target/arm: Implement SVE floating-point convert precision
[qemu.git] / target / arm / sve_helper.c
blob4b36c1eecf912d942436ef89ef7978172971f136
1 /*
2 * ARM SVE Operations
4 * Copyright (c) 2018 Linaro, Ltd.
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/cpu_ldst.h"
24 #include "exec/helper-proto.h"
25 #include "tcg/tcg-gvec-desc.h"
26 #include "fpu/softfloat.h"
29 /* Note that vector data is stored in host-endian 64-bit chunks,
30 so addressing units smaller than that needs a host-endian fixup. */
31 #ifdef HOST_WORDS_BIGENDIAN
32 #define H1(x) ((x) ^ 7)
33 #define H1_2(x) ((x) ^ 6)
34 #define H1_4(x) ((x) ^ 4)
35 #define H2(x) ((x) ^ 3)
36 #define H4(x) ((x) ^ 1)
37 #else
38 #define H1(x) (x)
39 #define H1_2(x) (x)
40 #define H1_4(x) (x)
41 #define H2(x) (x)
42 #define H4(x) (x)
43 #endif
45 /* Return a value for NZCV as per the ARM PredTest pseudofunction.
47 * The return value has bit 31 set if N is set, bit 1 set if Z is clear,
48 * and bit 0 set if C is set. Compare the definitions of these variables
49 * within CPUARMState.
52 /* For no G bits set, NZCV = C. */
53 #define PREDTEST_INIT 1
55 /* This is an iterative function, called for each Pd and Pg word
56 * moving forward.
58 static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
60 if (likely(g)) {
61 /* Compute N from first D & G.
62 Use bit 2 to signal first G bit seen. */
63 if (!(flags & 4)) {
64 flags |= ((d & (g & -g)) != 0) << 31;
65 flags |= 4;
68 /* Accumulate Z from each D & G. */
69 flags |= ((d & g) != 0) << 1;
71 /* Compute C from last !(D & G). Replace previous. */
72 flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
74 return flags;
77 /* This is an iterative function, called for each Pd and Pg word
78 * moving backward.
80 static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags)
82 if (likely(g)) {
83 /* Compute C from first (i.e last) !(D & G).
84 Use bit 2 to signal first G bit seen. */
85 if (!(flags & 4)) {
86 flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */
87 flags |= (d & pow2floor(g)) == 0;
90 /* Accumulate Z from each D & G. */
91 flags |= ((d & g) != 0) << 1;
93 /* Compute N from last (i.e first) D & G. Replace previous. */
94 flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0);
96 return flags;
99 /* The same for a single word predicate. */
100 uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
102 return iter_predtest_fwd(d, g, PREDTEST_INIT);
105 /* The same for a multi-word predicate. */
106 uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
108 uint32_t flags = PREDTEST_INIT;
109 uint64_t *d = vd, *g = vg;
110 uintptr_t i = 0;
112 do {
113 flags = iter_predtest_fwd(d[i], g[i], flags);
114 } while (++i < words);
116 return flags;
119 /* Expand active predicate bits to bytes, for byte elements.
120 * for (i = 0; i < 256; ++i) {
121 * unsigned long m = 0;
122 * for (j = 0; j < 8; j++) {
123 * if ((i >> j) & 1) {
124 * m |= 0xfful << (j << 3);
127 * printf("0x%016lx,\n", m);
130 static inline uint64_t expand_pred_b(uint8_t byte)
132 static const uint64_t word[256] = {
133 0x0000000000000000, 0x00000000000000ff, 0x000000000000ff00,
134 0x000000000000ffff, 0x0000000000ff0000, 0x0000000000ff00ff,
135 0x0000000000ffff00, 0x0000000000ffffff, 0x00000000ff000000,
136 0x00000000ff0000ff, 0x00000000ff00ff00, 0x00000000ff00ffff,
137 0x00000000ffff0000, 0x00000000ffff00ff, 0x00000000ffffff00,
138 0x00000000ffffffff, 0x000000ff00000000, 0x000000ff000000ff,
139 0x000000ff0000ff00, 0x000000ff0000ffff, 0x000000ff00ff0000,
140 0x000000ff00ff00ff, 0x000000ff00ffff00, 0x000000ff00ffffff,
141 0x000000ffff000000, 0x000000ffff0000ff, 0x000000ffff00ff00,
142 0x000000ffff00ffff, 0x000000ffffff0000, 0x000000ffffff00ff,
143 0x000000ffffffff00, 0x000000ffffffffff, 0x0000ff0000000000,
144 0x0000ff00000000ff, 0x0000ff000000ff00, 0x0000ff000000ffff,
145 0x0000ff0000ff0000, 0x0000ff0000ff00ff, 0x0000ff0000ffff00,
146 0x0000ff0000ffffff, 0x0000ff00ff000000, 0x0000ff00ff0000ff,
147 0x0000ff00ff00ff00, 0x0000ff00ff00ffff, 0x0000ff00ffff0000,
148 0x0000ff00ffff00ff, 0x0000ff00ffffff00, 0x0000ff00ffffffff,
149 0x0000ffff00000000, 0x0000ffff000000ff, 0x0000ffff0000ff00,
150 0x0000ffff0000ffff, 0x0000ffff00ff0000, 0x0000ffff00ff00ff,
151 0x0000ffff00ffff00, 0x0000ffff00ffffff, 0x0000ffffff000000,
152 0x0000ffffff0000ff, 0x0000ffffff00ff00, 0x0000ffffff00ffff,
153 0x0000ffffffff0000, 0x0000ffffffff00ff, 0x0000ffffffffff00,
154 0x0000ffffffffffff, 0x00ff000000000000, 0x00ff0000000000ff,
155 0x00ff00000000ff00, 0x00ff00000000ffff, 0x00ff000000ff0000,
156 0x00ff000000ff00ff, 0x00ff000000ffff00, 0x00ff000000ffffff,
157 0x00ff0000ff000000, 0x00ff0000ff0000ff, 0x00ff0000ff00ff00,
158 0x00ff0000ff00ffff, 0x00ff0000ffff0000, 0x00ff0000ffff00ff,
159 0x00ff0000ffffff00, 0x00ff0000ffffffff, 0x00ff00ff00000000,
160 0x00ff00ff000000ff, 0x00ff00ff0000ff00, 0x00ff00ff0000ffff,
161 0x00ff00ff00ff0000, 0x00ff00ff00ff00ff, 0x00ff00ff00ffff00,
162 0x00ff00ff00ffffff, 0x00ff00ffff000000, 0x00ff00ffff0000ff,
163 0x00ff00ffff00ff00, 0x00ff00ffff00ffff, 0x00ff00ffffff0000,
164 0x00ff00ffffff00ff, 0x00ff00ffffffff00, 0x00ff00ffffffffff,
165 0x00ffff0000000000, 0x00ffff00000000ff, 0x00ffff000000ff00,
166 0x00ffff000000ffff, 0x00ffff0000ff0000, 0x00ffff0000ff00ff,
167 0x00ffff0000ffff00, 0x00ffff0000ffffff, 0x00ffff00ff000000,
168 0x00ffff00ff0000ff, 0x00ffff00ff00ff00, 0x00ffff00ff00ffff,
169 0x00ffff00ffff0000, 0x00ffff00ffff00ff, 0x00ffff00ffffff00,
170 0x00ffff00ffffffff, 0x00ffffff00000000, 0x00ffffff000000ff,
171 0x00ffffff0000ff00, 0x00ffffff0000ffff, 0x00ffffff00ff0000,
172 0x00ffffff00ff00ff, 0x00ffffff00ffff00, 0x00ffffff00ffffff,
173 0x00ffffffff000000, 0x00ffffffff0000ff, 0x00ffffffff00ff00,
174 0x00ffffffff00ffff, 0x00ffffffffff0000, 0x00ffffffffff00ff,
175 0x00ffffffffffff00, 0x00ffffffffffffff, 0xff00000000000000,
176 0xff000000000000ff, 0xff0000000000ff00, 0xff0000000000ffff,
177 0xff00000000ff0000, 0xff00000000ff00ff, 0xff00000000ffff00,
178 0xff00000000ffffff, 0xff000000ff000000, 0xff000000ff0000ff,
179 0xff000000ff00ff00, 0xff000000ff00ffff, 0xff000000ffff0000,
180 0xff000000ffff00ff, 0xff000000ffffff00, 0xff000000ffffffff,
181 0xff0000ff00000000, 0xff0000ff000000ff, 0xff0000ff0000ff00,
182 0xff0000ff0000ffff, 0xff0000ff00ff0000, 0xff0000ff00ff00ff,
183 0xff0000ff00ffff00, 0xff0000ff00ffffff, 0xff0000ffff000000,
184 0xff0000ffff0000ff, 0xff0000ffff00ff00, 0xff0000ffff00ffff,
185 0xff0000ffffff0000, 0xff0000ffffff00ff, 0xff0000ffffffff00,
186 0xff0000ffffffffff, 0xff00ff0000000000, 0xff00ff00000000ff,
187 0xff00ff000000ff00, 0xff00ff000000ffff, 0xff00ff0000ff0000,
188 0xff00ff0000ff00ff, 0xff00ff0000ffff00, 0xff00ff0000ffffff,
189 0xff00ff00ff000000, 0xff00ff00ff0000ff, 0xff00ff00ff00ff00,
190 0xff00ff00ff00ffff, 0xff00ff00ffff0000, 0xff00ff00ffff00ff,
191 0xff00ff00ffffff00, 0xff00ff00ffffffff, 0xff00ffff00000000,
192 0xff00ffff000000ff, 0xff00ffff0000ff00, 0xff00ffff0000ffff,
193 0xff00ffff00ff0000, 0xff00ffff00ff00ff, 0xff00ffff00ffff00,
194 0xff00ffff00ffffff, 0xff00ffffff000000, 0xff00ffffff0000ff,
195 0xff00ffffff00ff00, 0xff00ffffff00ffff, 0xff00ffffffff0000,
196 0xff00ffffffff00ff, 0xff00ffffffffff00, 0xff00ffffffffffff,
197 0xffff000000000000, 0xffff0000000000ff, 0xffff00000000ff00,
198 0xffff00000000ffff, 0xffff000000ff0000, 0xffff000000ff00ff,
199 0xffff000000ffff00, 0xffff000000ffffff, 0xffff0000ff000000,
200 0xffff0000ff0000ff, 0xffff0000ff00ff00, 0xffff0000ff00ffff,
201 0xffff0000ffff0000, 0xffff0000ffff00ff, 0xffff0000ffffff00,
202 0xffff0000ffffffff, 0xffff00ff00000000, 0xffff00ff000000ff,
203 0xffff00ff0000ff00, 0xffff00ff0000ffff, 0xffff00ff00ff0000,
204 0xffff00ff00ff00ff, 0xffff00ff00ffff00, 0xffff00ff00ffffff,
205 0xffff00ffff000000, 0xffff00ffff0000ff, 0xffff00ffff00ff00,
206 0xffff00ffff00ffff, 0xffff00ffffff0000, 0xffff00ffffff00ff,
207 0xffff00ffffffff00, 0xffff00ffffffffff, 0xffffff0000000000,
208 0xffffff00000000ff, 0xffffff000000ff00, 0xffffff000000ffff,
209 0xffffff0000ff0000, 0xffffff0000ff00ff, 0xffffff0000ffff00,
210 0xffffff0000ffffff, 0xffffff00ff000000, 0xffffff00ff0000ff,
211 0xffffff00ff00ff00, 0xffffff00ff00ffff, 0xffffff00ffff0000,
212 0xffffff00ffff00ff, 0xffffff00ffffff00, 0xffffff00ffffffff,
213 0xffffffff00000000, 0xffffffff000000ff, 0xffffffff0000ff00,
214 0xffffffff0000ffff, 0xffffffff00ff0000, 0xffffffff00ff00ff,
215 0xffffffff00ffff00, 0xffffffff00ffffff, 0xffffffffff000000,
216 0xffffffffff0000ff, 0xffffffffff00ff00, 0xffffffffff00ffff,
217 0xffffffffffff0000, 0xffffffffffff00ff, 0xffffffffffffff00,
218 0xffffffffffffffff,
220 return word[byte];
223 /* Similarly for half-word elements.
224 * for (i = 0; i < 256; ++i) {
225 * unsigned long m = 0;
226 * if (i & 0xaa) {
227 * continue;
229 * for (j = 0; j < 8; j += 2) {
230 * if ((i >> j) & 1) {
231 * m |= 0xfffful << (j << 3);
234 * printf("[0x%x] = 0x%016lx,\n", i, m);
237 static inline uint64_t expand_pred_h(uint8_t byte)
239 static const uint64_t word[] = {
240 [0x01] = 0x000000000000ffff, [0x04] = 0x00000000ffff0000,
241 [0x05] = 0x00000000ffffffff, [0x10] = 0x0000ffff00000000,
242 [0x11] = 0x0000ffff0000ffff, [0x14] = 0x0000ffffffff0000,
243 [0x15] = 0x0000ffffffffffff, [0x40] = 0xffff000000000000,
244 [0x41] = 0xffff00000000ffff, [0x44] = 0xffff0000ffff0000,
245 [0x45] = 0xffff0000ffffffff, [0x50] = 0xffffffff00000000,
246 [0x51] = 0xffffffff0000ffff, [0x54] = 0xffffffffffff0000,
247 [0x55] = 0xffffffffffffffff,
249 return word[byte & 0x55];
252 /* Similarly for single word elements. */
253 static inline uint64_t expand_pred_s(uint8_t byte)
255 static const uint64_t word[] = {
256 [0x01] = 0x00000000ffffffffull,
257 [0x10] = 0xffffffff00000000ull,
258 [0x11] = 0xffffffffffffffffull,
260 return word[byte & 0x11];
263 /* Swap 16-bit words within a 32-bit word. */
264 static inline uint32_t hswap32(uint32_t h)
266 return rol32(h, 16);
269 /* Swap 16-bit words within a 64-bit word. */
270 static inline uint64_t hswap64(uint64_t h)
272 uint64_t m = 0x0000ffff0000ffffull;
273 h = rol64(h, 32);
274 return ((h & m) << 16) | ((h >> 16) & m);
277 /* Swap 32-bit words within a 64-bit word. */
278 static inline uint64_t wswap64(uint64_t h)
280 return rol64(h, 32);
283 #define LOGICAL_PPPP(NAME, FUNC) \
284 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
286 uintptr_t opr_sz = simd_oprsz(desc); \
287 uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
288 uintptr_t i; \
289 for (i = 0; i < opr_sz / 8; ++i) { \
290 d[i] = FUNC(n[i], m[i], g[i]); \
294 #define DO_AND(N, M, G) (((N) & (M)) & (G))
295 #define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
296 #define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
297 #define DO_ORR(N, M, G) (((N) | (M)) & (G))
298 #define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
299 #define DO_NOR(N, M, G) (~((N) | (M)) & (G))
300 #define DO_NAND(N, M, G) (~((N) & (M)) & (G))
301 #define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
303 LOGICAL_PPPP(sve_and_pppp, DO_AND)
304 LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
305 LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
306 LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
307 LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
308 LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
309 LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
310 LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
312 #undef DO_AND
313 #undef DO_BIC
314 #undef DO_EOR
315 #undef DO_ORR
316 #undef DO_ORN
317 #undef DO_NOR
318 #undef DO_NAND
319 #undef DO_SEL
320 #undef LOGICAL_PPPP
322 /* Fully general three-operand expander, controlled by a predicate.
323 * This is complicated by the host-endian storage of the register file.
325 /* ??? I don't expect the compiler could ever vectorize this itself.
326 * With some tables we can convert bit masks to byte masks, and with
327 * extra care wrt byte/word ordering we could use gcc generic vectors
328 * and do 16 bytes at a time.
