4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
58 static int in_migration
;
60 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
62 static MemoryRegion
*system_memory
;
63 static MemoryRegion
*system_io
;
65 AddressSpace address_space_io
;
66 AddressSpace address_space_memory
;
67 DMAContext dma_context_memory
;
69 MemoryRegion io_mem_ram
, io_mem_rom
, io_mem_unassigned
, io_mem_notdirty
;
70 static MemoryRegion io_mem_subpage_ram
;
74 CPUArchState
*first_cpu
;
75 /* current CPU in the current thread. It is only valid inside
77 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
83 #if !defined(CONFIG_USER_ONLY)
85 static MemoryRegionSection
*phys_sections
;
86 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
87 static uint16_t phys_section_unassigned
;
88 static uint16_t phys_section_notdirty
;
89 static uint16_t phys_section_rom
;
90 static uint16_t phys_section_watch
;
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
94 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
102 static MemoryRegion io_mem_watch
;
105 #if !defined(CONFIG_USER_ONLY)
107 static void phys_map_node_reserve(unsigned nodes
)
109 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
110 typedef PhysPageEntry Node
[L2_SIZE
];
111 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
112 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
113 phys_map_nodes_nb
+ nodes
);
114 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
115 phys_map_nodes_nb_alloc
);
119 static uint16_t phys_map_node_alloc(void)
124 ret
= phys_map_nodes_nb
++;
125 assert(ret
!= PHYS_MAP_NODE_NIL
);
126 assert(ret
!= phys_map_nodes_nb_alloc
);
127 for (i
= 0; i
< L2_SIZE
; ++i
) {
128 phys_map_nodes
[ret
][i
].is_leaf
= 0;
129 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
134 static void phys_map_nodes_reset(void)
136 phys_map_nodes_nb
= 0;
140 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
141 hwaddr
*nb
, uint16_t leaf
,
146 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
148 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
149 lp
->ptr
= phys_map_node_alloc();
150 p
= phys_map_nodes
[lp
->ptr
];
152 for (i
= 0; i
< L2_SIZE
; i
++) {
154 p
[i
].ptr
= phys_section_unassigned
;
158 p
= phys_map_nodes
[lp
->ptr
];
160 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
162 while (*nb
&& lp
< &p
[L2_SIZE
]) {
163 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
169 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
175 static void phys_page_set(AddressSpaceDispatch
*d
,
176 hwaddr index
, hwaddr nb
,
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS
);
182 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
185 MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr index
)
187 PhysPageEntry lp
= d
->phys_map
;
190 uint16_t s_index
= phys_section_unassigned
;
192 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
193 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
196 p
= phys_map_nodes
[lp
.ptr
];
197 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
202 return &phys_sections
[s_index
];
205 bool memory_region_is_unassigned(MemoryRegion
*mr
)
207 return mr
!= &io_mem_ram
&& mr
!= &io_mem_rom
208 && mr
!= &io_mem_notdirty
&& !mr
->rom_device
209 && mr
!= &io_mem_watch
;
213 void cpu_exec_init_all(void)
215 #if !defined(CONFIG_USER_ONLY)
216 qemu_mutex_init(&ram_list
.mutex
);
222 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
224 static int cpu_common_post_load(void *opaque
, int version_id
)
226 CPUArchState
*env
= opaque
;
228 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
229 version_id is increased. */
230 env
->interrupt_request
&= ~0x01;
236 static const VMStateDescription vmstate_cpu_common
= {
237 .name
= "cpu_common",
239 .minimum_version_id
= 1,
240 .minimum_version_id_old
= 1,
241 .post_load
= cpu_common_post_load
,
242 .fields
= (VMStateField
[]) {
243 VMSTATE_UINT32(halted
, CPUArchState
),
244 VMSTATE_UINT32(interrupt_request
, CPUArchState
),
245 VMSTATE_END_OF_LIST()
250 CPUState
*qemu_get_cpu(int index
)
252 CPUArchState
*env
= first_cpu
;
253 CPUState
*cpu
= NULL
;
256 cpu
= ENV_GET_CPU(env
);
257 if (cpu
->cpu_index
== index
) {
266 void cpu_exec_init(CPUArchState
*env
)
268 CPUState
*cpu
= ENV_GET_CPU(env
);
272 #if defined(CONFIG_USER_ONLY)
275 env
->next_cpu
= NULL
;
278 while (*penv
!= NULL
) {
279 penv
= &(*penv
)->next_cpu
;
282 cpu
->cpu_index
= cpu_index
;
284 QTAILQ_INIT(&env
->breakpoints
);
285 QTAILQ_INIT(&env
->watchpoints
);
286 #ifndef CONFIG_USER_ONLY
287 cpu
->thread_id
= qemu_get_thread_id();
290 #if defined(CONFIG_USER_ONLY)
293 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
294 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, env
);
295 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
296 cpu_save
, cpu_load
, env
);
300 #if defined(TARGET_HAS_ICE)
301 #if defined(CONFIG_USER_ONLY)
302 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
304 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
307 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
309 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
310 (pc
& ~TARGET_PAGE_MASK
));
313 #endif /* TARGET_HAS_ICE */
315 #if defined(CONFIG_USER_ONLY)
316 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
321 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
322 int flags
, CPUWatchpoint
**watchpoint
)
327 /* Add a watchpoint. */
328 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
329 int flags
, CPUWatchpoint
**watchpoint
)
331 target_ulong len_mask
= ~(len
- 1);
334 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
335 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
336 len
== 0 || len
> TARGET_PAGE_SIZE
) {
337 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
338 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
341 wp
= g_malloc(sizeof(*wp
));
344 wp
->len_mask
= len_mask
;
347 /* keep all GDB-injected watchpoints in front */
349 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
351 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
353 tlb_flush_page(env
, addr
);
360 /* Remove a specific watchpoint. */
361 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
364 target_ulong len_mask
= ~(len
- 1);
367 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
368 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
369 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
370 cpu_watchpoint_remove_by_ref(env
, wp
);
377 /* Remove a specific watchpoint by reference. */
378 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
380 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
382 tlb_flush_page(env
, watchpoint
->vaddr
);
387 /* Remove all matching watchpoints. */
388 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
390 CPUWatchpoint
*wp
, *next
;
392 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
393 if (wp
->flags
& mask
)
394 cpu_watchpoint_remove_by_ref(env
, wp
);
399 /* Add a breakpoint. */
