block: access write_gen with atomics
[qemu.git] / kvm-all.c
blobab8262f67287136658e416ea1bbcec512426bfac
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include "qemu/osdep.h"
17 #include <sys/ioctl.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "qemu/atomic.h"
23 #include "qemu/option.h"
24 #include "qemu/config-file.h"
25 #include "qemu/error-report.h"
26 #include "qapi/error.h"
27 #include "hw/hw.h"
28 #include "hw/pci/msi.h"
29 #include "hw/pci/msix.h"
30 #include "hw/s390x/adapter.h"
31 #include "exec/gdbstub.h"
32 #include "sysemu/kvm_int.h"
33 #include "sysemu/cpus.h"
34 #include "qemu/bswap.h"
35 #include "exec/memory.h"
36 #include "exec/ram_addr.h"
37 #include "exec/address-spaces.h"
38 #include "qemu/event_notifier.h"
39 #include "trace-root.h"
40 #include "hw/irq.h"
42 #include "hw/boards.h"
44 /* This check must be after config-host.h is included */
45 #ifdef CONFIG_EVENTFD
46 #include <sys/eventfd.h>
47 #endif
49 /* KVM uses PAGE_SIZE in its definition of KVM_COALESCED_MMIO_MAX. We
50 * need to use the real host PAGE_SIZE, as that's what KVM will use.
52 #define PAGE_SIZE getpagesize()
54 //#define DEBUG_KVM
56 #ifdef DEBUG_KVM
57 #define DPRINTF(fmt, ...) \
58 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
59 #else
60 #define DPRINTF(fmt, ...) \
61 do { } while (0)
62 #endif
64 #define KVM_MSI_HASHTAB_SIZE 256
66 struct KVMParkedVcpu {
67 unsigned long vcpu_id;
68 int kvm_fd;
69 QLIST_ENTRY(KVMParkedVcpu) node;
72 struct KVMState
74 AccelState parent_obj;
76 int nr_slots;
77 int fd;
78 int vmfd;
79 int coalesced_mmio;
80 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
81 bool coalesced_flush_in_progress;
82 int broken_set_mem_region;
83 int vcpu_events;
84 int robust_singlestep;
85 int debugregs;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
88 #endif
89 int many_ioeventfds;
90 int intx_set_mask;
91 /* The man page (and posix) say ioctl numbers are signed int, but
92 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
93 * unsigned, and treating them as signed here can break things */
94 unsigned irq_set_ioctl;
95 unsigned int sigmask_len;
96 GHashTable *gsimap;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing *irq_routes;
99 int nr_allocated_irq_routes;
100 unsigned long *used_gsi_bitmap;
101 unsigned int gsi_count;
102 QTAILQ_HEAD(msi_hashtab, KVMMSIRoute) msi_hashtab[KVM_MSI_HASHTAB_SIZE];
103 #endif
104 KVMMemoryListener memory_listener;
105 QLIST_HEAD(, KVMParkedVcpu) kvm_parked_vcpus;
108 KVMState *kvm_state;
109 bool kvm_kernel_irqchip;
110 bool kvm_split_irqchip;
111 bool kvm_async_interrupts_allowed;
112 bool kvm_halt_in_kernel_allowed;
113 bool kvm_eventfds_allowed;
114 bool kvm_irqfds_allowed;
115 bool kvm_resamplefds_allowed;
116 bool kvm_msi_via_irqfd_allowed;
117 bool kvm_gsi_routing_allowed;
118 bool kvm_gsi_direct_mapping;
119 bool kvm_allowed;
120 bool kvm_readonly_mem_allowed;
121 bool kvm_vm_attributes_allowed;
122 bool kvm_direct_msi_allowed;
123 bool kvm_ioeventfd_any_length_allowed;
124 bool kvm_msi_use_devid;
125 static bool kvm_immediate_exit;
127 static const KVMCapabilityInfo kvm_required_capabilites[] = {
128 KVM_CAP_INFO(USER_MEMORY),
129 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
130 KVM_CAP_LAST_INFO
133 int kvm_get_max_memslots(void)
135 KVMState *s = KVM_STATE(current_machine->accelerator);
137 return s->nr_slots;
140 static KVMSlot *kvm_get_free_slot(KVMMemoryListener *kml)
142 KVMState *s = kvm_state;
143 int i;
145 for (i = 0; i < s->nr_slots; i++) {
146 if (kml->slots[i].memory_size == 0) {
147 return &kml->slots[i];
151 return NULL;
154 bool kvm_has_free_slot(MachineState *ms)
156 KVMState *s = KVM_STATE(ms->accelerator);
158 return kvm_get_free_slot(&s->memory_listener);
161 static KVMSlot *kvm_alloc_slot(KVMMemoryListener *kml)
163 KVMSlot *slot = kvm_get_free_slot(kml);
165 if (slot) {
166 return slot;
169 fprintf(stderr, "%s: no free slot available\n", __func__);
170 abort();
173 static KVMSlot *kvm_lookup_matching_slot(KVMMemoryListener *kml,
174 hwaddr start_addr,
175 hwaddr end_addr)
177 KVMState *s = kvm_state;
178 int i;
180 for (i = 0; i < s->nr_slots; i++) {
181 KVMSlot *mem = &kml->slots[i];
183 if (start_addr == mem->start_addr &&
184 end_addr == mem->start_addr + mem->memory_size) {
185 return mem;
189 return NULL;
193 * Find overlapping slot with lowest start address
195 static KVMSlot *kvm_lookup_overlapping_slot(KVMMemoryListener *kml,
196 hwaddr start_addr,
197 hwaddr end_addr)
199 KVMState *s = kvm_state;
200 KVMSlot *found = NULL;
201 int i;
203 for (i = 0; i < s->nr_slots; i++) {
204 KVMSlot *mem = &kml->slots[i];
206 if (mem->memory_size == 0 ||
207 (found && found->start_addr < mem->start_addr)) {
208 continue;
211 if (end_addr > mem->start_addr &&
212 start_addr < mem->start_addr + mem->memory_size) {
213 found = mem;
217 return found;
220 int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
221 hwaddr *phys_addr)
223 KVMMemoryListener *kml = &s->memory_listener;
224 int i;
226 for (i = 0; i < s->nr_slots; i++) {
227 KVMSlot *mem = &kml->slots[i];
229 if (ram >= mem->ram && ram < mem->ram + mem->memory_size) {
230 *phys_addr = mem->start_addr + (ram - mem->ram);
231 return 1;
235 return 0;
238 static int kvm_set_user_memory_region(KVMMemoryListener *kml, KVMSlot *slot)
240 KVMState *s = kvm_state;
241 struct kvm_userspace_memory_region mem;
243 mem.slot = slot->slot | (kml->as_id << 16);
244 mem.guest_phys_addr = slot->start_addr;
245 mem.userspace_addr = (unsigned long)slot->ram;
246 mem.flags = slot->flags;
248 if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
249 /* Set the slot size to 0 before setting the slot to the desired
250 * value. This is needed based on KVM commit 75d61fbc. */
251 mem.memory_size = 0;
252 kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
254 mem.memory_size = slot->memory_size;
255 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
258 int kvm_destroy_vcpu(CPUState *cpu)
260 KVMState *s = kvm_state;
261 long mmap_size;
262 struct KVMParkedVcpu *vcpu = NULL;
263 int ret = 0;
265 DPRINTF("kvm_destroy_vcpu\n");
267 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
268 if (mmap_size < 0) {
269 ret = mmap_size;
270 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
271 goto err;
274 ret = munmap(cpu->kvm_run, mmap_size);
275 if (ret < 0) {
276 goto err;
279 vcpu = g_malloc0(sizeof(*vcpu));
280 vcpu->vcpu_id = kvm_arch_vcpu_id(cpu);
281 vcpu->kvm_fd = cpu->kvm_fd;
282 QLIST_INSERT_HEAD(&kvm_state->kvm_parked_vcpus, vcpu, node);
283 err:
284 return ret;
287 static int kvm_get_vcpu(KVMState *s, unsigned long vcpu_id)
289 struct KVMParkedVcpu *cpu;
291 QLIST_FOREACH(cpu, &s->kvm_parked_vcpus, node) {
292 if (cpu->vcpu_id == vcpu_id) {
293 int kvm_fd;
295 QLIST_REMOVE(cpu, node);
296 kvm_fd = cpu->kvm_fd;
297 g_free(cpu);
298 return kvm_fd;
302 return kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)vcpu_id);
305 int kvm_init_vcpu(CPUState *cpu)
307 KVMState *s = kvm_state;
308 long mmap_size;
309 int ret;
311 DPRINTF("kvm_init_vcpu\n");
313 ret = kvm_get_vcpu(s, kvm_arch_vcpu_id(cpu));
314 if (ret < 0) {
315 DPRINTF("kvm_create_vcpu failed\n");
316 goto err;
319 cpu->kvm_fd = ret;
320 cpu->kvm_state = s;
321 cpu->kvm_vcpu_dirty = true;
323 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
324 if (mmap_size < 0) {
325 ret = mmap_size;
326 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
327 goto err;
330 cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
331 cpu->kvm_fd, 0);
332 if (cpu->kvm_run == MAP_FAILED) {
333 ret = -errno;
334 DPRINTF("mmap'ing vcpu state failed\n");
335 goto err;
338 if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
339 s->coalesced_mmio_ring =
340 (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
343 ret = kvm_arch_init_vcpu(cpu);
344 err:
345 return ret;
349 * dirty pages logging control
352 static int kvm_mem_flags(MemoryRegion *mr)
354 bool readonly = mr->readonly || memory_region_is_romd(mr);
355 int flags = 0;
357 if (memory_region_get_dirty_log_mask(mr) != 0) {
358 flags |= KVM_MEM_LOG_DIRTY_PAGES;
360 if (readonly && kvm_readonly_mem_allowed) {
361 flags |= KVM_MEM_READONLY;
363 return flags;
366 static int kvm_slot_update_flags(KVMMemoryListener *kml, KVMSlot *mem,
367 MemoryRegion *mr)
369 int old_flags;
371 old_flags = mem->flags;
372 mem->flags = kvm_mem_flags(mr);
374 /* If nothing changed effectively, no need to issue ioctl */
375 if (mem->flags == old_flags) {
376 return 0;
379 return kvm_set_user_memory_region(kml, mem);
382 static int kvm_section_update_flags(KVMMemoryListener *kml,
383 MemoryRegionSection *section)
385 hwaddr phys_addr = section->offset_within_address_space;
386 ram_addr_t size = int128_get64(section->size);
387 KVMSlot *mem = kvm_lookup_matching_slot(kml, phys_addr, phys_addr + size);
389 if (mem == NULL) {
390 return 0;
391 } else {
392 return kvm_slot_update_flags(kml, mem, section->mr);
396 static void kvm_log_start(MemoryListener *listener,
397 MemoryRegionSection *section,
398 int old, int new)
400 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
401 int r;
403 if (old != 0) {
404 return;
407 r = kvm_section_update_flags(kml, section);
408 if (r < 0) {
409 abort();
413 static void kvm_log_stop(MemoryListener *listener,
414 MemoryRegionSection *section,
415 int old, int new)
417 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
418 int r;
420 if (new != 0) {
421 return;
424 r = kvm_section_update_flags(kml, section);
425 if (r < 0) {
426 abort();
430 /* get kvm's dirty pages bitmap and update qemu's */
431 static int kvm_get_dirty_pages_log_range(MemoryRegionSection *section,
432 unsigned long *bitmap)
434 ram_addr_t start = section->offset_within_region +
435 memory_region_get_ram_addr(section->mr);
436 ram_addr_t pages = int128_get64(section->size) / getpagesize();
438 cpu_physical_memory_set_dirty_lebitmap(bitmap, start, pages);
439 return 0;
442 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
445 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
446 * This function updates qemu's dirty bitmap using
447 * memory_region_set_dirty(). This means all bits are set
448 * to dirty.
