1058 uint32_t nargs
= rtas_ld(rtas_r3
, 1);
1059 uint32_t nret
= rtas_ld(rtas_r3
, 2);
1061 return spapr_rtas_call(cpu
, spapr
, token
, nargs
, rtas_r3
+ 12,
1062 nret
, rtas_r3
+ 12 + 4*nargs
);
1065 static target_ulong
h_logical_load(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1066 target_ulong opcode
, target_ulong
*args
)
1068 CPUState
*cs
= CPU(cpu
);
1069 target_ulong size
= args
[0];
1070 target_ulong addr
= args
[1];
1074 args
[0] = ldub_phys(cs
->as
, addr
);
1077 args
[0] = lduw_phys(cs
->as
, addr
);
1080 args
[0] = ldl_phys(cs
->as
, addr
);
1083 args
[0] = ldq_phys(cs
->as
, addr
);
1089 static target_ulong
h_logical_store(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1090 target_ulong opcode
, target_ulong
*args
)
1092 CPUState
*cs
= CPU(cpu
);
1094 target_ulong size
= args
[0];
1095 target_ulong addr
= args
[1];
1096 target_ulong val
= args
[2];
1100 stb_phys(cs
->as
, addr
, val
);
1103 stw_phys(cs
->as
, addr
, val
);
1106 stl_phys(cs
->as
, addr
, val
);
1109 stq_phys(cs
->as
, addr
, val
);
1115 static target_ulong
h_logical_memop(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1116 target_ulong opcode
, target_ulong
*args
)
1118 CPUState
*cs
= CPU(cpu
);
1120 target_ulong dst
= args
[0]; /* Destination address */
1121 target_ulong src
= args
[1]; /* Source address */
1122 target_ulong esize
= args
[2]; /* Element size (0=1,1=2,2=4,3=8) */
1123 target_ulong count
= args
[3]; /* Element count */
1124 target_ulong op
= args
[4]; /* 0 = copy, 1 = invert */
1126 unsigned int mask
= (1 << esize
) - 1;
1127 int step
= 1 << esize
;
1129 if (count
> 0x80000000) {
1133 if ((dst
& mask
) || (src
& mask
) || (op
> 1)) {
1137 if (dst
>= src
&& dst
< (src
+ (count
<< esize
))) {
1138 dst
= dst
+ ((count
- 1) << esize
);
1139 src
= src
+ ((count
- 1) << esize
);
1146 tmp
= ldub_phys(cs
->as
, src
);
1149 tmp
= lduw_phys(cs
->as
, src
);
1152 tmp
= ldl_phys(cs
->as
, src
);
1155 tmp
= ldq_phys(cs
->as
, src
);
1165 stb_phys(cs
->as
, dst
, tmp
);
1168 stw_phys(cs
->as
, dst
, tmp
);
1171 stl_phys(cs
->as
, dst
, tmp
);
1174 stq_phys(cs
->as
, dst
, tmp
);
1184 static target_ulong
h_logical_icbi(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1185 target_ulong opcode
, target_ulong
*args
)
1187 /* Nothing to do on emulation, KVM will trap this in the kernel */
1191 static target_ulong
h_logical_dcbf(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1192 target_ulong opcode
, target_ulong
*args
)
1194 /* Nothing to do on emulation, KVM will trap this in the kernel */
1198 static target_ulong
h_set_mode_resource_le(PowerPCCPU
*cpu
,
1199 target_ulong mflags
,
1200 target_ulong value1
,
1201 target_ulong value2
)
1213 case H_SET_MODE_ENDIAN_BIG
:
1215 set_spr(cs
, SPR_LPCR
, 0, LPCR_ILE
);
1217 spapr_pci_switch_vga(true);
1220 case H_SET_MODE_ENDIAN_LITTLE
:
1222 set_spr(cs
, SPR_LPCR
, LPCR_ILE
, LPCR_ILE
);
1224 spapr_pci_switch_vga(false);
1228 return H_UNSUPPORTED_FLAG
;
1231 static target_ulong
h_set_mode_resource_addr_trans_mode(PowerPCCPU
*cpu
,
1232 target_ulong mflags
,
1233 target_ulong value1
,
1234 target_ulong value2
)
1237 PowerPCCPUClass
*pcc
= POWERPC_CPU_GET_CLASS(cpu
);
1239 if (!(pcc
->insns_flags2
& PPC2_ISA207S
)) {
1249 if (mflags
== AIL_RESERVED
) {
1250 return H_UNSUPPORTED_FLAG
;
1254 set_spr(cs
, SPR_LPCR
, mflags
<< LPCR_AIL_SHIFT
, LPCR_AIL
);
1260 static target_ulong
h_set_mode(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1261 target_ulong opcode