400 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
401 CPUBreakpoint
**breakpoint
)
403 #if defined(TARGET_HAS_ICE)
406 bp
= g_malloc(sizeof(*bp
));
411 /* keep all GDB-injected breakpoints in front */
413 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
415 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
417 breakpoint_invalidate(env
, pc
);
427 /* Remove a specific breakpoint. */
428 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
430 #if defined(TARGET_HAS_ICE)
433 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
434 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
435 cpu_breakpoint_remove_by_ref(env
, bp
);
445 /* Remove a specific breakpoint by reference. */
446 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
448 #if defined(TARGET_HAS_ICE)
449 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
451 breakpoint_invalidate(env
, breakpoint
->pc
);
457 /* Remove all matching breakpoints. */
458 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
460 #if defined(TARGET_HAS_ICE)
461 CPUBreakpoint
*bp
, *next
;
463 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
464 if (bp
->flags
& mask
)
465 cpu_breakpoint_remove_by_ref(env
, bp
);
470 /* enable or disable single step mode. EXCP_DEBUG is returned by the
471 CPU loop after each instruction */
472 void cpu_single_step(CPUArchState
*env
, int enabled
)
474 #if defined(TARGET_HAS_ICE)
475 if (env
->singlestep_enabled
!= enabled
) {
476 env
->singlestep_enabled
= enabled
;
478 kvm_update_guest_debug(env
, 0);
480 /* must flush all the translated code to avoid inconsistencies */
481 /* XXX: only flush what is necessary */
488 void cpu_reset_interrupt(CPUArchState
*env
, int mask
)
490 env
->interrupt_request
&= ~mask
;
493 void cpu_exit(CPUArchState
*env
)
495 env
->exit_request
= 1;
499 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
506 fprintf(stderr
, "qemu: fatal: ");
507 vfprintf(stderr
, fmt
, ap
);
508 fprintf(stderr
, "\n");
509 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
510 if (qemu_log_enabled()) {
511 qemu_log("qemu: fatal: ");
512 qemu_log_vprintf(fmt
, ap2
);
514 log_cpu_state(env
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
520 #if defined(CONFIG_USER_ONLY)
522 struct sigaction act
;
523 sigfillset(&act
.sa_mask
);
524 act
.sa_handler
= SIG_DFL
;
525 sigaction(SIGABRT
, &act
, NULL
);
531 CPUArchState
*cpu_copy(CPUArchState
*env
)
533 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
534 CPUArchState
*next_cpu
= new_env
->next_cpu
;
535 #if defined(TARGET_HAS_ICE)
540 memcpy(new_env
, env
, sizeof(CPUArchState
));
542 /* Preserve chaining. */
543 new_env
->next_cpu
= next_cpu
;
545 /* Clone all break/watchpoints.
546 Note: Once we support ptrace with hw-debug register access, make sure
547 BP_CPU break/watchpoints are handled correctly on clone. */
548 QTAILQ_INIT(&env
->breakpoints
);
549 QTAILQ_INIT(&env
->watchpoints
);
550 #if defined(TARGET_HAS_ICE)
551 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
552 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
554 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
555 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
563 #if !defined(CONFIG_USER_ONLY)
564 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
569 /* we modify the TLB cache so that the dirty bit will be set again
570 when accessing the range */
571 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
572 /* Check that we don't span multiple blocks - this breaks the
573 address comparisons below. */
574 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
575 != (end
- 1) - start
) {
578 cpu_tlb_reset_dirty_all(start1
, length
);
582 /* Note: start and end must be within the same ram block. */
583 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
588 start
&= TARGET_PAGE_MASK
;
589 end
= TARGET_PAGE_ALIGN(end
);
591 length
= end
- start
;
594 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
597 tlb_reset_dirty_range_all(start
, end
, length
);
601 static int cpu_physical_memory_set_dirty_tracking(int enable
)
604 in_migration
= enable
;
608 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
609 MemoryRegionSection
*section
,
613 target_ulong
*address
)
618 if (memory_region_is_ram(section
->mr
)) {
620 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
621 + memory_region_section_addr(section
, paddr
);
622 if (!section
->readonly
) {
623 iotlb
|= phys_section_notdirty
;
625 iotlb
|= phys_section_rom
;
628 /* IO handlers are currently passed a physical address.
629 It would be nice to pass an offset from the base address
630 of that region. This would avoid having to special case RAM,
631 and avoid full address decoding in every device.
632 We can't use the high bits of pd for this because
633 IO_MEM_ROMD uses these as a ram address. */
634 iotlb
= section
- phys_sections
;
635 iotlb
+= memory_region_section_addr(section
, paddr
);
638 /* Make accesses to pages with watchpoints go via the
639 watchpoint trap routines. */
640 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
641 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
642 /* Avoid trapping reads of pages with a write breakpoint. */
643 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
644 iotlb
= phys_section_watch
+ paddr
;
645 *address
|= TLB_MMIO
;
653 #endif /* defined(CONFIG_USER_ONLY) */
655 #if !defined(CONFIG_USER_ONLY)
657 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
658 typedef struct subpage_t
{
661 uint16_t sub_section
[TARGET_PAGE_SIZE
];
664 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
666 static subpage_t
*subpage_init(hwaddr base
);
667 static void destroy_page_desc(uint16_t section_index
)
669 MemoryRegionSection
*section
= &phys_sections
[section_index
];
670 MemoryRegion
*mr
= section
->mr
;
673 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
674 memory_region_destroy(&subpage
->iomem
);
679 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
684 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
688 p
= phys_map_nodes
[lp
->ptr
];
689 for (i
= 0; i
< L2_SIZE
; ++i
) {
691 destroy_l2_mapping(&p
[i
], level
- 1);
693 destroy_page_desc(p
[i
].ptr
);
697 lp
->ptr
= PHYS_MAP_NODE_NIL
;
700 static void destroy_all_mappings(AddressSpaceDispatch
*d
)
702 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
703 phys_map_nodes_reset();
706 static uint16_t phys_section_add(MemoryRegionSection
*section
)
708 if (phys_sections_nb
== phys_sections_nb_alloc
) {
709 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
710 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
711 phys_sections_nb_alloc
);
713 phys_sections
[phys_sections_nb
] = *section
;
714 return phys_sections_nb
++;
717 static void phys_sections_clear(void)
719 phys_sections_nb
= 0;
722 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
725 hwaddr base
= section
->offset_within_address_space
727 MemoryRegionSection
*existing
= phys_page_find(d
, base
>> TARGET_PAGE_BITS
);
728 MemoryRegionSection subsection