450 * @start_add: start of logged region.
451 * @end_addr: end of logged region.
453 static int kvm_physical_sync_dirty_bitmap(KVMMemoryListener *kml,
454 MemoryRegionSection *section)
456 KVMState *s = kvm_state;
457 unsigned long size, allocated_size = 0;
458 struct kvm_dirty_log d = {};
459 KVMSlot *mem;
460 int ret = 0;
461 hwaddr start_addr = section->offset_within_address_space;
462 hwaddr end_addr = start_addr + int128_get64(section->size);
464 d.dirty_bitmap = NULL;
465 while (start_addr < end_addr) {
466 mem = kvm_lookup_overlapping_slot(kml, start_addr, end_addr);
467 if (mem == NULL) {
468 break;
471 /* XXX bad kernel interface alert
472 * For dirty bitmap, kernel allocates array of size aligned to
473 * bits-per-long. But for case when the kernel is 64bits and
474 * the userspace is 32bits, userspace can't align to the same
475 * bits-per-long, since sizeof(long) is different between kernel
476 * and user space. This way, userspace will provide buffer which
477 * may be 4 bytes less than the kernel will use, resulting in
478 * userspace memory corruption (which is not detectable by valgrind
479 * too, in most cases).
480 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
481 * a hope that sizeof(long) won't become >8 any time soon.
483 size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS),
484 /*HOST_LONG_BITS*/ 64) / 8;
485 if (!d.dirty_bitmap) {
486 d.dirty_bitmap = g_malloc(size);
487 } else if (size > allocated_size) {
488 d.dirty_bitmap = g_realloc(d.dirty_bitmap, size);
490 allocated_size = size;
491 memset(d.dirty_bitmap, 0, allocated_size);
493 d.slot = mem->slot | (kml->as_id << 16);
494 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
495 DPRINTF("ioctl failed %d\n", errno);
496 ret = -1;
497 break;
500 kvm_get_dirty_pages_log_range(section, d.dirty_bitmap);
501 start_addr = mem->start_addr + mem->memory_size;
503 g_free(d.dirty_bitmap);
505 return ret;
508 static void kvm_coalesce_mmio_region(MemoryListener *listener,
509 MemoryRegionSection *secion,
510 hwaddr start, hwaddr size)
512 KVMState *s = kvm_state;
514 if (s->coalesced_mmio) {
515 struct kvm_coalesced_mmio_zone zone;
517 zone.addr = start;
518 zone.size = size;
519 zone.pad = 0;
521 (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
525 static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
526 MemoryRegionSection *secion,
527 hwaddr start, hwaddr size)
529 KVMState *s = kvm_state;
531 if (s->coalesced_mmio) {
532 struct kvm_coalesced_mmio_zone zone;
534 zone.addr = start;
535 zone.size = size;
536 zone.pad = 0;
538 (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
542 int kvm_check_extension(KVMState *s, unsigned int extension)
544 int ret;
546 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
547 if (ret < 0) {
548 ret = 0;
551 return ret;
554 int kvm_vm_check_extension(KVMState *s, unsigned int extension)
556 int ret;
558 ret = kvm_vm_ioctl(s, KVM_CHECK_EXTENSION, extension);
559 if (ret < 0) {
560 /* VM wide version not implemented, use global one instead */
561 ret = kvm_check_extension(s, extension);
564 return ret;
567 static uint32_t adjust_ioeventfd_endianness(uint32_t val, uint32_t size)
569 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
570 /* The kernel expects ioeventfd values in HOST_WORDS_BIGENDIAN
571 * endianness, but the memory core hands them in target endianness.
572 * For example, PPC is always treated as big-endian even if running
573 * on KVM and on PPC64LE. Correct here.
575 switch (size) {
576 case 2:
577 val = bswap16(val);
578 break;
579 case 4:
580 val = bswap32(val);
581 break;
583 #endif
584 return val;
587 static int kvm_set_ioeventfd_mmio(int fd, hwaddr addr, uint32_t val,
588 bool assign, uint32_t size, bool datamatch)
590 int ret;
591 struct kvm_ioeventfd iofd = {
592 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
593 .addr = addr,
594 .len = size,
595 .flags = 0,
596 .fd = fd,
599 if (!kvm_enabled()) {
600 return -ENOSYS;
603 if (datamatch) {
604 iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
606 if (!assign) {
607 iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
610 ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
612 if (ret < 0) {
613 return -errno;
616 return 0;
619 static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
620 bool assign, uint32_t size, bool datamatch)
622 struct kvm_ioeventfd kick = {
623 .datamatch = datamatch ? adjust_ioeventfd_endianness(val, size) : 0,
624 .addr = addr,
625 .flags = KVM_IOEVENTFD_FLAG_PIO,
626 .len = size,
627 .fd = fd,
629 int r;
630 if (!kvm_enabled()) {
631 return -ENOSYS;
633 if (datamatch) {
634 kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
636 if (!assign) {
637 kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
639 r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
640 if (r < 0) {
641 return r;
643 return 0;
647 static int kvm_check_many_ioeventfds(void)
649 /* Userspace can use ioeventfd for io notification. This requires a host
650 * that supports eventfd(2) and an I/O thread; since eventfd does not
651 * support SIGIO it cannot interrupt the vcpu.
653 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
654 * can avoid creating too many ioeventfds.