330 #define DO_ZPZZ(NAME, TYPE, H, OP) \
331 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
333 intptr_t i, opr_sz = simd_oprsz(desc); \
334 for (i = 0; i < opr_sz; ) { \
335 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
336 do { \
337 if (pg & 1) { \
338 TYPE nn = *(TYPE *)(vn + H(i)); \
339 TYPE mm = *(TYPE *)(vm + H(i)); \
340 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
342 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
343 } while (i & 15); \
347 /* Similarly, specialized for 64-bit operands. */
348 #define DO_ZPZZ_D(NAME, TYPE, OP) \
349 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
351 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
352 TYPE *d = vd, *n = vn, *m = vm; \
353 uint8_t *pg = vg; \
354 for (i = 0; i < opr_sz; i += 1) { \
355 if (pg[H1(i)] & 1) { \
356 TYPE nn = n[i], mm = m[i]; \
357 d[i] = OP(nn, mm); \
362 #define DO_AND(N, M) (N & M)
363 #define DO_EOR(N, M) (N ^ M)
364 #define DO_ORR(N, M) (N | M)
365 #define DO_BIC(N, M) (N & ~M)
366 #define DO_ADD(N, M) (N + M)
367 #define DO_SUB(N, M) (N - M)
368 #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M))
369 #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N))
370 #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N))
371 #define DO_MUL(N, M) (N * M)
372 #define DO_DIV(N, M) (M ? N / M : 0)
374 DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
375 DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
376 DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
377 DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
379 DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
380 DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
381 DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
382 DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
384 DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
385 DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
386 DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
387 DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
389 DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
390 DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
391 DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
392 DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
394 DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
395 DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
396 DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
397 DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
399 DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
400 DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
401 DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
402 DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
404 DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
405 DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
406 DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
407 DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
409 DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
410 DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
411 DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
412 DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
414 DO_ZPZZ(sve_smin_zpzz_b, int8_t, H1, DO_MIN)
415 DO_ZPZZ(sve_smin_zpzz_h, int16_t, H1_2, DO_MIN)
416 DO_ZPZZ(sve_smin_zpzz_s, int32_t, H1_4, DO_MIN)
417 DO_ZPZZ_D(sve_smin_zpzz_d, int64_t, DO_MIN)
419 DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
420 DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
421 DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
422 DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
424 DO_ZPZZ(sve_sabd_zpzz_b, int8_t, H1, DO_ABD)
425 DO_ZPZZ(sve_sabd_zpzz_h, int16_t, H1_2, DO_ABD)
426 DO_ZPZZ(sve_sabd_zpzz_s, int32_t, H1_4, DO_ABD)
427 DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t, DO_ABD)
429 DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
430 DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
431 DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
432 DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
434 /* Because the computation type is at least twice as large as required,
435 these work for both signed and unsigned source types. */
436 static inline uint8_t do_mulh_b(int32_t n, int32_t m)
438 return (n * m) >> 8;
441 static inline uint16_t do_mulh_h(int32_t n, int32_t m)
443 return (n * m) >> 16;
446 static inline uint32_t do_mulh_s(int64_t n, int64_t m)
448 return (n * m) >> 32;
451 static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
453 uint64_t lo, hi;
454 muls64(&lo, &hi, n, m);
455 return hi;
458 static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
460 uint64_t lo, hi;
461 mulu64(&lo, &hi, n, m);
462 return hi;
465 DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
466 DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
467 DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
468 DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
470 DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
471 DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
472 DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
473 DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
475 DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
476 DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
477 DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
478 DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
480 DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_DIV)
481 DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_DIV)
483 DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_DIV)
484 DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_DIV)
486 /* Note that all bits of the shift are significant
487 and not modulo the element size. */
488 #define DO_ASR(N, M) (N >> MIN(M, sizeof(N) * 8 - 1))
489 #define DO_LSR(N, M) (M < sizeof(N) * 8 ? N >> M : 0)
490 #define DO_LSL(N, M) (M < sizeof(N) * 8 ? N << M : 0)
492 DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
493 DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
494 DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
496 DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
497 DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
498 DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
500 DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
501 DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
502 DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
504 DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
505 DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
506 DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
508 #undef DO_ZPZZ
509 #undef DO_ZPZZ_D
511 /* Three-operand expander, controlled by a predicate, in which the
512 * third operand is "wide". That is, for D = N op M, the same 64-bit
513 * value of M is used with all of the narrower values of N.
515 #define DO_ZPZW(NAME, TYPE, TYPEW, H, OP) \
516 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
518 intptr_t i, opr_sz = simd_oprsz(desc); \
519 for (i = 0; i < opr_sz; ) { \
520 uint8_t pg = *(uint8_t *)(vg + H1(i >> 3)); \
521 TYPEW mm = *(TYPEW *)(vm + i); \
522 do { \
523 if (pg & 1) { \
524 TYPE nn = *(TYPE *)(vn + H(i)); \
525 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
527 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
528 } while (i & 7); \
532 DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
533 DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
534 DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
536 DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
537 DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
538 DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
540 DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
541 DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
542 DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
544 #undef DO_ZPZW
546 /* Fully general two-operand expander, controlled by a predicate.
548 #define DO_ZPZ(NAME, TYPE, H, OP) \
549 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
551 intptr_t i, opr_sz = simd_oprsz(desc); \
552 for (i = 0; i < opr_sz; ) { \
553 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
554 do { \
555 if (pg & 1) { \
556 TYPE nn = *(TYPE *)(vn + H(i)); \
557 *(TYPE *)(vd + H(i)) = OP(nn); \
559 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
560 } while (i & 15); \
564 /* Similarly, specialized for 64-bit operands. */
565 #define DO_ZPZ_D(NAME, TYPE, OP) \
566 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
568 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
569 TYPE *d = vd, *n = vn; \
570 uint8_t *pg = vg; \
571 for (i = 0; i < opr_sz; i += 1) { \
572 if (pg[H1(i)] & 1) { \
573 TYPE nn = n[i]; \
574 d[i] = OP(nn); \
579 #define DO_CLS_B(N) (clrsb32(N) - 24)
580 #define DO_CLS_H(N) (clrsb32(N) - 16)
582 DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
583 DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
584 DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
585 DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
587 #define DO_CLZ_B(N) (clz32(N) - 24)
588 #define DO_CLZ_H(N) (clz32(N) - 16)
590 DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
591 DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
592 DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
593 DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
595 DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
596 DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
597 DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
598 DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
600 #define DO_CNOT(N) (N == 0)
602 DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
603 DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
604 DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
605 DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
607 #define DO_FABS(N) (N & ((__typeof(N))-1 >> 1))
609 DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
610 DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
611 DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
613 #define DO_FNEG(N) (N ^ ~((__typeof(N))-1 >> 1))
615 DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
616 DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
617 DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
619 #define DO_NOT(N) (~N)
621 DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
622 DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
623 DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
624 DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
626 #define DO_SXTB(N) ((int8_t)N)
627 #define DO_SXTH(N) ((int16_t)N)
628 #define DO_SXTS(N) ((int32_t)N)
629 #define DO_UXTB(N) ((uint8_t)N)
630 #define DO_UXTH(N) ((uint16_t)N)
631 #define DO_UXTS(N) ((uint32_t)N)
633 DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
634 DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
635 DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
636 DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
637 DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
638 DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
640 DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
641 DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
642 DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
643 DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
644 DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
645 DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
647 #define DO_ABS(N) (N < 0 ? -N : N)
649 DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
650 DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
651 DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
652 DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
654 #define DO_NEG(N) (-N)
656 DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
657 DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
658 DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
659 DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
661 DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
662 DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
663 DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
665 DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
666 DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
668 DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
670 DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
671 DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
672 DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
673 DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
675 /* Three-operand expander, unpredicated, in which the third operand is "wide".
677 #define DO_ZZW(NAME, TYPE, TYPEW, H, OP) \
678 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
680 intptr_t i, opr_sz = simd_oprsz(desc); \
681 for (i = 0; i < opr_sz; ) { \
682 TYPEW mm = *(TYPEW *)(vm + i); \
683 do { \
684 TYPE nn = *(TYPE *)(vn + H(i)); \
685 *(TYPE *)(vd + H(i)) = OP(nn, mm); \
686 i += sizeof(TYPE); \
687 } while (i & 7); \
691 DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
692 DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
693 DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
695 DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
696 DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
697 DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
699 DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
700 DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
701 DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
703 #undef DO_ZZW
705 #undef DO_CLS_B
706 #undef DO_CLS_H
707 #undef DO_CLZ_B
708 #undef DO_CLZ_H
709 #undef DO_CNOT
710 #undef DO_FABS
711 #undef DO_FNEG
712 #undef DO_ABS
713 #undef DO_NEG
714 #undef DO_ZPZ
715 #undef DO_ZPZ_D
717 /* Two-operand reduction expander, controlled by a predicate.
718 * The difference between TYPERED and TYPERET has to do with
719 * sign-extension. E.g. for SMAX, TYPERED must be signed,
720 * but TYPERET must be unsigned so that e.g. a 32-bit value
721 * is not sign-extended to the ABI uint64_t return type.
723 /* ??? If we were to vectorize this by hand the reduction ordering
724 * would change. For integer operands, this is perfectly fine.
726 #define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
727 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
729 intptr_t i, opr_sz = simd_oprsz(desc); \
730 TYPERED ret = INIT; \
731 for (i = 0; i < opr_sz; ) { \
732 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
733 do { \
734 if (pg & 1) { \
735 TYPEELT nn = *(TYPEELT *)(vn + H(i)); \
736 ret = OP(ret, nn); \
738 i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT); \
739 } while (i & 15); \
741 return (TYPERET)ret; \
744 #define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP) \
745 uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc) \
747 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
748 TYPEE *n = vn; \
749 uint8_t *pg = vg; \
750 TYPER ret = INIT; \
751 for (i = 0; i < opr_sz; i += 1) { \
752 if (pg[H1(i)] & 1) { \
753 TYPEE nn = n[i]; \
754 ret = OP(ret, nn); \
757 return ret; \
760 DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
761 DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
762 DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
763 DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
765 DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
766 DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
767 DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
768 DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
770 DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
771 DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
772 DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
773 DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
775 DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
776 DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
777 DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
779 DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
780 DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
781 DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
782 DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
784 DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
785 DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
786 DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
787 DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
789 DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
790 DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
791 DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
792 DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
794 DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
795 DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
796 DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
797 DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
799 DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
800 DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
801 DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
802 DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
804 #undef DO_VPZ
805 #undef DO_VPZ_D
807 /* Two vector operand, one scalar operand, unpredicated. */
808 #define DO_ZZI(NAME, TYPE, OP) \
809 void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc) \
811 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE); \
812 TYPE s = s64, *d = vd, *n = vn; \
813 for (i = 0; i < opr_sz; ++i) { \
814 d[i] = OP(n[i], s); \
818 #define DO_SUBR(X, Y) (Y - X)
820 DO_ZZI(sve_subri_b, uint8_t, DO_SUBR)
821 DO_ZZI(sve_subri_h, uint16_t, DO_SUBR)
822 DO_ZZI(sve_subri_s, uint32_t, DO_SUBR)
823 DO_ZZI(sve_subri_d, uint64_t, DO_SUBR)
825 DO_ZZI(sve_smaxi_b, int8_t, DO_MAX)
826 DO_ZZI(sve_smaxi_h, int16_t, DO_MAX)
827 DO_ZZI(sve_smaxi_s, int32_t, DO_MAX)
828 DO_ZZI(sve_smaxi_d, int64_t, DO_MAX)
830 DO_ZZI(sve_smini_b, int8_t, DO_MIN)
831 DO_ZZI(sve_smini_h, int16_t, DO_MIN)
832 DO_ZZI(sve_smini_s, int32_t, DO_MIN)
833 DO_ZZI(sve_smini_d, int64_t, DO_MIN)
835 DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX)
836 DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX)
837 DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX)
838 DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX)
840 DO_ZZI(sve_umini_b, uint8_t, DO_MIN)
841 DO_ZZI(sve_umini_h, uint16_t, DO_MIN)
842 DO_ZZI(sve_umini_s, uint32_t, DO_MIN)
843 DO_ZZI(sve_umini_d, uint64_t, DO_MIN)
845 #undef DO_ZZI
847 #undef DO_AND
848 #undef DO_ORR
849 #undef DO_EOR
850 #undef DO_BIC
851 #undef DO_ADD
852 #undef DO_SUB
853 #undef DO_MAX
854 #undef DO_MIN
855 #undef DO_ABD
856 #undef DO_MUL
857 #undef DO_DIV
858 #undef DO_ASR
859 #undef DO_LSR
860 #undef DO_LSL
861 #undef DO_SUBR
863 /* Similar to the ARM LastActiveElement pseudocode function, except the
864 result is multiplied by the element size. This includes the not found
865 indication; e.g. not found for esz=3 is -8. */
866 static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
868 uint64_t mask = pred_esz_masks[esz];
869 intptr_t i = words;
871 do {
872 uint64_t this_g = g[--i] & mask;
873 if (this_g) {
874 return i * 64 + (63 - clz64(this_g));
876 } while (i > 0);
877 return (intptr_t)-1 << esz;
880 uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words)
882 uint32_t flags = PREDTEST_INIT;
883 uint64_t *d = vd, *g = vg;
884 intptr_t i = 0;
886 do {
887 uint64_t this_d = d[i];
888 uint64_t this_g = g[i];
890 if (this_g) {
891 if (!(flags & 4)) {
892 /* Set in D the first bit of G. */
893 this_d |= this_g & -this_g;
894 d[i] = this_d;
896 flags = iter_predtest_fwd(this_d, this_g, flags);
898 } while (++i < words);
900 return flags;
903 uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
905 intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS);
906 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
907 uint32_t flags = PREDTEST_INIT;
908 uint64_t *d = vd, *g = vg, esz_mask;
909 intptr_t i, next;
911 next = last_active_element(vd, words, esz) + (1 << esz);
912 esz_mask = pred_esz_masks[esz];
914 /* Similar to the pseudocode for pnext, but scaled by ESZ
915 so that we find the correct bit. */
916 if (next < words * 64) {
917 uint64_t mask = -1;
919 if (next & 63) {
920 mask = ~((1ull << (next & 63)) - 1);
921 next &= -64;
923 do {
924 uint64_t this_g = g[next / 64] & esz_mask & mask;
925 if (this_g != 0) {
926 next = (next & -64) + ctz64(this_g);
927 break;
929 next += 64;
930 mask = -1;
931 } while (next < words * 64);
934 i = 0;
935 do {
936 uint64_t this_d = 0;
937 if (i == next / 64) {
938 this_d = 1ull << (next & 63);
940 d[i] = this_d;
941 flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
942 } while (++i < words);
944 return flags;
947 /* Store zero into every active element of Zd. We will use this for two
948 * and three-operand predicated instructions for which logic dictates a
949 * zero result. In particular, logical shift by element size, which is
950 * otherwise undefined on the host.
952 * For element sizes smaller than uint64_t, we use tables to expand
953 * the N bits of the controlling predicate to a byte mask, and clear
954 * those bytes.
956 void HELPER(sve_clr_b)(void *vd, void *vg, uint32_t desc)
958 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
959 uint64_t *d = vd;
960 uint8_t *pg = vg;
961 for (i = 0; i < opr_sz; i += 1) {
962 d[i] &= ~expand_pred_b(pg[H1(i)]);
966 void HELPER(sve_clr_h)(void *vd, void *vg, uint32_t desc)
968 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
969 uint64_t *d = vd;
970 uint8_t *pg = vg;
971 for (i = 0; i < opr_sz; i += 1) {
972 d[i] &= ~expand_pred_h(pg[H1(i)]);
976 void HELPER(sve_clr_s)(void *vd, void *vg, uint32_t desc)
978 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
979 uint64_t *d = vd;
980 uint8_t *pg = vg;
981 for (i = 0; i < opr_sz; i += 1) {
982 d[i] &= ~expand_pred_s(pg[H1(i)]);
986 void HELPER(sve_clr_d)(void *vd, void *vg, uint32_t desc)
988 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
989 uint64_t *d = vd;
990 uint8_t *pg = vg;
991 for (i = 0; i < opr_sz; i += 1) {
992 if (pg[H1(i)] & 1) {
993 d[i] = 0;
998 /* Copy Zn into Zd, and store zero into inactive elements. */
999 void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc)
1001 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1002 uint64_t *d = vd, *n = vn;
1003 uint8_t *pg = vg;
1004 for (i = 0; i < opr_sz; i += 1) {
1005 d[i] = n[i] & expand_pred_b(pg[H1(i)]);
1009 void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc)
1011 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1012 uint64_t *d = vd, *n = vn;
1013 uint8_t *pg = vg;
1014 for (i = 0; i < opr_sz; i += 1) {
1015 d[i] = n[i] & expand_pred_h(pg[H1(i)]);
1019 void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc)
1021 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1022 uint64_t *d = vd, *n = vn;
1023 uint8_t *pg = vg;
1024 for (i = 0; i < opr_sz; i += 1) {
1025 d[i] = n[i] & expand_pred_s(pg[H1(i)]);
1029 void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
1031 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1032 uint64_t *d = vd, *n = vn;
1033 uint8_t *pg = vg;
1034 for (i = 0; i < opr_sz; i += 1) {
1035 d[i] = n[1] & -(uint64_t)(pg[H1(i)] & 1);
1039 /* Three-operand expander, immediate operand, controlled by a predicate.