= {
729 .offset_within_address_space
= base
,
730 .size
= TARGET_PAGE_SIZE
,
734 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
736 if (!(existing
->mr
->subpage
)) {
737 subpage
= subpage_init(base
);
738 subsection
.mr
= &subpage
->iomem
;
739 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
740 phys_section_add(&subsection
));
742 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
744 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
745 end
= start
+ section
->size
- 1;
746 subpage_register(subpage
, start
, end
, phys_section_add(section
));
750 static void register_multipage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
752 hwaddr start_addr
= section
->offset_within_address_space
;
753 ram_addr_t size
= section
->size
;
755 uint16_t section_index
= phys_section_add(section
);
760 phys_page_set(d
, addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
764 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
766 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
767 MemoryRegionSection now
= *section
, remain
= *section
;
769 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
770 || (now
.size
< TARGET_PAGE_SIZE
)) {
771 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
772 - now
.offset_within_address_space
,
774 register_subpage(d
, &now
);
775 remain
.size
-= now
.size
;
776 remain
.offset_within_address_space
+= now
.size
;
777 remain
.offset_within_region
+= now
.size
;
779 while (remain
.size
>= TARGET_PAGE_SIZE
) {
781 if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
782 now
.size
= TARGET_PAGE_SIZE
;
783 register_subpage(d
, &now
);
785 now
.size
&= TARGET_PAGE_MASK
;
786 register_multipage(d
, &now
);
788 remain
.size
-= now
.size
;
789 remain
.offset_within_address_space
+= now
.size
;
790 remain
.offset_within_region
+= now
.size
;
794 register_subpage(d
, &now
);
798 void qemu_flush_coalesced_mmio_buffer(void)
801 kvm_flush_coalesced_mmio_buffer();
804 void qemu_mutex_lock_ramlist(void)
806 qemu_mutex_lock(&ram_list
.mutex
);
809 void qemu_mutex_unlock_ramlist(void)
811 qemu_mutex_unlock(&ram_list
.mutex
);
814 #if defined(__linux__) && !defined(TARGET_S390X)
818 #define HUGETLBFS_MAGIC 0x958458f6
820 static long gethugepagesize(const char *path
)
826 ret
= statfs(path
, &fs
);
827 } while (ret
!= 0 && errno
== EINTR
);
834 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
835 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
840 static void *file_ram_alloc(RAMBlock
*block
,
850 unsigned long hpagesize
;
852 hpagesize
= gethugepagesize(path
);
857 if (memory
< hpagesize
) {
861 if (kvm_enabled() && !kvm_has_sync_mmu()) {
862 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
866 if (asprintf(&filename
, "%s/qemu_back_mem.XXXXXX", path
) == -1) {
870 fd
= mkstemp(filename
);
872 perror("unable to create backing store for hugepages");
879 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
882 * ftruncate is not supported by hugetlbfs in older
883 * hosts, so don't bother bailing out on errors.
884 * If anything goes wrong with it under other filesystems,
887 if (ftruncate(fd
, memory
))
891 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
892 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
893 * to sidestep this quirk.
895 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
896 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
898 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
900 if (area
== MAP_FAILED
) {
901 perror("file_ram_alloc: can't mmap RAM pages");
910 static ram_addr_t
find_ram_offset(ram_addr_t size
)
912 RAMBlock
*block
, *next_block
;
913 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
915 if (QTAILQ_EMPTY(&ram_list
.blocks
))
918 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
919 ram_addr_t end
, next
= RAM_ADDR_MAX
;
921 end
= block
->offset
+ block
->length
;
923 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
924 if (next_block
->offset
>= end
) {
925 next
= MIN(next
, next_block
->offset
);
928 if (next
- end
>= size
&& next
- end
< mingap
) {
934 if (offset
== RAM_ADDR_MAX
) {
935 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
943 ram_addr_t
last_ram_offset(void)
948 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
949 last
= MAX(last
, block
->offset
+ block
->length
);
954 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
957 QemuOpts
*machine_opts
;
959 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
960 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
962 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
963 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
965 perror("qemu_madvise");
966 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
967 "but dump_guest_core=off specified\n");
972 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
974 RAMBlock
*new_block
, *block
;
977 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
978 if (block
->offset
== addr
) {
984 assert(!new_block
->idstr
[0]);
987 char *id
= qdev_get_dev_path(dev
);
989 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
993 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
995 /* This assumes the iothread lock is taken here too. */
996 qemu_mutex_lock_ramlist();
997 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
998 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
999 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1004 qemu_mutex_unlock_ramlist();
1007 static int memory_try_enable_merging(void *addr
, size_t len
)
1011 opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
1012 if (opts
&& !qemu_opt_get_bool(opts
, "mem-merge", true)) {
1013 /* disabled by the user */
1017 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1020 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1023 RAMBlock
*block
, *new_block
;
1025 size
= TARGET_PAGE_ALIGN(size
);
1026 new_block
= g_malloc0(sizeof(*new_block
));
1028 /* This assumes the iothread lock is taken here too. */
1029 qemu_mutex_lock_ramlist();
1031 new_block
->offset
= find_ram_offset(size
);
1033 new_block
->host
= host
;
1034 new_block
->flags
|= RAM_PREALLOC_MASK
;
1037 #if defined (__linux__) && !defined(TARGET_S390X)
1038 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1039 if (!new_block
->host
) {
1040 new_block
->host
= qemu_vmalloc(size
);
1041 memory_try_enable_merging(new_block
->host
, size
);
1044 fprintf(stderr
, "-mem-path option unsupported\n");
1048 if (xen_enabled()) {
1049 xen_ram_alloc(new_block
->offset
, size
, mr
);
1050 } else if (kvm_enabled()) {
1051 /* some s390/kvm configurations have special constraints */
1052 new_block
->host
= kvm_vmalloc(size
);
1054 new_block
->host
= qemu_vmalloc(size
);
1056 memory_try_enable_merging(new_block
->host
, size
);
1059 new_block
->length
= size
;
1061 /* Keep the list sorted from biggest to smallest block. */
1062 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1063 if (block
->length
< new_block
->length
) {