656 #if defined(CONFIG_EVENTFD)
657 int ioeventfds[7];
658 int i, ret = 0;
659 for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
660 ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
661 if (ioeventfds[i] < 0) {
662 break;
664 ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
665 if (ret < 0) {
666 close(ioeventfds[i]);
667 break;
671 /* Decide whether many devices are supported or not */
672 ret = i == ARRAY_SIZE(ioeventfds);
674 while (i-- > 0) {
675 kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
676 close(ioeventfds[i]);
678 return ret;
679 #else
680 return 0;
681 #endif
684 static const KVMCapabilityInfo *
685 kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
687 while (list->name) {
688 if (!kvm_check_extension(s, list->value)) {
689 return list;
691 list++;
693 return NULL;
696 static void kvm_set_phys_mem(KVMMemoryListener *kml,
697 MemoryRegionSection *section, bool add)
699 KVMState *s = kvm_state;
700 KVMSlot *mem, old;
701 int err;
702 MemoryRegion *mr = section->mr;
703 bool writeable = !mr->readonly && !mr->rom_device;
704 hwaddr start_addr = section->offset_within_address_space;
705 ram_addr_t size = int128_get64(section->size);
706 void *ram = NULL;
707 unsigned delta;
709 /* kvm works in page size chunks, but the function may be called
710 with sub-page size and unaligned start address. Pad the start
711 address to next and truncate size to previous page boundary. */
712 delta = qemu_real_host_page_size - (start_addr & ~qemu_real_host_page_mask);
713 delta &= ~qemu_real_host_page_mask;
714 if (delta > size) {
715 return;
717 start_addr += delta;
718 size -= delta;
719 size &= qemu_real_host_page_mask;
720 if (!size || (start_addr & ~qemu_real_host_page_mask)) {
721 return;
724 if (!memory_region_is_ram(mr)) {
725 if (writeable || !kvm_readonly_mem_allowed) {
726 return;
727 } else if (!mr->romd_mode) {
728 /* If the memory device is not in romd_mode, then we actually want
729 * to remove the kvm memory slot so all accesses will trap. */
730 add = false;
734 ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
736 while (1) {
737 mem = kvm_lookup_overlapping_slot(kml, start_addr, start_addr + size);
738 if (!mem) {
739 break;
742 if (add && start_addr >= mem->start_addr &&
743 (start_addr + size <= mem->start_addr + mem->memory_size) &&
744 (ram - start_addr == mem->ram - mem->start_addr)) {
745 /* The new slot fits into the existing one and comes with
746 * identical parameters - update flags and done. */
747 kvm_slot_update_flags(kml, mem, mr);
748 return;
751 old = *mem;
753 if (mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
754 kvm_physical_sync_dirty_bitmap(kml, section);
757 /* unregister the overlapping slot */
758 mem->memory_size = 0;
759 err = kvm_set_user_memory_region(kml, mem);
760 if (err) {
761 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
762 __func__, strerror(-err));
763 abort();
766 /* Workaround for older KVM versions: we can't join slots, even not by
767 * unregistering the previous ones and then registering the larger
768 * slot. We have to maintain the existing fragmentation. Sigh.
770 * This workaround assumes that the new slot starts at the same
771 * address as the first existing one. If not or if some overlapping
772 * slot comes around later, we will fail (not seen in practice so far)
773 * - and actually require a recent KVM version. */
774 if (s->broken_set_mem_region &&
775 old.start_addr == start_addr && old.memory_size < size && add) {
776 mem = kvm_alloc_slot(kml);
777 mem->memory_size = old.memory_size;
778 mem->start_addr = old.start_addr;
779 mem->ram = old.ram;
780 mem->flags = kvm_mem_flags(mr);
782 err = kvm_set_user_memory_region(kml, mem);
783 if (err) {
784 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
785 strerror(-err));
786 abort();
789 start_addr += old.memory_size;
790 ram += old.memory_size;
791 size -= old.memory_size;
792 continue;
795 /* register prefix slot */
796 if (old.start_addr < start_addr) {
797 mem = kvm_alloc_slot(kml);
798 mem->memory_size = start_addr - old.start_addr;
799 mem->start_addr = old.start_addr;
800 mem->ram = old.ram;
801 mem->flags = kvm_mem_flags(mr);
803 err = kvm_set_user_memory_region(kml, mem);
804 if (err) {
805 fprintf(stderr, "%s: error registering prefix slot: %s\n",
806 __func__, strerror(-err));
807 #ifdef TARGET_PPC
808 fprintf(stderr, "%s: This is probably because your kernel's " \
809 "PAGE_SIZE is too big. Please try to use 4k " \
810 "PAGE_SIZE!\n", __func__);
811 #endif
812 abort();
816 /* register suffix slot */
817 if (old.start_addr + old.memory_size > start_addr + size) {
818 ram_addr_t size_delta;
820 mem = kvm_alloc_slot(kml);
821 mem->start_addr = start_addr + size;
822 size_delta = mem->start_addr - old.start_addr;
823 mem->memory_size = old.memory_size - size_delta;
824 mem->ram = old.ram + size_delta;
825 mem->flags = kvm_mem_flags(mr);
827 err = kvm_set_user_memory_region(kml, mem);
828 if (err) {
829 fprintf(stderr, "%s: error registering suffix slot: %s\n",
830 __func__, strerror(-err));
831 abort();
836 /* in case the KVM bug workaround already "consumed" the new slot */
837 if (!size) {
838 return;
840 if (!add) {
841 return;
843 mem = kvm_alloc_slot(kml);
844 mem->memory_size = size;
845 mem->start_addr = start_addr;
846 mem->ram = ram;
847 mem->flags = kvm_mem_flags(mr);
849 err = kvm_set_user_memory_region(kml, mem);
850 if (err) {
851 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
852 strerror(-err));
853 abort();
857 static void kvm_region_add(MemoryListener *listener,
858 MemoryRegionSection *section)
860 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
862 memory_region_ref(section->mr);
863 kvm_set_phys_mem(kml, section, true);
866 static void kvm_region_del(MemoryListener *listener,
867 MemoryRegionSection *section)
869 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
871 kvm_set_phys_mem(kml, section, false);
872 memory_region_unref(section->mr);
875 static void kvm_log_sync(MemoryListener *listener,
876 MemoryRegionSection *section)
878 KVMMemoryListener *kml = container_of(listener, KVMMemoryListener, listener);
879 int r;
881 r = kvm_physical_sync_dirty_bitmap(kml, section);
882 if (r < 0) {
883 abort();
887 static void kvm_mem_ioeventfd_add(MemoryListener *listener,
888 MemoryRegionSection *section,
889 bool match_data, uint64_t data,
890 EventNotifier *e)
892 int fd = event_notifier_get_fd(e);
893 int r;
895 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
896 data, true, int128_get64(section->size),
897 match_data);
898 if (r < 0) {
899 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
900 __func__, strerror(-r));
901 abort();
905 static void kvm_mem_ioeventfd_del(MemoryListener *listener,
906 MemoryRegionSection *section,
907 bool match_data, uint64_t data,
908 EventNotifier *e)
910 int fd = event_notifier_get_fd(e);
911 int r;
913 r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
914 data, false, int128_get64(section->size),
915 match_data);
916 if (r < 0) {
917 abort();
921 static void kvm_io_ioeventfd_add(MemoryListener *listener,
922 MemoryRegionSection *section,
923 bool match_data, uint64_t data,
924 EventNotifier *e)
926 int fd = event_notifier_get_fd(e);
927 int r;
929 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
930 data, true, int128_get64(section->size),
931 match_data);
932 if (r < 0) {
933 fprintf(stderr, "%s: error adding ioeventfd: %s\n",
934 __func__, strerror(-r));
935 abort();
939 static void kvm_io_ioeventfd_del(MemoryListener *listener,
940 MemoryRegionSection *section,
941 bool match_data, uint64_t data,
942 EventNotifier *e)
945 int fd = event_notifier_get_fd(e);
946 int r;
948 r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
949 data, false, int128_get64(section->size),
