boot-serial-test: fallback to kvm accelerator
[qemu.git] / hw / ppc / spapr.c
blobf7a19720dcdf746caeef387a83aee16854356b36
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "sysemu/sysemu.h"
30 #include "sysemu/numa.h"
31 #include "hw/hw.h"
32 #include "qemu/log.h"
33 #include "hw/fw-path-provider.h"
34 #include "elf.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/block-backend.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "qom/cpu.h"
48 #include "hw/boards.h"
49 #include "hw/ppc/ppc.h"
50 #include "hw/loader.h"
52 #include "hw/ppc/fdt.h"
53 #include "hw/ppc/spapr.h"
54 #include "hw/ppc/spapr_vio.h"
55 #include "hw/pci-host/spapr.h"
56 #include "hw/ppc/xics.h"
57 #include "hw/pci/msi.h"
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
64 #include "exec/address-spaces.h"
65 #include "hw/usb.h"
66 #include "qemu/config-file.h"
67 #include "qemu/error-report.h"
68 #include "trace.h"
69 #include "hw/nmi.h"
70 #include "hw/intc/intc.h"
72 #include "hw/compat.h"
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "qmp-commands.h"
77 #include <libfdt.h>
79 /* SLOF memory layout:
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
87 * We load our kernel at 4M, leaving space for SLOF initial image
89 #define FDT_MAX_SIZE 0x100000
90 #define RTAS_MAX_SIZE 0x10000
91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE 0x400000
93 #define FW_FILE_NAME "slof.bin"
94 #define FW_OVERHEAD 0x2800000
95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
97 #define MIN_RMA_SLOF 128UL
99 #define PHANDLE_XICP 0x00001111
101 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
102 const char *type_ics,
103 int nr_irqs, Error **errp)
105 Error *local_err = NULL;
106 Object *obj;
108 obj = object_new(type_ics);
109 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
110 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
111 &error_abort);
112 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
113 if (local_err) {
114 goto error;
116 object_property_set_bool(obj, true, "realized", &local_err);
117 if (local_err) {
118 goto error;
121 return ICS_SIMPLE(obj);
123 error:
124 error_propagate(errp, local_err);
125 return NULL;
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
130 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131 * and newer QEMUs don't even have them. In both cases, we don't want
132 * to send anything on the wire.
134 return false;
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138 .name = "icp/server",
139 .version_id = 1,
140 .minimum_version_id = 1,
141 .needed = pre_2_10_vmstate_dummy_icp_needed,
142 .fields = (VMStateField[]) {
143 VMSTATE_UNUSED(4), /* uint32_t xirr */
144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145 VMSTATE_UNUSED(1), /* uint8_t mfrr */
146 VMSTATE_END_OF_LIST()
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153 (void *)(uintptr_t) i);
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159 (void *)(uintptr_t) i);
162 static inline int xics_max_server_number(void)
164 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
167 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
169 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
170 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
172 if (kvm_enabled()) {
173 if (machine_kernel_irqchip_allowed(machine) &&
174 !xics_kvm_init(spapr, errp)) {
175 spapr->icp_type = TYPE_KVM_ICP;
176 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
178 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
179 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
180 return;
184 if (!spapr->ics) {
185 xics_spapr_init(spapr);
186 spapr->icp_type = TYPE_ICP;
187 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
188 if (!spapr->ics) {
189 return;
193 if (smc->pre_2_10_has_unused_icps) {
194 int i;
196 for (i = 0; i < xics_max_server_number(); i++) {
197 /* Dummy entries get deregistered when real ICPState objects
198 * are registered during CPU core hotplug.
200 pre_2_10_vmstate_register_dummy_icp(i);
205 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
206 int smt_threads)
208 int i, ret = 0;
209 uint32_t servers_prop[smt_threads];
210 uint32_t gservers_prop[smt_threads * 2];
211 int index = ppc_get_vcpu_dt_id(cpu);
213 if (cpu->compat_pvr) {
214 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
215 if (ret < 0) {
216 return ret;
220 /* Build interrupt servers and gservers properties */
221 for (i = 0; i < smt_threads; i++) {
222 servers_prop[i] = cpu_to_be32(index + i);
223 /* Hack, direct the group queues back to cpu 0 */
224 gservers_prop[i*2] = cpu_to_be32(index + i);
225 gservers_prop[i*2 + 1] = 0;
227 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
228 servers_prop, sizeof(servers_prop));
229 if (ret < 0) {
230 return ret;
232 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
233 gservers_prop, sizeof(gservers_prop));
235 return ret;
238 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
240 int index = ppc_get_vcpu_dt_id(cpu);
241 uint32_t associativity[] = {cpu_to_be32(0x5),
242 cpu_to_be32(0x0),
243 cpu_to_be32(0x0),
244 cpu_to_be32(0x0),
245 cpu_to_be32(cpu->node_id),
246 cpu_to_be32(index)};
248 /* Advertise NUMA via ibm,associativity */
249 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
250 sizeof(associativity));
253 /* Populate the "ibm,pa-features" property */
254 static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
255 bool legacy_guest)
257 uint8_t pa_features_206[] = { 6, 0,
258 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
259 uint8_t pa_features_207[] = { 24, 0,
260 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
261 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
262 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
263 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
264 uint8_t pa_features_300[] = { 66, 0,
265 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
266 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
267 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
268 /* 6: DS207 */
269 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
270 /* 16: Vector */
271 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
272 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
273 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
274 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
275 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
276 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
277 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
278 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
279 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
280 /* 42: PM, 44: PC RA, 46: SC vec'd */
281 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
282 /* 48: SIMD, 50: QP BFP, 52: String */
283 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
284 /* 54: DecFP, 56: DecI, 58: SHA */
285 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
286 /* 60: NM atomic, 62: RNG */
287 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
289 uint8_t *pa_features;
290 size_t pa_size;
292 switch (POWERPC_MMU_VER(env->mmu_model)) {
293 case POWERPC_MMU_VER_2_06:
294 pa_features = pa_features_206;
295 pa_size = sizeof(pa_features_206);
296 break;
297 case POWERPC_MMU_VER_2_07:
298 pa_features = pa_features_207;
299 pa_size = sizeof(pa_features_207);
300 break;
301 case POWERPC_MMU_VER_3_00:
302 pa_features = pa_features_300;
303 pa_size = sizeof(pa_features_300);
304 break;
305 default:
306 return;
309 if (env->ci_large_pages) {
311 * Note: we keep CI large pages off by default because a 64K capable
312 * guest provisioned with large pages might otherwise try to map a qemu
313 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
314 * even if that qemu runs on a 4k host.
315 * We dd this bit back here if we are confident this is not an issue
317 pa_features[3] |= 0x20;
319 if (kvmppc_has_cap_htm() && pa_size > 24) {
320 pa_features[24] |= 0x80; /* Transactional memory support */
322 if (legacy_guest && pa_size > 40) {
323 /* Workaround for broken kernels that attempt (guest) radix
324 * mode when they can't handle it, if they see the radix bit set
325 * in pa-features. So hide it from them. */
326 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
329 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
332 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
334 int ret = 0, offset, cpus_offset;
335 CPUState *cs;
336 char cpu_model[32];
337 int smt = kvmppc_smt_threads();
338 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
340 CPU_FOREACH(cs) {
341 PowerPCCPU *cpu = POWERPC_CPU(cs);
342 CPUPPCState *env = &cpu->env;
343 DeviceClass *dc = DEVICE_GET_CLASS(cs);
344 int index = ppc_get_vcpu_dt_id(cpu);
345 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
347 if ((index % smt) != 0) {
348 continue;
351 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
353 cpus_offset = fdt_path_offset(fdt, "/cpus");
354 if (cpus_offset < 0) {
355 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
356 "cpus");
357 if (cpus_offset < 0) {
358 return cpus_offset;
361 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
362 if (offset < 0) {
363 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 return offset;
369 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
370 pft_size_prop, sizeof(pft_size_prop));
371 if (ret < 0) {
372 return ret;
375 if (nb_numa_nodes > 1) {
376 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
377 if (ret < 0) {
378 return ret;
382 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
383 if (ret < 0) {
384 return ret;
387 spapr_populate_pa_features(env, fdt, offset,
388 spapr->cas_legacy_guest_workaround);
390 return ret;
393 static hwaddr spapr_node0_size(void)
395 MachineState *machine = MACHINE(qdev_get_machine());
397 if (nb_numa_nodes) {
398 int i;
399 for (i = 0; i < nb_numa_nodes; ++i) {
400 if (numa_info[i].node_mem) {
401 return MIN(pow2floor(numa_info[i].node_mem),
402 machine->ram_size);
406 return machine->ram_size;
409 static void add_str(GString *s, const gchar *s1)
411 g_string_append_len(s, s1, strlen(s1) + 1);
414 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
415 hwaddr size)
417 uint32_t associativity[] = {
418 cpu_to_be32(0x4), /* length */
419 cpu_to_be32(0x0), cpu_to_be32(0x0),
420 cpu_to_be32(0x0), cpu_to_be32(nodeid)
422 char mem_name[32];
423 uint64_t mem_reg_property[2];
424 int off;
426 mem_reg_property[0] = cpu_to_be64(start);
427 mem_reg_property[1] = cpu_to_be64(size);
429 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
430 off = fdt_add_subnode(fdt, 0, mem_name);
431 _FDT(off);
432 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
433 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
434 sizeof(mem_reg_property))));
435 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
436 sizeof(associativity))));
437 return off;
440 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
442 MachineState *machine = MACHINE(spapr);
443 hwaddr mem_start, node_size;
444 int i, nb_nodes = nb_numa_nodes;
445 NodeInfo *nodes = numa_info;
446 NodeInfo ramnode;
448 /* No NUMA nodes, assume there is just one node with whole RAM */
449 if (!nb_numa_nodes) {
450 nb_nodes = 1;
451 ramnode.node_mem = machine->ram_size;
452 nodes = &ramnode;
455 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
456 if (!nodes[i].node_mem) {
457 continue;
459 if (mem_start >= machine->ram_size) {
460 node_size = 0;
461 } else {
462 node_size = nodes[i].node_mem;
463 if (node_size > machine->ram_size - mem_start) {
464 node_size = machine->ram_size - mem_start;
467 if (!mem_start) {
468 /* ppc_spapr_init() checks for rma_size <= node0_size already */
469 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
470 mem_start += spapr->rma_size;
471 node_size -= spapr->rma_size;
473 for ( ; node_size; ) {
474 hwaddr sizetmp = pow2floor(node_size);
476 /* mem_start != 0 here */
477 if (ctzl(mem_start) < ctzl(sizetmp)) {
478 sizetmp = 1ULL << ctzl(mem_start);
481 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
482 node_size -= sizetmp;
483 mem_start += sizetmp;
487 return 0;
490 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
491 sPAPRMachineState *spapr)
493 PowerPCCPU *cpu = POWERPC_CPU(cs);
494 CPUPPCState *env = &cpu->env;
495 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
496 int index = ppc_get_vcpu_dt_id(cpu);
497 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
498 0xffffffff, 0xffffffff};
499 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
500 : SPAPR_TIMEBASE_FREQ;
501 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
502 uint32_t page_sizes_prop[64];
503 size_t page_sizes_prop_size;
504 uint32_t vcpus_per_socket = smp_threads * smp_cores;
505 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
506 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
507 sPAPRDRConnector *drc;
508 int drc_index;
509 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
510 int i;
512 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
513 if (drc) {
514 drc_index = spapr_drc_index(drc);
515 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
518 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
519 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
521 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
523 env->dcache_line_size)));
524 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
525 env->dcache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
527 env->icache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
529 env->icache_line_size)));
531 if (pcc->l1_dcache_size) {
532 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
533 pcc->l1_dcache_size)));
534 } else {
535 warn_report("Unknown L1 dcache size for cpu");
537 if (pcc->l1_icache_size) {
538 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
539 pcc->l1_icache_size)));
540 } else {
541 warn_report("Unknown L1 icache size for cpu");
544 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
545 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
546 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
547 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
548 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
549 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
551 if (env->spr_cb[SPR_PURR].oea_read) {
552 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
555 if (env->mmu_model & POWERPC_MMU_1TSEG) {
556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
557 segs, sizeof(segs))));
560 /* Advertise VMX/VSX (vector extensions) if available
561 * 0 / no property == no vector extensions
562 * 1 == VMX / Altivec available
563 * 2 == VSX available */
564 if (env->insns_flags & PPC_ALTIVEC) {
565 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
567 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
570 /* Advertise DFP (Decimal Floating Point) if available
571 * 0 / no property == no DFP
572 * 1 == DFP available */
573 if (env->insns_flags2 & PPC2_DFP) {
574 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
577 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
578 sizeof(page_sizes_prop));
579 if (page_sizes_prop_size) {
580 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
581 page_sizes_prop, page_sizes_prop_size)));
584 spapr_populate_pa_features(env, fdt, offset, false);
586 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
587 cs->cpu_index / vcpus_per_socket)));
589 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
590 pft_size_prop, sizeof(pft_size_prop))));
592 if (nb_numa_nodes > 1) {
593 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
596 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
598 if (pcc->radix_page_info) {
599 for (i = 0; i < pcc->radix_page_info->count; i++) {
600 radix_AP_encodings[i] =
601 cpu_to_be32(pcc->radix_page_info->entries[i]);
603 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
604 radix_AP_encodings,
605 pcc->radix_page_info->count *
606 sizeof(radix_AP_encodings[0]))));
610 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
612 CPUState *cs;
613 int cpus_offset;
614 char *nodename;
615 int smt = kvmppc_smt_threads();
617 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
618 _FDT(cpus_offset);
619 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
620 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
623 * We walk the CPUs in reverse order to ensure that CPU DT nodes
624 * created by fdt_add_subnode() end up in the right order in FDT
625 * for the guest kernel the enumerate the CPUs correctly.