1068 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1070 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1072 ram_list
.mru_block
= NULL
;
1075 qemu_mutex_unlock_ramlist();
1077 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1078 last_ram_offset() >> TARGET_PAGE_BITS
);
1079 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1080 0, size
>> TARGET_PAGE_BITS
);
1081 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1083 qemu_ram_setup_dump(new_block
->host
, size
);
1084 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1087 kvm_setup_guest_memory(new_block
->host
, size
);
1089 return new_block
->offset
;
1092 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1094 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1097 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1101 /* This assumes the iothread lock is taken here too. */
1102 qemu_mutex_lock_ramlist();
1103 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1104 if (addr
== block
->offset
) {
1105 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1106 ram_list
.mru_block
= NULL
;
1112 qemu_mutex_unlock_ramlist();
1115 void qemu_ram_free(ram_addr_t addr
)
1119 /* This assumes the iothread lock is taken here too. */
1120 qemu_mutex_lock_ramlist();
1121 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1122 if (addr
== block
->offset
) {
1123 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1124 ram_list
.mru_block
= NULL
;
1126 if (block
->flags
& RAM_PREALLOC_MASK
) {
1128 } else if (mem_path
) {
1129 #if defined (__linux__) && !defined(TARGET_S390X)
1131 munmap(block
->host
, block
->length
);
1134 qemu_vfree(block
->host
);
1140 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1141 munmap(block
->host
, block
->length
);
1143 if (xen_enabled()) {
1144 xen_invalidate_map_cache_entry(block
->host
);
1146 qemu_vfree(block
->host
);
1154 qemu_mutex_unlock_ramlist();
1159 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1166 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1167 offset
= addr
- block
->offset
;
1168 if (offset
< block
->length
) {
1169 vaddr
= block
->host
+ offset
;
1170 if (block
->flags
& RAM_PREALLOC_MASK
) {
1174 munmap(vaddr
, length
);
1176 #if defined(__linux__) && !defined(TARGET_S390X)
1179 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1182 flags
|= MAP_PRIVATE
;
1184 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1185 flags
, block
->fd
, offset
);
1187 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1188 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1195 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1196 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
1197 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
1200 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1201 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1205 if (area
!= vaddr
) {
1206 fprintf(stderr
, "Could not remap addr: "
1207 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1211 memory_try_enable_merging(vaddr
, length
);
1212 qemu_ram_setup_dump(vaddr
, length
);
1218 #endif /* !_WIN32 */
1220 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1221 With the exception of the softmmu code in this file, this should
1222 only be used for local memory (e.g. video ram) that the device owns,
1223 and knows it isn't going to access beyond the end of the block.
1225 It should not be used for general purpose DMA.
1226 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1228 void *qemu_get_ram_ptr(ram_addr_t addr
)
1232 /* The list is protected by the iothread lock here. */
1233 block
= ram_list
.mru_block
;
1234 if (block
&& addr
- block
->offset
< block
->length
) {
1237 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1238 if (addr
- block
->offset
< block
->length
) {
1243 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1247 ram_list
.mru_block
= block
;
1248 if (xen_enabled()) {
1249 /* We need to check if the requested address is in the RAM
1250 * because we don't want to map the entire memory in QEMU.
1251 * In that case just map until the end of the page.
1253 if (block
->offset
== 0) {
1254 return xen_map_cache(addr
, 0, 0);
1255 } else if (block
->host
== NULL
) {
1257 xen_map_cache(block
->offset
, block
->length
, 1);
1260 return block
->host
+ (addr
- block
->offset
);
1263 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1264 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1266 * ??? Is this still necessary?
1268 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1272 /* The list is protected by the iothread lock here. */
1273 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1274 if (addr
- block
->offset
< block
->length
) {
1275 if (xen_enabled()) {
1276 /* We need to check if the requested address is in the RAM
1277 * because we don't want to map the entire memory in QEMU.
1278 * In that case just map until the end of the page.
1280 if (block
->offset
== 0) {
1281 return xen_map_cache(addr
, 0, 0);
1282 } else if (block
->host
== NULL
) {
1284 xen_map_cache(block
->offset
, block
->length
, 1);
1287 return block
->host
+ (addr
- block
->offset
);
1291 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1297 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1298 * but takes a size argument */
1299 static void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
1304 if (xen_enabled()) {
1305 return xen_map_cache(addr
, *size
, 1);
1309 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1310 if (addr
- block
->offset
< block
->length
) {
1311 if (addr
- block
->offset
+ *size
> block
->length
)
1312 *size
= block
->length
- addr
+ block
->offset
;
1313 return block
->host
+ (addr
- block
->offset
);
1317 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1322 void qemu_put_ram_ptr(void *addr
)
1324 trace_qemu_put_ram_ptr(addr
);
1327 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1330 uint8_t *host
= ptr
;
1332 if (xen_enabled()) {
1333 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1337 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1338 /* This case append when the block is not mapped. */
1339 if (block
->host
== NULL
) {
1342 if (host
- block
->host
< block
->length
) {
1343 *ram_addr
= block
->offset
+ (host
- block
->host
);
1351 /* Some of the softmmu routines need to translate from a host pointer
1352 (typically a TLB entry) back to a ram offset. */
1353 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
1355 ram_addr_t ram_addr
;
1357 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
1358 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
1364 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1367 #ifdef DEBUG_UNASSIGNED
1368 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1370 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1371 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, size
);
1376 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1377 uint64_t val
, unsigned size
)
1379 #ifdef DEBUG_UNASSIGNED