950 match_data);
951 if (r < 0) {
952 abort();
956 void kvm_memory_listener_register(KVMState *s, KVMMemoryListener *kml,
957 AddressSpace *as, int as_id)
959 int i;
961 kml->slots = g_malloc0(s->nr_slots * sizeof(KVMSlot));
962 kml->as_id = as_id;
964 for (i = 0; i < s->nr_slots; i++) {
965 kml->slots[i].slot = i;
968 kml->listener.region_add = kvm_region_add;
969 kml->listener.region_del = kvm_region_del;
970 kml->listener.log_start = kvm_log_start;
971 kml->listener.log_stop = kvm_log_stop;
972 kml->listener.log_sync = kvm_log_sync;
973 kml->listener.priority = 10;
975 memory_listener_register(&kml->listener, as);
978 static MemoryListener kvm_io_listener = {
979 .eventfd_add = kvm_io_ioeventfd_add,
980 .eventfd_del = kvm_io_ioeventfd_del,
981 .priority = 10,
984 static void kvm_handle_interrupt(CPUState *cpu, int mask)
986 cpu->interrupt_request |= mask;
988 if (!qemu_cpu_is_self(cpu)) {
989 qemu_cpu_kick(cpu);
993 int kvm_set_irq(KVMState *s, int irq, int level)
995 struct kvm_irq_level event;
996 int ret;
998 assert(kvm_async_interrupts_enabled());
1000 event.level = level;
1001 event.irq = irq;
1002 ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
1003 if (ret < 0) {
1004 perror("kvm_set_irq");
1005 abort();
1008 return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
1011 #ifdef KVM_CAP_IRQ_ROUTING
1012 typedef struct KVMMSIRoute {
1013 struct kvm_irq_routing_entry kroute;
1014 QTAILQ_ENTRY(KVMMSIRoute) entry;
1015 } KVMMSIRoute;
1017 static void set_gsi(KVMState *s, unsigned int gsi)
1019 set_bit(gsi, s->used_gsi_bitmap);
1022 static void clear_gsi(KVMState *s, unsigned int gsi)
1024 clear_bit(gsi, s->used_gsi_bitmap);
1027 void kvm_init_irq_routing(KVMState *s)
1029 int gsi_count, i;
1031 gsi_count = kvm_check_extension(s, KVM_CAP_IRQ_ROUTING) - 1;
1032 if (gsi_count > 0) {
1033 /* Round up so we can search ints using ffs */
1034 s->used_gsi_bitmap = bitmap_new(gsi_count);
1035 s->gsi_count = gsi_count;
1038 s->irq_routes = g_malloc0(sizeof(*s->irq_routes));
1039 s->nr_allocated_irq_routes = 0;
1041 if (!kvm_direct_msi_allowed) {
1042 for (i = 0; i < KVM_MSI_HASHTAB_SIZE; i++) {
1043 QTAILQ_INIT(&s->msi_hashtab[i]);
1047 kvm_arch_init_irq_routing(s);
1050 void kvm_irqchip_commit_routes(KVMState *s)
1052 int ret;
1054 if (kvm_gsi_direct_mapping()) {
1055 return;
1058 if (!kvm_gsi_routing_enabled()) {
1059 return;
1062 s->irq_routes->flags = 0;
1063 trace_kvm_irqchip_commit_routes();
1064 ret = kvm_vm_ioctl(s, KVM_SET_GSI_ROUTING, s->irq_routes);
1065 assert(ret == 0);
1068 static void kvm_add_routing_entry(KVMState *s,
1069 struct kvm_irq_routing_entry *entry)
1071 struct kvm_irq_routing_entry *new;
1072 int n, size;
1074 if (s->irq_routes->nr == s->nr_allocated_irq_routes) {
1075 n = s->nr_allocated_irq_routes * 2;
1076 if (n < 64) {
1077 n = 64;
1079 size = sizeof(struct kvm_irq_routing);
1080 size += n * sizeof(*new);
1081 s->irq_routes = g_realloc(s->irq_routes, size);
1082 s->nr_allocated_irq_routes = n;
1084 n = s->irq_routes->nr++;
1085 new = &s->irq_routes->entries[n];
1087 *new = *entry;
1089 set_gsi(s, entry->gsi);
1092 static int kvm_update_routing_entry(KVMState *s,
1093 struct kvm_irq_routing_entry *new_entry)
1095 struct kvm_irq_routing_entry *entry;
1096 int n;
1098 for (n = 0; n < s->irq_routes->nr; n++) {
1099 entry = &s->irq_routes->entries[n];
1100 if (entry->gsi != new_entry->gsi) {
1101 continue;
1104 if(!memcmp(entry, new_entry, sizeof *entry)) {
1105 return 0;
1108 *entry = *new_entry;
1110 return 0;
1113 return -ESRCH;
1116 void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
1118 struct kvm_irq_routing_entry e = {};
1120 assert(pin < s->gsi_count);
1122 e.gsi = irq;
1123 e.type = KVM_IRQ_ROUTING_IRQCHIP;
1124 e.flags = 0;
1125 e.u.irqchip.irqchip = irqchip;
1126 e.u.irqchip.pin = pin;
1127 kvm_add_routing_entry(s, &e);
1130 void kvm_irqchip_release_virq(KVMState *s, int virq)
1132 struct kvm_irq_routing_entry *e;
1133 int i;
1135 if (kvm_gsi_direct_mapping()) {
1136 return;
1139 for (i = 0; i < s->irq_routes->nr; i++) {
1140 e = &s->irq_routes->entries[i];
1141 if (e->gsi == virq) {
1142 s->irq_routes->nr--;
1143 *e = s->irq_routes->entries[s->irq_routes->nr];
1146 clear_gsi(s, virq);
1147 kvm_arch_release_virq_post(virq);
1148 trace_kvm_irqchip_release_virq(virq);
1151 static unsigned int kvm_hash_msi(uint32_t data)
1153 /* This is optimized for IA32 MSI layout. However, no other arch shall
1154 * repeat the mistake of not providing a direct MSI injection API. */
1155 return data & 0xff;
1158 static void kvm_flush_dynamic_msi_routes(KVMState *s)
1160 KVMMSIRoute *route, *next;
1161 unsigned int hash;
1163 for (hash = 0; hash < KVM_MSI_HASHTAB_SIZE; hash++) {
1164 QTAILQ_FOREACH_SAFE(route, &s->msi_hashtab[hash], entry, next) {
1165 kvm_irqchip_release_virq(s, route->kroute.gsi);
1166 QTAILQ_REMOVE(&s->msi_hashtab[hash], route, entry);
1167 g_free(route);
1172 static int kvm_irqchip_get_virq(KVMState *s)
1174 int next_virq;
1177 * PIC and IOAPIC share the first 16 GSI numbers, thus the available
1178 * GSI numbers are more than the number of IRQ route. Allocating a GSI
1179 * number can succeed even though a new route entry cannot be added.
1180 * When this happens, flush dynamic MSI entries to free IRQ route entries.
1182 if (!kvm_direct_msi_allowed && s->irq_routes->nr == s->gsi_count) {
1183 kvm_flush_dynamic_msi_routes(s);
1186 /* Return the lowest unused GSI in the bitmap */
1187 next_virq = find_first_zero_bit(s->used_gsi_bitmap, s->gsi_count);
1188 if (next_virq >= s->gsi_count) {
1189 return -ENOSPC;
1190 } else {
1191 return next_virq;
1195 static KVMMSIRoute *kvm_lookup_msi_route(KVMState *s, MSIMessage msg)
1197 unsigned int hash = kvm_hash_msi(msg.data);
1198 KVMMSIRoute *route;
1200 QTAILQ_FOREACH(route, &s->msi_hashtab[hash], entry) {
1201 if (route->kroute.u.msi.address_lo == (uint32_t)msg.address &&
1202 route->kroute.u.msi.address_hi == (msg.address >> 32) &&
1203 route->kroute.u.msi.data == le32_to_cpu(msg.data)) {
1204 return route;
1207 return NULL;
1210 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1212 struct kvm_msi msi;
1213 KVMMSIRoute *route;
1215 if (kvm_direct_msi_allowed) {
1216 msi.address_lo = (uint32_t)msg.address;
1217 msi.address_hi = msg.address >> 32;
1218 msi.data = le32_to_cpu(msg.data);
1219 msi.flags = 0;
1220 memset(msi.pad, 0, sizeof(msi.pad));
1222 return kvm_vm_ioctl(s, KVM_SIGNAL_MSI, &msi);
1225 route = kvm_lookup_msi_route(s, msg);
1226 if (!route) {
1227 int virq;
1229 virq = kvm_irqchip_get_virq(s);
1230 if (virq < 0) {
1231 return virq;
1234 route = g_malloc0(sizeof(KVMMSIRoute));
1235 route->kroute.gsi = virq;
1236 route->kroute.type = KVM_IRQ_ROUTING_MSI;
1237 route->kroute.flags = 0;
1238 route->kroute.u.msi.address_lo = (uint32_t)msg.address;
1239 route->kroute.u.msi.address_hi = msg.address >> 32;
1240 route->kroute.u.msi.data = le32_to_cpu(msg.data);
1242 kvm_add_routing_entry(s, &route->kroute);
1243 kvm_irqchip_commit_routes(s);
1245 QTAILQ_INSERT_TAIL(&s->msi_hashtab[kvm_hash_msi(msg.data)], route,
1246 entry);
1249 assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
1251 return kvm_set_irq(s, route->kroute.gsi, 1);
1254 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1256 struct kvm_irq_routing_entry kroute = {};
1257 int virq;
1258 MSIMessage msg = {0, 0};
1260 if (dev) {
1261 msg = pci_get_msi_message(dev, vector);
1264 if (kvm_gsi_direct_mapping()) {
1265 return kvm_arch_msi_data_to_gsi(msg.data);
1268 if (!kvm_gsi_routing_enabled()) {
1269 return -ENOSYS;
1272 virq = kvm_irqchip_get_virq(s);
1273 if (virq < 0) {
1274 return virq;
1277 kroute.gsi = virq;
1278 kroute.type = KVM_IRQ_ROUTING_MSI;
1279 kroute.flags = 0;
1280 kroute.u.msi.address_lo = (uint32_t)msg.address;
1281 kroute.u.msi.address_hi = msg.address >> 32;