1041 #define DO_ZPZI(NAME, TYPE, H, OP) \
1042 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1044 intptr_t i, opr_sz = simd_oprsz(desc); \
1045 TYPE imm = simd_data(desc); \
1046 for (i = 0; i < opr_sz; ) { \
1047 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1048 do { \
1049 if (pg & 1) { \
1050 TYPE nn = *(TYPE *)(vn + H(i)); \
1051 *(TYPE *)(vd + H(i)) = OP(nn, imm); \
1053 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1054 } while (i & 15); \
1058 /* Similarly, specialized for 64-bit operands. */
1059 #define DO_ZPZI_D(NAME, TYPE, OP) \
1060 void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
1062 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1063 TYPE *d = vd, *n = vn; \
1064 TYPE imm = simd_data(desc); \
1065 uint8_t *pg = vg; \
1066 for (i = 0; i < opr_sz; i += 1) { \
1067 if (pg[H1(i)] & 1) { \
1068 TYPE nn = n[i]; \
1069 d[i] = OP(nn, imm); \
1074 #define DO_SHR(N, M) (N >> M)
1075 #define DO_SHL(N, M) (N << M)
1077 /* Arithmetic shift right for division. This rounds negative numbers
1078 toward zero as per signed division. Therefore before shifting,
1079 when N is negative, add 2**M-1. */
1080 #define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
1082 DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
1083 DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
1084 DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
1085 DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
1087 DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
1088 DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
1089 DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
1090 DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
1092 DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
1093 DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
1094 DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
1095 DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
1097 DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
1098 DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
1099 DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
1100 DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
1102 #undef DO_SHR
1103 #undef DO_SHL
1104 #undef DO_ASRD
1105 #undef DO_ZPZI
1106 #undef DO_ZPZI_D
1108 /* Fully general four-operand expander, controlled by a predicate.
1110 #define DO_ZPZZZ(NAME, TYPE, H, OP) \
1111 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1112 void *vg, uint32_t desc) \
1114 intptr_t i, opr_sz = simd_oprsz(desc); \
1115 for (i = 0; i < opr_sz; ) { \
1116 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
1117 do { \
1118 if (pg & 1) { \
1119 TYPE nn = *(TYPE *)(vn + H(i)); \
1120 TYPE mm = *(TYPE *)(vm + H(i)); \
1121 TYPE aa = *(TYPE *)(va + H(i)); \
1122 *(TYPE *)(vd + H(i)) = OP(aa, nn, mm); \
1124 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
1125 } while (i & 15); \
1129 /* Similarly, specialized for 64-bit operands. */
1130 #define DO_ZPZZZ_D(NAME, TYPE, OP) \
1131 void HELPER(NAME)(void *vd, void *va, void *vn, void *vm, \
1132 void *vg, uint32_t desc) \
1134 intptr_t i, opr_sz = simd_oprsz(desc) / 8; \
1135 TYPE *d = vd, *a = va, *n = vn, *m = vm; \
1136 uint8_t *pg = vg; \
1137 for (i = 0; i < opr_sz; i += 1) { \
1138 if (pg[H1(i)] & 1) { \
1139 TYPE aa = a[i], nn = n[i], mm = m[i]; \
1140 d[i] = OP(aa, nn, mm); \
1145 #define DO_MLA(A, N, M) (A + N * M)
1146 #define DO_MLS(A, N, M) (A - N * M)
1148 DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
1149 DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
1151 DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
1152 DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
1154 DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
1155 DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
1157 DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
1158 DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
1160 #undef DO_MLA
1161 #undef DO_MLS
1162 #undef DO_ZPZZZ
1163 #undef DO_ZPZZZ_D
1165 void HELPER(sve_index_b)(void *vd, uint32_t start,
1166 uint32_t incr, uint32_t desc)
1168 intptr_t i, opr_sz = simd_oprsz(desc);
1169 uint8_t *d = vd;
1170 for (i = 0; i < opr_sz; i += 1) {
1171 d[H1(i)] = start + i * incr;
1175 void HELPER(sve_index_h)(void *vd, uint32_t start,
1176 uint32_t incr, uint32_t desc)
1178 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1179 uint16_t *d = vd;
1180 for (i = 0; i < opr_sz; i += 1) {
1181 d[H2(i)] = start + i * incr;
1185 void HELPER(sve_index_s)(void *vd, uint32_t start,
1186 uint32_t incr, uint32_t desc)
1188 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1189 uint32_t *d = vd;
1190 for (i = 0; i < opr_sz; i += 1) {
1191 d[H4(i)] = start + i * incr;
1195 void HELPER(sve_index_d)(void *vd, uint64_t start,
1196 uint64_t incr, uint32_t desc)
1198 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1199 uint64_t *d = vd;
1200 for (i = 0; i < opr_sz; i += 1) {
1201 d[i] = start + i * incr;
1205 void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
1207 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1208 uint32_t sh = simd_data(desc);
1209 uint32_t *d = vd, *n = vn, *m = vm;
1210 for (i = 0; i < opr_sz; i += 1) {
1211 d[i] = n[i] + (m[i] << sh);
1215 void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
1217 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1218 uint64_t sh = simd_data(desc);
1219 uint64_t *d = vd, *n = vn, *m = vm;
1220 for (i = 0; i < opr_sz; i += 1) {
1221 d[i] = n[i] + (m[i] << sh);
1225 void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
1227 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1228 uint64_t sh = simd_data(desc);
1229 uint64_t *d = vd, *n = vn, *m = vm;
1230 for (i = 0; i < opr_sz; i += 1) {
1231 d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
1235 void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
1237 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1238 uint64_t sh = simd_data(desc);
1239 uint64_t *d = vd, *n = vn, *m = vm;
1240 for (i = 0; i < opr_sz; i += 1) {
1241 d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
1245 void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
1247 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1248 static const uint16_t coeff[] = {
1249 0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
1250 0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
1251 0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
1252 0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
1254 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1255 uint16_t *d = vd, *n = vn;
1257 for (i = 0; i < opr_sz; i++) {
1258 uint16_t nn = n[i];
1259 intptr_t idx = extract32(nn, 0, 5);
1260 uint16_t exp = extract32(nn, 5, 5);
1261 d[i] = coeff[idx] | (exp << 10);
1265 void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
1267 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1268 static const uint32_t coeff[] = {
1269 0x000000, 0x0164d2, 0x02cd87, 0x043a29,
1270 0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
1271 0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
1272 0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
1273 0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
1274 0x1ef532, 0x20b051, 0x227043, 0x243516,
1275 0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
1276 0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
1277 0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
1278 0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
1279 0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
1280 0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
1281 0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
1282 0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
1283 0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
1284 0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
1286 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1287 uint32_t *d = vd, *n = vn;
1289 for (i = 0; i < opr_sz; i++) {
1290 uint32_t nn = n[i];
1291 intptr_t idx = extract32(nn, 0, 6);
1292 uint32_t exp = extract32(nn, 6, 8);
1293 d[i] = coeff[idx] | (exp << 23);
1297 void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
1299 /* These constants are cut-and-paste directly from the ARM pseudocode. */
1300 static const uint64_t coeff[] = {
1301 0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
1302 0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
1303 0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
1304 0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
1305 0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
1306 0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
1307 0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
1308 0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
1309 0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
1310 0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
1311 0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
1312 0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
1313 0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
1314 0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
1315 0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
1316 0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
1317 0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
1318 0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
1319 0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
1320 0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
1321 0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
1322 0xFA7C1819E90D8ull,
1324 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1325 uint64_t *d = vd, *n = vn;
1327 for (i = 0; i < opr_sz; i++) {
1328 uint64_t nn = n[i];
1329 intptr_t idx = extract32(nn, 0, 6);
1330 uint64_t exp = extract32(nn, 6, 11);
1331 d[i] = coeff[idx] | (exp << 52);
1335 void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
1337 intptr_t i, opr_sz = simd_oprsz(desc) / 2;
1338 uint16_t *d = vd, *n = vn, *m = vm;
1339 for (i = 0; i < opr_sz; i += 1) {
1340 uint16_t nn = n[i];
1341 uint16_t mm = m[i];
1342 if (mm & 1) {
1343 nn = float16_one;
1345 d[i] = nn ^ (mm & 2) << 14;
1349 void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
1351 intptr_t i, opr_sz = simd_oprsz(desc) / 4;
1352 uint32_t *d = vd, *n = vn, *m = vm;
1353 for (i = 0; i < opr_sz; i += 1) {
1354 uint32_t nn = n[i];
1355 uint32_t mm = m[i];
1356 if (mm & 1) {
1357 nn = float32_one;
1359 d[i] = nn ^ (mm & 2) << 30;
1363 void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
1365 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1366 uint64_t *d = vd, *n = vn, *m = vm;
1367 for (i = 0; i < opr_sz; i += 1) {
1368 uint64_t nn = n[i];
1369 uint64_t mm = m[i];
1370 if (mm & 1) {
1371 nn = float64_one;
1373 d[i] = nn ^ (mm & 2) << 62;
1378 * Signed saturating addition with scalar operand.
1381 void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1383 intptr_t i, oprsz = simd_oprsz(desc);
1385 for (i = 0; i < oprsz; i += sizeof(int8_t)) {
1386 int r = *(int8_t *)(a + i) + b;
1387 if (r > INT8_MAX) {
1388 r = INT8_MAX;
1389 } else if (r < INT8_MIN) {
1390 r = INT8_MIN;
1392 *(int8_t *)(d + i) = r;
1396 void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1398 intptr_t i, oprsz = simd_oprsz(desc);
1400 for (i = 0; i < oprsz; i += sizeof(int16_t)) {
1401 int r = *(int16_t *)(a + i) + b;
1402 if (r > INT16_MAX) {
1403 r = INT16_MAX;
1404 } else if (r < INT16_MIN) {
1405 r = INT16_MIN;
1407 *(int16_t *)(d + i) = r;
1411 void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1413 intptr_t i, oprsz = simd_oprsz(desc);
1415 for (i = 0; i < oprsz; i += sizeof(int32_t)) {
1416 int64_t r = *(int32_t *)(a + i) + b;
1417 if (r > INT32_MAX) {
1418 r = INT32_MAX;
1419 } else if (r < INT32_MIN) {
1420 r = INT32_MIN;
1422 *(int32_t *)(d + i) = r;
1426 void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
1428 intptr_t i, oprsz = simd_oprsz(desc);
1430 for (i = 0; i < oprsz; i += sizeof(int64_t)) {
1431 int64_t ai = *(int64_t *)(a + i);
1432 int64_t r = ai + b;
1433 if (((r ^ ai) & ~(ai ^ b)) < 0) {
1434 /* Signed overflow. */
1435 r = (r < 0 ? INT64_MAX : INT64_MIN);
1437 *(int64_t *)(d + i) = r;
1442 * Unsigned saturating addition with scalar operand.
1445 void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
1447 intptr_t i, oprsz = simd_oprsz(desc);
1449 for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
1450 int r = *(uint8_t *)(a + i) + b;
1451 if (r > UINT8_MAX) {
1452 r = UINT8_MAX;
1453 } else if (r < 0) {
1454 r = 0;
1456 *(uint8_t *)(d + i) = r;
1460 void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
1462 intptr_t i, oprsz = simd_oprsz(desc);
1464 for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
1465 int r = *(uint16_t *)(a + i) + b;
1466 if (r > UINT16_MAX) {
1467 r = UINT16_MAX;
1468 } else if (r < 0) {
1469 r = 0;
1471 *(uint16_t *)(d + i) = r;
1475 void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
1477 intptr_t i, oprsz = simd_oprsz(desc);
1479 for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
1480 int64_t r = *(uint32_t *)(a + i) + b;
1481 if (r > UINT32_MAX) {
1482 r = UINT32_MAX;
1483 } else if (r < 0) {
1484 r = 0;
1486 *(uint32_t *)(d + i) = r;
1490 void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1492 intptr_t i, oprsz = simd_oprsz(desc);
1494 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1495 uint64_t r = *(uint64_t *)(a + i) + b;
1496 if (r < b) {
1497 r = UINT64_MAX;
1499 *(uint64_t *)(d + i) = r;
1503 void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
1505 intptr_t i, oprsz = simd_oprsz(desc);
1507 for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
1508 uint64_t ai = *(uint64_t *)(a + i);
1509 *(uint64_t *)(d + i) = (ai < b ? 0 : ai - b);
1513 /* Two operand predicated copy immediate with merge. All valid immediates
1514 * can fit within 17 signed bits in the simd_data field.
1516 void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
1517 uint64_t mm, uint32_t desc)
1519 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1520 uint64_t *d = vd, *n = vn;
1521 uint8_t *pg = vg;
1523 mm = dup_const(MO_8, mm);
1524 for (i = 0; i < opr_sz; i += 1) {
1525 uint64_t nn = n[i];
1526 uint64_t pp = expand_pred_b(pg[H1(i)]);
1527 d[i] = (mm & pp) | (nn & ~pp);
1531 void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
1532 uint64_t mm, uint32_t desc)
1534 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1535 uint64_t *d = vd, *n = vn;
1536 uint8_t *pg = vg;
1538 mm = dup_const(MO_16, mm);
1539 for (i = 0; i < opr_sz; i += 1) {
1540 uint64_t nn = n[i];
1541 uint64_t pp = expand_pred_h(pg[H1(i)]);
1542 d[i] = (mm & pp) | (nn & ~pp);
1546 void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
1547 uint64_t mm, uint32_t desc)
1549 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1550 uint64_t *d = vd, *n = vn;
1551 uint8_t *pg = vg;
1553 mm = dup_const(MO_32, mm);
1554 for (i = 0; i < opr_sz; i += 1) {
1555 uint64_t nn = n[i];
1556 uint64_t pp = expand_pred_s(pg[H1(i)]);
1557 d[i] = (mm & pp) | (nn & ~pp);
1561 void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
1562 uint64_t mm, uint32_t desc)
1564 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1565 uint64_t *d = vd, *n = vn;
1566 uint8_t *pg = vg;
1568 for (i = 0; i < opr_sz; i += 1) {
1569 uint64_t nn = n[i];
1570 d[i] = (pg[H1(i)] & 1 ? mm : nn);
1574 void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
1576 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1577 uint64_t *d = vd;
1578 uint8_t *pg = vg;
1580 val = dup_const(MO_8, val);
1581 for (i = 0; i < opr_sz; i += 1) {
1582 d[i] = val & expand_pred_b(pg[H1(i)]);
1586 void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
1588 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1589 uint64_t *d = vd;
1590 uint8_t *pg = vg;
1592 val = dup_const(MO_16, val);
1593 for (i = 0; i < opr_sz; i += 1) {
1594 d[i] = val & expand_pred_h(pg[H1(i)]);
1598 void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
1600 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1601 uint64_t *d = vd;
1602 uint8_t *pg = vg;
1604 val = dup_const(MO_32, val);
1605 for (i = 0; i < opr_sz; i += 1) {
1606 d[i] = val & expand_pred_s(pg[H1(i)]);
1610 void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
1612 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
1613 uint64_t *d = vd;
1614 uint8_t *pg = vg;
1616 for (i = 0; i < opr_sz; i += 1) {
1617 d[i] = (pg[H1(i)] & 1 ? val : 0);
1621 /* Big-endian hosts need to frob the byte indicies. If the copy
1622 * happens to be 8-byte aligned, then no frobbing necessary.