1380 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1382 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1383 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, size
);
1387 static const MemoryRegionOps unassigned_mem_ops
= {
1388 .read
= unassigned_mem_read
,
1389 .write
= unassigned_mem_write
,
1390 .endianness
= DEVICE_NATIVE_ENDIAN
,
1393 static uint64_t error_mem_read(void *opaque
, hwaddr addr
,
1399 static void error_mem_write(void *opaque
, hwaddr addr
,
1400 uint64_t value
, unsigned size
)
1405 static const MemoryRegionOps error_mem_ops
= {
1406 .read
= error_mem_read
,
1407 .write
= error_mem_write
,
1408 .endianness
= DEVICE_NATIVE_ENDIAN
,
1411 static const MemoryRegionOps rom_mem_ops
= {
1412 .read
= error_mem_read
,
1413 .write
= unassigned_mem_write
,
1414 .endianness
= DEVICE_NATIVE_ENDIAN
,
1417 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1418 uint64_t val
, unsigned size
)
1421 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1422 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1423 #if !defined(CONFIG_USER_ONLY)
1424 tb_invalidate_phys_page_fast(ram_addr
, size
);
1425 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1430 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1433 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1436 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1441 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1442 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1443 /* we remove the notdirty callback only if the code has been
1445 if (dirty_flags
== 0xff)
1446 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
1449 static const MemoryRegionOps notdirty_mem_ops
= {
1450 .read
= error_mem_read
,
1451 .write
= notdirty_mem_write
,
1452 .endianness
= DEVICE_NATIVE_ENDIAN
,
1455 /* Generate a debug exception if a watchpoint has been hit. */
1456 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1458 CPUArchState
*env
= cpu_single_env
;
1459 target_ulong pc
, cs_base
;
1464 if (env
->watchpoint_hit
) {
1465 /* We re-entered the check after replacing the TB. Now raise
1466 * the debug interrupt so that is will trigger after the
1467 * current instruction. */
1468 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
1471 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1472 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1473 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1474 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1475 wp
->flags
|= BP_WATCHPOINT_HIT
;
1476 if (!env
->watchpoint_hit
) {
1477 env
->watchpoint_hit
= wp
;
1478 tb_check_watchpoint(env
);
1479 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1480 env
->exception_index
= EXCP_DEBUG
;
1483 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1484 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1485 cpu_resume_from_signal(env
, NULL
);
1489 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1494 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1495 so these check for a hit then pass through to the normal out-of-line
1497 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1500 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1502 case 1: return ldub_phys(addr
);
1503 case 2: return lduw_phys(addr
);
1504 case 4: return ldl_phys(addr
);
1509 static void watch_mem_write(void *opaque
, hwaddr addr
,
1510 uint64_t val
, unsigned size
)
1512 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1515 stb_phys(addr
, val
);
1518 stw_phys(addr
, val
);
1521 stl_phys(addr
, val
);
1527 static const MemoryRegionOps watch_mem_ops
= {
1528 .read
= watch_mem_read
,
1529 .write
= watch_mem_write
,
1530 .endianness
= DEVICE_NATIVE_ENDIAN
,
1533 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1536 subpage_t
*mmio
= opaque
;
1537 unsigned int idx
= SUBPAGE_IDX(addr
);
1538 MemoryRegionSection
*section
;
1539 #if defined(DEBUG_SUBPAGE)
1540 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
1541 mmio
, len
, addr
, idx
);
1544 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1546 addr
-= section
->offset_within_address_space
;
1547 addr
+= section
->offset_within_region
;
1548 return io_mem_read(section
->mr
, addr
, len
);
1551 static void subpage_write(void *opaque
, hwaddr addr
,
1552 uint64_t value
, unsigned len
)
1554 subpage_t
*mmio
= opaque
;
1555 unsigned int idx
= SUBPAGE_IDX(addr
);
1556 MemoryRegionSection
*section
;
1557 #if defined(DEBUG_SUBPAGE)
1558 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1559 " idx %d value %"PRIx64
"\n",
1560 __func__
, mmio
, len
, addr
, idx
, value
);
1563 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1565 addr
-= section
->offset_within_address_space
;
1566 addr
+= section
->offset_within_region
;
1567 io_mem_write(section
->mr
, addr
, value
, len
);
1570 static const MemoryRegionOps subpage_ops
= {
1571 .read
= subpage_read
,
1572 .write
= subpage_write
,
1573 .endianness
= DEVICE_NATIVE_ENDIAN
,
1576 static uint64_t subpage_ram_read(void *opaque
, hwaddr addr
,
1579 ram_addr_t raddr
= addr
;
1580 void *ptr
= qemu_get_ram_ptr(raddr
);
1582 case 1: return ldub_p(ptr
);
1583 case 2: return lduw_p(ptr
);
1584 case 4: return ldl_p(ptr
);
1589 static void subpage_ram_write(void *opaque
, hwaddr addr
,
1590 uint64_t value
, unsigned size
)
1592 ram_addr_t raddr
= addr
;
1593 void *ptr
= qemu_get_ram_ptr(raddr
);
1595 case 1: return stb_p(ptr
, value
);
1596 case 2: return stw_p(ptr
, value
);
1597 case 4: return stl_p(ptr
, value
);
1602 static const MemoryRegionOps subpage_ram_ops
= {
1603 .read
= subpage_ram_read
,
1604 .write
= subpage_ram_write
,
1605 .endianness
= DEVICE_NATIVE_ENDIAN
,
1608 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1613 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1615 idx
= SUBPAGE_IDX(start
);
1616 eidx
= SUBPAGE_IDX(end
);
1617 #if defined(DEBUG_SUBPAGE)
1618 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1619 mmio
, start
, end
, idx
, eidx
, memory
);
1621 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
1622 MemoryRegionSection new_section
= phys_sections
[section
];
1623 new_section
.mr
= &io_mem_subpage_ram
;
1624 section
= phys_section_add(&new_section
);
1626 for (; idx
<= eidx
; idx
++) {
1627 mmio
->sub_section
[idx
] = section
;
1633 static subpage_t
*subpage_init(hwaddr base
)
1637 mmio
= g_malloc0(sizeof(subpage_t
));
1640 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
1641 "subpage", TARGET_PAGE_SIZE
);
1642 mmio
->iomem
.subpage
= true;
1643 #if defined(DEBUG_SUBPAGE)
1644 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1645 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1647 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
1652 static uint16_t dummy_section(MemoryRegion
*mr
)
1654 MemoryRegionSection section
= {
1656 .offset_within_address_space
= 0,
1657 .offset_within_region
= 0,
1661 return phys_section_add(§ion
);
1664 MemoryRegion
*iotlb_to_region(hwaddr index
)