1282 kroute.u.msi.data = le32_to_cpu(msg.data);
1283 if (kvm_msi_devid_required()) {
1284 kroute.flags = KVM_MSI_VALID_DEVID;
1285 kroute.u.msi.devid = pci_requester_id(dev);
1287 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1288 kvm_irqchip_release_virq(s, virq);
1289 return -EINVAL;
1292 trace_kvm_irqchip_add_msi_route(dev ? dev->name : (char *)"N/A",
1293 vector, virq);
1295 kvm_add_routing_entry(s, &kroute);
1296 kvm_arch_add_msi_route_post(&kroute, vector, dev);
1297 kvm_irqchip_commit_routes(s);
1299 return virq;
1302 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg,
1303 PCIDevice *dev)
1305 struct kvm_irq_routing_entry kroute = {};
1307 if (kvm_gsi_direct_mapping()) {
1308 return 0;
1311 if (!kvm_irqchip_in_kernel()) {
1312 return -ENOSYS;
1315 kroute.gsi = virq;
1316 kroute.type = KVM_IRQ_ROUTING_MSI;
1317 kroute.flags = 0;
1318 kroute.u.msi.address_lo = (uint32_t)msg.address;
1319 kroute.u.msi.address_hi = msg.address >> 32;
1320 kroute.u.msi.data = le32_to_cpu(msg.data);
1321 if (kvm_msi_devid_required()) {
1322 kroute.flags = KVM_MSI_VALID_DEVID;
1323 kroute.u.msi.devid = pci_requester_id(dev);
1325 if (kvm_arch_fixup_msi_route(&kroute, msg.address, msg.data, dev)) {
1326 return -EINVAL;
1329 trace_kvm_irqchip_update_msi_route(virq);
1331 return kvm_update_routing_entry(s, &kroute);
1334 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int rfd, int virq,
1335 bool assign)
1337 struct kvm_irqfd irqfd = {
1338 .fd = fd,
1339 .gsi = virq,
1340 .flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
1343 if (rfd != -1) {
1344 irqfd.flags |= KVM_IRQFD_FLAG_RESAMPLE;
1345 irqfd.resamplefd = rfd;
1348 if (!kvm_irqfds_enabled()) {
1349 return -ENOSYS;
1352 return kvm_vm_ioctl(s, KVM_IRQFD, &irqfd);
1355 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1357 struct kvm_irq_routing_entry kroute = {};
1358 int virq;
1360 if (!kvm_gsi_routing_enabled()) {
1361 return -ENOSYS;
1364 virq = kvm_irqchip_get_virq(s);
1365 if (virq < 0) {
1366 return virq;
1369 kroute.gsi = virq;
1370 kroute.type = KVM_IRQ_ROUTING_S390_ADAPTER;
1371 kroute.flags = 0;
1372 kroute.u.adapter.summary_addr = adapter->summary_addr;
1373 kroute.u.adapter.ind_addr = adapter->ind_addr;
1374 kroute.u.adapter.summary_offset = adapter->summary_offset;
1375 kroute.u.adapter.ind_offset = adapter->ind_offset;
1376 kroute.u.adapter.adapter_id = adapter->adapter_id;
1378 kvm_add_routing_entry(s, &kroute);
1380 return virq;
1383 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1385 struct kvm_irq_routing_entry kroute = {};
1386 int virq;
1388 if (!kvm_gsi_routing_enabled()) {
1389 return -ENOSYS;
1391 if (!kvm_check_extension(s, KVM_CAP_HYPERV_SYNIC)) {
1392 return -ENOSYS;
1394 virq = kvm_irqchip_get_virq(s);
1395 if (virq < 0) {
1396 return virq;
1399 kroute.gsi = virq;
1400 kroute.type = KVM_IRQ_ROUTING_HV_SINT;
1401 kroute.flags = 0;
1402 kroute.u.hv_sint.vcpu = vcpu;
1403 kroute.u.hv_sint.sint = sint;
1405 kvm_add_routing_entry(s, &kroute);
1406 kvm_irqchip_commit_routes(s);
1408 return virq;
1411 #else /* !KVM_CAP_IRQ_ROUTING */
1413 void kvm_init_irq_routing(KVMState *s)
1417 void kvm_irqchip_release_virq(KVMState *s, int virq)
1421 int kvm_irqchip_send_msi(KVMState *s, MSIMessage msg)
1423 abort();
1426 int kvm_irqchip_add_msi_route(KVMState *s, int vector, PCIDevice *dev)
1428 return -ENOSYS;
1431 int kvm_irqchip_add_adapter_route(KVMState *s, AdapterInfo *adapter)
1433 return -ENOSYS;
1436 int kvm_irqchip_add_hv_sint_route(KVMState *s, uint32_t vcpu, uint32_t sint)
1438 return -ENOSYS;
1441 static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
1443 abort();
1446 int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
1448 return -ENOSYS;
1450 #endif /* !KVM_CAP_IRQ_ROUTING */
1452 int kvm_irqchip_add_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1453 EventNotifier *rn, int virq)
1455 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n),
1456 rn ? event_notifier_get_fd(rn) : -1, virq, true);
1459 int kvm_irqchip_remove_irqfd_notifier_gsi(KVMState *s, EventNotifier *n,
1460 int virq)
1462 return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), -1, virq,
1463 false);
1466 int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n,
1467 EventNotifier *rn, qemu_irq irq)
1469 gpointer key, gsi;
1470 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1472 if (!found) {
1473 return -ENXIO;
1475 return kvm_irqchip_add_irqfd_notifier_gsi(s, n, rn, GPOINTER_TO_INT(gsi));
1478 int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n,
1479 qemu_irq irq)
1481 gpointer key, gsi;
1482 gboolean found = g_hash_table_lookup_extended(s->gsimap, irq, &key, &gsi);
1484 if (!found) {
1485 return -ENXIO;
1487 return kvm_irqchip_remove_irqfd_notifier_gsi(s, n, GPOINTER_TO_INT(gsi));
1490 void kvm_irqchip_set_qemuirq_gsi(KVMState *s, qemu_irq irq, int gsi)
1492 g_hash_table_insert(s->gsimap, irq, GINT_TO_POINTER(gsi));
1495 static void kvm_irqchip_create(MachineState *machine, KVMState *s)
1497 int ret;
1499 if (kvm_check_extension(s, KVM_CAP_IRQCHIP)) {
1501 } else if (kvm_check_extension(s, KVM_CAP_S390_IRQCHIP)) {
1502 ret = kvm_vm_enable_cap(s, KVM_CAP_S390_IRQCHIP, 0);
1503 if (ret < 0) {
1504 fprintf(stderr, "Enable kernel irqchip failed: %s\n", strerror(-ret));
1505 exit(1);
1507 } else {
1508 return;
1511 /* First probe and see if there's a arch-specific hook to create the
1512 * in-kernel irqchip for us */
1513 ret = kvm_arch_irqchip_create(machine, s);
1514 if (ret == 0) {
1515 if (machine_kernel_irqchip_split(machine)) {
1516 perror("Split IRQ chip mode not supported.");
1517 exit(1);
1518 } else {
1519 ret = kvm_vm_ioctl(s, KVM_CREATE_IRQCHIP);
1522 if (ret < 0) {
1523 fprintf(stderr, "Create kernel irqchip failed: %s\n", strerror(-ret));
1524 exit(1);
1527 kvm_kernel_irqchip = true;
1528 /* If we have an in-kernel IRQ chip then we must have asynchronous
1529 * interrupt delivery (though the reverse is not necessarily true)
1531 kvm_async_interrupts_allowed = true;
1532 kvm_halt_in_kernel_allowed = true;
1534 kvm_init_irq_routing(s);
1536 s->gsimap = g_hash_table_new(g_direct_hash, g_direct_equal);
1539 /* Find number of supported CPUs using the recommended
1540 * procedure from the kernel API documentation to cope with
1541 * older kernels that may be missing capabilities.
1543 static int kvm_recommended_vcpus(KVMState *s)
1545 int ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
1546 return (ret) ? ret : 4;
1549 static int kvm_max_vcpus(KVMState *s)
1551 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
1552 return (ret) ? ret : kvm_recommended_vcpus(s);
1555 static int kvm_max_vcpu_id(KVMState *s)
1557 int ret = kvm_check_extension(s, KVM_CAP_MAX_VCPU_ID);
1558 return (ret) ? ret : kvm_max_vcpus(s);
1561 bool kvm_vcpu_id_is_valid(int vcpu_id)
1563 KVMState *s = KVM_STATE(current_machine->accelerator);
1564 return vcpu_id >= 0 && vcpu_id < kvm_max_vcpu_id(s);
1567 static int kvm_init(MachineState *ms)
1569 MachineClass *mc = MACHINE_GET_CLASS(ms);
1570 static const char upgrade_note[] =
1571 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1572 "(see http://sourceforge.net/projects/kvm).\n";
1573 struct {
1574 const char *name;
1575 int num;
1576 } num_cpus[] = {
1577 { "SMP", smp_cpus },
1578 { "hotpluggable", max_cpus },
1579 { NULL, }
1580 }, *nc = num_cpus;
1581 int soft_vcpus_limit, hard_vcpus_limit;
1582 KVMState *s;
1583 const KVMCapabilityInfo *missing_cap;
1584 int ret;
1585 int type = 0;
1586 const char *kvm_type;
1588 s = KVM_STATE(ms->accelerator);
1591 * On systems where the kernel can support different base page
1592 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1593 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1594 * page size for the system though.