627 CPU_FOREACH_REVERSE(cs) {
628 PowerPCCPU *cpu = POWERPC_CPU(cs);
629 int index = ppc_get_vcpu_dt_id(cpu);
630 DeviceClass *dc = DEVICE_GET_CLASS(cs);
631 int offset;
633 if ((index % smt) != 0) {
634 continue;
637 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
638 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
639 g_free(nodename);
640 _FDT(offset);
641 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
647 * Adds ibm,dynamic-reconfiguration-memory node.
648 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
649 * of this device tree node.
651 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
653 MachineState *machine = MACHINE(spapr);
654 int ret, i, offset;
655 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
656 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
657 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
658 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
659 memory_region_size(&spapr->hotplug_memory.mr)) /
660 lmb_size;
661 uint32_t *int_buf, *cur_index, buf_len;
662 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
665 * Don't create the node if there is no hotpluggable memory
667 if (machine->ram_size == machine->maxram_size) {
668 return 0;
672 * Allocate enough buffer size to fit in ibm,dynamic-memory
673 * or ibm,associativity-lookup-arrays
675 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
676 * sizeof(uint32_t);
677 cur_index = int_buf = g_malloc0(buf_len);
679 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
681 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
682 sizeof(prop_lmb_size));
683 if (ret < 0) {
684 goto out;
687 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
688 if (ret < 0) {
689 goto out;
692 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
693 if (ret < 0) {
694 goto out;
697 /* ibm,dynamic-memory */
698 int_buf[0] = cpu_to_be32(nr_lmbs);
699 cur_index++;
700 for (i = 0; i < nr_lmbs; i++) {
701 uint64_t addr = i * lmb_size;
702 uint32_t *dynamic_memory = cur_index;
704 if (i >= hotplug_lmb_start) {
705 sPAPRDRConnector *drc;
707 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
708 g_assert(drc);
710 dynamic_memory[0] = cpu_to_be32(addr >> 32);
711 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
712 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
713 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
714 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
715 if (memory_region_present(get_system_memory(), addr)) {
716 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
717 } else {
718 dynamic_memory[5] = cpu_to_be32(0);
720 } else {
722 * LMB information for RMA, boot time RAM and gap b/n RAM and
723 * hotplug memory region -- all these are marked as reserved
724 * and as having no valid DRC.
726 dynamic_memory[0] = cpu_to_be32(addr >> 32);
727 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
728 dynamic_memory[2] = cpu_to_be32(0);
729 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
730 dynamic_memory[4] = cpu_to_be32(-1);
731 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
732 SPAPR_LMB_FLAGS_DRC_INVALID);
735 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
737 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
738 if (ret < 0) {
739 goto out;
742 /* ibm,associativity-lookup-arrays */
743 cur_index = int_buf;
744 int_buf[0] = cpu_to_be32(nr_nodes);
745 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
746 cur_index += 2;
747 for (i = 0; i < nr_nodes; i++) {
748 uint32_t associativity[] = {
749 cpu_to_be32(0x0),
750 cpu_to_be32(0x0),
751 cpu_to_be32(0x0),
752 cpu_to_be32(i)
754 memcpy(cur_index, associativity, sizeof(associativity));
755 cur_index += 4;
757 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
758 (cur_index - int_buf) * sizeof(uint32_t));
759 out:
760 g_free(int_buf);
761 return ret;
764 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
765 sPAPROptionVector *ov5_updates)
767 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
768 int ret = 0, offset;
770 /* Generate ibm,dynamic-reconfiguration-memory node if required */
771 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
772 g_assert(smc->dr_lmb_enabled);
773 ret = spapr_populate_drconf_memory(spapr, fdt);
774 if (ret) {
775 goto out;
779 offset = fdt_path_offset(fdt, "/chosen");
780 if (offset < 0) {
781 offset = fdt_add_subnode(fdt, 0, "chosen");
782 if (offset < 0) {
783 return offset;
786 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
787 "ibm,architecture-vec-5");
789 out:
790 return ret;
793 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
794 target_ulong addr, target_ulong size,
795 sPAPROptionVector *ov5_updates)
797 void *fdt, *fdt_skel;
798 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
800 size -= sizeof(hdr);
802 /* Create sceleton */
803 fdt_skel = g_malloc0(size);
804 _FDT((fdt_create(fdt_skel, size)));
805 _FDT((fdt_begin_node(fdt_skel, "")));
806 _FDT((fdt_end_node(fdt_skel)));
807 _FDT((fdt_finish(fdt_skel)));
808 fdt = g_malloc0(size);
809 _FDT((fdt_open_into(fdt_skel, fdt, size)));
810 g_free(fdt_skel);
812 /* Fixup cpu nodes */
813 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
815 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
816 return -1;
819 /* Pack resulting tree */
820 _FDT((fdt_pack(fdt)));
822 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
823 trace_spapr_cas_failed(size);
824 return -1;
827 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
828 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
829 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
830 g_free(fdt);
832 return 0;
835 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
837 int rtas;
838 GString *hypertas = g_string_sized_new(256);
839 GString *qemu_hypertas = g_string_sized_new(256);
840 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
841 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
842 memory_region_size(&spapr->hotplug_memory.mr);
843 uint32_t lrdr_capacity[] = {
844 cpu_to_be32(max_hotplug_addr >> 32),
845 cpu_to_be32(max_hotplug_addr & 0xffffffff),
846 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
847 cpu_to_be32(max_cpus / smp_threads),
850 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
852 /* hypertas */
853 add_str(hypertas, "hcall-pft");
854 add_str(hypertas, "hcall-term");
855 add_str(hypertas, "hcall-dabr");
856 add_str(hypertas, "hcall-interrupt");
857 add_str(hypertas, "hcall-tce");
858 add_str(hypertas, "hcall-vio");
859 add_str(hypertas, "hcall-splpar");
860 add_str(hypertas, "hcall-bulk");
861 add_str(hypertas, "hcall-set-mode");
862 add_str(hypertas, "hcall-sprg0");
863 add_str(hypertas, "hcall-copy");
864 add_str(hypertas, "hcall-debug");
865 add_str(qemu_hypertas, "hcall-memop1");
867 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
868 add_str(hypertas, "hcall-multi-tce");
871 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
872 add_str(hypertas, "hcall-hpt-resize");
875 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
876 hypertas->str, hypertas->len));
877 g_string_free(hypertas, TRUE);
878 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
879 qemu_hypertas->str, qemu_hypertas->len));
880 g_string_free(qemu_hypertas, TRUE);
882 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
883 refpoints, sizeof(refpoints)));
885 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
886 RTAS_ERROR_LOG_MAX));
887 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
888 RTAS_EVENT_SCAN_RATE));
890 if (msi_nonbroken) {
891 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
895 * According to PAPR, rtas ibm,os-term does not guarantee a return
896 * back to the guest cpu.
898 * While an additional ibm,extended-os-term property indicates
899 * that rtas call return will always occur. Set this property.
901 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
903 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
904 lrdr_capacity, sizeof(lrdr_capacity)));
906 spapr_dt_rtas_tokens(fdt, rtas);
909 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
910 * that the guest may request and thus the valid values for bytes 24..26 of
911 * option vector 5: */
912 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
914 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
916 char val[2 * 4] = {
917 23, 0x00, /* Xive mode: 0 = legacy (as in ISA 2.7), 1 = Exploitation */
918 24, 0x00, /* Hash/Radix, filled in below. */
919 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
920 26, 0x40, /* Radix options: GTSE == yes. */
923 if (kvm_enabled()) {
924 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
925 val[3] = 0x80; /* OV5_MMU_BOTH */
926 } else if (kvmppc_has_cap_mmu_radix()) {
927 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
928 } else {
929 val[3] = 0x00; /* Hash */
931 } else {
932 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
933 /* V3 MMU supports both hash and radix (with dynamic switching) */
934 val[3] = 0xC0;
935 } else {
936 /* Otherwise we can only do hash */
937 val[3] = 0x00;
940 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
941 val, sizeof(val)));
944 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
946 MachineState *machine = MACHINE(spapr);
947 int chosen;
948 const char *boot_device = machine->boot_order;
949 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
950 size_t cb = 0;
951 char *bootlist = get_boot_devices_list(&cb, true);
953 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
955 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
956 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
957 spapr->initrd_base));
958 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
959 spapr->initrd_base + spapr->initrd_size));
961 if (spapr->kernel_size) {
962 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
963 cpu_to_be64(spapr->kernel_size) };
965 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
966 &kprop, sizeof(kprop)));
967 if (spapr->kernel_le) {
968 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
971 if (boot_menu) {
972 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
974 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
975 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
976 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
978 if (cb && bootlist) {
979 int i;
981 for (i = 0; i < cb; i++) {
982 if (bootlist[i] == '\n') {
983 bootlist[i] = ' ';
986 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
989 if (boot_device && strlen(boot_device)) {
990 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
993 if (!spapr->has_graphics && stdout_path) {
994 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
997 spapr_dt_ov5_platform_support(fdt, chosen);
999 g_free(stdout_path);
1000 g_free(bootlist);
1003 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1005 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1006 * KVM to work under pHyp with some guest co-operation */
1007 int hypervisor;
1008 uint8_t hypercall[16];
1010 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1011 /* indicate KVM hypercall interface */
1012 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1013 if (kvmppc_has_cap_fixup_hcalls()) {
1015 * Older KVM versions with older guest kernels were broken
1016 * with the magic page, don't allow the guest to map it.