1624 static void swap_memmove(void *vd, void *vs, size_t n)
1626 uintptr_t d = (uintptr_t)vd;
1627 uintptr_t s = (uintptr_t)vs;
1628 uintptr_t o = (d | s | n) & 7;
1629 size_t i;
1631 #ifndef HOST_WORDS_BIGENDIAN
1632 o = 0;
1633 #endif
1634 switch (o) {
1635 case 0:
1636 memmove(vd, vs, n);
1637 break;
1639 case 4:
1640 if (d < s || d >= s + n) {
1641 for (i = 0; i < n; i += 4) {
1642 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1644 } else {
1645 for (i = n; i > 0; ) {
1646 i -= 4;
1647 *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
1650 break;
1652 case 2:
1653 case 6:
1654 if (d < s || d >= s + n) {
1655 for (i = 0; i < n; i += 2) {
1656 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1658 } else {
1659 for (i = n; i > 0; ) {
1660 i -= 2;
1661 *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
1664 break;
1666 default:
1667 if (d < s || d >= s + n) {
1668 for (i = 0; i < n; i++) {
1669 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1671 } else {
1672 for (i = n; i > 0; ) {
1673 i -= 1;
1674 *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
1677 break;
1681 void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
1683 intptr_t opr_sz = simd_oprsz(desc);
1684 size_t n_ofs = simd_data(desc);
1685 size_t n_siz = opr_sz - n_ofs;
1687 if (vd != vm) {
1688 swap_memmove(vd, vn + n_ofs, n_siz);
1689 swap_memmove(vd + n_siz, vm, n_ofs);
1690 } else if (vd != vn) {
1691 swap_memmove(vd + n_siz, vd, n_ofs);
1692 swap_memmove(vd, vn + n_ofs, n_siz);
1693 } else {
1694 /* vd == vn == vm. Need temp space. */
1695 ARMVectorReg tmp;
1696 swap_memmove(&tmp, vm, n_ofs);
1697 swap_memmove(vd, vd + n_ofs, n_siz);
1698 memcpy(vd + n_siz, &tmp, n_ofs);
1702 #define DO_INSR(NAME, TYPE, H) \
1703 void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
1705 intptr_t opr_sz = simd_oprsz(desc); \
1706 swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE)); \
1707 *(TYPE *)(vd + H(0)) = val; \
1710 DO_INSR(sve_insr_b, uint8_t, H1)
1711 DO_INSR(sve_insr_h, uint16_t, H1_2)
1712 DO_INSR(sve_insr_s, uint32_t, H1_4)
1713 DO_INSR(sve_insr_d, uint64_t, )
1715 #undef DO_INSR
1717 void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
1719 intptr_t i, j, opr_sz = simd_oprsz(desc);
1720 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1721 uint64_t f = *(uint64_t *)(vn + i);
1722 uint64_t b = *(uint64_t *)(vn + j);
1723 *(uint64_t *)(vd + i) = bswap64(b);
1724 *(uint64_t *)(vd + j) = bswap64(f);
1728 void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
1730 intptr_t i, j, opr_sz = simd_oprsz(desc);
1731 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1732 uint64_t f = *(uint64_t *)(vn + i);
1733 uint64_t b = *(uint64_t *)(vn + j);
1734 *(uint64_t *)(vd + i) = hswap64(b);
1735 *(uint64_t *)(vd + j) = hswap64(f);
1739 void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
1741 intptr_t i, j, opr_sz = simd_oprsz(desc);
1742 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1743 uint64_t f = *(uint64_t *)(vn + i);
1744 uint64_t b = *(uint64_t *)(vn + j);
1745 *(uint64_t *)(vd + i) = rol64(b, 32);
1746 *(uint64_t *)(vd + j) = rol64(f, 32);
1750 void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
1752 intptr_t i, j, opr_sz = simd_oprsz(desc);
1753 for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
1754 uint64_t f = *(uint64_t *)(vn + i);
1755 uint64_t b = *(uint64_t *)(vn + j);
1756 *(uint64_t *)(vd + i) = b;
1757 *(uint64_t *)(vd + j) = f;
1761 #define DO_TBL(NAME, TYPE, H) \
1762 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
1764 intptr_t i, opr_sz = simd_oprsz(desc); \
1765 uintptr_t elem = opr_sz / sizeof(TYPE); \
1766 TYPE *d = vd, *n = vn, *m = vm; \
1767 ARMVectorReg tmp; \
1768 if (unlikely(vd == vn)) { \
1769 n = memcpy(&tmp, vn, opr_sz); \
1771 for (i = 0; i < elem; i++) { \
1772 TYPE j = m[H(i)]; \
1773 d[H(i)] = j < elem ? n[H(j)] : 0; \
1777 DO_TBL(sve_tbl_b, uint8_t, H1)
1778 DO_TBL(sve_tbl_h, uint16_t, H2)
1779 DO_TBL(sve_tbl_s, uint32_t, H4)
1780 DO_TBL(sve_tbl_d, uint64_t, )
1782 #undef TBL
1784 #define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
1785 void HELPER(NAME)(void *vd, void *vn, uint32_t desc) \
1787 intptr_t i, opr_sz = simd_oprsz(desc); \
1788 TYPED *d = vd; \
1789 TYPES *n = vn; \
1790 ARMVectorReg tmp; \
1791 if (unlikely(vn - vd < opr_sz)) { \
1792 n = memcpy(&tmp, n, opr_sz / 2); \
1794 for (i = 0; i < opr_sz / sizeof(TYPED); i++) { \
1795 d[HD(i)] = n[HS(i)]; \
1799 DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
1800 DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
1801 DO_UNPK(sve_sunpk_d, int64_t, int32_t, , H4)
1803 DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
1804 DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
1805 DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, , H4)
1807 #undef DO_UNPK
1809 /* Mask of bits included in the even numbered predicates of width esz.
1810 * We also use this for expand_bits/compress_bits, and so extend the
1811 * same pattern out to 16-bit units.
1813 static const uint64_t even_bit_esz_masks[5] = {
1814 0x5555555555555555ull,
1815 0x3333333333333333ull,
1816 0x0f0f0f0f0f0f0f0full,
1817 0x00ff00ff00ff00ffull,
1818 0x0000ffff0000ffffull,
1821 /* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
1822 * For N==0, this corresponds to the operation that in qemu/bitops.h
1823 * we call half_shuffle64; this algorithm is from Hacker's Delight,
1824 * section 7-2 Shuffling Bits.
1826 static uint64_t expand_bits(uint64_t x, int n)
1828 int i;
1830 x &= 0xffffffffu;
1831 for (i = 4; i >= n; i--) {
1832 int sh = 1 << i;
1833 x = ((x << sh) | x) & even_bit_esz_masks[i];
1835 return x;
1838 /* Compress units of 2**(N+1) bits to units of 2**N bits.
1839 * For N==0, this corresponds to the operation that in qemu/bitops.h
1840 * we call half_unshuffle64; this algorithm is from Hacker's Delight,
1841 * section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
1843 static uint64_t compress_bits(uint64_t x, int n)
1845 int i;
1847 for (i = n; i <= 4; i++) {
1848 int sh = 1 << i;
1849 x &= even_bit_esz_masks[i];
1850 x = (x >> sh) | x;
1852 return x & 0xffffffffu;
1855 void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1857 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
1858 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
1859 intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
1860 uint64_t *d = vd;
1861 intptr_t i;
1863 if (oprsz <= 8) {
1864 uint64_t nn = *(uint64_t *)vn;
1865 uint64_t mm = *(uint64_t *)vm;
1866 int half = 4 * oprsz;
1868 nn = extract64(nn, high * half, half);
1869 mm = extract64(mm, high * half, half);
1870 nn = expand_bits(nn, esz);
1871 mm = expand_bits(mm, esz);
1872 d[0] = nn + (mm << (1 << esz));
1873 } else {
1874 ARMPredicateReg tmp_n, tmp_m;
1876 /* We produce output faster than we consume input.
1877 Therefore we must be mindful of possible overlap. */
1878 if ((vn - vd) < (uintptr_t)oprsz) {
1879 vn = memcpy(&tmp_n, vn, oprsz);
1881 if ((vm - vd) < (uintptr_t)oprsz) {
1882 vm = memcpy(&tmp_m, vm, oprsz);
1884 if (high) {
1885 high = oprsz >> 1;
1888 if ((high & 3) == 0) {
1889 uint32_t *n = vn, *m = vm;
1890 high >>= 2;
1892 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
1893 uint64_t nn = n[H4(high + i)];
1894 uint64_t mm = m[H4(high + i)];
1896 nn = expand_bits(nn, esz);
1897 mm = expand_bits(mm, esz);
1898 d[i] = nn + (mm << (1 << esz));
1900 } else {
1901 uint8_t *n = vn, *m = vm;
1902 uint16_t *d16 = vd;
1904 for (i = 0; i < oprsz / 2; i++) {
1905 uint16_t nn = n[H1(high + i)];
1906 uint16_t mm = m[H1(high + i)];
1908 nn = expand_bits(nn, esz);
1909 mm = expand_bits(mm, esz);
1910 d16[H2(i)] = nn + (mm << (1 << esz));
1916 void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1918 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
1919 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
1920 int odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1) << esz;
1921 uint64_t *d = vd, *n = vn, *m = vm;
1922 uint64_t l, h;
1923 intptr_t i;
1925 if (oprsz <= 8) {
1926 l = compress_bits(n[0] >> odd, esz);
1927 h = compress_bits(m[0] >> odd, esz);
1928 d[0] = extract64(l + (h << (4 * oprsz)), 0, 8 * oprsz);
1929 } else {
1930 ARMPredicateReg tmp_m;
1931 intptr_t oprsz_16 = oprsz / 16;
1933 if ((vm - vd) < (uintptr_t)oprsz) {
1934 m = memcpy(&tmp_m, vm, oprsz);
1937 for (i = 0; i < oprsz_16; i++) {
1938 l = n[2 * i + 0];
1939 h = n[2 * i + 1];
1940 l = compress_bits(l >> odd, esz);
1941 h = compress_bits(h >> odd, esz);
1942 d[i] = l + (h << 32);
1945 /* For VL which is not a power of 2, the results from M do not
1946 align nicely with the uint64_t for D. Put the aligned results
1947 from M into TMP_M and then copy it into place afterward. */
1948 if (oprsz & 15) {
1949 d[i] = compress_bits(n[2 * i] >> odd, esz);
1951 for (i = 0; i < oprsz_16; i++) {
1952 l = m[2 * i + 0];
1953 h = m[2 * i + 1];
1954 l = compress_bits(l >> odd, esz);
1955 h = compress_bits(h >> odd, esz);
1956 tmp_m.p[i] = l + (h << 32);
1958 tmp_m.p[i] = compress_bits(m[2 * i] >> odd, esz);
1960 swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
1961 } else {
1962 for (i = 0; i < oprsz_16; i++) {
1963 l = m[2 * i + 0];
1964 h = m[2 * i + 1];
1965 l = compress_bits(l >> odd, esz);
1966 h = compress_bits(h >> odd, esz);
1967 d[oprsz_16 + i] = l + (h << 32);
1973 void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
1975 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
1976 uintptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
1977 bool odd = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
1978 uint64_t *d = vd, *n = vn, *m = vm;
1979 uint64_t mask;
1980 int shr, shl;
1981 intptr_t i;
1983 shl = 1 << esz;
1984 shr = 0;
1985 mask = even_bit_esz_masks[esz];
1986 if (odd) {
1987 mask <<= shl;
1988 shr = shl;
1989 shl = 0;
1992 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
1993 uint64_t nn = (n[i] & mask) >> shr;
1994 uint64_t mm = (m[i] & mask) << shl;
1995 d[i] = nn + mm;
1999 /* Reverse units of 2**N bits. */
2000 static uint64_t reverse_bits_64(uint64_t x, int n)
2002 int i, sh;
2004 x = bswap64(x);
2005 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2006 uint64_t mask = even_bit_esz_masks[i];
2007 x = ((x & mask) << sh) | ((x >> sh) & mask);
2009 return x;
2012 static uint8_t reverse_bits_8(uint8_t x, int n)
2014 static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
2015 int i, sh;
2017 for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
2018 x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
2020 return x;
2023 void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
2025 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2026 int esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2027 intptr_t i, oprsz_2 = oprsz / 2;
2029 if (oprsz <= 8) {
2030 uint64_t l = *(uint64_t *)vn;
2031 l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
2032 *(uint64_t *)vd = l;
2033 } else if ((oprsz & 15) == 0) {
2034 for (i = 0; i < oprsz_2; i += 8) {
2035 intptr_t ih = oprsz - 8 - i;
2036 uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
2037 uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
2038 *(uint64_t *)(vd + i) = h;
2039 *(uint64_t *)(vd + ih) = l;
2041 } else {
2042 for (i = 0; i < oprsz_2; i += 1) {
2043 intptr_t il = H1(i);
2044 intptr_t ih = H1(oprsz - 1 - i);
2045 uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
2046 uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
2047 *(uint8_t *)(vd + il) = h;
2048 *(uint8_t *)(vd + ih) = l;
2053 void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
2055 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2056 intptr_t high = extract32(pred_desc, SIMD_DATA_SHIFT + 2, 1);
2057 uint64_t *d = vd;
2058 intptr_t i;
2060 if (oprsz <= 8) {
2061 uint64_t nn = *(uint64_t *)vn;
2062 int half = 4 * oprsz;
2064 nn = extract64(nn, high * half, half);
2065 nn = expand_bits(nn, 0);
2066 d[0] = nn;
2067 } else {
2068 ARMPredicateReg tmp_n;
2070 /* We produce output faster than we consume input.
2071 Therefore we must be mindful of possible overlap. */
2072 if ((vn - vd) < (uintptr_t)oprsz) {
2073 vn = memcpy(&tmp_n, vn, oprsz);
2075 if (high) {
2076 high = oprsz >> 1;
2079 if ((high & 3) == 0) {
2080 uint32_t *n = vn;
2081 high >>= 2;
2083 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
2084 uint64_t nn = n[H4(high + i)];
2085 d[i] = expand_bits(nn, 0);
2087 } else {
2088 uint16_t *d16 = vd;
2089 uint8_t *n = vn;
2091 for (i = 0; i < oprsz / 2; i++) {
2092 uint16_t nn = n[H1(high + i)];
2093 d16[H2(i)] = expand_bits(nn, 0);
2099 #define DO_ZIP(NAME, TYPE, H) \
2100 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2102 intptr_t oprsz = simd_oprsz(desc); \
2103 intptr_t i, oprsz_2 = oprsz / 2; \
2104 ARMVectorReg tmp_n, tmp_m; \
2105 /* We produce output faster than we consume input. \
2106 Therefore we must be mindful of possible overlap. */ \
2107 if (unlikely((vn - vd) < (uintptr_t)oprsz)) { \
2108 vn = memcpy(&tmp_n, vn, oprsz_2); \
2110 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2111 vm = memcpy(&tmp_m, vm, oprsz_2); \
2113 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2114 *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + H(i)); \
2115 *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) = *(TYPE *)(vm + H(i)); \
2119 DO_ZIP(sve_zip_b, uint8_t, H1)
2120 DO_ZIP(sve_zip_h, uint16_t, H1_2)
2121 DO_ZIP(sve_zip_s, uint32_t, H1_4)
2122 DO_ZIP(sve_zip_d, uint64_t, )
2124 #define DO_UZP(NAME, TYPE, H) \
2125 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2127 intptr_t oprsz = simd_oprsz(desc); \
2128 intptr_t oprsz_2 = oprsz / 2; \
2129 intptr_t odd_ofs = simd_data(desc); \
2130 intptr_t i; \
2131 ARMVectorReg tmp_m; \
2132 if (unlikely((vm - vd) < (uintptr_t)oprsz)) { \
2133 vm = memcpy(&tmp_m, vm, oprsz); \
2135 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2136 *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(2 * i + odd_ofs)); \
2138 for (i = 0; i < oprsz_2; i += sizeof(TYPE)) { \
2139 *(TYPE *)(vd + H(oprsz_2 + i)) = *(TYPE *)(vm + H(2 * i + odd_ofs)); \
2143 DO_UZP(sve_uzp_b, uint8_t, H1)
2144 DO_UZP(sve_uzp_h, uint16_t, H1_2)
2145 DO_UZP(sve_uzp_s, uint32_t, H1_4)
2146 DO_UZP(sve_uzp_d, uint64_t, )
2148 #define DO_TRN(NAME, TYPE, H) \
2149 void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
2151 intptr_t oprsz = simd_oprsz(desc); \
2152 intptr_t odd_ofs = simd_data(desc); \
2153 intptr_t i; \
2154 for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) { \
2155 TYPE ae = *(TYPE *)(vn + H(i + odd_ofs)); \
2156 TYPE be = *(TYPE *)(vm + H(i + odd_ofs)); \
2157 *(TYPE *)(vd + H(i + 0)) = ae; \
2158 *(TYPE *)(vd + H(i + sizeof(TYPE))) = be; \
2162 DO_TRN(sve_trn_b, uint8_t, H1)
2163 DO_TRN(sve_trn_h, uint16_t, H1_2)
2164 DO_TRN(sve_trn_s, uint32_t, H1_4)
2165 DO_TRN(sve_trn_d, uint64_t, )
2167 #undef DO_ZIP
2168 #undef DO_UZP
2169 #undef DO_TRN
2171 void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
2173 intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
2174 uint32_t *d = vd, *n = vn;
2175 uint8_t *pg = vg;
2177 for (i = j = 0; i < opr_sz; i++) {
2178 if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
2179 d[H4(j)] = n[H4(i)];
2180 j++;
2183 for (; j < opr_sz; j++) {
2184 d[H4(j)] = 0;
2188 void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
2190 intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
2191 uint64_t *d = vd, *n = vn;
2192 uint8_t *pg = vg;
2194 for (i = j = 0; i < opr_sz; i++) {
2195 if (pg[H1(i)] & 1) {
2196 d[j] = n[i];
2197 j++;
2200 for (; j < opr_sz; j++) {
2201 d[j] = 0;
2205 /* Similar to the ARM LastActiveElement pseudocode function, except the
2206 * result is multiplied by the element size. This includes the not found
2207 * indication; e.g. not found for esz=3 is -8.