, target_ulong
*args
)
1263 target_ulong resource
= args
[1];
1264 target_ulong ret
= H_P2
;
1267 case H_SET_MODE_RESOURCE_LE
:
1268 ret
= h_set_mode_resource_le(cpu
, args
[0], args
[2], args
[3]);
1270 case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE
:
1271 ret
= h_set_mode_resource_addr_trans_mode(cpu
, args
[0],
1279 static target_ulong
h_clean_slb(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1280 target_ulong opcode
, target_ulong
*args
)
1282 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1283 opcode
, " (H_CLEAN_SLB)");
1287 static target_ulong
h_invalidate_pid(PowerPCCPU
*cpu
, sPAPRMachineState
*spapr
,
1288 target_ulong opcode
, target_ulong
*args
)
1290 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx
"%s\n",
1291 opcode
, " (H_INVALIDATE_PID)");
1295 static void spapr_check_setup_free_hpt(sPAPRMachineState
*spapr
,
1296 uint64_t patbe_old
, uint64_t patbe_new
)
1299 * We have 4 Options:
1300 * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1301 * HASH->RADIX : Free HPT
1302 * RADIX->HASH : Allocate HPT
1303 * NOTHING->HASH : Allocate HPT
1304 * Note: NOTHING implies the case where we said the guest could choose
1305 * later and so assumed radix and now it's called H_REG_PROC_TBL
1308 if ((patbe_old
& PATBE1_GR
) == (patbe_new
& PATBE1_GR
)) {
1309 /* We assume RADIX, so this catches all the "Do Nothing" cases */
1310 } else if (!(patbe_old
& PATBE1_GR
)) {
1311 /* HASH->RADIX : Free HPT */
1312 spapr_free_hpt(spapr
);
1313 } else if (!(patbe_new
& PATBE1_GR
)) {
1314 /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1315 spapr_setup_hpt_and_vrma(spapr
);
1320 #define FLAGS_MASK 0x01FULL
1321 #define FLAG_MODIFY 0x10
1322 #define FLAG_REGISTER 0x08
1323 #define FLAG_RADIX 0x04
1324 #define FLAG_HASH_PROC_TBL 0x02
1325 #define FLAG_GTSE 0x01
1327 static target_ulong
h_register_process_table(PowerPCCPU
*cpu
,
1328 sPAPRMachineState
*spapr
,
1329 target_ulong opcode
,
1333 target_ulong flags
= args
[0];
1334 target_ulong proc_tbl
= args
[1];
1335 target_ulong page_size
= args
[2];
1336 target_ulong table_size
= args
[3];
1339 if (flags
& ~FLAGS_MASK
) { /* Check no reserved bits are set */
1342 if (flags
& FLAG_MODIFY
) {
1343 if (flags
& FLAG_REGISTER
) {
1344 if (flags
& FLAG_RADIX
) { /* Register new RADIX process table */
1345 if (proc_tbl
& 0xfff || proc_tbl
>> 60) {
1347 } else if (page_size
) {
1349 } else if (table_size
> 24) {
1352 cproc
= PATBE1_GR
| proc_tbl
| table_size
;
1353 } else { /* Register new HPT process table */
1354 if (flags
& FLAG_HASH_PROC_TBL
) { /* Hash with Segment Tables */
1355 /* TODO - Not Supported */
1356 /* Technically caused by flag bits => H_PARAMETER */
1358 } else { /* Hash with SLB */
1359 if (proc_tbl
>> 38) {
1361 } else if (page_size
& ~0x7) {
1363 } else if (table_size
> 24) {
1367 cproc
= (proc_tbl
<< 25) | page_size
<< 5 | table_size
;
1370 } else { /* Deregister current process table */
1371 /* Set to benign value: (current GR) | 0. This allows
1372 * deregistration in KVM to succeed even if the radix bit in flags
1373 * doesn't match the radix bit in the old PATB. */
1374 cproc
= spapr
->patb_entry
& PATBE1_GR
;
1376 } else { /* Maintain current registration */
1377 if (!(flags
& FLAG_RADIX
) != !(spapr
->patb_entry
& PATBE1_GR
)) {
1378 /* Technically caused by flag bits => H_PARAMETER */
1379 return H_PARAMETER
; /* Existing Process Table Mismatch */