1018 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1019 sizeof(hypercall))) {
1020 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1021 hypercall, sizeof(hypercall)));
1026 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1027 hwaddr rtas_addr,
1028 hwaddr rtas_size)
1030 MachineState *machine = MACHINE(qdev_get_machine());
1031 MachineClass *mc = MACHINE_GET_CLASS(machine);
1032 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1033 int ret;
1034 void *fdt;
1035 sPAPRPHBState *phb;
1036 char *buf;
1038 fdt = g_malloc0(FDT_MAX_SIZE);
1039 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1041 /* Root node */
1042 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1043 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1044 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1047 * Add info to guest to indentify which host is it being run on
1048 * and what is the uuid of the guest
1050 if (kvmppc_get_host_model(&buf)) {
1051 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1052 g_free(buf);
1054 if (kvmppc_get_host_serial(&buf)) {
1055 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1056 g_free(buf);
1059 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1061 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1062 if (qemu_uuid_set) {
1063 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1065 g_free(buf);
1067 if (qemu_get_vm_name()) {
1068 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1069 qemu_get_vm_name()));
1072 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1073 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1075 /* /interrupt controller */
1076 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1078 ret = spapr_populate_memory(spapr, fdt);
1079 if (ret < 0) {
1080 error_report("couldn't setup memory nodes in fdt");
1081 exit(1);
1084 /* /vdevice */
1085 spapr_dt_vdevice(spapr->vio_bus, fdt);
1087 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1088 ret = spapr_rng_populate_dt(fdt);
1089 if (ret < 0) {
1090 error_report("could not set up rng device in the fdt");
1091 exit(1);
1095 QLIST_FOREACH(phb, &spapr->phbs, list) {
1096 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1097 if (ret < 0) {
1098 error_report("couldn't setup PCI devices in fdt");
1099 exit(1);
1103 /* cpus */
1104 spapr_populate_cpus_dt_node(fdt, spapr);
1106 if (smc->dr_lmb_enabled) {
1107 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1110 if (mc->has_hotpluggable_cpus) {
1111 int offset = fdt_path_offset(fdt, "/cpus");
1112 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1113 SPAPR_DR_CONNECTOR_TYPE_CPU);
1114 if (ret < 0) {
1115 error_report("Couldn't set up CPU DR device tree properties");
1116 exit(1);
1120 /* /event-sources */
1121 spapr_dt_events(spapr, fdt);
1123 /* /rtas */
1124 spapr_dt_rtas(spapr, fdt);
1126 /* /chosen */
1127 spapr_dt_chosen(spapr, fdt);
1129 /* /hypervisor */
1130 if (kvm_enabled()) {
1131 spapr_dt_hypervisor(spapr, fdt);
1134 /* Build memory reserve map */
1135 if (spapr->kernel_size) {
1136 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1138 if (spapr->initrd_size) {
1139 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1142 /* ibm,client-architecture-support updates */
1143 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1144 if (ret < 0) {
1145 error_report("couldn't setup CAS properties fdt");
1146 exit(1);
1149 return fdt;
1152 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1154 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1157 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1158 PowerPCCPU *cpu)
1160 CPUPPCState *env = &cpu->env;
1162 /* The TCG path should also be holding the BQL at this point */
1163 g_assert(qemu_mutex_iothread_locked());
1165 if (msr_pr) {
1166 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1167 env->gpr[3] = H_PRIVILEGE;
1168 } else {
1169 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1173 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1175 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1177 return spapr->patb_entry;
1180 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1181 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1182 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1183 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1184 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1187 * Get the fd to access the kernel htab, re-opening it if necessary
1189 static int get_htab_fd(sPAPRMachineState *spapr)
1191 if (spapr->htab_fd >= 0) {
1192 return spapr->htab_fd;
1195 spapr->htab_fd = kvmppc_get_htab_fd(false);
1196 if (spapr->htab_fd < 0) {
1197 error_report("Unable to open fd for reading hash table from KVM: %s",
1198 strerror(errno));
1201 return spapr->htab_fd;
1204 void close_htab_fd(sPAPRMachineState *spapr)
1206 if (spapr->htab_fd >= 0) {
1207 close(spapr->htab_fd);
1209 spapr->htab_fd = -1;
1212 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1214 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1216 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1219 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1220 hwaddr ptex, int n)
1222 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1223 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1225 if (!spapr->htab) {
1227 * HTAB is controlled by KVM. Fetch into temporary buffer
1229 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1230 kvmppc_read_hptes(hptes, ptex, n);
1231 return hptes;
1235 * HTAB is controlled by QEMU. Just point to the internally
1236 * accessible PTEG.
1238 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1241 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1242 const ppc_hash_pte64_t *hptes,
1243 hwaddr ptex, int n)
1245 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1247 if (!spapr->htab) {
1248 g_free((void *)hptes);
1251 /* Nothing to do for qemu managed HPT */
1254 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1255 uint64_t pte0, uint64_t pte1)
1257 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1258 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1260 if (!spapr->htab) {
1261 kvmppc_write_hpte(ptex, pte0, pte1);
1262 } else {
1263 stq_p(spapr->htab + offset, pte0);
1264 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1268 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1270 int shift;
1272 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1273 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1274 * that's much more than is needed for Linux guests */
1275 shift = ctz64(pow2ceil(ramsize)) - 7;
1276 shift = MAX(shift, 18); /* Minimum architected size */
1277 shift = MIN(shift, 46); /* Maximum architected size */
1278 return shift;
1281 void spapr_free_hpt(sPAPRMachineState *spapr)
1283 g_free(spapr->htab);
1284 spapr->htab = NULL;
1285 spapr->htab_shift = 0;
1286 close_htab_fd(spapr);
1289 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1290 Error **errp)
1292 long rc;
1294 /* Clean up any HPT info from a previous boot */
1295 spapr_free_hpt(spapr);
1297 rc = kvmppc_reset_htab(shift);
1298 if (rc < 0) {
1299 /* kernel-side HPT needed, but couldn't allocate one */
1300 error_setg_errno(errp, errno,
1301 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1302 shift);
1303 /* This is almost certainly fatal, but if the caller really
1304 * wants to carry on with shift == 0, it's welcome to try */
1305 } else if (rc > 0) {
1306 /* kernel-side HPT allocated */
1307 if (rc != shift) {
1308 error_setg(errp,
1309 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1310 shift, rc);
1313 spapr->htab_shift = shift;
1314 spapr->htab = NULL;
1315 } else {
1316 /* kernel-side HPT not needed, allocate in userspace instead */
1317 size_t size = 1ULL << shift;
1318 int i;
1320 spapr->htab = qemu_memalign(size, size);
1321 if (!spapr->htab) {
1322 error_setg_errno(errp, errno,
1323 "Could not allocate HPT of order %d", shift);
1324 return;
1327 memset(spapr->htab, 0, size);
1328 spapr->htab_shift = shift;
1330 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1331 DIRTY_HPTE(HPTE(spapr->htab, i));
1336 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1338 int hpt_shift;
1340 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1341 || (spapr->cas_reboot
1342 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1343 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1344 } else {
1345 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->ram_size);
1347 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1349 if (spapr->vrma_adjust) {
1350 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1351 spapr->htab_shift);
1353 /* We're setting up a hash table, so that means we're not radix */
1354 spapr->patb_entry = 0;
1357 static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1359 bool matched = false;
1361 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1362 matched = true;
1365 if (!matched) {
1366 error_report("Device %s is not supported by this machine yet.",
1367 qdev_fw_name(DEVICE(sbdev)));
1368 exit(1);
1372 static void ppc_spapr_reset(void)
1374 MachineState *machine = MACHINE(qdev_get_machine());
1375 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1376 PowerPCCPU *first_ppc_cpu;
1377 uint32_t rtas_limit;
1378 hwaddr rtas_addr, fdt_addr;
1379 void *fdt;
1380 int rc;
1382 /* Check for unknown sysbus devices */
1383 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1385 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1386 /* If using KVM with radix mode available, VCPUs can be started
1387 * without a HPT because KVM will start them in radix mode.
1388 * Set the GR bit in PATB so that we know there is no HPT. */
1389 spapr->patb_entry = PATBE1_GR;
1390 } else {
1391 spapr_setup_hpt_and_vrma(spapr);
1394 qemu_devices_reset();
1397 * We place the device tree and RTAS just below either the top of the RMA,
1398 * or just below 2GB, whichever is lowere, so that it can be
1399 * processed with 32-bit real mode code if necessary
1401 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1402 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1403 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1405 /* if this reset wasn't generated by CAS, we should reset our
1406 * negotiated options and start from scratch */
1407 if (!spapr->cas_reboot) {
1408 spapr_ovec_cleanup(spapr->ov5_cas);
1409 spapr->ov5_cas = spapr_ovec_new();
1411 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1414 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1416 spapr_load_rtas(spapr, fdt, rtas_addr);
1418 rc = fdt_pack(fdt);
1420 /* Should only fail if we've built a corrupted tree */
1421 assert(rc == 0);
1423 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1424 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1425 fdt_totalsize(fdt), FDT_MAX_SIZE);
1426 exit(1);
1429 /* Load the fdt */
1430 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1431 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1432 g_free(fdt);
1434 /* Set up the entry state */
1435 first_ppc_cpu = POWERPC_CPU(first_cpu);
1436 first_ppc_cpu->env.gpr[3] = fdt_addr;
1437 first_ppc_cpu->env.gpr[5] = 0;
1438 first_cpu->halted = 0;
1439 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1441 spapr->cas_reboot = false;
1444 static void spapr_create_nvram(sPAPRMachineState *spapr)
1446 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1447 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1449 if (dinfo) {
1450 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1451 &error_fatal);
1454 qdev_init_nofail(dev);
1456 spapr->nvram = (struct sPAPRNVRAM *)dev;
1459 static void spapr_rtc_create(sPAPRMachineState *spapr)
1461 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1462 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1463 &error_fatal);
1464 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1465 &error_fatal);
1466 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1467 "date", &error_fatal);
1470 /* Returns whether we want to use VGA or not */
1471 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1473 switch (vga_interface_type) {
1474 case VGA_NONE:
1475 return false;
1476 case VGA_DEVICE:
1477 return true;
1478 case VGA_STD:
1479 case VGA_VIRTIO:
1480 return pci_vga_init(pci_bus) != NULL;
1481 default:
1482 error_setg(errp,
1483 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1484 return false;
1488 static int spapr_post_load(void *opaque, int version_id)
1490 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1491 int err = 0;
1493 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1494 CPUState *cs;
1495 CPU_FOREACH(cs) {
1496 PowerPCCPU *cpu = POWERPC_CPU(cs);
1497 icp_resend(ICP(cpu->intc));
1501 /* In earlier versions, there was no separate qdev for the PAPR
1502 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1503 * So when migrating from those versions, poke the incoming offset
1504 * value into the RTC device */
1505 if (version_id < 3) {
1506 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1509 if (spapr->patb_entry) {
1510 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1511 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1512 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1514 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1515 if (err) {
1516 error_report("Process table config unsupported by the host");
1517 return -EINVAL;
1521 return err;
1524 static bool version_before_3(void *opaque, int version_id)
1526 return version_id < 3;
1529 static bool spapr_pending_events_needed(void *opaque)
1531 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1532 return !QTAILQ_EMPTY(&spapr->pending_events);
1535 static const VMStateDescription vmstate_spapr_event_entry = {
1536 .name = "spapr_event_log_entry",
1537 .version_id = 1,
1538 .minimum_version_id = 1,
1539 .fields = (VMStateField[]) {
1540 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1541 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1542 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1543 NULL, extended_length),
1544 VMSTATE_END_OF_LIST()
1548 static const VMStateDescription vmstate_spapr_pending_events = {
1549 .name = "spapr_pending_events",
1550 .version_id = 1,
1551 .minimum_version_id = 1,
1552 .needed = spapr_pending_events_needed,
1553 .fields = (VMStateField[]) {
1554 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1555 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1556 VMSTATE_END_OF_LIST()
1560 static bool spapr_ov5_cas_needed(void *opaque)
1562 sPAPRMachineState *spapr = opaque;
1563 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1564 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1565 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1566 bool cas_needed;
1568 /* Prior to the introduction of sPAPROptionVector, we had two option
1569 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1570 * Both of these options encode machine topology into the device-tree
1571 * in such a way that the now-booted OS should still be able to interact
1572 * appropriately with QEMU regardless of what options were actually
1573 * negotiatied on the source side.