1666 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1669 static void io_mem_init(void)
1671 memory_region_init_io(&io_mem_ram
, &error_mem_ops
, NULL
, "ram", UINT64_MAX
);
1672 memory_region_init_io(&io_mem_rom
, &rom_mem_ops
, NULL
, "rom", UINT64_MAX
);
1673 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
1674 "unassigned", UINT64_MAX
);
1675 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
1676 "notdirty", UINT64_MAX
);
1677 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
1678 "subpage-ram", UINT64_MAX
);
1679 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
1680 "watch", UINT64_MAX
);
1683 static void mem_begin(MemoryListener
*listener
)
1685 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
1687 destroy_all_mappings(d
);
1688 d
->phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
1691 static void core_begin(MemoryListener
*listener
)
1693 phys_sections_clear();
1694 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
1695 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
1696 phys_section_rom
= dummy_section(&io_mem_rom
);
1697 phys_section_watch
= dummy_section(&io_mem_watch
);
1700 static void tcg_commit(MemoryListener
*listener
)
1704 /* since each CPU stores ram addresses in its TLB cache, we must
1705 reset the modified entries */
1707 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1712 static void core_log_global_start(MemoryListener
*listener
)
1714 cpu_physical_memory_set_dirty_tracking(1);
1717 static void core_log_global_stop(MemoryListener
*listener
)
1719 cpu_physical_memory_set_dirty_tracking(0);
1722 static void io_region_add(MemoryListener
*listener
,
1723 MemoryRegionSection
*section
)
1725 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
1727 mrio
->mr
= section
->mr
;
1728 mrio
->offset
= section
->offset_within_region
;
1729 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
1730 section
->offset_within_address_space
, section
->size
);
1731 ioport_register(&mrio
->iorange
);
1734 static void io_region_del(MemoryListener
*listener
,
1735 MemoryRegionSection
*section
)
1737 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
1740 static MemoryListener core_memory_listener
= {
1741 .begin
= core_begin
,
1742 .log_global_start
= core_log_global_start
,
1743 .log_global_stop
= core_log_global_stop
,
1747 static MemoryListener io_memory_listener
= {
1748 .region_add
= io_region_add
,
1749 .region_del
= io_region_del
,
1753 static MemoryListener tcg_memory_listener
= {
1754 .commit
= tcg_commit
,
1757 void address_space_init_dispatch(AddressSpace
*as
)
1759 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1761 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1762 d
->listener
= (MemoryListener
) {
1764 .region_add
= mem_add
,
1765 .region_nop
= mem_add
,
1769 memory_listener_register(&d
->listener
, as
);
1772 void address_space_destroy_dispatch(AddressSpace
*as
)
1774 AddressSpaceDispatch
*d
= as
->dispatch
;
1776 memory_listener_unregister(&d
->listener
);
1777 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
1779 as
->dispatch
= NULL
;
1782 static void memory_map_init(void)
1784 system_memory
= g_malloc(sizeof(*system_memory
));
1785 memory_region_init(system_memory
, "system", INT64_MAX
);
1786 address_space_init(&address_space_memory
, system_memory
);
1787 address_space_memory
.name
= "memory";
1789 system_io
= g_malloc(sizeof(*system_io
));
1790 memory_region_init(system_io
, "io", 65536);
1791 address_space_init(&address_space_io
, system_io
);
1792 address_space_io
.name
= "I/O";
1794 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1795 memory_listener_register(&io_memory_listener
, &address_space_io
);
1796 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1798 dma_context_init(&dma_context_memory
, &address_space_memory
,
1802 MemoryRegion
*get_system_memory(void)
1804 return system_memory
;
1807 MemoryRegion
*get_system_io(void)
1812 #endif /* !defined(CONFIG_USER_ONLY) */
1814 /* physical memory access (slow version, mainly for debug) */
1815 #if defined(CONFIG_USER_ONLY)
1816 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
1817 uint8_t *buf
, int len
, int is_write
)
1824 page
= addr
& TARGET_PAGE_MASK
;
1825 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1828 flags
= page_get_flags(page
);
1829 if (!(flags
& PAGE_VALID
))
1832 if (!(flags
& PAGE_WRITE
))
1834 /* XXX: this code should not depend on lock_user */
1835 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1838 unlock_user(p
, addr
, l
);
1840 if (!(flags
& PAGE_READ
))
1842 /* XXX: this code should not depend on lock_user */
1843 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1846 unlock_user(p
, addr
, 0);
1857 static void invalidate_and_set_dirty(hwaddr addr
,
1860 if (!cpu_physical_memory_is_dirty(addr
)) {
1861 /* invalidate code */
1862 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1864 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1866 xen_modified_memory(addr
, length
);
1869 void address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1870 int len
, bool is_write
)
1872 AddressSpaceDispatch
*d
= as
->dispatch
;
1877 MemoryRegionSection
*section
;
1880 page
= addr
& TARGET_PAGE_MASK
;
1881 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1884 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
1887 if (!memory_region_is_ram(section
->mr
)) {
1889 addr1
= memory_region_section_addr(section
, addr
);
1890 /* XXX: could force cpu_single_env to NULL to avoid
1892 if (l
>= 4 && ((addr1
& 3) == 0)) {
1893 /* 32 bit write access */
1895 io_mem_write(section
->mr
, addr1
, val
, 4);
1897 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
1898 /* 16 bit write access */
1900 io_mem_write(section
->mr
, addr1
, val
, 2);
1903 /* 8 bit write access */
1905 io_mem_write(section
->mr
, addr1
, val
, 1);
1908 } else if (!section
->readonly
) {
1910 addr1
= memory_region_get_ram_addr(section
->mr
)
1911 + memory_region_section_addr(section
, addr
);
1913 ptr
= qemu_get_ram_ptr(addr1
);
1914 memcpy(ptr
, buf
, l
);
1915 invalidate_and_set_dirty(addr1
, l
);
1916 qemu_put_ram_ptr(ptr
);
1919 if (!(memory_region_is_ram(section
->mr
) ||
1920 memory_region_is_romd(section
->mr
))) {
1923 addr1
= memory_region_section_addr(section
, addr
);
1924 if (l
>= 4 && ((addr1
& 3) == 0)) {
1925 /* 32 bit read access */
1926 val
= io_mem_read(section
->mr
, addr1
, 4);
1929 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
1930 /* 16 bit read access */
1931 val
= io_mem_read(section
->mr
, addr1
, 2);
1935 /* 8 bit read access */
1936 val
= io_mem_read(section
->mr
, addr1
, 1);
1942 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
1943 + memory_region_section_addr(section
,
1945 memcpy(buf
, ptr
, l
);
1946 qemu_put_ram_ptr(ptr
);
1955 void address_space_write(AddressSpace
*as
, hwaddr addr
,
1956 const uint8_t *buf
, int len
)
1958 address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
1962 * address_space_read: read from an address space.