1596 assert(TARGET_PAGE_SIZE <= getpagesize());
1598 s->sigmask_len = 8;
1600 #ifdef KVM_CAP_SET_GUEST_DEBUG
1601 QTAILQ_INIT(&s->kvm_sw_breakpoints);
1602 #endif
1603 QLIST_INIT(&s->kvm_parked_vcpus);
1604 s->vmfd = -1;
1605 s->fd = qemu_open("/dev/kvm", O_RDWR);
1606 if (s->fd == -1) {
1607 fprintf(stderr, "Could not access KVM kernel module: %m\n");
1608 ret = -errno;
1609 goto err;
1612 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
1613 if (ret < KVM_API_VERSION) {
1614 if (ret >= 0) {
1615 ret = -EINVAL;
1617 fprintf(stderr, "kvm version too old\n");
1618 goto err;
1621 if (ret > KVM_API_VERSION) {
1622 ret = -EINVAL;
1623 fprintf(stderr, "kvm version not supported\n");
1624 goto err;
1627 kvm_immediate_exit = kvm_check_extension(s, KVM_CAP_IMMEDIATE_EXIT);
1628 s->nr_slots = kvm_check_extension(s, KVM_CAP_NR_MEMSLOTS);
1630 /* If unspecified, use the default value */
1631 if (!s->nr_slots) {
1632 s->nr_slots = 32;
1635 /* check the vcpu limits */
1636 soft_vcpus_limit = kvm_recommended_vcpus(s);
1637 hard_vcpus_limit = kvm_max_vcpus(s);
1639 while (nc->name) {
1640 if (nc->num > soft_vcpus_limit) {
1641 fprintf(stderr,
1642 "Warning: Number of %s cpus requested (%d) exceeds "
1643 "the recommended cpus supported by KVM (%d)\n",
1644 nc->name, nc->num, soft_vcpus_limit);
1646 if (nc->num > hard_vcpus_limit) {
1647 fprintf(stderr, "Number of %s cpus requested (%d) exceeds "
1648 "the maximum cpus supported by KVM (%d)\n",
1649 nc->name, nc->num, hard_vcpus_limit);
1650 exit(1);
1653 nc++;
1656 kvm_type = qemu_opt_get(qemu_get_machine_opts(), "kvm-type");
1657 if (mc->kvm_type) {
1658 type = mc->kvm_type(kvm_type);
1659 } else if (kvm_type) {
1660 ret = -EINVAL;
1661 fprintf(stderr, "Invalid argument kvm-type=%s\n", kvm_type);
1662 goto err;
1665 do {
1666 ret = kvm_ioctl(s, KVM_CREATE_VM, type);
1667 } while (ret == -EINTR);
1669 if (ret < 0) {
1670 fprintf(stderr, "ioctl(KVM_CREATE_VM) failed: %d %s\n", -ret,
1671 strerror(-ret));
1673 #ifdef TARGET_S390X
1674 if (ret == -EINVAL) {
1675 fprintf(stderr,
1676 "Host kernel setup problem detected. Please verify:\n");
1677 fprintf(stderr, "- for kernels supporting the switch_amode or"
1678 " user_mode parameters, whether\n");
1679 fprintf(stderr,
1680 " user space is running in primary address space\n");
1681 fprintf(stderr,
1682 "- for kernels supporting the vm.allocate_pgste sysctl, "
1683 "whether it is enabled\n");
1685 #endif
1686 goto err;
1689 s->vmfd = ret;
1690 missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
1691 if (!missing_cap) {
1692 missing_cap =
1693 kvm_check_extension_list(s, kvm_arch_required_capabilities);
1695 if (missing_cap) {
1696 ret = -EINVAL;
1697 fprintf(stderr, "kvm does not support %s\n%s",
1698 missing_cap->name, upgrade_note);
1699 goto err;
1702 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
1704 s->broken_set_mem_region = 1;
1705 ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
1706 if (ret > 0) {
1707 s->broken_set_mem_region = 0;
1710 #ifdef KVM_CAP_VCPU_EVENTS
1711 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
1712 #endif
1714 s->robust_singlestep =
1715 kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
1717 #ifdef KVM_CAP_DEBUGREGS
1718 s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
1719 #endif
1721 #ifdef KVM_CAP_IRQ_ROUTING
1722 kvm_direct_msi_allowed = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
1723 #endif
1725 s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
1727 s->irq_set_ioctl = KVM_IRQ_LINE;
1728 if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
1729 s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
1732 #ifdef KVM_CAP_READONLY_MEM
1733 kvm_readonly_mem_allowed =
1734 (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
1735 #endif
1737 kvm_eventfds_allowed =
1738 (kvm_check_extension(s, KVM_CAP_IOEVENTFD) > 0);
1740 kvm_irqfds_allowed =
1741 (kvm_check_extension(s, KVM_CAP_IRQFD) > 0);
1743 kvm_resamplefds_allowed =
1744 (kvm_check_extension(s, KVM_CAP_IRQFD_RESAMPLE) > 0);
1746 kvm_vm_attributes_allowed =
1747 (kvm_check_extension(s, KVM_CAP_VM_ATTRIBUTES) > 0);
1749 kvm_ioeventfd_any_length_allowed =
1750 (kvm_check_extension(s, KVM_CAP_IOEVENTFD_ANY_LENGTH) > 0);
1752 kvm_state = s;
1754 ret = kvm_arch_init(ms, s);
1755 if (ret < 0) {
1756 goto err;
1759 if (machine_kernel_irqchip_allowed(ms)) {
1760 kvm_irqchip_create(ms, s);
1763 if (kvm_eventfds_allowed) {
1764 s->memory_listener.listener.eventfd_add = kvm_mem_ioeventfd_add;
1765 s->memory_listener.listener.eventfd_del = kvm_mem_ioeventfd_del;
1767 s->memory_listener.listener.coalesced_mmio_add = kvm_coalesce_mmio_region;
1768 s->memory_listener.listener.coalesced_mmio_del = kvm_uncoalesce_mmio_region;
1770 kvm_memory_listener_register(s, &s->memory_listener,
1771 &address_space_memory, 0);
1772 memory_listener_register(&kvm_io_listener,
1773 &address_space_io);
1775 s->many_ioeventfds = kvm_check_many_ioeventfds();
1777 cpu_interrupt_handler = kvm_handle_interrupt;
1779 return 0;
1781 err:
1782 assert(ret < 0);
1783 if (s->vmfd >= 0) {
1784 close(s->vmfd);
1786 if (s->fd != -1) {
1787 close(s->fd);
1789 g_free(s->memory_listener.slots);
1791 return ret;
1794 void kvm_set_sigmask_len(KVMState *s, unsigned int sigmask_len)
1796 s->sigmask_len = sigmask_len;
1799 static void kvm_handle_io(uint16_t port, MemTxAttrs attrs, void *data, int direction,
1800 int size, uint32_t count)
1802 int i;
1803 uint8_t *ptr = data;
1805 for (i = 0; i < count; i++) {
1806 address_space_rw(&address_space_io, port, attrs,
1807 ptr, size,
1808 direction == KVM_EXIT_IO_OUT);
1809 ptr += size;
1813 static int kvm_handle_internal_error(CPUState *cpu, struct kvm_run *run)
1815 fprintf(stderr, "KVM internal error. Suberror: %d\n",
1816 run->internal.suberror);
1818 if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
1819 int i;
1821 for (i = 0; i < run->internal.ndata; ++i) {
1822 fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
1823 i, (uint64_t)run->internal.data[i]);
1826 if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
1827 fprintf(stderr, "emulation failure\n");
1828 if (!kvm_arch_stop_on_emulation_error(cpu)) {
1829 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
1830 return EXCP_INTERRUPT;
1833 /* FIXME: Should trigger a qmp message to let management know
1834 * something went wrong.
1836 return -1;
1839 void kvm_flush_coalesced_mmio_buffer(void)
1841 KVMState *s = kvm_state;
1843 if (s->coalesced_flush_in_progress) {
1844 return;
1847 s->coalesced_flush_in_progress = true;
1849 if (s->coalesced_mmio_ring) {
1850 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
1851 while (ring->first != ring->last) {
1852 struct kvm_coalesced_mmio *ent;
1854 ent = &ring->coalesced_mmio[ring->first];
1856 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
1857 smp_wmb();
1858 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
1862 s->coalesced_flush_in_progress = false;
1865 static void do_kvm_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
1867 if (!cpu->kvm_vcpu_dirty) {
1868 kvm_arch_get_registers(cpu);
1869 cpu->kvm_vcpu_dirty = true;
1873 void kvm_cpu_synchronize_state(CPUState *cpu)
1875 if (!cpu->kvm_vcpu_dirty) {
1876 run_on_cpu(cpu, do_kvm_cpu_synchronize_state, RUN_ON_CPU_NULL);
1880 static void do_kvm_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
1882 kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
1883 cpu->kvm_vcpu_dirty = false;
1886 void kvm_cpu_synchronize_post_reset(CPUState *cpu)
1888 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
1891 static void do_kvm_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
1893 kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
1894 cpu->kvm_vcpu_dirty = false;
1897 void kvm_cpu_synchronize_post_init(CPUState *cpu)
1899 run_on_cpu(cpu, do_kvm_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
1902 static void do_kvm_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
1904 cpu->kvm_vcpu_dirty = true;
1907 void kvm_cpu_synchronize_pre_loadvm(CPUState *cpu)
1909 run_on_cpu(cpu, do_kvm_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
1912 #ifdef KVM_HAVE_MCE_INJECTION
1913 static __thread void *pending_sigbus_addr;
1914 static __thread int pending_sigbus_code;
1915 static __thread bool have_sigbus_pending;
1916 #endif
1918 static void kvm_cpu_kick(CPUState *cpu)
1920 atomic_set(&cpu->kvm_run->immediate_exit, 1);
1923 static void kvm_cpu_kick_self(void)
1925 if (kvm_immediate_exit) {
1926 kvm_cpu_kick(current_cpu);
1927 } else {
1928 qemu_cpu_kick_self();
1932 static void kvm_eat_signals(CPUState *cpu)
1934 struct timespec ts = { 0, 0 };
1935 siginfo_t siginfo;
1936 sigset_t waitset;
1937 sigset_t chkset;
1938 int r;
1940 if (kvm_immediate_exit) {
1941 atomic_set(&cpu->kvm_run->immediate_exit, 0);
1942 /* Write kvm_run->immediate_exit before the cpu->exit_request
1943 * write in kvm_cpu_exec.