1575 * As such, we can avoid migrating the CAS-negotiated options if these
1576 * are the only options available on the current machine/platform.
1577 * Since these are the only options available for pseries-2.7 and
1578 * earlier, this allows us to maintain old->new/new->old migration
1579 * compatibility.
1581 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1582 * via default pseries-2.8 machines and explicit command-line parameters.
1583 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1584 * of the actual CAS-negotiated values to continue working properly. For
1585 * example, availability of memory unplug depends on knowing whether
1586 * OV5_HP_EVT was negotiated via CAS.
1588 * Thus, for any cases where the set of available CAS-negotiatable
1589 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1590 * include the CAS-negotiated options in the migration stream.
1592 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1593 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1595 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1596 * the mask itself since in the future it's possible "legacy" bits may be
1597 * removed via machine options, which could generate a false positive
1598 * that breaks migration.
1600 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1601 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1603 spapr_ovec_cleanup(ov5_mask);
1604 spapr_ovec_cleanup(ov5_legacy);
1605 spapr_ovec_cleanup(ov5_removed);
1607 return cas_needed;
1610 static const VMStateDescription vmstate_spapr_ov5_cas = {
1611 .name = "spapr_option_vector_ov5_cas",
1612 .version_id = 1,
1613 .minimum_version_id = 1,
1614 .needed = spapr_ov5_cas_needed,
1615 .fields = (VMStateField[]) {
1616 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1617 vmstate_spapr_ovec, sPAPROptionVector),
1618 VMSTATE_END_OF_LIST()
1622 static bool spapr_patb_entry_needed(void *opaque)
1624 sPAPRMachineState *spapr = opaque;
1626 return !!spapr->patb_entry;
1629 static const VMStateDescription vmstate_spapr_patb_entry = {
1630 .name = "spapr_patb_entry",
1631 .version_id = 1,
1632 .minimum_version_id = 1,
1633 .needed = spapr_patb_entry_needed,
1634 .fields = (VMStateField[]) {
1635 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1636 VMSTATE_END_OF_LIST()
1640 static const VMStateDescription vmstate_spapr = {
1641 .name = "spapr",
1642 .version_id = 3,
1643 .minimum_version_id = 1,
1644 .post_load = spapr_post_load,
1645 .fields = (VMStateField[]) {
1646 /* used to be @next_irq */
1647 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1649 /* RTC offset */
1650 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1652 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1653 VMSTATE_END_OF_LIST()
1655 .subsections = (const VMStateDescription*[]) {
1656 &vmstate_spapr_ov5_cas,
1657 &vmstate_spapr_patb_entry,
1658 &vmstate_spapr_pending_events,
1659 NULL
1663 static int htab_save_setup(QEMUFile *f, void *opaque)
1665 sPAPRMachineState *spapr = opaque;
1667 /* "Iteration" header */
1668 if (!spapr->htab_shift) {
1669 qemu_put_be32(f, -1);
1670 } else {
1671 qemu_put_be32(f, spapr->htab_shift);
1674 if (spapr->htab) {
1675 spapr->htab_save_index = 0;
1676 spapr->htab_first_pass = true;
1677 } else {
1678 if (spapr->htab_shift) {
1679 assert(kvm_enabled());
1684 return 0;
1687 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1688 int64_t max_ns)
1690 bool has_timeout = max_ns != -1;
1691 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1692 int index = spapr->htab_save_index;
1693 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1695 assert(spapr->htab_first_pass);
1697 do {
1698 int chunkstart;
1700 /* Consume invalid HPTEs */
1701 while ((index < htabslots)
1702 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1703 CLEAN_HPTE(HPTE(spapr->htab, index));
1704 index++;
1707 /* Consume valid HPTEs */
1708 chunkstart = index;
1709 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1710 && HPTE_VALID(HPTE(spapr->htab, index))) {
1711 CLEAN_HPTE(HPTE(spapr->htab, index));
1712 index++;
1715 if (index > chunkstart) {
1716 int n_valid = index - chunkstart;
1718 qemu_put_be32(f, chunkstart);
1719 qemu_put_be16(f, n_valid);
1720 qemu_put_be16(f, 0);
1721 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1722 HASH_PTE_SIZE_64 * n_valid);
1724 if (has_timeout &&
1725 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1726 break;
1729 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1731 if (index >= htabslots) {
1732 assert(index == htabslots);
1733 index = 0;
1734 spapr->htab_first_pass = false;
1736 spapr->htab_save_index = index;
1739 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1740 int64_t max_ns)
1742 bool final = max_ns < 0;
1743 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1744 int examined = 0, sent = 0;
1745 int index = spapr->htab_save_index;
1746 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1748 assert(!spapr->htab_first_pass);
1750 do {
1751 int chunkstart, invalidstart;
1753 /* Consume non-dirty HPTEs */
1754 while ((index < htabslots)
1755 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1756 index++;
1757 examined++;
1760 chunkstart = index;
1761 /* Consume valid dirty HPTEs */
1762 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1763 && HPTE_DIRTY(HPTE(spapr->htab, index))
1764 && HPTE_VALID(HPTE(spapr->htab, index))) {
1765 CLEAN_HPTE(HPTE(spapr->htab, index));
1766 index++;
1767 examined++;
1770 invalidstart = index;
1771 /* Consume invalid dirty HPTEs */
1772 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1773 && HPTE_DIRTY(HPTE(spapr->htab, index))
1774 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1775 CLEAN_HPTE(HPTE(spapr->htab, index));
1776 index++;
1777 examined++;
1780 if (index > chunkstart) {
1781 int n_valid = invalidstart - chunkstart;
1782 int n_invalid = index - invalidstart;
1784 qemu_put_be32(f, chunkstart);
1785 qemu_put_be16(f, n_valid);
1786 qemu_put_be16(f, n_invalid);
1787 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1788 HASH_PTE_SIZE_64 * n_valid);
1789 sent += index - chunkstart;
1791 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1792 break;
1796 if (examined >= htabslots) {
1797 break;
1800 if (index >= htabslots) {
1801 assert(index == htabslots);
1802 index = 0;
1804 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1806 if (index >= htabslots) {
1807 assert(index == htabslots);
1808 index = 0;
1811 spapr->htab_save_index = index;
1813 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1816 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1817 #define MAX_KVM_BUF_SIZE 2048
1819 static int htab_save_iterate(QEMUFile *f, void *opaque)
1821 sPAPRMachineState *spapr = opaque;
1822 int fd;
1823 int rc = 0;
1825 /* Iteration header */
1826 if (!spapr->htab_shift) {
1827 qemu_put_be32(f, -1);
1828 return 1;
1829 } else {
1830 qemu_put_be32(f, 0);
1833 if (!spapr->htab) {
1834 assert(kvm_enabled());
1836 fd = get_htab_fd(spapr);
1837 if (fd < 0) {
1838 return fd;
1841 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1842 if (rc < 0) {
1843 return rc;
1845 } else if (spapr->htab_first_pass) {
1846 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1847 } else {
1848 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1851 /* End marker */
1852 qemu_put_be32(f, 0);
1853 qemu_put_be16(f, 0);
1854 qemu_put_be16(f, 0);
1856 return rc;
1859 static int htab_save_complete(QEMUFile *f, void *opaque)
1861 sPAPRMachineState *spapr = opaque;
1862 int fd;
1864 /* Iteration header */
1865 if (!spapr->htab_shift) {
1866 qemu_put_be32(f, -1);
1867 return 0;
1868 } else {
1869 qemu_put_be32(f, 0);
1872 if (!spapr->htab) {
1873 int rc;
1875 assert(kvm_enabled());
1877 fd = get_htab_fd(spapr);
1878 if (fd < 0) {
1879 return fd;
1882 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
1883 if (rc < 0) {
1884 return rc;
1886 } else {
1887 if (spapr->htab_first_pass) {
1888 htab_save_first_pass(f, spapr, -1);
1890 htab_save_later_pass(f, spapr, -1);
1893 /* End marker */
1894 qemu_put_be32(f, 0);
1895 qemu_put_be16(f, 0);
1896 qemu_put_be16(f, 0);
1898 return 0;
1901 static int htab_load(QEMUFile *f, void *opaque, int version_id)
1903 sPAPRMachineState *spapr = opaque;
1904 uint32_t section_hdr;
1905 int fd = -1;
1907 if (version_id < 1 || version_id > 1) {
1908 error_report("htab_load() bad version");
1909 return -EINVAL;
1912 section_hdr = qemu_get_be32(f);
1914 if (section_hdr == -1) {
1915 spapr_free_hpt(spapr);
1916 return 0;
1919 if (section_hdr) {
1920 Error *local_err = NULL;
1922 /* First section gives the htab size */
1923 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1924 if (local_err) {
1925 error_report_err(local_err);
1926 return -EINVAL;
1928 return 0;
1931 if (!spapr->htab) {
1932 assert(kvm_enabled());
1934 fd = kvmppc_get_htab_fd(true);
1935 if (fd < 0) {
1936 error_report("Unable to open fd to restore KVM hash table: %s",
1937 strerror(errno));
1941 while (true) {
1942 uint32_t index;
1943 uint16_t n_valid, n_invalid;
1945 index = qemu_get_be32(f);
1946 n_valid = qemu_get_be16(f);
1947 n_invalid = qemu_get_be16(f);
1949 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1950 /* End of Stream */
1951 break;
1954 if ((index + n_valid + n_invalid) >
1955 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1956 /* Bad index in stream */
1957 error_report(
1958 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1959 index, n_valid, n_invalid, spapr->htab_shift);
1960 return -EINVAL;
1963 if (spapr->htab) {
1964 if (n_valid) {
1965 qemu_get_buffer(f, HPTE(spapr->htab, index),
1966 HASH_PTE_SIZE_64 * n_valid);
1968 if (n_invalid) {
1969 memset(HPTE(spapr->htab, index + n_valid), 0,
1970 HASH_PTE_SIZE_64 * n_invalid);
1972 } else {
1973 int rc;
1975 assert(fd >= 0);
1977 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1978 if (rc < 0) {
1979 return rc;
1984 if (!spapr->htab) {
1985 assert(fd >= 0);
1986 close(fd);
1989 return 0;
1992 static void htab_save_cleanup(void *opaque)
1994 sPAPRMachineState *spapr = opaque;
1996 close_htab_fd(spapr);
1999 static SaveVMHandlers savevm_htab_handlers = {
2000 .save_setup = htab_save_setup,
2001 .save_live_iterate = htab_save_iterate,
2002 .save_live_complete_precopy = htab_save_complete,
2003 .save_cleanup = htab_save_cleanup,
2004 .load_state = htab_load,
2007 static void spapr_boot_set(void *opaque, const char *boot_device,
2008 Error **errp)
2010 MachineState *machine = MACHINE(qdev_get_machine());
2011 machine->boot_order = g_strdup(boot_device);
2014 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2016 MachineState *machine = MACHINE(spapr);
2017 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2018 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2019 int i;
2021 for (i = 0; i < nr_lmbs; i++) {
2022 uint64_t addr;
2024 addr = i * lmb_size + spapr->hotplug_memory.base;
2025 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2026 addr / lmb_size);
2031 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2032 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2033 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2035 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2037 int i;
2039 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2040 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2041 " is not aligned to %llu MiB",
2042 machine->ram_size,
2043 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2044 return;
2047 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2048 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2049 " is not aligned to %llu MiB",
2050 machine->ram_size,
2051 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2052 return;
2055 for (i = 0; i < nb_numa_nodes; i++) {
2056 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2057 error_setg(errp,
2058 "Node %d memory size 0x%" PRIx64
2059 " is not aligned to %llu MiB",
2060 i, numa_info[i].node_mem,
2061 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2062 return;
2067 /* find cpu slot in machine->possible_cpus by core_id */
2068 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2070 int index = id / smp_threads;
2072 if (index >= ms->possible_cpus->len) {
2073 return NULL;
2075 if (idx) {
2076 *idx = index;
2078 return &ms->possible_cpus->cpus[index];
2081 static void spapr_init_cpus(sPAPRMachineState *spapr)
2083 MachineState *machine = MACHINE(spapr);
2084 MachineClass *mc = MACHINE_GET_CLASS(machine);