1964 * @as: #AddressSpace to be accessed
1965 * @addr: address within that address space
1966 * @buf: buffer with the data transferred
1968 void address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
1970 address_space_rw(as
, addr
, buf
, len
, false);
1974 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
1975 int len
, int is_write
)
1977 return address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
1980 /* used for ROM loading : can write in RAM and ROM */
1981 void cpu_physical_memory_write_rom(hwaddr addr
,
1982 const uint8_t *buf
, int len
)
1984 AddressSpaceDispatch
*d
= address_space_memory
.dispatch
;
1988 MemoryRegionSection
*section
;
1991 page
= addr
& TARGET_PAGE_MASK
;
1992 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1995 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
1997 if (!(memory_region_is_ram(section
->mr
) ||
1998 memory_region_is_romd(section
->mr
))) {
2001 unsigned long addr1
;
2002 addr1
= memory_region_get_ram_addr(section
->mr
)
2003 + memory_region_section_addr(section
, addr
);
2005 ptr
= qemu_get_ram_ptr(addr1
);
2006 memcpy(ptr
, buf
, l
);
2007 invalidate_and_set_dirty(addr1
, l
);
2008 qemu_put_ram_ptr(ptr
);
2022 static BounceBuffer bounce
;
2024 typedef struct MapClient
{
2026 void (*callback
)(void *opaque
);
2027 QLIST_ENTRY(MapClient
) link
;
2030 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2031 = QLIST_HEAD_INITIALIZER(map_client_list
);
2033 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2035 MapClient
*client
= g_malloc(sizeof(*client
));
2037 client
->opaque
= opaque
;
2038 client
->callback
= callback
;
2039 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2043 static void cpu_unregister_map_client(void *_client
)
2045 MapClient
*client
= (MapClient
*)_client
;
2047 QLIST_REMOVE(client
, link
);
2051 static void cpu_notify_map_clients(void)
2055 while (!QLIST_EMPTY(&map_client_list
)) {
2056 client
= QLIST_FIRST(&map_client_list
);
2057 client
->callback(client
->opaque
);
2058 cpu_unregister_map_client(client
);
2062 /* Map a physical memory region into a host virtual address.
2063 * May map a subset of the requested range, given by and returned in *plen.
2064 * May return NULL if resources needed to perform the mapping are exhausted.
2065 * Use only for reads OR writes - not for read-modify-write operations.
2066 * Use cpu_register_map_client() to know when retrying the map operation is
2067 * likely to succeed.
2069 void *address_space_map(AddressSpace
*as
,
2074 AddressSpaceDispatch
*d
= as
->dispatch
;
2079 MemoryRegionSection
*section
;
2080 ram_addr_t raddr
= RAM_ADDR_MAX
;
2085 page
= addr
& TARGET_PAGE_MASK
;
2086 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2089 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
2091 if (!(memory_region_is_ram(section
->mr
) && !section
->readonly
)) {
2092 if (todo
|| bounce
.buffer
) {
2095 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2099 address_space_read(as
, addr
, bounce
.buffer
, l
);
2103 return bounce
.buffer
;
2106 raddr
= memory_region_get_ram_addr(section
->mr
)
2107 + memory_region_section_addr(section
, addr
);
2115 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
2120 /* Unmaps a memory region previously mapped by address_space_map().
2121 * Will also mark the memory as dirty if is_write == 1. access_len gives
2122 * the amount of memory that was actually read or written by the caller.
2124 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2125 int is_write
, hwaddr access_len
)
2127 if (buffer
!= bounce
.buffer
) {
2129 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
2130 while (access_len
) {
2132 l
= TARGET_PAGE_SIZE
;
2135 invalidate_and_set_dirty(addr1
, l
);
2140 if (xen_enabled()) {
2141 xen_invalidate_map_cache_entry(buffer
);
2146 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2148 qemu_vfree(bounce
.buffer
);
2149 bounce
.buffer
= NULL
;
2150 cpu_notify_map_clients();
2153 void *cpu_physical_memory_map(hwaddr addr
,
2157 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2160 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2161 int is_write
, hwaddr access_len
)
2163 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2166 /* warning: addr must be aligned */
2167 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2168 enum device_endian endian
)
2172 MemoryRegionSection
*section
;
2174 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2176 if (!(memory_region_is_ram(section
->mr
) ||
2177 memory_region_is_romd(section
->mr
))) {
2179 addr
= memory_region_section_addr(section
, addr
);
2180 val
= io_mem_read(section
->mr
, addr
, 4);
2181 #if defined(TARGET_WORDS_BIGENDIAN)
2182 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2186 if (endian
== DEVICE_BIG_ENDIAN
) {
2192 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2194 + memory_region_section_addr(section
, addr
));
2196 case DEVICE_LITTLE_ENDIAN
:
2197 val
= ldl_le_p(ptr
);
2199 case DEVICE_BIG_ENDIAN
:
2200 val
= ldl_be_p(ptr
);
2210 uint32_t ldl_phys(hwaddr addr
)
2212 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2215 uint32_t ldl_le_phys(hwaddr addr
)
2217 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2220 uint32_t ldl_be_phys(hwaddr addr
)
2222 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2225 /* warning: addr must be aligned */
2226 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2227 enum device_endian endian
)
2231 MemoryRegionSection
*section
;
2233 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2235 if (!(memory_region_is_ram(section
->mr
) ||
2236 memory_region_is_romd(section
->mr
))) {
2238 addr
= memory_region_section_addr(section
, addr
);
2240 /* XXX This is broken when device endian != cpu endian.