2209 int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
2211 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2212 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2214 return last_active_element(vg, DIV_ROUND_UP(oprsz, 8), esz);
2217 void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
2219 intptr_t opr_sz = simd_oprsz(desc) / 8;
2220 int esz = simd_data(desc);
2221 uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
2222 intptr_t i, first_i, last_i;
2223 ARMVectorReg tmp;
2225 first_i = last_i = 0;
2226 first_g = last_g = 0;
2228 /* Find the extent of the active elements within VG. */
2229 for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
2230 pg = *(uint64_t *)(vg + i) & mask;
2231 if (pg) {
2232 if (last_g == 0) {
2233 last_g = pg;
2234 last_i = i;
2236 first_g = pg;
2237 first_i = i;
2241 len = 0;
2242 if (first_g != 0) {
2243 first_i = first_i * 8 + ctz64(first_g);
2244 last_i = last_i * 8 + 63 - clz64(last_g);
2245 len = last_i - first_i + (1 << esz);
2246 if (vd == vm) {
2247 vm = memcpy(&tmp, vm, opr_sz * 8);
2249 swap_memmove(vd, vn + first_i, len);
2251 swap_memmove(vd + len, vm, opr_sz * 8 - len);
2254 void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
2255 void *vg, uint32_t desc)
2257 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2258 uint64_t *d = vd, *n = vn, *m = vm;
2259 uint8_t *pg = vg;
2261 for (i = 0; i < opr_sz; i += 1) {
2262 uint64_t nn = n[i], mm = m[i];
2263 uint64_t pp = expand_pred_b(pg[H1(i)]);
2264 d[i] = (nn & pp) | (mm & ~pp);
2268 void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
2269 void *vg, uint32_t desc)
2271 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2272 uint64_t *d = vd, *n = vn, *m = vm;
2273 uint8_t *pg = vg;
2275 for (i = 0; i < opr_sz; i += 1) {
2276 uint64_t nn = n[i], mm = m[i];
2277 uint64_t pp = expand_pred_h(pg[H1(i)]);
2278 d[i] = (nn & pp) | (mm & ~pp);
2282 void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
2283 void *vg, uint32_t desc)
2285 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2286 uint64_t *d = vd, *n = vn, *m = vm;
2287 uint8_t *pg = vg;
2289 for (i = 0; i < opr_sz; i += 1) {
2290 uint64_t nn = n[i], mm = m[i];
2291 uint64_t pp = expand_pred_s(pg[H1(i)]);
2292 d[i] = (nn & pp) | (mm & ~pp);
2296 void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
2297 void *vg, uint32_t desc)
2299 intptr_t i, opr_sz = simd_oprsz(desc) / 8;
2300 uint64_t *d = vd, *n = vn, *m = vm;
2301 uint8_t *pg = vg;
2303 for (i = 0; i < opr_sz; i += 1) {
2304 uint64_t nn = n[i], mm = m[i];
2305 d[i] = (pg[H1(i)] & 1 ? nn : mm);
2309 /* Two operand comparison controlled by a predicate.
2310 * ??? It is very tempting to want to be able to expand this inline
2311 * with x86 instructions, e.g.
2313 * vcmpeqw zm, zn, %ymm0
2314 * vpmovmskb %ymm0, %eax
2315 * and $0x5555, %eax
2316 * and pg, %eax
2318 * or even aarch64, e.g.
2320 * // mask = 4000 1000 0400 0100 0040 0010 0004 0001
2321 * cmeq v0.8h, zn, zm
2322 * and v0.8h, v0.8h, mask
2323 * addv h0, v0.8h
2324 * and v0.8b, pg
2326 * However, coming up with an abstraction that allows vector inputs and
2327 * a scalar output, and also handles the byte-ordering of sub-uint64_t
2328 * scalar outputs, is tricky.
2330 #define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK) \
2331 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2333 intptr_t opr_sz = simd_oprsz(desc); \
2334 uint32_t flags = PREDTEST_INIT; \
2335 intptr_t i = opr_sz; \
2336 do { \
2337 uint64_t out = 0, pg; \
2338 do { \
2339 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2340 TYPE nn = *(TYPE *)(vn + H(i)); \
2341 TYPE mm = *(TYPE *)(vm + H(i)); \
2342 out |= nn OP mm; \
2343 } while (i & 63); \
2344 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2345 out &= pg; \
2346 *(uint64_t *)(vd + (i >> 3)) = out; \
2347 flags = iter_predtest_bwd(out, pg, flags); \
2348 } while (i > 0); \
2349 return flags; \
2352 #define DO_CMP_PPZZ_B(NAME, TYPE, OP) \
2353 DO_CMP_PPZZ(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2354 #define DO_CMP_PPZZ_H(NAME, TYPE, OP) \
2355 DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2356 #define DO_CMP_PPZZ_S(NAME, TYPE, OP) \
2357 DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2358 #define DO_CMP_PPZZ_D(NAME, TYPE, OP) \
2359 DO_CMP_PPZZ(NAME, TYPE, OP, , 0x0101010101010101ull)
2361 DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t, ==)
2362 DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==)
2363 DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==)
2364 DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==)
2366 DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t, !=)
2367 DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=)
2368 DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=)
2369 DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=)
2371 DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t, >)
2372 DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >)
2373 DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >)
2374 DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >)
2376 DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t, >=)
2377 DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=)
2378 DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=)
2379 DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=)
2381 DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t, >)
2382 DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >)
2383 DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >)
2384 DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >)
2386 DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t, >=)
2387 DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=)
2388 DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=)
2389 DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=)
2391 #undef DO_CMP_PPZZ_B
2392 #undef DO_CMP_PPZZ_H
2393 #undef DO_CMP_PPZZ_S
2394 #undef DO_CMP_PPZZ_D
2395 #undef DO_CMP_PPZZ
2397 /* Similar, but the second source is "wide". */
2398 #define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK) \
2399 uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
2401 intptr_t opr_sz = simd_oprsz(desc); \
2402 uint32_t flags = PREDTEST_INIT; \
2403 intptr_t i = opr_sz; \
2404 do { \
2405 uint64_t out = 0, pg; \
2406 do { \
2407 TYPEW mm = *(TYPEW *)(vm + i - 8); \
2408 do { \
2409 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2410 TYPE nn = *(TYPE *)(vn + H(i)); \
2411 out |= nn OP mm; \
2412 } while (i & 7); \
2413 } while (i & 63); \
2414 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2415 out &= pg; \
2416 *(uint64_t *)(vd + (i >> 3)) = out; \
2417 flags = iter_predtest_bwd(out, pg, flags); \
2418 } while (i > 0); \
2419 return flags; \
2422 #define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \
2423 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1, 0xffffffffffffffffull)
2424 #define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \
2425 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull)
2426 #define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
2427 DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
2429 DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, uint8_t, uint64_t, ==)
2430 DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, uint16_t, uint64_t, ==)
2431 DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, uint32_t, uint64_t, ==)
2433 DO_CMP_PPZW_B(sve_cmpne_ppzw_b, uint8_t, uint64_t, !=)
2434 DO_CMP_PPZW_H(sve_cmpne_ppzw_h, uint16_t, uint64_t, !=)
2435 DO_CMP_PPZW_S(sve_cmpne_ppzw_s, uint32_t, uint64_t, !=)
2437 DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >)
2438 DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >)
2439 DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t, int64_t, >)
2441 DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t, int64_t, >=)
2442 DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t, int64_t, >=)
2443 DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t, int64_t, >=)
2445 DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t, uint64_t, >)
2446 DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >)
2447 DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >)
2449 DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t, uint64_t, >=)
2450 DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=)
2451 DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=)
2453 DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t, int64_t, <)
2454 DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t, int64_t, <)
2455 DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t, int64_t, <)
2457 DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t, int64_t, <=)
2458 DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t, int64_t, <=)
2459 DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t, int64_t, <=)
2461 DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t, uint64_t, <)
2462 DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <)
2463 DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <)
2465 DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t, uint64_t, <=)
2466 DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=)
2467 DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=)
2469 #undef DO_CMP_PPZW_B
2470 #undef DO_CMP_PPZW_H
2471 #undef DO_CMP_PPZW_S
2472 #undef DO_CMP_PPZW
2474 /* Similar, but the second source is immediate. */
2475 #define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK) \
2476 uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc) \
2478 intptr_t opr_sz = simd_oprsz(desc); \
2479 uint32_t flags = PREDTEST_INIT; \
2480 TYPE mm = simd_data(desc); \
2481 intptr_t i = opr_sz; \
2482 do { \
2483 uint64_t out = 0, pg; \
2484 do { \
2485 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
2486 TYPE nn = *(TYPE *)(vn + H(i)); \
2487 out |= nn OP mm; \
2488 } while (i & 63); \
2489 pg = *(uint64_t *)(vg + (i >> 3)) & MASK; \
2490 out &= pg; \
2491 *(uint64_t *)(vd + (i >> 3)) = out; \
2492 flags = iter_predtest_bwd(out, pg, flags); \
2493 } while (i > 0); \
2494 return flags; \
2497 #define DO_CMP_PPZI_B(NAME, TYPE, OP) \
2498 DO_CMP_PPZI(NAME, TYPE, OP, H1, 0xffffffffffffffffull)
2499 #define DO_CMP_PPZI_H(NAME, TYPE, OP) \
2500 DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
2501 #define DO_CMP_PPZI_S(NAME, TYPE, OP) \
2502 DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
2503 #define DO_CMP_PPZI_D(NAME, TYPE, OP) \
2504 DO_CMP_PPZI(NAME, TYPE, OP, , 0x0101010101010101ull)
2506 DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t, ==)
2507 DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==)
2508 DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==)
2509 DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==)
2511 DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t, !=)
2512 DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=)
2513 DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=)
2514 DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=)
2516 DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t, >)
2517 DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >)
2518 DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >)
2519 DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >)
2521 DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t, >=)
2522 DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=)
2523 DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=)
2524 DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=)
2526 DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t, >)
2527 DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >)
2528 DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >)
2529 DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >)
2531 DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t, >=)
2532 DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=)
2533 DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=)
2534 DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=)
2536 DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t, <)
2537 DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <)
2538 DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <)
2539 DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <)
2541 DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t, <=)
2542 DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=)
2543 DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=)
2544 DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=)
2546 DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t, <)
2547 DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <)
2548 DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <)
2549 DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <)
2551 DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t, <=)
2552 DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=)
2553 DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=)
2554 DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=)
2556 #undef DO_CMP_PPZI_B
2557 #undef DO_CMP_PPZI_H
2558 #undef DO_CMP_PPZI_S
2559 #undef DO_CMP_PPZI_D
2560 #undef DO_CMP_PPZI
2562 /* Similar to the ARM LastActive pseudocode function. */
2563 static bool last_active_pred(void *vd, void *vg, intptr_t oprsz)
2565 intptr_t i;
2567 for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) {
2568 uint64_t pg = *(uint64_t *)(vg + i);
2569 if (pg) {
2570 return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0;
2573 return 0;
2576 /* Compute a mask into RETB that is true for all G, up to and including
2577 * (if after) or excluding (if !after) the first G & N.
2578 * Return true if BRK found.
2580 static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g,
2581 bool brk, bool after)
2583 uint64_t b;
2585 if (brk) {
2586 b = 0;
2587 } else if ((g & n) == 0) {
2588 /* For all G, no N are set; break not found. */
2589 b = g;
2590 } else {
2591 /* Break somewhere in N. Locate it. */
2592 b = g & n; /* guard true, pred true */
2593 b = b & -b; /* first such */
2594 if (after) {
2595 b = b | (b - 1); /* break after same */
2596 } else {
2597 b = b - 1; /* break before same */
2599 brk = true;
2602 *retb = b;
2603 return brk;
2606 /* Compute a zeroing BRK. */
2607 static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g,
2608 intptr_t oprsz, bool after)
2610 bool brk = false;
2611 intptr_t i;
2613 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2614 uint64_t this_b, this_g = g[i];
2616 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2617 d[i] = this_b & this_g;
2621 /* Likewise, but also compute flags. */
2622 static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g,
2623 intptr_t oprsz, bool after)
2625 uint32_t flags = PREDTEST_INIT;
2626 bool brk = false;
2627 intptr_t i;
2629 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2630 uint64_t this_b, this_d, this_g = g[i];
2632 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2633 d[i] = this_d = this_b & this_g;
2634 flags = iter_predtest_fwd(this_d, this_g, flags);
2636 return flags;
2639 /* Compute a merging BRK. */
2640 static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g,
2641 intptr_t oprsz, bool after)
2643 bool brk = false;
2644 intptr_t i;
2646 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2647 uint64_t this_b, this_g = g[i];
2649 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2650 d[i] = (this_b & this_g) | (d[i] & ~this_g);
2654 /* Likewise, but also compute flags. */
2655 static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g,
2656 intptr_t oprsz, bool after)
2658 uint32_t flags = PREDTEST_INIT;
2659 bool brk = false;
2660 intptr_t i;
2662 for (i = 0; i < oprsz / 8; ++i) {
2663 uint64_t this_b, this_d = d[i], this_g = g[i];
2665 brk = compute_brk(&this_b, n[i], this_g, brk, after);
2666 d[i] = this_d = (this_b & this_g) | (this_d & ~this_g);
2667 flags = iter_predtest_fwd(this_d, this_g, flags);
2669 return flags;
2672 static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz)
2674 /* It is quicker to zero the whole predicate than loop on OPRSZ.
2675 * The compiler should turn this into 4 64-bit integer stores.