2085 char *type = spapr_get_cpu_core_type(machine->cpu_model);
2086 int smt = kvmppc_smt_threads();
2087 const CPUArchIdList *possible_cpus;
2088 int boot_cores_nr = smp_cpus / smp_threads;
2089 int i;
2091 if (!type) {
2092 error_report("Unable to find sPAPR CPU Core definition");
2093 exit(1);
2096 possible_cpus = mc->possible_cpu_arch_ids(machine);
2097 if (mc->has_hotpluggable_cpus) {
2098 if (smp_cpus % smp_threads) {
2099 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2100 smp_cpus, smp_threads);
2101 exit(1);
2103 if (max_cpus % smp_threads) {
2104 error_report("max_cpus (%u) must be multiple of threads (%u)",
2105 max_cpus, smp_threads);
2106 exit(1);
2108 } else {
2109 if (max_cpus != smp_cpus) {
2110 error_report("This machine version does not support CPU hotplug");
2111 exit(1);
2113 boot_cores_nr = possible_cpus->len;
2116 for (i = 0; i < possible_cpus->len; i++) {
2117 int core_id = i * smp_threads;
2119 if (mc->has_hotpluggable_cpus) {
2120 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2121 (core_id / smp_threads) * smt);
2124 if (i < boot_cores_nr) {
2125 Object *core = object_new(type);
2126 int nr_threads = smp_threads;
2128 /* Handle the partially filled core for older machine types */
2129 if ((i + 1) * smp_threads >= smp_cpus) {
2130 nr_threads = smp_cpus - i * smp_threads;
2133 object_property_set_int(core, nr_threads, "nr-threads",
2134 &error_fatal);
2135 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2136 &error_fatal);
2137 object_property_set_bool(core, true, "realized", &error_fatal);
2140 g_free(type);
2143 /* pSeries LPAR / sPAPR hardware init */
2144 static void ppc_spapr_init(MachineState *machine)
2146 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2147 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2148 const char *kernel_filename = machine->kernel_filename;
2149 const char *initrd_filename = machine->initrd_filename;
2150 PCIHostState *phb;
2151 int i;
2152 MemoryRegion *sysmem = get_system_memory();
2153 MemoryRegion *ram = g_new(MemoryRegion, 1);
2154 MemoryRegion *rma_region;
2155 void *rma = NULL;
2156 hwaddr rma_alloc_size;
2157 hwaddr node0_size = spapr_node0_size();
2158 long load_limit, fw_size;
2159 char *filename;
2160 Error *resize_hpt_err = NULL;
2162 msi_nonbroken = true;
2164 QLIST_INIT(&spapr->phbs);
2165 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2167 /* Check HPT resizing availability */
2168 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2169 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2171 * If the user explicitly requested a mode we should either
2172 * supply it, or fail completely (which we do below). But if
2173 * it's not set explicitly, we reset our mode to something
2174 * that works
2176 if (resize_hpt_err) {
2177 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2178 error_free(resize_hpt_err);
2179 resize_hpt_err = NULL;
2180 } else {
2181 spapr->resize_hpt = smc->resize_hpt_default;
2185 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2187 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2189 * User requested HPT resize, but this host can't supply it. Bail out
2191 error_report_err(resize_hpt_err);
2192 exit(1);
2195 /* Allocate RMA if necessary */
2196 rma_alloc_size = kvmppc_alloc_rma(&rma);
2198 if (rma_alloc_size == -1) {
2199 error_report("Unable to create RMA");
2200 exit(1);
2203 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2204 spapr->rma_size = rma_alloc_size;
2205 } else {
2206 spapr->rma_size = node0_size;
2208 /* With KVM, we don't actually know whether KVM supports an
2209 * unbounded RMA (PR KVM) or is limited by the hash table size
2210 * (HV KVM using VRMA), so we always assume the latter
2212 * In that case, we also limit the initial allocations for RTAS
2213 * etc... to 256M since we have no way to know what the VRMA size
2214 * is going to be as it depends on the size of the hash table
2215 * isn't determined yet.
2217 if (kvm_enabled()) {
2218 spapr->vrma_adjust = 1;
2219 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2222 /* Actually we don't support unbounded RMA anymore since we
2223 * added proper emulation of HV mode. The max we can get is
2224 * 16G which also happens to be what we configure for PAPR
2225 * mode so make sure we don't do anything bigger than that
2227 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2230 if (spapr->rma_size > node0_size) {
2231 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2232 spapr->rma_size);
2233 exit(1);
2236 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2237 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2239 /* Set up Interrupt Controller before we create the VCPUs */
2240 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2242 /* Set up containers for ibm,client-set-architecture negotiated options */
2243 spapr->ov5 = spapr_ovec_new();
2244 spapr->ov5_cas = spapr_ovec_new();
2246 if (smc->dr_lmb_enabled) {
2247 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2248 spapr_validate_node_memory(machine, &error_fatal);
2251 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2252 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2253 /* KVM and TCG always allow GTSE with radix... */
2254 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2256 /* ... but not with hash (currently). */
2258 /* advertise support for dedicated HP event source to guests */
2259 if (spapr->use_hotplug_event_source) {
2260 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2263 /* advertise support for HPT resizing */
2264 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2265 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2268 /* init CPUs */
2269 if (machine->cpu_model == NULL) {
2270 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
2273 spapr_cpu_parse_features(spapr);
2275 spapr_init_cpus(spapr);
2277 if (kvm_enabled()) {
2278 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2279 kvmppc_enable_logical_ci_hcalls();
2280 kvmppc_enable_set_mode_hcall();
2282 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2283 kvmppc_enable_clear_ref_mod_hcalls();
2286 /* allocate RAM */
2287 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2288 machine->ram_size);
2289 memory_region_add_subregion(sysmem, 0, ram);
2291 if (rma_alloc_size && rma) {
2292 rma_region = g_new(MemoryRegion, 1);
2293 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2294 rma_alloc_size, rma);
2295 vmstate_register_ram_global(rma_region);
2296 memory_region_add_subregion(sysmem, 0, rma_region);
2299 /* initialize hotplug memory address space */
2300 if (machine->ram_size < machine->maxram_size) {
2301 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2303 * Limit the number of hotpluggable memory slots to half the number
2304 * slots that KVM supports, leaving the other half for PCI and other
2305 * devices. However ensure that number of slots doesn't drop below 32.
2307 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2308 SPAPR_MAX_RAM_SLOTS;
2310 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2311 max_memslots = SPAPR_MAX_RAM_SLOTS;
2313 if (machine->ram_slots > max_memslots) {
2314 error_report("Specified number of memory slots %"
2315 PRIu64" exceeds max supported %d",
2316 machine->ram_slots, max_memslots);
2317 exit(1);
2320 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2321 SPAPR_HOTPLUG_MEM_ALIGN);
2322 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2323 "hotplug-memory", hotplug_mem_size);
2324 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2325 &spapr->hotplug_memory.mr);
2328 if (smc->dr_lmb_enabled) {
2329 spapr_create_lmb_dr_connectors(spapr);
2332 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2333 if (!filename) {
2334 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2335 exit(1);
2337 spapr->rtas_size = get_image_size(filename);
2338 if (spapr->rtas_size < 0) {
2339 error_report("Could not get size of LPAR rtas '%s'", filename);
2340 exit(1);
2342 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2343 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2344 error_report("Could not load LPAR rtas '%s'", filename);
2345 exit(1);
2347 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2348 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2349 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2350 exit(1);
2352 g_free(filename);
2354 /* Set up RTAS event infrastructure */
2355 spapr_events_init(spapr);
2357 /* Set up the RTC RTAS interfaces */
2358 spapr_rtc_create(spapr);
2360 /* Set up VIO bus */
2361 spapr->vio_bus = spapr_vio_bus_init();
2363 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
2364 if (serial_hds[i]) {
2365 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
2369 /* We always have at least the nvram device on VIO */
2370 spapr_create_nvram(spapr);
2372 /* Set up PCI */
2373 spapr_pci_rtas_init();
2375 phb = spapr_create_phb(spapr, 0);
2377 for (i = 0; i < nb_nics; i++) {
2378 NICInfo *nd = &nd_table[i];
2380 if (!nd->model) {
2381 nd->model = g_strdup("ibmveth");
2384 if (strcmp(nd->model, "ibmveth") == 0) {
2385 spapr_vlan_create(spapr->vio_bus, nd);
2386 } else {
2387 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2391 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2392 spapr_vscsi_create(spapr->vio_bus);
2395 /* Graphics */
2396 if (spapr_vga_init(phb->bus, &error_fatal)) {
2397 spapr->has_graphics = true;
2398 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2401 if (machine->usb) {
2402 if (smc->use_ohci_by_default) {
2403 pci_create_simple(phb->bus, -1, "pci-ohci");
2404 } else {
2405 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2408 if (spapr->has_graphics) {
2409 USBBus *usb_bus = usb_bus_find(-1);
2411 usb_create_simple(usb_bus, "usb-kbd");
2412 usb_create_simple(usb_bus, "usb-mouse");
2416 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2417 error_report(
2418 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2419 MIN_RMA_SLOF);
2420 exit(1);
2423 if (kernel_filename) {
2424 uint64_t lowaddr = 0;
2426 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2427 NULL, NULL, &lowaddr, NULL, 1,
2428 PPC_ELF_MACHINE, 0, 0);
2429 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2430 spapr->kernel_size = load_elf(kernel_filename,
2431 translate_kernel_address, NULL, NULL,
2432 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2433 0, 0);
2434 spapr->kernel_le = spapr->kernel_size > 0;
2436 if (spapr->kernel_size < 0) {
2437 error_report("error loading %s: %s", kernel_filename,
2438 load_elf_strerror(spapr->kernel_size));
2439 exit(1);
2442 /* load initrd */
2443 if (initrd_filename) {
2444 /* Try to locate the initrd in the gap between the kernel
2445 * and the firmware. Add a bit of space just in case
2447 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2448 + 0x1ffff) & ~0xffff;
2449 spapr->initrd_size = load_image_targphys(initrd_filename,
2450 spapr->initrd_base,
2451 load_limit
2452 - spapr->initrd_base);
2453 if (spapr->initrd_size < 0) {
2454 error_report("could not load initial ram disk '%s'",
2455 initrd_filename);
2456 exit(1);
2461 if (bios_name == NULL) {
2462 bios_name = FW_FILE_NAME;
2464 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2465 if (!filename) {
2466 error_report("Could not find LPAR firmware '%s'", bios_name);
2467 exit(1);
2469 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2470 if (fw_size <= 0) {
2471 error_report("Could not load LPAR firmware '%s'", filename);
2472 exit(1);
2474 g_free(filename);
2476 /* FIXME: Should register things through the MachineState's qdev
2477 * interface, this is a legacy from the sPAPREnvironment structure
2478 * which predated MachineState but had a similar function */
2479 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2480 register_savevm_live(NULL, "spapr/htab", -1, 1,
2481 &savevm_htab_handlers, spapr);
2483 qemu_register_boot_set(spapr_boot_set, spapr);
2485 if (kvm_enabled()) {
2486 /* to stop and start vmclock */
2487 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2488 &spapr->tb);
2490 kvmppc_spapr_enable_inkernel_multitce();
2494 static int spapr_kvm_type(const char *vm_type)
2496 if (!vm_type) {
2497 return 0;
2500 if (!strcmp(vm_type, "HV")) {
2501 return 1;
2504 if (!strcmp(vm_type, "PR")) {
2505 return 2;
2508 error_report("Unknown kvm-type specified '%s'", vm_type);
2509 exit(1);
2513 * Implementation of an interface to adjust firmware path
2514 * for the bootindex property handling.