2241 Fix and add "endian" variable check */
2242 #ifdef TARGET_WORDS_BIGENDIAN
2243 val
= io_mem_read(section
->mr
, addr
, 4) << 32;
2244 val
|= io_mem_read(section
->mr
, addr
+ 4, 4);
2246 val
= io_mem_read(section
->mr
, addr
, 4);
2247 val
|= io_mem_read(section
->mr
, addr
+ 4, 4) << 32;
2251 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2253 + memory_region_section_addr(section
, addr
));
2255 case DEVICE_LITTLE_ENDIAN
:
2256 val
= ldq_le_p(ptr
);
2258 case DEVICE_BIG_ENDIAN
:
2259 val
= ldq_be_p(ptr
);
2269 uint64_t ldq_phys(hwaddr addr
)
2271 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2274 uint64_t ldq_le_phys(hwaddr addr
)
2276 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2279 uint64_t ldq_be_phys(hwaddr addr
)
2281 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2285 uint32_t ldub_phys(hwaddr addr
)
2288 cpu_physical_memory_read(addr
, &val
, 1);
2292 /* warning: addr must be aligned */
2293 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2294 enum device_endian endian
)
2298 MemoryRegionSection
*section
;
2300 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2302 if (!(memory_region_is_ram(section
->mr
) ||
2303 memory_region_is_romd(section
->mr
))) {
2305 addr
= memory_region_section_addr(section
, addr
);
2306 val
= io_mem_read(section
->mr
, addr
, 2);
2307 #if defined(TARGET_WORDS_BIGENDIAN)
2308 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2312 if (endian
== DEVICE_BIG_ENDIAN
) {
2318 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2320 + memory_region_section_addr(section
, addr
));
2322 case DEVICE_LITTLE_ENDIAN
:
2323 val
= lduw_le_p(ptr
);
2325 case DEVICE_BIG_ENDIAN
:
2326 val
= lduw_be_p(ptr
);
2336 uint32_t lduw_phys(hwaddr addr
)
2338 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2341 uint32_t lduw_le_phys(hwaddr addr
)
2343 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2346 uint32_t lduw_be_phys(hwaddr addr
)
2348 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2351 /* warning: addr must be aligned. The ram page is not masked as dirty
2352 and the code inside is not invalidated. It is useful if the dirty
2353 bits are used to track modified PTEs */
2354 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2357 MemoryRegionSection
*section
;
2359 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2361 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2362 addr
= memory_region_section_addr(section
, addr
);
2363 if (memory_region_is_ram(section
->mr
)) {
2364 section
= &phys_sections
[phys_section_rom
];
2366 io_mem_write(section
->mr
, addr
, val
, 4);
2368 unsigned long addr1
= (memory_region_get_ram_addr(section
->mr
)
2370 + memory_region_section_addr(section
, addr
);
2371 ptr
= qemu_get_ram_ptr(addr1
);
2374 if (unlikely(in_migration
)) {
2375 if (!cpu_physical_memory_is_dirty(addr1
)) {
2376 /* invalidate code */
2377 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2379 cpu_physical_memory_set_dirty_flags(
2380 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2386 void stq_phys_notdirty(hwaddr addr
, uint64_t val
)
2389 MemoryRegionSection
*section
;
2391 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2393 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2394 addr
= memory_region_section_addr(section
, addr
);
2395 if (memory_region_is_ram(section
->mr
)) {
2396 section
= &phys_sections
[phys_section_rom
];
2398 #ifdef TARGET_WORDS_BIGENDIAN
2399 io_mem_write(section
->mr
, addr
, val
>> 32, 4);
2400 io_mem_write(section
->mr
, addr
+ 4, (uint32_t)val
, 4);
2402 io_mem_write(section
->mr
, addr
, (uint32_t)val
, 4);
2403 io_mem_write(section
->mr
, addr
+ 4, val
>> 32, 4);
2406 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2408 + memory_region_section_addr(section
, addr
));
2413 /* warning: addr must be aligned */
2414 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2415 enum device_endian endian
)
2418 MemoryRegionSection
*section
;
2420 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2422 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2423 addr
= memory_region_section_addr(section
, addr
);
2424 if (memory_region_is_ram(section
->mr
)) {
2425 section
= &phys_sections
[phys_section_rom
];
2427 #if defined(TARGET_WORDS_BIGENDIAN)
2428 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2432 if (endian
== DEVICE_BIG_ENDIAN
) {
2436 io_mem_write(section
->mr
, addr
, val
, 4);
2438 unsigned long addr1
;
2439 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
2440 + memory_region_section_addr(section
, addr
);
2442 ptr
= qemu_get_ram_ptr(addr1
);
2444 case DEVICE_LITTLE_ENDIAN
:
2447 case DEVICE_BIG_ENDIAN
:
2454 invalidate_and_set_dirty(addr1
, 4);
2458 void stl_phys(hwaddr addr
, uint32_t val
)
2460 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2463 void stl_le_phys(hwaddr addr
, uint32_t val
)
2465 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2468 void stl_be_phys(hwaddr addr
, uint32_t val
)
2470 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2474 void stb_phys(hwaddr addr
, uint32_t val
)
2477 cpu_physical_memory_write(addr
, &v
, 1);
2480 /* warning: addr must be aligned */
2481 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2482 enum device_endian endian
)
2485 MemoryRegionSection
*section
;
2487 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2489 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2490 addr
= memory_region_section_addr(section
, addr
);
2491 if (memory_region_is_ram(section
->mr
)) {
2492 section
= &phys_sections
[phys_section_rom
];
2494 #if defined(TARGET_WORDS_BIGENDIAN)
2495 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2499 if (endian
== DEVICE_BIG_ENDIAN
) {
2503 io_mem_write(section
->mr
, addr
, val
, 2);
2505 unsigned long addr1
;
2506 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
2507 + memory_region_section_addr(section
, addr
);
2509 ptr
= qemu_get_ram_ptr(addr1
);
2511 case DEVICE_LITTLE_ENDIAN
:
2514 case DEVICE_BIG_ENDIAN
:
2521 invalidate_and_set_dirty(addr1
, 2);
2525 void stw_phys(hwaddr addr
, uint32_t val
)
2527 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2530 void stw_le_phys(hwaddr addr
, uint32_t val
)
2532 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2535 void stw_be_phys(hwaddr addr
, uint32_t val
)
2537 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2541 void stq_phys(hwaddr addr
, uint64_t val
)
2544 cpu_physical_memory_write(addr
, &val
, 8);
2547 void stq_le_phys(hwaddr addr
, uint64_t val
)
2549 val
= cpu_to_le64(val
);
2550 cpu_physical_memory_write(addr
, &val
, 8);
2553 void stq_be_phys(hwaddr addr
, uint64_t val
)
2555 val
= cpu_to_be64(val
);
2556 cpu_physical_memory_write(addr
, &val
, 8);
2559 /* virtual memory access for debug (includes writing to ROM) */
2560 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
2561 uint8_t *buf
, int len
, int is_write
)
2568 page
= addr
& TARGET_PAGE_MASK
;
2569 phys_addr
= cpu_get_phys_page_debug(env
, page
);
2570 /* if no physical page mapped, return an error */
2571 if (phys_addr
== -1)
2573 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2576 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2578 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2580 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2589 #if !defined(CONFIG_USER_ONLY)
2592 * A helper function for the _utterly broken_ virtio device model to find out if
2593 * it's running on a big endian machine. Don't do this at home kids!
2595 bool virtio_is_big_endian(void);
2596 bool virtio_is_big_endian(void)
2598 #if defined(TARGET_WORDS_BIGENDIAN)
2607 #ifndef CONFIG_USER_ONLY
2608 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2610 MemoryRegionSection
*section
;
2612 section
= phys_page_find(address_space_memory
.dispatch
,
2613 phys_addr
>> TARGET_PAGE_BITS
);
2615 return !(memory_region_is_ram(section
->mr
) ||
2616 memory_region_is_romd(section
->mr
));