1381 cproc
= spapr
->patb_entry
;
1384 /* Check if we need to setup OR free the hpt */
1385 spapr_check_setup_free_hpt(spapr
, spapr
->patb_entry
, cproc
);
1387 spapr
->patb_entry
= cproc
; /* Save new process table */
1389 /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1391 set_spr(cs
, SPR_LPCR
,
1392 ((flags
& (FLAG_RADIX
| FLAG_HASH_PROC_TBL
)) ? LPCR_UPRT
: 0) |
1393 ((flags
& FLAG_GTSE
) ? LPCR_GTSE
: 0),
1394 LPCR_UPRT
| LPCR_GTSE
);
1397 if (kvm_enabled()) {
1398 return kvmppc_configure_v3_mmu(cpu
, flags
& FLAG_RADIX
,
1399 flags
& FLAG_GTSE
, cproc
);
1404 #define H_SIGNAL_SYS_RESET_ALL -1
1405 #define H_SIGNAL_SYS_RESET_ALLBUTSELF -2
1407 static target_ulong
h_signal_sys_reset(PowerPCCPU
*cpu
,
1408 sPAPRMachineState
*spapr
,
1409 target_ulong opcode
, target_ulong
*args
)
1411 target_long target
= args
[0];
1416 if (target
< H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1421 PowerPCCPU
*c
= POWERPC_CPU(cs
);
1423 if (target
== H_SIGNAL_SYS_RESET_ALLBUTSELF
) {
1428 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1434 cs
= CPU(ppc_get_vcpu_by_dt_id(target
));
1436 run_on_cpu(cs
, spapr_do_system_reset_on_cpu
, RUN_ON_CPU_NULL
);
1443 static uint32_t cas_check_pvr(sPAPRMachineState
*spapr
, PowerPCCPU
*cpu
,
1444 target_ulong
*addr
, Error
**errp
)
1446 bool explicit_match
= false; /* Matched the CPU's real PVR */
1447 uint32_t max_compat
= spapr
->max_compat_pvr
;
1448 uint32_t best_compat
= 0;
1452 * We scan the supplied table of PVRs looking for two things
1453 * 1. Is our real CPU PVR in the list?
1454 * 2. What's the "best" listed logical PVR
1456 for (i
= 0; i
< 512; ++i
) {
1457 uint32_t pvr
, pvr_mask
;
1459 pvr_mask
= ldl_be_phys(&address_space_memory
, *addr
);
1460 pvr
= ldl_be_phys(&address_space_memory
, *addr
+ 4);
1463 if (~pvr_mask
& pvr
) {
1464 break; /* Terminator record */
1467 if ((cpu
->env
.spr
[SPR_PVR
] & pvr_mask
) == (pvr
& pvr_mask
)) {
1468 explicit_match
= true;
1470 if (ppc_check_compat(cpu
, pvr
, best_compat
, max_compat
)) {
1476 if ((best_compat
== 0) && (!explicit_match
|| max_compat
)) {
1477 /* We couldn't find a suitable compatibility mode, and either
1478 * the guest doesn't support "raw" mode for this CPU, or raw
1479 * mode is disabled because a maximum compat mode is set */
1480 error_setg(errp
, "Couldn't negotiate a suitable PVR during CAS");
1484 /* Parsing finished */
1485 trace_spapr_cas_pvr(cpu
->compat_pvr
, explicit_match
, best_compat
);
1490 static target_ulong
h_client_architecture_support(PowerPCCPU
*cpu
,
1491 sPAPRMachineState
*spapr
,
1492 target_ulong opcode
,
1495 /* Working address in data buffer */
1496 target_ulong addr
= ppc64_phys_to_real(args
[0]);
1497 target_ulong ov_table
;
1499 sPAPROptionVector
*ov1_guest
, *ov5_guest
, *ov5_cas_old
, *ov5_updates
;
1501 Error
*local_err
= NULL
;
1503 cas_pvr
= cas_check_pvr(spapr
, cpu
, &addr
, &local_err
);
1505 error_report_err(local_err
);
1510 if (cpu
->compat_pvr
!= cas_pvr
) {
1511 ppc_set_compat_all(cas_pvr
, &local_err
);
1513 error_report_err(local_err
);
1518 /* For the future use: here @ov_table points to the first option vector */
1521 ov1_guest
= spapr_ovec_parse_vector(ov_table
, 1);
1522 ov5_guest
= spapr_ovec_parse_vector(ov_table
, 5);
1523 if (spapr_ovec_test(ov5_guest
, OV5_MMU_BOTH
)) {
1524 error_report("guest requested hash and radix MMU, which is invalid.");
1527 /* The radix/hash bit in byte 24 requires special handling: */