2516 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2517 DeviceState *dev)
2519 #define CAST(type, obj, name) \
2520 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2521 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2522 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2523 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2525 if (d) {
2526 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2527 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2528 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2530 if (spapr) {
2532 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2533 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2534 * in the top 16 bits of the 64-bit LUN
2536 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2537 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2538 (uint64_t)id << 48);
2539 } else if (virtio) {
2541 * We use SRP luns of the form 01000000 | (target << 8) | lun
2542 * in the top 32 bits of the 64-bit LUN
2543 * Note: the quote above is from SLOF and it is wrong,
2544 * the actual binding is:
2545 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2547 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2548 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2549 (uint64_t)id << 32);
2550 } else if (usb) {
2552 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2553 * in the top 32 bits of the 64-bit LUN
2555 unsigned usb_port = atoi(usb->port->path);
2556 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2557 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2558 (uint64_t)id << 32);
2563 * SLOF probes the USB devices, and if it recognizes that the device is a
2564 * storage device, it changes its name to "storage" instead of "usb-host",
2565 * and additionally adds a child node for the SCSI LUN, so the correct
2566 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2568 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2569 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2570 if (usb_host_dev_is_scsi_storage(usbdev)) {
2571 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2575 if (phb) {
2576 /* Replace "pci" with "pci@800000020000000" */
2577 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2580 if (vsc) {
2581 /* Same logic as virtio above */
2582 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2583 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2586 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2587 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2588 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2589 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2592 return NULL;
2595 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2597 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2599 return g_strdup(spapr->kvm_type);
2602 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2604 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2606 g_free(spapr->kvm_type);
2607 spapr->kvm_type = g_strdup(value);
2610 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2612 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2614 return spapr->use_hotplug_event_source;
2617 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2618 Error **errp)
2620 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2622 spapr->use_hotplug_event_source = value;
2625 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2627 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2629 switch (spapr->resize_hpt) {
2630 case SPAPR_RESIZE_HPT_DEFAULT:
2631 return g_strdup("default");
2632 case SPAPR_RESIZE_HPT_DISABLED:
2633 return g_strdup("disabled");
2634 case SPAPR_RESIZE_HPT_ENABLED:
2635 return g_strdup("enabled");
2636 case SPAPR_RESIZE_HPT_REQUIRED:
2637 return g_strdup("required");
2639 g_assert_not_reached();
2642 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2644 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2646 if (strcmp(value, "default") == 0) {
2647 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2648 } else if (strcmp(value, "disabled") == 0) {
2649 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2650 } else if (strcmp(value, "enabled") == 0) {
2651 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2652 } else if (strcmp(value, "required") == 0) {
2653 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2654 } else {
2655 error_setg(errp, "Bad value for \"resize-hpt\" property");
2659 static void spapr_machine_initfn(Object *obj)
2661 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2663 spapr->htab_fd = -1;
2664 spapr->use_hotplug_event_source = true;
2665 object_property_add_str(obj, "kvm-type",
2666 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2667 object_property_set_description(obj, "kvm-type",
2668 "Specifies the KVM virtualization mode (HV, PR)",
2669 NULL);
2670 object_property_add_bool(obj, "modern-hotplug-events",
2671 spapr_get_modern_hotplug_events,
2672 spapr_set_modern_hotplug_events,
2673 NULL);
2674 object_property_set_description(obj, "modern-hotplug-events",
2675 "Use dedicated hotplug event mechanism in"
2676 " place of standard EPOW events when possible"
2677 " (required for memory hot-unplug support)",
2678 NULL);
2680 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2681 "Maximum permitted CPU compatibility mode",
2682 &error_fatal);
2684 object_property_add_str(obj, "resize-hpt",
2685 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2686 object_property_set_description(obj, "resize-hpt",
2687 "Resizing of the Hash Page Table (enabled, disabled, required)",
2688 NULL);
2691 static void spapr_machine_finalizefn(Object *obj)
2693 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2695 g_free(spapr->kvm_type);
2698 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2700 cpu_synchronize_state(cs);
2701 ppc_cpu_do_system_reset(cs);
2704 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2706 CPUState *cs;
2708 CPU_FOREACH(cs) {
2709 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2713 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2714 uint32_t node, bool dedicated_hp_event_source,
2715 Error **errp)
2717 sPAPRDRConnector *drc;
2718 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2719 int i, fdt_offset, fdt_size;
2720 void *fdt;
2721 uint64_t addr = addr_start;
2722 bool hotplugged = spapr_drc_hotplugged(dev);
2723 Error *local_err = NULL;
2725 for (i = 0; i < nr_lmbs; i++) {
2726 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2727 addr / SPAPR_MEMORY_BLOCK_SIZE);
2728 g_assert(drc);
2730 fdt = create_device_tree(&fdt_size);
2731 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2732 SPAPR_MEMORY_BLOCK_SIZE);
2734 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2735 if (local_err) {
2736 while (addr > addr_start) {
2737 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2738 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2739 addr / SPAPR_MEMORY_BLOCK_SIZE);
2740 spapr_drc_detach(drc);
2742 g_free(fdt);
2743 error_propagate(errp, local_err);
2744 return;
2746 if (!hotplugged) {
2747 spapr_drc_reset(drc);
2749 addr += SPAPR_MEMORY_BLOCK_SIZE;
2751 /* send hotplug notification to the
2752 * guest only in case of hotplugged memory
2754 if (hotplugged) {
2755 if (dedicated_hp_event_source) {
2756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2757 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2758 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2759 nr_lmbs,
2760 spapr_drc_index(drc));
2761 } else {
2762 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2763 nr_lmbs);
2768 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2769 uint32_t node, Error **errp)
2771 Error *local_err = NULL;
2772 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2773 PCDIMMDevice *dimm = PC_DIMM(dev);
2774 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2775 MemoryRegion *mr = ddc->get_memory_region(dimm);
2776 uint64_t align = memory_region_get_alignment(mr);
2777 uint64_t size = memory_region_size(mr);
2778 uint64_t addr;
2780 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2781 if (local_err) {
2782 goto out;
2785 addr = object_property_get_uint(OBJECT(dimm),
2786 PC_DIMM_ADDR_PROP, &local_err);
2787 if (local_err) {
2788 goto out_unplug;
2791 spapr_add_lmbs(dev, addr, size, node,
2792 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2793 &local_err);
2794 if (local_err) {
2795 goto out_unplug;
2798 return;
2800 out_unplug:
2801 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2802 out:
2803 error_propagate(errp, local_err);
2806 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2807 Error **errp)
2809 PCDIMMDevice *dimm = PC_DIMM(dev);
2810 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2811 MemoryRegion *mr = ddc->get_memory_region(dimm);
2812 uint64_t size = memory_region_size(mr);
2813 char *mem_dev;
2815 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2816 error_setg(errp, "Hotplugged memory size must be a multiple of "
2817 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2818 return;
2821 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2822 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2823 error_setg(errp, "Memory backend has bad page size. "
2824 "Use 'memory-backend-file' with correct mem-path.");
2825 goto out;
2828 out:
2829 g_free(mem_dev);
2832 struct sPAPRDIMMState {
2833 PCDIMMDevice *dimm;
2834 uint32_t nr_lmbs;
2835 QTAILQ_ENTRY(sPAPRDIMMState) next;
2838 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2839 PCDIMMDevice *dimm)
2841 sPAPRDIMMState *dimm_state = NULL;
2843 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2844 if (dimm_state->dimm == dimm) {
2845 break;
2848 return dimm_state;
2851 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2852 uint32_t nr_lmbs,
2853 PCDIMMDevice *dimm)
2855 sPAPRDIMMState *ds = NULL;
2858 * If this request is for a DIMM whose removal had failed earlier
2859 * (due to guest's refusal to remove the LMBs), we would have this
2860 * dimm already in the pending_dimm_unplugs list. In that
2861 * case don't add again.