2677 memset(d, 0, sizeof(ARMPredicateReg));
2678 return PREDTEST_INIT;
2681 void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg,
2682 uint32_t pred_desc)
2684 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2685 if (last_active_pred(vn, vg, oprsz)) {
2686 compute_brk_z(vd, vm, vg, oprsz, true);
2687 } else {
2688 do_zero(vd, oprsz);
2692 uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg,
2693 uint32_t pred_desc)
2695 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2696 if (last_active_pred(vn, vg, oprsz)) {
2697 return compute_brks_z(vd, vm, vg, oprsz, true);
2698 } else {
2699 return do_zero(vd, oprsz);
2703 void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg,
2704 uint32_t pred_desc)
2706 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2707 if (last_active_pred(vn, vg, oprsz)) {
2708 compute_brk_z(vd, vm, vg, oprsz, false);
2709 } else {
2710 do_zero(vd, oprsz);
2714 uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg,
2715 uint32_t pred_desc)
2717 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2718 if (last_active_pred(vn, vg, oprsz)) {
2719 return compute_brks_z(vd, vm, vg, oprsz, false);
2720 } else {
2721 return do_zero(vd, oprsz);
2725 void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2727 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2728 compute_brk_z(vd, vn, vg, oprsz, true);
2731 uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2733 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2734 return compute_brks_z(vd, vn, vg, oprsz, true);
2737 void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2739 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2740 compute_brk_z(vd, vn, vg, oprsz, false);
2743 uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2745 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2746 return compute_brks_z(vd, vn, vg, oprsz, false);
2749 void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2751 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2752 compute_brk_m(vd, vn, vg, oprsz, true);
2755 uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2757 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2758 return compute_brks_m(vd, vn, vg, oprsz, true);
2761 void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2763 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2764 compute_brk_m(vd, vn, vg, oprsz, false);
2767 uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2769 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2770 return compute_brks_m(vd, vn, vg, oprsz, false);
2773 void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2775 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2777 if (!last_active_pred(vn, vg, oprsz)) {
2778 do_zero(vd, oprsz);
2782 /* As if PredTest(Ones(PL), D, esz). */
2783 static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz,
2784 uint64_t esz_mask)
2786 uint32_t flags = PREDTEST_INIT;
2787 intptr_t i;
2789 for (i = 0; i < oprsz / 8; i++) {
2790 flags = iter_predtest_fwd(d->p[i], esz_mask, flags);
2792 if (oprsz & 7) {
2793 uint64_t mask = ~(-1ULL << (8 * (oprsz & 7)));
2794 flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags);
2796 return flags;
2799 uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc)
2801 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2803 if (last_active_pred(vn, vg, oprsz)) {
2804 return predtest_ones(vd, oprsz, -1);
2805 } else {
2806 return do_zero(vd, oprsz);
2810 uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc)
2812 intptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2813 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2814 uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz];
2815 intptr_t i;
2817 for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
2818 uint64_t t = n[i] & g[i] & mask;
2819 sum += ctpop64(t);
2821 return sum;
2824 uint32_t HELPER(sve_while)(void *vd, uint32_t count, uint32_t pred_desc)
2826 uintptr_t oprsz = extract32(pred_desc, 0, SIMD_OPRSZ_BITS) + 2;
2827 intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
2828 uint64_t esz_mask = pred_esz_masks[esz];
2829 ARMPredicateReg *d = vd;
2830 uint32_t flags;
2831 intptr_t i;
2833 /* Begin with a zero predicate register. */
2834 flags = do_zero(d, oprsz);
2835 if (count == 0) {
2836 return flags;
2839 /* Scale from predicate element count to bits. */
2840 count <<= esz;
2841 /* Bound to the bits in the predicate. */
2842 count = MIN(count, oprsz * 8);
2844 /* Set all of the requested bits. */
2845 for (i = 0; i < count / 64; ++i) {
2846 d->p[i] = esz_mask;
2848 if (count & 63) {
2849 d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask;
2852 return predtest_ones(d, oprsz, esz_mask);
2855 /* Recursive reduction on a function;
2856 * C.f. the ARM ARM function ReducePredicated.
2858 * While it would be possible to write this without the DATA temporary,
2859 * it is much simpler to process the predicate register this way.
2860 * The recursion is bounded to depth 7 (128 fp16 elements), so there's
2861 * little to gain with a more complex non-recursive form.
2863 #define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT) \
2864 static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \
2866 if (n == 1) { \
2867 return *data; \
2868 } else { \
2869 uintptr_t half = n / 2; \
2870 TYPE lo = NAME##_reduce(data, status, half); \
2871 TYPE hi = NAME##_reduce(data + half, status, half); \
2872 return TYPE##_##FUNC(lo, hi, status); \
2875 uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc) \
2877 uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_maxsz(desc); \
2878 TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)]; \
2879 for (i = 0; i < oprsz; ) { \
2880 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
2881 do { \
2882 TYPE nn = *(TYPE *)(vn + H(i)); \
2883 *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT); \
2884 i += sizeof(TYPE), pg >>= sizeof(TYPE); \
2885 } while (i & 15); \
2887 for (; i < maxsz; i += sizeof(TYPE)) { \
2888 *(TYPE *)((void *)data + i) = IDENT; \
2890 return NAME##_reduce(data, vs, maxsz / sizeof(TYPE)); \
2893 DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero)
2894 DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero)
2895 DO_REDUCE(sve_faddv_d, float64, , add, float64_zero)
2897 /* Identity is floatN_default_nan, without the function call. */
2898 DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00)
2899 DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000)
2900 DO_REDUCE(sve_fminnmv_d, float64, , minnum, 0x7FF8000000000000ULL)
2902 DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00)
2903 DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000)
2904 DO_REDUCE(sve_fmaxnmv_d, float64, , maxnum, 0x7FF8000000000000ULL)
2906 DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity)
2907 DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity)
2908 DO_REDUCE(sve_fminv_d, float64, , min, float64_infinity)
2910 DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity))
2911 DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity))
2912 DO_REDUCE(sve_fmaxv_d, float64, , max, float64_chs(float64_infinity))
2914 #undef DO_REDUCE
2916 uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg,
2917 void *status, uint32_t desc)
2919 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2920 float16 result = nn;
2922 do {
2923 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2924 do {
2925 if (pg & 1) {
2926 float16 mm = *(float16 *)(vm + H1_2(i));
2927 result = float16_add(result, mm, status);
2929 i += sizeof(float16), pg >>= sizeof(float16);
2930 } while (i & 15);
2931 } while (i < opr_sz);
2933 return result;
2936 uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg,
2937 void *status, uint32_t desc)
2939 intptr_t i = 0, opr_sz = simd_oprsz(desc);
2940 float32 result = nn;
2942 do {
2943 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
2944 do {
2945 if (pg & 1) {
2946 float32 mm = *(float32 *)(vm + H1_2(i));
2947 result = float32_add(result, mm, status);
2949 i += sizeof(float32), pg >>= sizeof(float32);
2950 } while (i & 15);
2951 } while (i < opr_sz);
2953 return result;
2956 uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg,
2957 void *status, uint32_t desc)
2959 intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8;
2960 uint64_t *m = vm;
2961 uint8_t *pg = vg;
2963 for (i = 0; i < opr_sz; i++) {
2964 if (pg[H1(i)] & 1) {
2965 nn = float64_add(nn, m[i], status);
2969 return nn;
2972 /* Fully general three-operand expander, controlled by a predicate,
2973 * With the extra float_status parameter.
2975 #define DO_ZPZZ_FP(NAME, TYPE, H, OP) \
2976 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
2977 void *status, uint32_t desc) \
2979 intptr_t i = simd_oprsz(desc); \
2980 uint64_t *g = vg; \
2981 do { \
2982 uint64_t pg = g[(i - 1) >> 6]; \
2983 do { \
2984 i -= sizeof(TYPE); \
2985 if (likely((pg >> (i & 63)) & 1)) { \
2986 TYPE nn = *(TYPE *)(vn + H(i)); \
2987 TYPE mm = *(TYPE *)(vm + H(i)); \
2988 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
2990 } while (i & 63); \
2991 } while (i != 0); \
2994 DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add)
2995 DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add)
2996 DO_ZPZZ_FP(sve_fadd_d, uint64_t, , float64_add)
2998 DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub)
2999 DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub)
3000 DO_ZPZZ_FP(sve_fsub_d, uint64_t, , float64_sub)
3002 DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul)
3003 DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul)
3004 DO_ZPZZ_FP(sve_fmul_d, uint64_t, , float64_mul)
3006 DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div)
3007 DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div)
3008 DO_ZPZZ_FP(sve_fdiv_d, uint64_t, , float64_div)
3010 DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min)
3011 DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min)
3012 DO_ZPZZ_FP(sve_fmin_d, uint64_t, , float64_min)
3014 DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max)
3015 DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max)
3016 DO_ZPZZ_FP(sve_fmax_d, uint64_t, , float64_max)
3018 DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum)
3019 DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum)
3020 DO_ZPZZ_FP(sve_fminnum_d, uint64_t, , float64_minnum)
3022 DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum)
3023 DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum)
3024 DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, , float64_maxnum)
3026 static inline float16 abd_h(float16 a, float16 b, float_status *s)
3028 return float16_abs(float16_sub(a, b, s));
3031 static inline float32 abd_s(float32 a, float32 b, float_status *s)
3033 return float32_abs(float32_sub(a, b, s));
3036 static inline float64 abd_d(float64 a, float64 b, float_status *s)
3038 return float64_abs(float64_sub(a, b, s));
3041 DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h)
3042 DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s)
3043 DO_ZPZZ_FP(sve_fabd_d, uint64_t, , abd_d)
3045 static inline float64 scalbn_d(float64 a, int64_t b, float_status *s)
3047 int b_int = MIN(MAX(b, INT_MIN), INT_MAX);
3048 return float64_scalbn(a, b_int, s);
3051 DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn)
3052 DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn)
3053 DO_ZPZZ_FP(sve_fscalbn_d, int64_t, , scalbn_d)
3055 DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh)
3056 DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs)
3057 DO_ZPZZ_FP(sve_fmulx_d, uint64_t, , helper_vfp_mulxd)
3059 #undef DO_ZPZZ_FP
3061 /* Three-operand expander, with one scalar operand, controlled by
3062 * a predicate, with the extra float_status parameter.
3064 #define DO_ZPZS_FP(NAME, TYPE, H, OP) \
3065 void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar, \
3066 void *status, uint32_t desc) \
3068 intptr_t i = simd_oprsz(desc); \
3069 uint64_t *g = vg; \
3070 TYPE mm = scalar; \
3071 do { \
3072 uint64_t pg = g[(i - 1) >> 6]; \
3073 do { \
3074 i -= sizeof(TYPE); \
3075 if (likely((pg >> (i & 63)) & 1)) { \
3076 TYPE nn = *(TYPE *)(vn + H(i)); \
3077 *(TYPE *)(vd + H(i)) = OP(nn, mm, status); \
3079 } while (i & 63); \
3080 } while (i != 0); \
3083 DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add)
3084 DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add)
3085 DO_ZPZS_FP(sve_fadds_d, float64, , float64_add)
3087 DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub)
3088 DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub)
3089 DO_ZPZS_FP(sve_fsubs_d, float64, , float64_sub)
3091 DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul)
3092 DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul)
3093 DO_ZPZS_FP(sve_fmuls_d, float64, , float64_mul)
3095 static inline float16 subr_h(float16 a, float16 b, float_status *s)
3097 return float16_sub(b, a, s);
3100 static inline float32 subr_s(float32 a, float32 b, float_status *s)
3102 return float32_sub(b, a, s);
3105 static inline float64 subr_d(float64 a, float64 b, float_status *s)
3107 return float64_sub(b, a, s);
3110 DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h)
3111 DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s)
3112 DO_ZPZS_FP(sve_fsubrs_d, float64, , subr_d)
3114 DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum)
3115 DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum)
3116 DO_ZPZS_FP(sve_fmaxnms_d, float64, , float64_maxnum)
3118 DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum)
3119 DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum)
3120 DO_ZPZS_FP(sve_fminnms_d, float64, , float64_minnum)
3122 DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max)
3123 DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max)
3124 DO_ZPZS_FP(sve_fmaxs_d, float64, , float64_max)
3126 DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min)
3127 DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min)
3128 DO_ZPZS_FP(sve_fmins_d, float64, , float64_min)
3130 /* Fully general two-operand expander, controlled by a predicate,
3131 * With the extra float_status parameter.
3133 #define DO_ZPZ_FP(NAME, TYPE, H, OP) \
3134 void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
3136 intptr_t i = simd_oprsz(desc); \
3137 uint64_t *g = vg; \
3138 do { \
3139 uint64_t pg = g[(i - 1) >> 6]; \
3140 do { \
3141 i -= sizeof(TYPE); \
3142 if (likely((pg >> (i & 63)) & 1)) { \
3143 TYPE nn = *(TYPE *)(vn + H(i)); \
3144 *(TYPE *)(vd + H(i)) = OP(nn, status); \
3146 } while (i & 63); \
3147 } while (i != 0); \
3150 /* SVE fp16 conversions always use IEEE mode. Like AdvSIMD, they ignore
3151 * FZ16. When converting from fp16, this affects flushing input denormals;
3152 * when converting to fp16, this affects flushing output denormals.
3154 static inline float32 sve_f16_to_f32(float16 f, float_status *fpst)
3156 flag save = get_flush_inputs_to_zero(fpst);
3157 float32 ret;
3159 set_flush_inputs_to_zero(false, fpst);
3160 ret = float16_to_float32(f, true, fpst);
3161 set_flush_inputs_to_zero(save, fpst);
3162 return ret;
3165 static inline float64 sve_f16_to_f64(float16 f, float_status *fpst)
3167 flag save = get_flush_inputs_to_zero(fpst);
3168 float64 ret;
3170 set_flush_inputs_to_zero(false, fpst);
3171 ret = float16_to_float64(f, true, fpst);
3172 set_flush_inputs_to_zero(save, fpst);
3173 return ret;
3176 static inline float16 sve_f32_to_f16(float32 f, float_status *fpst)
3178 flag save = get_flush_to_zero(fpst);
3179 float16 ret;
3181 set_flush_to_zero(false, fpst);
3182 ret = float32_to_float16(f, true, fpst);
3183 set_flush_to_zero(save, fpst);
3184 return ret;
3187 static inline float16 sve_f64_to_f16(float64 f, float_status *fpst)
3189 flag save = get_flush_to_zero(fpst);
3190 float16 ret;
3192 set_flush_to_zero(false, fpst);
3193 ret = float64_to_float16(f, true, fpst);
3194 set_flush_to_zero(save, fpst);
3195 return ret;
3198 DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16)
3199 DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32)
3200 DO_ZPZ_FP(sve_fcvt_dh, uint64_t, , sve_f64_to_f16)
3201 DO_ZPZ_FP(sve_fcvt_hd, uint64_t, , sve_f16_to_f64)
3202 DO_ZPZ_FP(sve_fcvt_ds, uint64_t, , float64_to_float32)
3203 DO_ZPZ_FP(sve_fcvt_sd, uint64_t, , float32_to_float64)
3205 DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16)
3206 DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16)
3207 DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32)
3208 DO_ZPZ_FP(sve_scvt_sd, uint64_t, , int32_to_float64)
3209 DO_ZPZ_FP(sve_scvt_dh, uint64_t, , int64_to_float16)
3210 DO_ZPZ_FP(sve_scvt_ds, uint64_t, , int64_to_float32)
3211 DO_ZPZ_FP(sve_scvt_dd, uint64_t, , int64_to_float64)
3213 DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16)
3214 DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16)
3215 DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32)
3216 DO_ZPZ_FP(sve_ucvt_sd, uint64_t, , uint32_to_float64)
3217 DO_ZPZ_FP(sve_ucvt_dh, uint64_t, , uint64_to_float16)
3218 DO_ZPZ_FP(sve_ucvt_ds, uint64_t, , uint64_to_float32)
3219 DO_ZPZ_FP(sve_ucvt_dd, uint64_t, , uint64_to_float64)
3221 #undef DO_ZPZ_FP
3223 /* 4-operand predicated multiply-add. This requires 7 operands to pass
3224 * "properly", so we need to encode some of the registers into DESC.