1945 smp_wmb();
1946 return;
1949 sigemptyset(&waitset);
1950 sigaddset(&waitset, SIG_IPI);
1952 do {
1953 r = sigtimedwait(&waitset, &siginfo, &ts);
1954 if (r == -1 && !(errno == EAGAIN || errno == EINTR)) {
1955 perror("sigtimedwait");
1956 exit(1);
1959 r = sigpending(&chkset);
1960 if (r == -1) {
1961 perror("sigpending");
1962 exit(1);
1964 } while (sigismember(&chkset, SIG_IPI));
1967 int kvm_cpu_exec(CPUState *cpu)
1969 struct kvm_run *run = cpu->kvm_run;
1970 int ret, run_ret;
1972 DPRINTF("kvm_cpu_exec()\n");
1974 if (kvm_arch_process_async_events(cpu)) {
1975 atomic_set(&cpu->exit_request, 0);
1976 return EXCP_HLT;
1979 qemu_mutex_unlock_iothread();
1981 do {
1982 MemTxAttrs attrs;
1984 if (cpu->kvm_vcpu_dirty) {
1985 kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
1986 cpu->kvm_vcpu_dirty = false;
1989 kvm_arch_pre_run(cpu, run);
1990 if (atomic_read(&cpu->exit_request)) {
1991 DPRINTF("interrupt exit requested\n");
1993 * KVM requires us to reenter the kernel after IO exits to complete
1994 * instruction emulation. This self-signal will ensure that we
1995 * leave ASAP again.
1997 kvm_cpu_kick_self();
2000 /* Read cpu->exit_request before KVM_RUN reads run->immediate_exit.
2001 * Matching barrier in kvm_eat_signals.
2003 smp_rmb();
2005 run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
2007 attrs = kvm_arch_post_run(cpu, run);
2009 #ifdef KVM_HAVE_MCE_INJECTION
2010 if (unlikely(have_sigbus_pending)) {
2011 qemu_mutex_lock_iothread();
2012 kvm_arch_on_sigbus_vcpu(cpu, pending_sigbus_code,
2013 pending_sigbus_addr);
2014 have_sigbus_pending = false;
2015 qemu_mutex_unlock_iothread();
2017 #endif
2019 if (run_ret < 0) {
2020 if (run_ret == -EINTR || run_ret == -EAGAIN) {
2021 DPRINTF("io window exit\n");
2022 kvm_eat_signals(cpu);
2023 ret = EXCP_INTERRUPT;
2024 break;
2026 fprintf(stderr, "error: kvm run failed %s\n",
2027 strerror(-run_ret));
2028 #ifdef TARGET_PPC
2029 if (run_ret == -EBUSY) {
2030 fprintf(stderr,
2031 "This is probably because your SMT is enabled.\n"
2032 "VCPU can only run on primary threads with all "
2033 "secondary threads offline.\n");
2035 #endif
2036 ret = -1;
2037 break;
2040 trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
2041 switch (run->exit_reason) {
2042 case KVM_EXIT_IO:
2043 DPRINTF("handle_io\n");
2044 /* Called outside BQL */
2045 kvm_handle_io(run->io.port, attrs,
2046 (uint8_t *)run + run->io.data_offset,
2047 run->io.direction,
2048 run->io.size,
2049 run->io.count);
2050 ret = 0;
2051 break;
2052 case KVM_EXIT_MMIO:
2053 DPRINTF("handle_mmio\n");
2054 /* Called outside BQL */
2055 address_space_rw(&address_space_memory,
2056 run->mmio.phys_addr, attrs,
2057 run->mmio.data,
2058 run->mmio.len,
2059 run->mmio.is_write);
2060 ret = 0;
2061 break;
2062 case KVM_EXIT_IRQ_WINDOW_OPEN:
2063 DPRINTF("irq_window_open\n");
2064 ret = EXCP_INTERRUPT;
2065 break;
2066 case KVM_EXIT_SHUTDOWN:
2067 DPRINTF("shutdown\n");
2068 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2069 ret = EXCP_INTERRUPT;
2070 break;
2071 case KVM_EXIT_UNKNOWN:
2072 fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
2073 (uint64_t)run->hw.hardware_exit_reason);
2074 ret = -1;
2075 break;
2076 case KVM_EXIT_INTERNAL_ERROR:
2077 ret = kvm_handle_internal_error(cpu, run);
2078 break;
2079 case KVM_EXIT_SYSTEM_EVENT:
2080 switch (run->system_event.type) {
2081 case KVM_SYSTEM_EVENT_SHUTDOWN:
2082 qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
2083 ret = EXCP_INTERRUPT;
2084 break;
2085 case KVM_SYSTEM_EVENT_RESET:
2086 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
2087 ret = EXCP_INTERRUPT;
2088 break;
2089 case KVM_SYSTEM_EVENT_CRASH:
2090 kvm_cpu_synchronize_state(cpu);
2091 qemu_mutex_lock_iothread();
2092 qemu_system_guest_panicked(cpu_get_crash_info(cpu));
2093 qemu_mutex_unlock_iothread();
2094 ret = 0;
2095 break;
2096 default:
2097 DPRINTF("kvm_arch_handle_exit\n");
2098 ret = kvm_arch_handle_exit(cpu, run);
2099 break;
2101 break;
2102 default:
2103 DPRINTF("kvm_arch_handle_exit\n");
2104 ret = kvm_arch_handle_exit(cpu, run);
2105 break;
2107 } while (ret == 0);
2109 qemu_mutex_lock_iothread();
2111 if (ret < 0) {
2112 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_CODE);
2113 vm_stop(RUN_STATE_INTERNAL_ERROR);
2116 atomic_set(&cpu->exit_request, 0);
2117 return ret;
2120 int kvm_ioctl(KVMState *s, int type, ...)
2122 int ret;
2123 void *arg;
2124 va_list ap;
2126 va_start(ap, type);
2127 arg = va_arg(ap, void *);
2128 va_end(ap);
2130 trace_kvm_ioctl(type, arg);
2131 ret = ioctl(s->fd, type, arg);
2132 if (ret == -1) {
2133 ret = -errno;
2135 return ret;
2138 int kvm_vm_ioctl(KVMState *s, int type, ...)
2140 int ret;
2141 void *arg;
2142 va_list ap;
2144 va_start(ap, type);
2145 arg = va_arg(ap, void *);
2146 va_end(ap);
2148 trace_kvm_vm_ioctl(type, arg);
2149 ret = ioctl(s->vmfd, type, arg);
2150 if (ret == -1) {
2151 ret = -errno;
2153 return ret;
2156 int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
2158 int ret;
2159 void *arg;
2160 va_list ap;
2162 va_start(ap, type);
2163 arg = va_arg(ap, void *);
2164 va_end(ap);
2166 trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
2167 ret = ioctl(cpu->kvm_fd, type, arg);
2168 if (ret == -1) {
2169 ret = -errno;
2171 return ret;
2174 int kvm_device_ioctl(int fd, int type, ...)