2863 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
2864 if (!ds) {
2865 ds = g_malloc0(sizeof(sPAPRDIMMState));
2866 ds->nr_lmbs = nr_lmbs;
2867 ds->dimm = dimm;
2868 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
2870 return ds;
2873 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2874 sPAPRDIMMState *dimm_state)
2876 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2877 g_free(dimm_state);
2880 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2881 PCDIMMDevice *dimm)
2883 sPAPRDRConnector *drc;
2884 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2885 MemoryRegion *mr = ddc->get_memory_region(dimm);
2886 uint64_t size = memory_region_size(mr);
2887 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2888 uint32_t avail_lmbs = 0;
2889 uint64_t addr_start, addr;
2890 int i;
2892 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2893 &error_abort);
2895 addr = addr_start;
2896 for (i = 0; i < nr_lmbs; i++) {
2897 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2898 addr / SPAPR_MEMORY_BLOCK_SIZE);
2899 g_assert(drc);
2900 if (drc->dev) {
2901 avail_lmbs++;
2903 addr += SPAPR_MEMORY_BLOCK_SIZE;
2906 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
2909 /* Callback to be called during DRC release. */
2910 void spapr_lmb_release(DeviceState *dev)
2912 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
2913 PCDIMMDevice *dimm = PC_DIMM(dev);
2914 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2915 MemoryRegion *mr = ddc->get_memory_region(dimm);
2916 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
2918 /* This information will get lost if a migration occurs
2919 * during the unplug process. In this case recover it. */
2920 if (ds == NULL) {
2921 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2922 g_assert(ds);
2923 /* The DRC being examined by the caller at least must be counted */
2924 g_assert(ds->nr_lmbs);
2927 if (--ds->nr_lmbs) {
2928 return;
2931 spapr_pending_dimm_unplugs_remove(spapr, ds);
2934 * Now that all the LMBs have been removed by the guest, call the
2935 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2937 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
2938 object_unparent(OBJECT(dev));
2941 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2942 DeviceState *dev, Error **errp)
2944 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
2945 Error *local_err = NULL;
2946 PCDIMMDevice *dimm = PC_DIMM(dev);
2947 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2948 MemoryRegion *mr = ddc->get_memory_region(dimm);
2949 uint64_t size = memory_region_size(mr);
2950 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2951 uint64_t addr_start, addr;
2952 int i;
2953 sPAPRDRConnector *drc;
2954 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2955 &local_err);
2956 if (local_err) {
2957 goto out;
2960 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
2962 addr = addr_start;
2963 for (i = 0; i < nr_lmbs; i++) {
2964 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2965 addr / SPAPR_MEMORY_BLOCK_SIZE);
2966 g_assert(drc);
2968 spapr_drc_detach(drc);
2969 addr += SPAPR_MEMORY_BLOCK_SIZE;
2972 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2973 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2974 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2975 nr_lmbs, spapr_drc_index(drc));
2976 out:
2977 error_propagate(errp, local_err);
2980 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2981 sPAPRMachineState *spapr)
2983 PowerPCCPU *cpu = POWERPC_CPU(cs);
2984 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2985 int id = ppc_get_vcpu_dt_id(cpu);
2986 void *fdt;
2987 int offset, fdt_size;
2988 char *nodename;
2990 fdt = create_device_tree(&fdt_size);
2991 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2992 offset = fdt_add_subnode(fdt, 0, nodename);
2994 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2995 g_free(nodename);
2997 *fdt_offset = offset;
2998 return fdt;
3001 /* Callback to be called during DRC release. */
3002 void spapr_core_release(DeviceState *dev)
3004 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3005 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3006 CPUCore *cc = CPU_CORE(dev);
3007 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3009 if (smc->pre_2_10_has_unused_icps) {
3010 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3011 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3012 const char *typename = object_class_get_name(scc->cpu_class);
3013 size_t size = object_type_get_instance_size(typename);
3014 int i;
3016 for (i = 0; i < cc->nr_threads; i++) {
3017 CPUState *cs = CPU(sc->threads + i * size);
3019 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3023 assert(core_slot);
3024 core_slot->cpu = NULL;
3025 object_unparent(OBJECT(dev));
3028 static
3029 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3030 Error **errp)
3032 int index;
3033 sPAPRDRConnector *drc;
3034 CPUCore *cc = CPU_CORE(dev);
3035 int smt = kvmppc_smt_threads();
3037 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3038 error_setg(errp, "Unable to find CPU core with core-id: %d",
3039 cc->core_id);
3040 return;
3042 if (index == 0) {
3043 error_setg(errp, "Boot CPU core may not be unplugged");
3044 return;
3047 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3048 g_assert(drc);
3050 spapr_drc_detach(drc);
3052 spapr_hotplug_req_remove_by_index(drc);
3055 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3056 Error **errp)
3058 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3059 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3060 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3061 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3062 CPUCore *cc = CPU_CORE(dev);
3063 CPUState *cs = CPU(core->threads);
3064 sPAPRDRConnector *drc;
3065 Error *local_err = NULL;
3066 int smt = kvmppc_smt_threads();
3067 CPUArchId *core_slot;
3068 int index;
3069 bool hotplugged = spapr_drc_hotplugged(dev);
3071 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3072 if (!core_slot) {
3073 error_setg(errp, "Unable to find CPU core with core-id: %d",
3074 cc->core_id);
3075 return;
3077 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
3079 g_assert(drc || !mc->has_hotpluggable_cpus);
3081 if (drc) {
3082 void *fdt;
3083 int fdt_offset;
3085 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3087 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3088 if (local_err) {
3089 g_free(fdt);
3090 error_propagate(errp, local_err);
3091 return;
3094 if (hotplugged) {
3096 * Send hotplug notification interrupt to the guest only
3097 * in case of hotplugged CPUs.
3099 spapr_hotplug_req_add_by_index(drc);
3100 } else {
3101 spapr_drc_reset(drc);
3105 core_slot->cpu = OBJECT(dev);
3107 if (smc->pre_2_10_has_unused_icps) {
3108 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(OBJECT(cc));
3109 const char *typename = object_class_get_name(scc->cpu_class);
3110 size_t size = object_type_get_instance_size(typename);
3111 int i;
3113 for (i = 0; i < cc->nr_threads; i++) {
3114 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
3115 void *obj = sc->threads + i * size;
3117 cs = CPU(obj);
3118 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3123 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3124 Error **errp)
3126 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3127 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3128 Error *local_err = NULL;
3129 CPUCore *cc = CPU_CORE(dev);
3130 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
3131 const char *type = object_get_typename(OBJECT(dev));
3132 CPUArchId *core_slot;
3133 int index;
3135 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3136 error_setg(&local_err, "CPU hotplug not supported for this machine");
3137 goto out;
3140 if (strcmp(base_core_type, type)) {
3141 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3142 goto out;
3145 if (cc->core_id % smp_threads) {
3146 error_setg(&local_err, "invalid core id %d", cc->core_id);
3147 goto out;
3151 * In general we should have homogeneous threads-per-core, but old
3152 * (pre hotplug support) machine types allow the last core to have
3153 * reduced threads as a compatibility hack for when we allowed
3154 * total vcpus not a multiple of threads-per-core.
3156 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3157 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3158 cc->nr_threads, smp_threads);
3159 goto out;
3162 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3163 if (!core_slot) {
3164 error_setg(&local_err, "core id %d out of range", cc->core_id);
3165 goto out;
3168 if (core_slot->cpu) {
3169 error_setg(&local_err, "core %d already populated", cc->core_id);
3170 goto out;
3173 numa_cpu_pre_plug(core_slot, dev, &local_err);
3175 out:
3176 g_free(base_core_type);
3177 error_propagate(errp, local_err);
3180 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3181 DeviceState *dev, Error **errp)
3183 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
3185 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3186 int node;
3188 if (!smc->dr_lmb_enabled) {
3189 error_setg(errp, "Memory hotplug not supported for this machine");
3190 return;
3192 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3193 if (*errp) {
3194 return;
3196 if (node < 0 || node >= MAX_NODES) {
3197 error_setg(errp, "Invaild node %d", node);
3198 return;
3202 * Currently PowerPC kernel doesn't allow hot-adding memory to
3203 * memory-less node, but instead will silently add the memory
3204 * to the first node that has some memory. This causes two
3205 * unexpected behaviours for the user.
3207 * - Memory gets hotplugged to a different node than what the user
3208 * specified.
3209 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3210 * to memory-less node, a reboot will set things accordingly
3211 * and the previously hotplugged memory now ends in the right node.
3212 * This appears as if some memory moved from one node to another.
3214 * So until kernel starts supporting memory hotplug to memory-less
3215 * nodes, just prevent such attempts upfront in QEMU.
3217 if (nb_numa_nodes && !numa_info[node].node_mem) {
3218 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3219 node);
3220 return;
3223 spapr_memory_plug(hotplug_dev, dev, node, errp);
3224 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3225 spapr_core_plug(hotplug_dev, dev, errp);
3229 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3230 DeviceState *dev, Error **errp)
3232 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3233 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3235 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3236 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3237 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3238 } else {
3239 /* NOTE: this means there is a window after guest reset, prior to
3240 * CAS negotiation, where unplug requests will fail due to the
3241 * capability not being detected yet. This is a bit different than
3242 * the case with PCI unplug, where the events will be queued and
3243 * eventually handled by the guest after boot
3245 error_setg(errp, "Memory hot unplug not supported for this guest");
3247 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3248 if (!mc->has_hotpluggable_cpus) {
3249 error_setg(errp, "CPU hot unplug not supported on this machine");
3250 return;
3252 spapr_core_unplug_request(hotplug_dev, dev, errp);
3256 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3257 DeviceState *dev, Error **errp)
3259 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3260 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3261 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3262 spapr_core_pre_plug(hotplug_dev, dev, errp);
3266 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3267 DeviceState *dev)
3269 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3270 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3271 return HOTPLUG_HANDLER(machine);
3273 return NULL;
3276 static CpuInstanceProperties
3277 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3279 CPUArchId *core_slot;
3280 MachineClass *mc = MACHINE_GET_CLASS(machine);
3282 /* make sure possible_cpu are intialized */
3283 mc->possible_cpu_arch_ids(machine);
3284 /* get CPU core slot containing thread that matches cpu_index */
3285 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3286 assert(core_slot);
3287 return core_slot->props;
3290 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3292 int i;
3293 int spapr_max_cores = max_cpus / smp_threads;
3294 MachineClass *mc = MACHINE_GET_CLASS(machine);
3296 if (!mc->has_hotpluggable_cpus) {
3297 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3299 if (machine->possible_cpus) {
3300 assert(machine->possible_cpus->len == spapr_max_cores);
3301 return machine->possible_cpus;
3304 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3305 sizeof(CPUArchId) * spapr_max_cores);
3306 machine->possible_cpus->len = spapr_max_cores;
3307 for (i = 0; i < machine->possible_cpus->len; i++) {
3308 int core_id = i * smp_threads;
3310 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3311 machine->possible_cpus->cpus[i].arch_id = core_id;
3312 machine->possible_cpus->cpus[i].props.has_core_id = true;
3313 machine->possible_cpus->cpus[i].props.core_id = core_id;
3315 /* default distribution of CPUs over NUMA nodes */
3316 if (nb_numa_nodes) {
3317 /* preset values but do not enable them i.e. 'has_node_id = false',
3318 * numa init code will enable them later if manual mapping wasn't
3319 * present on CLI */
3320 machine->possible_cpus->cpus[i].props.node_id =
3321 core_id / smp_threads / smp_cores % nb_numa_nodes;
3324 return machine->possible_cpus;
3327 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3328 uint64_t *buid, hwaddr *pio,
3329 hwaddr *mmio32, hwaddr *mmio64,
3330 unsigned n_dma, uint32_t *liobns, Error **errp)
3333 * New-style PHB window placement.
3335 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3336 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3337 * windows.
3339 * Some guest kernels can't work with MMIO windows above 1<<46
3340 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3342 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3343 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3344 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3345 * 1TiB 64-bit MMIO windows for each PHB.