3226 QEMU_BUILD_BUG_ON(SIMD_DATA_SHIFT + 20 > 32);
3228 static void do_fmla_zpzzz_h(CPUARMState *env, void *vg, uint32_t desc,
3229 uint16_t neg1, uint16_t neg3)
3231 intptr_t i = simd_oprsz(desc);
3232 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3233 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3234 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3235 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3236 void *vd = &env->vfp.zregs[rd];
3237 void *vn = &env->vfp.zregs[rn];
3238 void *vm = &env->vfp.zregs[rm];
3239 void *va = &env->vfp.zregs[ra];
3240 uint64_t *g = vg;
3242 do {
3243 uint64_t pg = g[(i - 1) >> 6];
3244 do {
3245 i -= 2;
3246 if (likely((pg >> (i & 63)) & 1)) {
3247 float16 e1, e2, e3, r;
3249 e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1;
3250 e2 = *(uint16_t *)(vm + H1_2(i));
3251 e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3;
3252 r = float16_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
3253 *(uint16_t *)(vd + H1_2(i)) = r;
3255 } while (i & 63);
3256 } while (i != 0);
3259 void HELPER(sve_fmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3261 do_fmla_zpzzz_h(env, vg, desc, 0, 0);
3264 void HELPER(sve_fmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3266 do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0);
3269 void HELPER(sve_fnmla_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3271 do_fmla_zpzzz_h(env, vg, desc, 0x8000, 0x8000);
3274 void HELPER(sve_fnmls_zpzzz_h)(CPUARMState *env, void *vg, uint32_t desc)
3276 do_fmla_zpzzz_h(env, vg, desc, 0, 0x8000);
3279 static void do_fmla_zpzzz_s(CPUARMState *env, void *vg, uint32_t desc,
3280 uint32_t neg1, uint32_t neg3)
3282 intptr_t i = simd_oprsz(desc);
3283 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3284 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3285 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3286 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3287 void *vd = &env->vfp.zregs[rd];
3288 void *vn = &env->vfp.zregs[rn];
3289 void *vm = &env->vfp.zregs[rm];
3290 void *va = &env->vfp.zregs[ra];
3291 uint64_t *g = vg;
3293 do {
3294 uint64_t pg = g[(i - 1) >> 6];
3295 do {
3296 i -= 4;
3297 if (likely((pg >> (i & 63)) & 1)) {
3298 float32 e1, e2, e3, r;
3300 e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1;
3301 e2 = *(uint32_t *)(vm + H1_4(i));
3302 e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3;
3303 r = float32_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
3304 *(uint32_t *)(vd + H1_4(i)) = r;
3306 } while (i & 63);
3307 } while (i != 0);
3310 void HELPER(sve_fmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3312 do_fmla_zpzzz_s(env, vg, desc, 0, 0);
3315 void HELPER(sve_fmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3317 do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0);
3320 void HELPER(sve_fnmla_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3322 do_fmla_zpzzz_s(env, vg, desc, 0x80000000, 0x80000000);
3325 void HELPER(sve_fnmls_zpzzz_s)(CPUARMState *env, void *vg, uint32_t desc)
3327 do_fmla_zpzzz_s(env, vg, desc, 0, 0x80000000);
3330 static void do_fmla_zpzzz_d(CPUARMState *env, void *vg, uint32_t desc,
3331 uint64_t neg1, uint64_t neg3)
3333 intptr_t i = simd_oprsz(desc);
3334 unsigned rd = extract32(desc, SIMD_DATA_SHIFT, 5);
3335 unsigned rn = extract32(desc, SIMD_DATA_SHIFT + 5, 5);
3336 unsigned rm = extract32(desc, SIMD_DATA_SHIFT + 10, 5);
3337 unsigned ra = extract32(desc, SIMD_DATA_SHIFT + 15, 5);
3338 void *vd = &env->vfp.zregs[rd];
3339 void *vn = &env->vfp.zregs[rn];
3340 void *vm = &env->vfp.zregs[rm];
3341 void *va = &env->vfp.zregs[ra];
3342 uint64_t *g = vg;
3344 do {
3345 uint64_t pg = g[(i - 1) >> 6];
3346 do {
3347 i -= 8;
3348 if (likely((pg >> (i & 63)) & 1)) {
3349 float64 e1, e2, e3, r;
3351 e1 = *(uint64_t *)(vn + i) ^ neg1;
3352 e2 = *(uint64_t *)(vm + i);
3353 e3 = *(uint64_t *)(va + i) ^ neg3;
3354 r = float64_muladd(e1, e2, e3, 0, &env->vfp.fp_status);
3355 *(uint64_t *)(vd + i) = r;
3357 } while (i & 63);
3358 } while (i != 0);
3361 void HELPER(sve_fmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3363 do_fmla_zpzzz_d(env, vg, desc, 0, 0);
3366 void HELPER(sve_fmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3368 do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, 0);
3371 void HELPER(sve_fnmla_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3373 do_fmla_zpzzz_d(env, vg, desc, INT64_MIN, INT64_MIN);
3376 void HELPER(sve_fnmls_zpzzz_d)(CPUARMState *env, void *vg, uint32_t desc)
3378 do_fmla_zpzzz_d(env, vg, desc, 0, INT64_MIN);
3381 /* Two operand floating-point comparison controlled by a predicate.
3382 * Unlike the integer version, we are not allowed to optimistically
3383 * compare operands, since the comparison may have side effects wrt
3384 * the FPSR.
3386 #define DO_FPCMP_PPZZ(NAME, TYPE, H, OP) \
3387 void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, \
3388 void *status, uint32_t desc) \
3390 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3391 uint64_t *d = vd, *g = vg; \
3392 do { \
3393 uint64_t out = 0, pg = g[j]; \
3394 do { \
3395 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3396 if (likely((pg >> (i & 63)) & 1)) { \
3397 TYPE nn = *(TYPE *)(vn + H(i)); \
3398 TYPE mm = *(TYPE *)(vm + H(i)); \
3399 out |= OP(TYPE, nn, mm, status); \
3401 } while (i & 63); \
3402 d[j--] = out; \
3403 } while (i > 0); \
3406 #define DO_FPCMP_PPZZ_H(NAME, OP) \
3407 DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP)
3408 #define DO_FPCMP_PPZZ_S(NAME, OP) \
3409 DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP)
3410 #define DO_FPCMP_PPZZ_D(NAME, OP) \
3411 DO_FPCMP_PPZZ(NAME##_d, float64, , OP)
3413 #define DO_FPCMP_PPZZ_ALL(NAME, OP) \
3414 DO_FPCMP_PPZZ_H(NAME, OP) \
3415 DO_FPCMP_PPZZ_S(NAME, OP) \
3416 DO_FPCMP_PPZZ_D(NAME, OP)
3418 #define DO_FCMGE(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) <= 0
3419 #define DO_FCMGT(TYPE, X, Y, ST) TYPE##_compare(Y, X, ST) < 0
3420 #define DO_FCMLE(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) <= 0
3421 #define DO_FCMLT(TYPE, X, Y, ST) TYPE##_compare(X, Y, ST) < 0
3422 #define DO_FCMEQ(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) == 0
3423 #define DO_FCMNE(TYPE, X, Y, ST) TYPE##_compare_quiet(X, Y, ST) != 0
3424 #define DO_FCMUO(TYPE, X, Y, ST) \
3425 TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered
3426 #define DO_FACGE(TYPE, X, Y, ST) \
3427 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0
3428 #define DO_FACGT(TYPE, X, Y, ST) \
3429 TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0
3431 DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE)
3432 DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT)
3433 DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ)
3434 DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE)
3435 DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO)
3436 DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE)
3437 DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT)
3439 #undef DO_FPCMP_PPZZ_ALL
3440 #undef DO_FPCMP_PPZZ_D
3441 #undef DO_FPCMP_PPZZ_S
3442 #undef DO_FPCMP_PPZZ_H
3443 #undef DO_FPCMP_PPZZ
3445 /* One operand floating-point comparison against zero, controlled
3446 * by a predicate.
3448 #define DO_FPCMP_PPZ0(NAME, TYPE, H, OP) \
3449 void HELPER(NAME)(void *vd, void *vn, void *vg, \
3450 void *status, uint32_t desc) \
3452 intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6; \
3453 uint64_t *d = vd, *g = vg; \
3454 do { \
3455 uint64_t out = 0, pg = g[j]; \
3456 do { \
3457 i -= sizeof(TYPE), out <<= sizeof(TYPE); \
3458 if ((pg >> (i & 63)) & 1) { \
3459 TYPE nn = *(TYPE *)(vn + H(i)); \
3460 out |= OP(TYPE, nn, 0, status); \
3462 } while (i & 63); \
3463 d[j--] = out; \
3464 } while (i > 0); \
3467 #define DO_FPCMP_PPZ0_H(NAME, OP) \
3468 DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP)
3469 #define DO_FPCMP_PPZ0_S(NAME, OP) \
3470 DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP)
3471 #define DO_FPCMP_PPZ0_D(NAME, OP) \
3472 DO_FPCMP_PPZ0(NAME##_d, float64, , OP)
3474 #define DO_FPCMP_PPZ0_ALL(NAME, OP) \
3475 DO_FPCMP_PPZ0_H(NAME, OP) \
3476 DO_FPCMP_PPZ0_S(NAME, OP) \
3477 DO_FPCMP_PPZ0_D(NAME, OP)
3479 DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE)
3480 DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT)
3481 DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE)
3482 DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT)
3483 DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ)
3484 DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE)
3486 /* FP Trig Multiply-Add. */
3488 void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3490 static const float16 coeff[16] = {
3491 0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3492 0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
3494 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16);
3495 intptr_t x = simd_data(desc);
3496 float16 *d = vd, *n = vn, *m = vm;
3497 for (i = 0; i < opr_sz; i++) {
3498 float16 mm = m[i];
3499 intptr_t xx = x;
3500 if (float16_is_neg(mm)) {
3501 mm = float16_abs(mm);
3502 xx += 8;
3504 d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs);
3508 void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3510 static const float32 coeff[16] = {
3511 0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9,
3512 0x36369d6d, 0x00000000, 0x00000000, 0x00000000,
3513 0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705,
3514 0x37cd37cc, 0x00000000, 0x00000000, 0x00000000,
3516 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32);
3517 intptr_t x = simd_data(desc);
3518 float32 *d = vd, *n = vn, *m = vm;
3519 for (i = 0; i < opr_sz; i++) {
3520 float32 mm = m[i];
3521 intptr_t xx = x;
3522 if (float32_is_neg(mm)) {
3523 mm = float32_abs(mm);
3524 xx += 8;
3526 d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs);
3530 void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
3532 static const float64 coeff[16] = {
3533 0x3ff0000000000000ull, 0xbfc5555555555543ull,
3534 0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull,
3535 0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull,
3536 0x3de5d8408868552full, 0x0000000000000000ull,
3537 0x3ff0000000000000ull, 0xbfe0000000000000ull,
3538 0x3fa5555555555536ull, 0xbf56c16c16c13a0bull,
3539 0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull,
3540 0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull,
3542 intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64);
3543 intptr_t x = simd_data(desc);
3544 float64 *d = vd, *n = vn, *m = vm;
3545 for (i = 0; i < opr_sz; i++) {
3546 float64 mm = m[i];
3547 intptr_t xx = x;
3548 if (float64_is_neg(mm)) {
3549 mm = float64_abs(mm);
3550 xx += 8;
3552 d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs);
3557 * Load contiguous data, protected by a governing predicate.
3559 #define DO_LD1(NAME, FN, TYPEE, TYPEM, H) \
3560 static void do_##NAME(CPUARMState *env, void *vd, void *vg, \
3561 target_ulong addr, intptr_t oprsz, \
3562 uintptr_t ra) \
3564 intptr_t i = 0; \
3565 do { \
3566 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3567 do { \
3568 TYPEM m = 0; \
3569 if (pg & 1) { \
3570 m = FN(env, addr, ra); \
3572 *(TYPEE *)(vd + H(i)) = m; \
3573 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3574 addr += sizeof(TYPEM); \
3575 } while (i & 15); \
3576 } while (i < oprsz); \
3578 void HELPER(NAME)(CPUARMState *env, void *vg, \
3579 target_ulong addr, uint32_t desc) \
3581 do_##NAME(env, &env->vfp.zregs[simd_data(desc)], vg, \
3582 addr, simd_oprsz(desc), GETPC()); \
3585 #define DO_LD2(NAME, FN, TYPEE, TYPEM, H) \
3586 void HELPER(NAME)(CPUARMState *env, void *vg, \
3587 target_ulong addr, uint32_t desc) \
3589 intptr_t i, oprsz = simd_oprsz(desc); \
3590 intptr_t ra = GETPC(); \
3591 unsigned rd = simd_data(desc); \
3592 void *d1 = &env->vfp.zregs[rd]; \
3593 void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
3594 for (i = 0; i < oprsz; ) { \
3595 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3596 do { \
3597 TYPEM m1 = 0, m2 = 0; \
3598 if (pg & 1) { \
3599 m1 = FN(env, addr, ra); \
3600 m2 = FN(env, addr + sizeof(TYPEM), ra); \
3602 *(TYPEE *)(d1 + H(i)) = m1; \
3603 *(TYPEE *)(d2 + H(i)) = m2; \
3604 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3605 addr += 2 * sizeof(TYPEM); \
3606 } while (i & 15); \
3610 #define DO_LD3(NAME, FN, TYPEE, TYPEM, H) \
3611 void HELPER(NAME)(CPUARMState *env, void *vg, \
3612 target_ulong addr, uint32_t desc) \
3614 intptr_t i, oprsz = simd_oprsz(desc); \
3615 intptr_t ra = GETPC(); \
3616 unsigned rd = simd_data(desc); \
3617 void *d1 = &env->vfp.zregs[rd]; \
3618 void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
3619 void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
3620 for (i = 0; i < oprsz; ) { \
3621 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3622 do { \
3623 TYPEM m1 = 0, m2 = 0, m3 = 0; \
3624 if (pg & 1) { \
3625 m1 = FN(env, addr, ra); \
3626 m2 = FN(env, addr + sizeof(TYPEM), ra); \
3627 m3 = FN(env, addr + 2 * sizeof(TYPEM), ra); \
3629 *(TYPEE *)(d1 + H(i)) = m1; \
3630 *(TYPEE *)(d2 + H(i)) = m2; \
3631 *(TYPEE *)(d3 + H(i)) = m3; \
3632 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3633 addr += 3 * sizeof(TYPEM); \
3634 } while (i & 15); \
3638 #define DO_LD4(NAME, FN, TYPEE, TYPEM, H) \
3639 void HELPER(NAME)(CPUARMState *env, void *vg, \
3640 target_ulong addr, uint32_t desc) \
3642 intptr_t i, oprsz = simd_oprsz(desc); \
3643 intptr_t ra = GETPC(); \
3644 unsigned rd = simd_data(desc); \
3645 void *d1 = &env->vfp.zregs[rd]; \
3646 void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
3647 void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
3648 void *d4 = &env->vfp.zregs[(rd + 3) & 31]; \
3649 for (i = 0; i < oprsz; ) { \
3650 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3651 do { \
3652 TYPEM m1 = 0, m2 = 0, m3 = 0, m4 = 0; \
3653 if (pg & 1) { \
3654 m1 = FN(env, addr, ra); \
3655 m2 = FN(env, addr + sizeof(TYPEM), ra); \
3656 m3 = FN(env, addr + 2 * sizeof(TYPEM), ra); \
3657 m4 = FN(env, addr + 3 * sizeof(TYPEM), ra); \
3659 *(TYPEE *)(d1 + H(i)) = m1; \
3660 *(TYPEE *)(d2 + H(i)) = m2; \
3661 *(TYPEE *)(d3 + H(i)) = m3; \
3662 *(TYPEE *)(d4 + H(i)) = m4; \
3663 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3664 addr += 4 * sizeof(TYPEM); \
3665 } while (i & 15); \
3669 DO_LD1(sve_ld1bhu_r, cpu_ldub_data_ra, uint16_t, uint8_t, H1_2)
3670 DO_LD1(sve_ld1bhs_r, cpu_ldsb_data_ra, uint16_t, int8_t, H1_2)
3671 DO_LD1(sve_ld1bsu_r, cpu_ldub_data_ra, uint32_t, uint8_t, H1_4)
3672 DO_LD1(sve_ld1bss_r, cpu_ldsb_data_ra, uint32_t, int8_t, H1_4)
3673 DO_LD1(sve_ld1bdu_r, cpu_ldub_data_ra, uint64_t, uint8_t, )
3674 DO_LD1(sve_ld1bds_r, cpu_ldsb_data_ra, uint64_t, int8_t, )
3676 DO_LD1(sve_ld1hsu_r, cpu_lduw_data_ra, uint32_t, uint16_t, H1_4)
3677 DO_LD1(sve_ld1hss_r, cpu_ldsw_data_ra, uint32_t, int8_t, H1_4)
3678 DO_LD1(sve_ld1hdu_r, cpu_lduw_data_ra, uint64_t, uint16_t, )
3679 DO_LD1(sve_ld1hds_r, cpu_ldsw_data_ra, uint64_t, int16_t, )
3681 DO_LD1(sve_ld1sdu_r, cpu_ldl_data_ra, uint64_t, uint32_t, )
3682 DO_LD1(sve_ld1sds_r, cpu_ldl_data_ra, uint64_t, int32_t, )
3684 DO_LD1(sve_ld1bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
3685 DO_LD2(sve_ld2bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
3686 DO_LD3(sve_ld3bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
3687 DO_LD4(sve_ld4bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
3689 DO_LD1(sve_ld1hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
3690 DO_LD2(sve_ld2hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
3691 DO_LD3(sve_ld3hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
3692 DO_LD4(sve_ld4hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
3694 DO_LD1(sve_ld1ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
3695 DO_LD2(sve_ld2ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
3696 DO_LD3(sve_ld3ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
3697 DO_LD4(sve_ld4ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
3699 DO_LD1(sve_ld1dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
3700 DO_LD2(sve_ld2dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
3701 DO_LD3(sve_ld3dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
3702 DO_LD4(sve_ld4dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
3704 #undef DO_LD1
3705 #undef DO_LD2
3706 #undef DO_LD3
3707 #undef DO_LD4
3710 * Load contiguous data, first-fault and no-fault.