1528 guest_radix
= spapr_ovec_test(ov5_guest
, OV5_MMU_RADIX_300
);
1529 spapr_ovec_clear(ov5_guest
, OV5_MMU_RADIX_300
);
1532 * HPT resizing is a bit of a special case, because when enabled
1533 * we assume an HPT guest will support it until it says it
1534 * doesn't, instead of assuming it won't support it until it says
1535 * it does. Strictly speaking that approach could break for
1536 * guests which don't make a CAS call, but those are so old we
1537 * don't care about them. Without that assumption we'd have to
1538 * make at least a temporary allocation of an HPT sized for max
1539 * memory, which could be impossibly difficult under KVM HV if
1542 if (!guest_radix
&& !spapr_ovec_test(ov5_guest
, OV5_HPT_RESIZE
)) {
1543 int maxshift
= spapr_hpt_shift_for_ramsize(MACHINE(spapr
)->maxram_size
);
1545 if (spapr
->resize_hpt
== SPAPR_RESIZE_HPT_REQUIRED
) {
1547 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1551 if (spapr
->htab_shift
< maxshift
) {
1554 /* Guest doesn't know about HPT resizing, so we
1555 * pre-emptively resize for the maximum permitted RAM. At
1556 * the point this is called, nothing should have been
1557 * entered into the existing HPT */
1558 spapr_reallocate_hpt(spapr
, maxshift
, &error_fatal
);
1560 if (kvm_enabled()) {
1561 /* For KVM PR, update the HPT pointer */
1562 target_ulong sdr1
= (target_ulong
)(uintptr_t)spapr
->htab
1563 | (spapr
->htab_shift
- 18);
1564 kvmppc_update_sdr1(sdr1
);
1570 /* NOTE: there are actually a number of ov5 bits where input from the
1571 * guest is always zero, and the platform/QEMU enables them independently
1572 * of guest input. To model these properly we'd want some sort of mask,
1573 * but since they only currently apply to memory migration as defined
1574 * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1575 * to worry about this for now.
1577 ov5_cas_old
= spapr_ovec_clone(spapr
->ov5_cas
);
1578 /* full range of negotiated ov5 capabilities */
1579 spapr_ovec_intersect(spapr
->ov5_cas
, spapr
->ov5
, ov5_guest
);
1580 spapr_ovec_cleanup(ov5_guest
);
1581 /* capabilities that have been added since CAS-generated guest reset.
1582 * if capabilities have since been removed, generate another reset
1584 ov5_updates
= spapr_ovec_new();
1585 spapr
->cas_reboot
= spapr_ovec_diff(ov5_updates
,
1586 ov5_cas_old
, spapr
->ov5_cas
);
1587 /* Now that processing is finished, set the radix/hash bit for the
1588 * guest if it requested a valid mode; otherwise terminate the boot. */
1590 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1591 error_report("Guest requested unavailable MMU mode (radix).");
1594 spapr_ovec_set(spapr
->ov5_cas
, OV5_MMU_RADIX_300
);
1596 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1597 && !kvmppc_has_cap_mmu_hash_v3()) {
1598 error_report("Guest requested unavailable MMU mode (hash).");
1602 spapr
->cas_legacy_guest_workaround
= !spapr_ovec_test(ov1_guest
,
1604 if (!spapr
->cas_reboot
) {
1606 (spapr_h_cas_compose_response(spapr
, args
[1], args
[2],
1609 spapr_ovec_cleanup(ov5_updates
);
1611 if (spapr
->cas_reboot
) {
1612 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET
);
1614 /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1615 * (because the guest isn't going to use radix) then set it up here. */
1616 if ((spapr
->patb_entry
& PATBE1_GR
) && !guest_radix
) {
1617 /* legacy hash or new hash: */
1618 spapr_setup_hpt_and_vrma(spapr
);