3347 const uint64_t base_buid = 0x800000020000000ULL;
3348 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3349 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3350 int i;
3352 /* Sanity check natural alignments */
3353 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3354 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3355 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3356 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3357 /* Sanity check bounds */
3358 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3359 SPAPR_PCI_MEM32_WIN_SIZE);
3360 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3361 SPAPR_PCI_MEM64_WIN_SIZE);
3363 if (index >= SPAPR_MAX_PHBS) {
3364 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3365 SPAPR_MAX_PHBS - 1);
3366 return;
3369 *buid = base_buid + index;
3370 for (i = 0; i < n_dma; ++i) {
3371 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3374 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3375 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3376 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3379 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3381 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3383 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3386 static void spapr_ics_resend(XICSFabric *dev)
3388 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3390 ics_resend(spapr->ics);
3393 static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
3395 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
3397 return cpu ? ICP(cpu->intc) : NULL;
3400 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3401 Monitor *mon)
3403 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3404 CPUState *cs;
3406 CPU_FOREACH(cs) {
3407 PowerPCCPU *cpu = POWERPC_CPU(cs);
3409 icp_pic_print_info(ICP(cpu->intc), mon);
3412 ics_pic_print_info(spapr->ics, mon);
3415 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3417 MachineClass *mc = MACHINE_CLASS(oc);
3418 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3419 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3420 NMIClass *nc = NMI_CLASS(oc);
3421 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3422 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3423 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3424 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3426 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3429 * We set up the default / latest behaviour here. The class_init
3430 * functions for the specific versioned machine types can override
3431 * these details for backwards compatibility
3433 mc->init = ppc_spapr_init;
3434 mc->reset = ppc_spapr_reset;
3435 mc->block_default_type = IF_SCSI;
3436 mc->max_cpus = 1024;
3437 mc->no_parallel = 1;
3438 mc->default_boot_order = "";
3439 mc->default_ram_size = 512 * M_BYTE;
3440 mc->kvm_type = spapr_kvm_type;
3441 mc->has_dynamic_sysbus = true;
3442 mc->pci_allow_0_address = true;
3443 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3444 hc->pre_plug = spapr_machine_device_pre_plug;
3445 hc->plug = spapr_machine_device_plug;
3446 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3447 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3448 hc->unplug_request = spapr_machine_device_unplug_request;
3450 smc->dr_lmb_enabled = true;
3451 smc->tcg_default_cpu = "POWER8";
3452 mc->has_hotpluggable_cpus = true;
3453 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3454 fwc->get_dev_path = spapr_get_fw_dev_path;
3455 nc->nmi_monitor_handler = spapr_nmi;
3456 smc->phb_placement = spapr_phb_placement;
3457 vhc->hypercall = emulate_spapr_hypercall;
3458 vhc->hpt_mask = spapr_hpt_mask;
3459 vhc->map_hptes = spapr_map_hptes;
3460 vhc->unmap_hptes = spapr_unmap_hptes;
3461 vhc->store_hpte = spapr_store_hpte;
3462 vhc->get_patbe = spapr_get_patbe;
3463 xic->ics_get = spapr_ics_get;
3464 xic->ics_resend = spapr_ics_resend;
3465 xic->icp_get = spapr_icp_get;
3466 ispc->print_info = spapr_pic_print_info;
3467 /* Force NUMA node memory size to be a multiple of
3468 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3469 * in which LMBs are represented and hot-added
3471 mc->numa_mem_align_shift = 28;
3474 static const TypeInfo spapr_machine_info = {
3475 .name = TYPE_SPAPR_MACHINE,
3476 .parent = TYPE_MACHINE,
3477 .abstract = true,
3478 .instance_size = sizeof(sPAPRMachineState),
3479 .instance_init = spapr_machine_initfn,
3480 .instance_finalize = spapr_machine_finalizefn,
3481 .class_size = sizeof(sPAPRMachineClass),
3482 .class_init = spapr_machine_class_init,
3483 .interfaces = (InterfaceInfo[]) {
3484 { TYPE_FW_PATH_PROVIDER },
3485 { TYPE_NMI },
3486 { TYPE_HOTPLUG_HANDLER },
3487 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3488 { TYPE_XICS_FABRIC },
3489 { TYPE_INTERRUPT_STATS_PROVIDER },
3494 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3495 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3496 void *data) \
3498 MachineClass *mc = MACHINE_CLASS(oc); \
3499 spapr_machine_##suffix##_class_options(mc); \
3500 if (latest) { \
3501 mc->alias = "pseries"; \
3502 mc->is_default = 1; \
3505 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3507 MachineState *machine = MACHINE(obj); \
3508 spapr_machine_##suffix##_instance_options(machine); \
3510 static const TypeInfo spapr_machine_##suffix##_info = { \
3511 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3512 .parent = TYPE_SPAPR_MACHINE, \
3513 .class_init = spapr_machine_##suffix##_class_init, \
3514 .instance_init = spapr_machine_##suffix##_instance_init, \
3515 }; \
3516 static void spapr_machine_register_##suffix(void) \
3518 type_register(&spapr_machine_##suffix##_info); \
3520 type_init(spapr_machine_register_##suffix)
3523 * pseries-2.10
3525 static void spapr_machine_2_10_instance_options(MachineState *machine)
3529 static void spapr_machine_2_10_class_options(MachineClass *mc)
3531 /* Defaults for the latest behaviour inherited from the base class */
3534 DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3537 * pseries-2.9
3539 #define SPAPR_COMPAT_2_9 \
3540 HW_COMPAT_2_9 \
3542 .driver = TYPE_POWERPC_CPU, \
3543 .property = "pre-2.10-migration", \
3544 .value = "on", \
3545 }, \
3547 static void spapr_machine_2_9_instance_options(MachineState *machine)
3549 spapr_machine_2_10_instance_options(machine);
3552 static void spapr_machine_2_9_class_options(MachineClass *mc)
3554 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3556 spapr_machine_2_10_class_options(mc);
3557 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3558 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
3559 smc->pre_2_10_has_unused_icps = true;
3560 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
3563 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
3566 * pseries-2.8
3568 #define SPAPR_COMPAT_2_8 \
3569 HW_COMPAT_2_8 \
3571 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3572 .property = "pcie-extended-configuration-space", \
3573 .value = "off", \
3576 static void spapr_machine_2_8_instance_options(MachineState *machine)
3578 spapr_machine_2_9_instance_options(machine);
3581 static void spapr_machine_2_8_class_options(MachineClass *mc)
3583 spapr_machine_2_9_class_options(mc);
3584 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
3585 mc->numa_mem_align_shift = 23;
3588 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
3591 * pseries-2.7
3593 #define SPAPR_COMPAT_2_7 \
3594 HW_COMPAT_2_7 \
3596 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3597 .property = "mem_win_size", \
3598 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3599 }, \
3601 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3602 .property = "mem64_win_size", \
3603 .value = "0", \
3604 }, \
3606 .driver = TYPE_POWERPC_CPU, \
3607 .property = "pre-2.8-migration", \
3608 .value = "on", \
3609 }, \
3611 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3612 .property = "pre-2.8-migration", \
3613 .value = "on", \
3616 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3617 uint64_t *buid, hwaddr *pio,
3618 hwaddr *mmio32, hwaddr *mmio64,
3619 unsigned n_dma, uint32_t *liobns, Error **errp)
3621 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3622 const uint64_t base_buid = 0x800000020000000ULL;
3623 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3624 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3625 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3626 const uint32_t max_index = 255;
3627 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3629 uint64_t ram_top = MACHINE(spapr)->ram_size;
3630 hwaddr phb0_base, phb_base;
3631 int i;
3633 /* Do we have hotpluggable memory? */
3634 if (MACHINE(spapr)->maxram_size > ram_top) {
3635 /* Can't just use maxram_size, because there may be an
3636 * alignment gap between normal and hotpluggable memory
3637 * regions */
3638 ram_top = spapr->hotplug_memory.base +
3639 memory_region_size(&spapr->hotplug_memory.mr);
3642 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3644 if (index > max_index) {
3645 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3646 max_index);
3647 return;
3650 *buid = base_buid + index;
3651 for (i = 0; i < n_dma; ++i) {
3652 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3655 phb_base = phb0_base + index * phb_spacing;
3656 *pio = phb_base + pio_offset;
3657 *mmio32 = phb_base + mmio_offset;
3659 * We don't set the 64-bit MMIO window, relying on the PHB's
3660 * fallback behaviour of automatically splitting a large "32-bit"
3661 * window into contiguous 32-bit and 64-bit windows
3665 static void spapr_machine_2_7_instance_options(MachineState *machine)
3667 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3669 spapr_machine_2_8_instance_options(machine);
3670 spapr->use_hotplug_event_source = false;
3673 static void spapr_machine_2_7_class_options(MachineClass *mc)
3675 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3677 spapr_machine_2_8_class_options(mc);
3678 smc->tcg_default_cpu = "POWER7";
3679 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
3680 smc->phb_placement = phb_placement_2_7;
3683 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
3686 * pseries-2.6
3688 #define SPAPR_COMPAT_2_6 \
3689 HW_COMPAT_2_6 \
3691 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3692 .property = "ddw",\
3693 .value = stringify(off),\
3696 static void spapr_machine_2_6_instance_options(MachineState *machine)
3698 spapr_machine_2_7_instance_options(machine);
3701 static void spapr_machine_2_6_class_options(MachineClass *mc)
3703 spapr_machine_2_7_class_options(mc);
3704 mc->has_hotpluggable_cpus = false;
3705 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
3708 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
3711 * pseries-2.5
3713 #define SPAPR_COMPAT_2_5 \
3714 HW_COMPAT_2_5 \
3716 .driver = "spapr-vlan", \
3717 .property = "use-rx-buffer-pools", \
3718 .value = "off", \
3721 static void spapr_machine_2_5_instance_options(MachineState *machine)
3723 spapr_machine_2_6_instance_options(machine);
3726 static void spapr_machine_2_5_class_options(MachineClass *mc)
3728 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3730 spapr_machine_2_6_class_options(mc);
3731 smc->use_ohci_by_default = true;
3732 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
3735 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
3738 * pseries-2.4
3740 #define SPAPR_COMPAT_2_4 \
3741 HW_COMPAT_2_4
3743 static void spapr_machine_2_4_instance_options(MachineState *machine)
3745 spapr_machine_2_5_instance_options(machine);
3748 static void spapr_machine_2_4_class_options(MachineClass *mc)
3750 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3752 spapr_machine_2_5_class_options(mc);
3753 smc->dr_lmb_enabled = false;
3754 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
3757 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
3760 * pseries-2.3
3762 #define SPAPR_COMPAT_2_3 \
3763 HW_COMPAT_2_3 \
3765 .driver = "spapr-pci-host-bridge",\
3766 .property = "dynamic-reconfiguration",\
3767 .value = "off",\
3770 static void spapr_machine_2_3_instance_options(MachineState *machine)
3772 spapr_machine_2_4_instance_options(machine);
3775 static void spapr_machine_2_3_class_options(MachineClass *mc)
3777 spapr_machine_2_4_class_options(mc);
3778 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
3780 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
3783 * pseries-2.2
3786 #define SPAPR_COMPAT_2_2 \
3787 HW_COMPAT_2_2 \
3789 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3790 .property = "mem_win_size",\
3791 .value = "0x20000000",\
3794 static void spapr_machine_2_2_instance_options(MachineState *machine)
3796 spapr_machine_2_3_instance_options(machine);
3797 machine->suppress_vmdesc = true;
3800 static void spapr_machine_2_2_class_options(MachineClass *mc)
3802 spapr_machine_2_3_class_options(mc);
3803 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
3805 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
3808 * pseries-2.1
3810 #define SPAPR_COMPAT_2_1 \
3811 HW_COMPAT_2_1
3813 static void spapr_machine_2_1_instance_options(MachineState *machine)
3815 spapr_machine_2_2_instance_options(machine);
3818 static void spapr_machine_2_1_class_options(MachineClass *mc)
3820 spapr_machine_2_2_class_options(mc);
3821 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
3823 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
3825 static void spapr_machine_register_types(void)
3827 type_register_static(&spapr_machine_info);
3830 type_init(spapr_machine_register_types)