2176 int ret;
2177 void *arg;
2178 va_list ap;
2180 va_start(ap, type);
2181 arg = va_arg(ap, void *);
2182 va_end(ap);
2184 trace_kvm_device_ioctl(fd, type, arg);
2185 ret = ioctl(fd, type, arg);
2186 if (ret == -1) {
2187 ret = -errno;
2189 return ret;
2192 int kvm_vm_check_attr(KVMState *s, uint32_t group, uint64_t attr)
2194 int ret;
2195 struct kvm_device_attr attribute = {
2196 .group = group,
2197 .attr = attr,
2200 if (!kvm_vm_attributes_allowed) {
2201 return 0;
2204 ret = kvm_vm_ioctl(s, KVM_HAS_DEVICE_ATTR, &attribute);
2205 /* kvm returns 0 on success for HAS_DEVICE_ATTR */
2206 return ret ? 0 : 1;
2209 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
2211 struct kvm_device_attr attribute = {
2212 .group = group,
2213 .attr = attr,
2214 .flags = 0,
2217 return kvm_device_ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute) ? 0 : 1;
2220 int kvm_device_access(int fd, int group, uint64_t attr,
2221 void *val, bool write, Error **errp)
2223 struct kvm_device_attr kvmattr;
2224 int err;
2226 kvmattr.flags = 0;
2227 kvmattr.group = group;
2228 kvmattr.attr = attr;
2229 kvmattr.addr = (uintptr_t)val;
2231 err = kvm_device_ioctl(fd,
2232 write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2233 &kvmattr);
2234 if (err < 0) {
2235 error_setg_errno(errp, -err,
2236 "KVM_%s_DEVICE_ATTR failed: Group %d "
2237 "attr 0x%016" PRIx64,
2238 write ? "SET" : "GET", group, attr);
2240 return err;
2243 /* Return 1 on success, 0 on failure */
2244 int kvm_has_sync_mmu(void)
2246 return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
2249 int kvm_has_vcpu_events(void)
2251 return kvm_state->vcpu_events;
2254 int kvm_has_robust_singlestep(void)
2256 return kvm_state->robust_singlestep;
2259 int kvm_has_debugregs(void)
2261 return kvm_state->debugregs;
2264 int kvm_has_many_ioeventfds(void)
2266 if (!kvm_enabled()) {
2267 return 0;
2269 return kvm_state->many_ioeventfds;
2272 int kvm_has_gsi_routing(void)
2274 #ifdef KVM_CAP_IRQ_ROUTING
2275 return kvm_check_extension(kvm_state, KVM_CAP_IRQ_ROUTING);
2276 #else
2277 return false;
2278 #endif
2281 int kvm_has_intx_set_mask(void)
2283 return kvm_state->intx_set_mask;
2286 #ifdef KVM_CAP_SET_GUEST_DEBUG
2287 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
2288 target_ulong pc)
2290 struct kvm_sw_breakpoint *bp;
2292 QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
2293 if (bp->pc == pc) {
2294 return bp;
2297 return NULL;
2300 int kvm_sw_breakpoints_active(CPUState *cpu)
2302 return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
2305 struct kvm_set_guest_debug_data {
2306 struct kvm_guest_debug dbg;
2307 int err;
2310 static void kvm_invoke_set_guest_debug(CPUState *cpu, run_on_cpu_data data)
2312 struct kvm_set_guest_debug_data *dbg_data =
2313 (struct kvm_set_guest_debug_data *) data.host_ptr;
2315 dbg_data->err = kvm_vcpu_ioctl(cpu, KVM_SET_GUEST_DEBUG,
2316 &dbg_data->dbg);
2319 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2321 struct kvm_set_guest_debug_data data;
2323 data.dbg.control = reinject_trap;
2325 if (cpu->singlestep_enabled) {
2326 data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
2328 kvm_arch_update_guest_debug(cpu, &data.dbg);
2330 run_on_cpu(cpu, kvm_invoke_set_guest_debug,
2331 RUN_ON_CPU_HOST_PTR(&data));
2332 return data.err;
2335 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2336 target_ulong len, int type)
2338 struct kvm_sw_breakpoint *bp;
2339 int err;
2341 if (type == GDB_BREAKPOINT_SW) {
2342 bp = kvm_find_sw_breakpoint(cpu, addr);
2343 if (bp) {
2344 bp->use_count++;
2345 return 0;
2348 bp = g_malloc(sizeof(struct kvm_sw_breakpoint));
2349 bp->pc = addr;
2350 bp->use_count = 1;
2351 err = kvm_arch_insert_sw_breakpoint(cpu, bp);
2352 if (err) {
2353 g_free(bp);
2354 return err;
2357 QTAILQ_INSERT_HEAD(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2358 } else {
2359 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
2360 if (err) {
2361 return err;
2365 CPU_FOREACH(cpu) {
2366 err = kvm_update_guest_debug(cpu, 0);
2367 if (err) {
2368 return err;
2371 return 0;
2374 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2375 target_ulong len, int type)
2377 struct kvm_sw_breakpoint *bp;
2378 int err;
2380 if (type == GDB_BREAKPOINT_SW) {
2381 bp = kvm_find_sw_breakpoint(cpu, addr);
2382 if (!bp) {
2383 return -ENOENT;
2386 if (bp->use_count > 1) {
2387 bp->use_count--;
2388 return 0;
2391 err = kvm_arch_remove_sw_breakpoint(cpu, bp);
2392 if (err) {
2393 return err;
2396 QTAILQ_REMOVE(&cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
2397 g_free(bp);
2398 } else {
2399 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
2400 if (err) {
2401 return err;
2405 CPU_FOREACH(cpu) {
2406 err = kvm_update_guest_debug(cpu, 0);
2407 if (err) {
2408 return err;
2411 return 0;
2414 void kvm_remove_all_breakpoints(CPUState *cpu)
2416 struct kvm_sw_breakpoint *bp, *next;
2417 KVMState *s = cpu->kvm_state;
2418 CPUState *tmpcpu;
2420 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
2421 if (kvm_arch_remove_sw_breakpoint(cpu, bp) != 0) {
2422 /* Try harder to find a CPU that currently sees the breakpoint. */
2423 CPU_FOREACH(tmpcpu) {
2424 if (kvm_arch_remove_sw_breakpoint(tmpcpu, bp) == 0) {
2425 break;
2429 QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
2430 g_free(bp);
2432 kvm_arch_remove_all_hw_breakpoints();
2434 CPU_FOREACH(cpu) {
2435 kvm_update_guest_debug(cpu, 0);
2439 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2441 int kvm_update_guest_debug(CPUState *cpu, unsigned long reinject_trap)
2443 return -EINVAL;
2446 int kvm_insert_breakpoint(CPUState *cpu, target_ulong addr,
2447 target_ulong len, int type)
2449 return -EINVAL;
2452 int kvm_remove_breakpoint(CPUState *cpu, target_ulong addr,
2453 target_ulong len, int type)
2455 return -EINVAL;
2458 void kvm_remove_all_breakpoints(CPUState *cpu)
2461 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2463 static int kvm_set_signal_mask(CPUState *cpu, const sigset_t *sigset)
2465 KVMState *s = kvm_state;
2466 struct kvm_signal_mask *sigmask;
2467 int r;
2469 sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
2471 sigmask->len = s->sigmask_len;
2472 memcpy(sigmask->sigset, sigset, sizeof(*sigset));
2473 r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
2474 g_free(sigmask);
2476 return r;
2479 static void kvm_ipi_signal(int sig)
2481 if (current_cpu) {
2482 assert(kvm_immediate_exit);
2483 kvm_cpu_kick(current_cpu);
2487 void kvm_init_cpu_signals(CPUState *cpu)
2489 int r;
2490 sigset_t set;
2491 struct sigaction sigact;
2493 memset(&sigact, 0, sizeof(sigact));
2494 sigact.sa_handler = kvm_ipi_signal;
2495 sigaction(SIG_IPI, &sigact, NULL);
2497 pthread_sigmask(SIG_BLOCK, NULL, &set);
2498 #if defined KVM_HAVE_MCE_INJECTION
2499 sigdelset(&set, SIGBUS);
2500 pthread_sigmask(SIG_SETMASK, &set, NULL);
2501 #endif
2502 sigdelset(&set, SIG_IPI);
2503 if (kvm_immediate_exit) {
2504 r = pthread_sigmask(SIG_SETMASK, &set, NULL);
2505 } else {
2506 r = kvm_set_signal_mask(cpu, &set);
2508 if (r) {
2509 fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
2510 exit(1);
2514 /* Called asynchronously in VCPU thread. */
2515 int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
2517 #ifdef KVM_HAVE_MCE_INJECTION
2518 if (have_sigbus_pending) {
2519 return 1;
2521 have_sigbus_pending = true;
2522 pending_sigbus_addr = addr;
2523 pending_sigbus_code = code;
2524 atomic_set(&cpu->exit_request, 1);
2525 return 0;
2526 #else
2527 return 1;
2528 #endif
2531 /* Called synchronously (via signalfd) in main thread. */
2532 int kvm_on_sigbus(int code, void *addr)
2534 #ifdef KVM_HAVE_MCE_INJECTION
2535 /* Action required MCE kills the process if SIGBUS is blocked. Because
2536 * that's what happens in the I/O thread, where we handle MCE via signalfd,
2537 * we can only get action optional here.
2539 assert(code != BUS_MCEERR_AR);
2540 kvm_arch_on_sigbus_vcpu(first_cpu, code, addr);
2541 return 0;
2542 #else
2543 return 1;
2544 #endif
2547 int kvm_create_device(KVMState *s, uint64_t type, bool test)
2549 int ret;
2550 struct kvm_create_device create_dev;
2552 create_dev.type = type;
2553 create_dev.fd = -1;
2554 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2556 if (!kvm_check_extension(s, KVM_CAP_DEVICE_CTRL)) {
2557 return -ENOTSUP;
2560 ret = kvm_vm_ioctl(s, KVM_CREATE_DEVICE, &create_dev);
2561 if (ret) {
2562 return ret;
2565 return test ? 0 : create_dev.fd;
2568 bool kvm_device_supported(int vmfd, uint64_t type)
2570 struct kvm_create_device create_dev = {
2571 .type = type,
2572 .fd = -1,
2573 .flags = KVM_CREATE_DEVICE_TEST,
2576 if (ioctl(vmfd, KVM_CHECK_EXTENSION, KVM_CAP_DEVICE_CTRL) <= 0) {
2577 return false;
2580 return (ioctl(vmfd, KVM_CREATE_DEVICE, &create_dev) >= 0);
2583 int kvm_set_one_reg(CPUState *cs, uint64_t id, void *source)
2585 struct kvm_one_reg reg;
2586 int r;
2588 reg.id = id;
2589 reg.addr = (uintptr_t) source;
2590 r = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
2591 if (r) {
2592 trace_kvm_failed_reg_set(id, strerror(-r));
2594 return r;
2597 int kvm_get_one_reg(CPUState *cs, uint64_t id, void *target)
2599 struct kvm_one_reg reg;
2600 int r;
2602 reg.id = id;
2603 reg.addr = (uintptr_t) target;
2604 r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
2605 if (r) {
2606 trace_kvm_failed_reg_get(id, strerror(-r));
2608 return r;
2611 static void kvm_accel_class_init(ObjectClass *oc, void *data)
2613 AccelClass *ac = ACCEL_CLASS(oc);
2614 ac->name = "KVM";
2615 ac->init_machine = kvm_init;
2616 ac->allowed = &kvm_allowed;
2619 static const TypeInfo kvm_accel_type = {
2620 .name = TYPE_KVM_ACCEL,
2621 .parent = TYPE_ACCEL,
2622 .class_init = kvm_accel_class_init,
2623 .instance_size = sizeof(KVMState),
2626 static void kvm_type_init(void)
2628 type_register_static(&kvm_accel_type);
2631 type_init(kvm_type_init);