1625 static spapr_hcall_fn papr_hypercall_table
[(MAX_HCALL_OPCODE
/ 4) + 1];
1626 static spapr_hcall_fn kvmppc_hypercall_table
[KVMPPC_HCALL_MAX
- KVMPPC_HCALL_BASE
+ 1];
1628 void spapr_register_hypercall(target_ulong opcode
, spapr_hcall_fn fn
)
1630 spapr_hcall_fn
*slot
;
1632 if (opcode
<= MAX_HCALL_OPCODE
) {
1633 assert((opcode
& 0x3) == 0);
1635 slot
= &papr_hypercall_table
[opcode
/ 4];
1637 assert((opcode
>= KVMPPC_HCALL_BASE
) && (opcode
<= KVMPPC_HCALL_MAX
));
1639 slot
= &kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1646 target_ulong
spapr_hypercall(PowerPCCPU
*cpu
, target_ulong opcode
,
1649 sPAPRMachineState
*spapr
= SPAPR_MACHINE(qdev_get_machine());
1651 if ((opcode
<= MAX_HCALL_OPCODE
)
1652 && ((opcode
& 0x3) == 0)) {
1653 spapr_hcall_fn fn
= papr_hypercall_table
[opcode
/ 4];
1656 return fn(cpu
, spapr
, opcode
, args
);
1658 } else if ((opcode
>= KVMPPC_HCALL_BASE
) &&
1659 (opcode
<= KVMPPC_HCALL_MAX
)) {
1660 spapr_hcall_fn fn
= kvmppc_hypercall_table
[opcode
- KVMPPC_HCALL_BASE
];
1663 return fn(cpu
, spapr
, opcode
, args
);
1667 qemu_log_mask(LOG_UNIMP
, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx
"\n",
1672 static void hypercall_register_types(void)
1675 spapr_register_hypercall(H_ENTER
, h_enter
);
1676 spapr_register_hypercall(H_REMOVE
, h_remove
);
1677 spapr_register_hypercall(H_PROTECT
, h_protect
);
1678 spapr_register_hypercall(H_READ
, h_read
);
1681 spapr_register_hypercall(H_BULK_REMOVE
, h_bulk_remove
);
1683 /* hcall-hpt-resize */
1684 spapr_register_hypercall(H_RESIZE_HPT_PREPARE
, h_resize_hpt_prepare
);
1685 spapr_register_hypercall(H_RESIZE_HPT_COMMIT
, h_resize_hpt_commit
);
1688 spapr_register_hypercall(H_REGISTER_VPA
, h_register_vpa
);
1689 spapr_register_hypercall(H_CEDE
, h_cede
);
1690 spapr_register_hypercall(H_SIGNAL_SYS_RESET
, h_signal_sys_reset
);
1692 /* processor register resource access h-calls */
1693 spapr_register_hypercall(H_SET_SPRG0
, h_set_sprg0
);
1694 spapr_register_hypercall(H_SET_DABR
, h_set_dabr
);
1695 spapr_register_hypercall(H_SET_XDABR
, h_set_xdabr
);
1696 spapr_register_hypercall(H_PAGE_INIT
, h_page_init
);
1697 spapr_register_hypercall(H_SET_MODE
, h_set_mode
);
1699 /* In Memory Table MMU h-calls */
1700 spapr_register_hypercall(H_CLEAN_SLB
, h_clean_slb
);
1701 spapr_register_hypercall(H_INVALIDATE_PID
, h_invalidate_pid
);
1702 spapr_register_hypercall(H_REGISTER_PROC_TBL
, h_register_process_table
);
1704 /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1705 * here between the "CI" and the "CACHE" variants, they will use whatever
1706 * mapping attributes qemu is using. When using KVM, the kernel will
1707 * enforce the attributes more strongly
1709 spapr_register_hypercall(H_LOGICAL_CI_LOAD
, h_logical_load
);
1710 spapr_register_hypercall(H_LOGICAL_CI_STORE
, h_logical_store
);
1711 spapr_register_hypercall(H_LOGICAL_CACHE_LOAD
, h_logical_load
);
1712 spapr_register_hypercall(H_LOGICAL_CACHE_STORE
, h_logical_store
);
1713 spapr_register_hypercall(H_LOGICAL_ICBI
, h_logical_icbi
);
1714 spapr_register_hypercall(H_LOGICAL_DCBF
, h_logical_dcbf
);
1715 spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP
, h_logical_memop
);
1717 /* qemu/KVM-PPC specific hcalls */
1718 spapr_register_hypercall(KVMPPC_H_RTAS
, h_rtas
);
1720 /* ibm,client-architecture-support support */
1721 spapr_register_hypercall(KVMPPC_H_CAS
, h_client_architecture_support
);
1724 type_init(hypercall_register_types
)