3713 #ifdef CONFIG_USER_ONLY
3715 /* Fault on byte I. All bits in FFR from I are cleared. The vector
3716 * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
3717 * option, which leaves subsequent data unchanged.
3719 static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
3721 uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p;
3723 if (i & 63) {
3724 ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63);
3725 i = ROUND_UP(i, 64);
3727 for (; i < oprsz; i += 64) {
3728 ffr[i / 64] = 0;
3732 /* Hold the mmap lock during the operation so that there is no race
3733 * between page_check_range and the load operation. We expect the
3734 * usual case to have no faults at all, so we check the whole range
3735 * first and if successful defer to the normal load operation.
3737 * TODO: Change mmap_lock to a rwlock so that multiple readers
3738 * can run simultaneously. This will probably help other uses
3739 * within QEMU as well.
3741 #define DO_LDFF1(PART, FN, TYPEE, TYPEM, H) \
3742 static void do_sve_ldff1##PART(CPUARMState *env, void *vd, void *vg, \
3743 target_ulong addr, intptr_t oprsz, \
3744 bool first, uintptr_t ra) \
3746 intptr_t i = 0; \
3747 do { \
3748 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3749 do { \
3750 TYPEM m = 0; \
3751 if (pg & 1) { \
3752 if (!first && \
3753 unlikely(page_check_range(addr, sizeof(TYPEM), \
3754 PAGE_READ))) { \
3755 record_fault(env, i, oprsz); \
3756 return; \
3758 m = FN(env, addr, ra); \
3759 first = false; \
3761 *(TYPEE *)(vd + H(i)) = m; \
3762 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3763 addr += sizeof(TYPEM); \
3764 } while (i & 15); \
3765 } while (i < oprsz); \
3767 void HELPER(sve_ldff1##PART)(CPUARMState *env, void *vg, \
3768 target_ulong addr, uint32_t desc) \
3770 intptr_t oprsz = simd_oprsz(desc); \
3771 unsigned rd = simd_data(desc); \
3772 void *vd = &env->vfp.zregs[rd]; \
3773 mmap_lock(); \
3774 if (likely(page_check_range(addr, oprsz, PAGE_READ) == 0)) { \
3775 do_sve_ld1##PART(env, vd, vg, addr, oprsz, GETPC()); \
3776 } else { \
3777 do_sve_ldff1##PART(env, vd, vg, addr, oprsz, true, GETPC()); \
3779 mmap_unlock(); \
3782 /* No-fault loads are like first-fault loads without the
3783 * first faulting special case.
3785 #define DO_LDNF1(PART) \
3786 void HELPER(sve_ldnf1##PART)(CPUARMState *env, void *vg, \
3787 target_ulong addr, uint32_t desc) \
3789 intptr_t oprsz = simd_oprsz(desc); \
3790 unsigned rd = simd_data(desc); \
3791 void *vd = &env->vfp.zregs[rd]; \
3792 mmap_lock(); \
3793 if (likely(page_check_range(addr, oprsz, PAGE_READ) == 0)) { \
3794 do_sve_ld1##PART(env, vd, vg, addr, oprsz, GETPC()); \
3795 } else { \
3796 do_sve_ldff1##PART(env, vd, vg, addr, oprsz, false, GETPC()); \
3798 mmap_unlock(); \
3801 #else
3803 /* TODO: System mode is not yet supported.
3804 * This would probably use tlb_vaddr_to_host.
3806 #define DO_LDFF1(PART, FN, TYPEE, TYPEM, H) \
3807 void HELPER(sve_ldff1##PART)(CPUARMState *env, void *vg, \
3808 target_ulong addr, uint32_t desc) \
3810 g_assert_not_reached(); \
3813 #define DO_LDNF1(PART) \
3814 void HELPER(sve_ldnf1##PART)(CPUARMState *env, void *vg, \
3815 target_ulong addr, uint32_t desc) \
3817 g_assert_not_reached(); \
3820 #endif
3822 DO_LDFF1(bb_r, cpu_ldub_data_ra, uint8_t, uint8_t, H1)
3823 DO_LDFF1(bhu_r, cpu_ldub_data_ra, uint16_t, uint8_t, H1_2)
3824 DO_LDFF1(bhs_r, cpu_ldsb_data_ra, uint16_t, int8_t, H1_2)
3825 DO_LDFF1(bsu_r, cpu_ldub_data_ra, uint32_t, uint8_t, H1_4)
3826 DO_LDFF1(bss_r, cpu_ldsb_data_ra, uint32_t, int8_t, H1_4)
3827 DO_LDFF1(bdu_r, cpu_ldub_data_ra, uint64_t, uint8_t, )
3828 DO_LDFF1(bds_r, cpu_ldsb_data_ra, uint64_t, int8_t, )
3830 DO_LDFF1(hh_r, cpu_lduw_data_ra, uint16_t, uint16_t, H1_2)
3831 DO_LDFF1(hsu_r, cpu_lduw_data_ra, uint32_t, uint16_t, H1_4)
3832 DO_LDFF1(hss_r, cpu_ldsw_data_ra, uint32_t, int8_t, H1_4)
3833 DO_LDFF1(hdu_r, cpu_lduw_data_ra, uint64_t, uint16_t, )
3834 DO_LDFF1(hds_r, cpu_ldsw_data_ra, uint64_t, int16_t, )
3836 DO_LDFF1(ss_r, cpu_ldl_data_ra, uint32_t, uint32_t, H1_4)
3837 DO_LDFF1(sdu_r, cpu_ldl_data_ra, uint64_t, uint32_t, )
3838 DO_LDFF1(sds_r, cpu_ldl_data_ra, uint64_t, int32_t, )
3840 DO_LDFF1(dd_r, cpu_ldq_data_ra, uint64_t, uint64_t, )
3842 #undef DO_LDFF1
3844 DO_LDNF1(bb_r)
3845 DO_LDNF1(bhu_r)
3846 DO_LDNF1(bhs_r)
3847 DO_LDNF1(bsu_r)
3848 DO_LDNF1(bss_r)
3849 DO_LDNF1(bdu_r)
3850 DO_LDNF1(bds_r)
3852 DO_LDNF1(hh_r)
3853 DO_LDNF1(hsu_r)
3854 DO_LDNF1(hss_r)
3855 DO_LDNF1(hdu_r)
3856 DO_LDNF1(hds_r)
3858 DO_LDNF1(ss_r)
3859 DO_LDNF1(sdu_r)
3860 DO_LDNF1(sds_r)
3862 DO_LDNF1(dd_r)
3864 #undef DO_LDNF1
3867 * Store contiguous data, protected by a governing predicate.
3869 #define DO_ST1(NAME, FN, TYPEE, TYPEM, H) \
3870 void HELPER(NAME)(CPUARMState *env, void *vg, \
3871 target_ulong addr, uint32_t desc) \
3873 intptr_t i, oprsz = simd_oprsz(desc); \
3874 intptr_t ra = GETPC(); \
3875 unsigned rd = simd_data(desc); \
3876 void *vd = &env->vfp.zregs[rd]; \
3877 for (i = 0; i < oprsz; ) { \
3878 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3879 do { \
3880 if (pg & 1) { \
3881 TYPEM m = *(TYPEE *)(vd + H(i)); \
3882 FN(env, addr, m, ra); \
3884 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3885 addr += sizeof(TYPEM); \
3886 } while (i & 15); \
3890 #define DO_ST1_D(NAME, FN, TYPEM) \
3891 void HELPER(NAME)(CPUARMState *env, void *vg, \
3892 target_ulong addr, uint32_t desc) \
3894 intptr_t i, oprsz = simd_oprsz(desc) / 8; \
3895 intptr_t ra = GETPC(); \
3896 unsigned rd = simd_data(desc); \
3897 uint64_t *d = &env->vfp.zregs[rd].d[0]; \
3898 uint8_t *pg = vg; \
3899 for (i = 0; i < oprsz; i += 1) { \
3900 if (pg[H1(i)] & 1) { \
3901 FN(env, addr, d[i], ra); \
3903 addr += sizeof(TYPEM); \
3907 #define DO_ST2(NAME, FN, TYPEE, TYPEM, H) \
3908 void HELPER(NAME)(CPUARMState *env, void *vg, \
3909 target_ulong addr, uint32_t desc) \
3911 intptr_t i, oprsz = simd_oprsz(desc); \
3912 intptr_t ra = GETPC(); \
3913 unsigned rd = simd_data(desc); \
3914 void *d1 = &env->vfp.zregs[rd]; \
3915 void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
3916 for (i = 0; i < oprsz; ) { \
3917 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3918 do { \
3919 if (pg & 1) { \
3920 TYPEM m1 = *(TYPEE *)(d1 + H(i)); \
3921 TYPEM m2 = *(TYPEE *)(d2 + H(i)); \
3922 FN(env, addr, m1, ra); \
3923 FN(env, addr + sizeof(TYPEM), m2, ra); \
3925 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3926 addr += 2 * sizeof(TYPEM); \
3927 } while (i & 15); \
3931 #define DO_ST3(NAME, FN, TYPEE, TYPEM, H) \
3932 void HELPER(NAME)(CPUARMState *env, void *vg, \
3933 target_ulong addr, uint32_t desc) \
3935 intptr_t i, oprsz = simd_oprsz(desc); \
3936 intptr_t ra = GETPC(); \
3937 unsigned rd = simd_data(desc); \
3938 void *d1 = &env->vfp.zregs[rd]; \
3939 void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
3940 void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
3941 for (i = 0; i < oprsz; ) { \
3942 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3943 do { \
3944 if (pg & 1) { \
3945 TYPEM m1 = *(TYPEE *)(d1 + H(i)); \
3946 TYPEM m2 = *(TYPEE *)(d2 + H(i)); \
3947 TYPEM m3 = *(TYPEE *)(d3 + H(i)); \
3948 FN(env, addr, m1, ra); \
3949 FN(env, addr + sizeof(TYPEM), m2, ra); \
3950 FN(env, addr + 2 * sizeof(TYPEM), m3, ra); \
3952 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3953 addr += 3 * sizeof(TYPEM); \
3954 } while (i & 15); \
3958 #define DO_ST4(NAME, FN, TYPEE, TYPEM, H) \
3959 void HELPER(NAME)(CPUARMState *env, void *vg, \
3960 target_ulong addr, uint32_t desc) \
3962 intptr_t i, oprsz = simd_oprsz(desc); \
3963 intptr_t ra = GETPC(); \
3964 unsigned rd = simd_data(desc); \
3965 void *d1 = &env->vfp.zregs[rd]; \
3966 void *d2 = &env->vfp.zregs[(rd + 1) & 31]; \
3967 void *d3 = &env->vfp.zregs[(rd + 2) & 31]; \
3968 void *d4 = &env->vfp.zregs[(rd + 3) & 31]; \
3969 for (i = 0; i < oprsz; ) { \
3970 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
3971 do { \
3972 if (pg & 1) { \
3973 TYPEM m1 = *(TYPEE *)(d1 + H(i)); \
3974 TYPEM m2 = *(TYPEE *)(d2 + H(i)); \
3975 TYPEM m3 = *(TYPEE *)(d3 + H(i)); \
3976 TYPEM m4 = *(TYPEE *)(d4 + H(i)); \
3977 FN(env, addr, m1, ra); \
3978 FN(env, addr + sizeof(TYPEM), m2, ra); \
3979 FN(env, addr + 2 * sizeof(TYPEM), m3, ra); \
3980 FN(env, addr + 3 * sizeof(TYPEM), m4, ra); \
3982 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
3983 addr += 4 * sizeof(TYPEM); \
3984 } while (i & 15); \
3988 DO_ST1(sve_st1bh_r, cpu_stb_data_ra, uint16_t, uint8_t, H1_2)
3989 DO_ST1(sve_st1bs_r, cpu_stb_data_ra, uint32_t, uint8_t, H1_4)
3990 DO_ST1_D(sve_st1bd_r, cpu_stb_data_ra, uint8_t)
3992 DO_ST1(sve_st1hs_r, cpu_stw_data_ra, uint32_t, uint16_t, H1_4)
3993 DO_ST1_D(sve_st1hd_r, cpu_stw_data_ra, uint16_t)
3995 DO_ST1_D(sve_st1sd_r, cpu_stl_data_ra, uint32_t)
3997 DO_ST1(sve_st1bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
3998 DO_ST2(sve_st2bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
3999 DO_ST3(sve_st3bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
4000 DO_ST4(sve_st4bb_r, cpu_stb_data_ra, uint8_t, uint8_t, H1)
4002 DO_ST1(sve_st1hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
4003 DO_ST2(sve_st2hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
4004 DO_ST3(sve_st3hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
4005 DO_ST4(sve_st4hh_r, cpu_stw_data_ra, uint16_t, uint16_t, H1_2)
4007 DO_ST1(sve_st1ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
4008 DO_ST2(sve_st2ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
4009 DO_ST3(sve_st3ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
4010 DO_ST4(sve_st4ss_r, cpu_stl_data_ra, uint32_t, uint32_t, H1_4)
4012 DO_ST1_D(sve_st1dd_r, cpu_stq_data_ra, uint64_t)
4014 void HELPER(sve_st2dd_r)(CPUARMState *env, void *vg,
4015 target_ulong addr, uint32_t desc)
4017 intptr_t i, oprsz = simd_oprsz(desc) / 8;
4018 intptr_t ra = GETPC();
4019 unsigned rd = simd_data(desc);
4020 uint64_t *d1 = &env->vfp.zregs[rd].d[0];
4021 uint64_t *d2 = &env->vfp.zregs[(rd + 1) & 31].d[0];
4022 uint8_t *pg = vg;
4024 for (i = 0; i < oprsz; i += 1) {
4025 if (pg[H1(i)] & 1) {
4026 cpu_stq_data_ra(env, addr, d1[i], ra);
4027 cpu_stq_data_ra(env, addr + 8, d2[i], ra);
4029 addr += 2 * 8;
4033 void HELPER(sve_st3dd_r)(CPUARMState *env, void *vg,
4034 target_ulong addr, uint32_t desc)
4036 intptr_t i, oprsz = simd_oprsz(desc) / 8;
4037 intptr_t ra = GETPC();
4038 unsigned rd = simd_data(desc);
4039 uint64_t *d1 = &env->vfp.zregs[rd].d[0];
4040 uint64_t *d2 = &env->vfp.zregs[(rd + 1) & 31].d[0];
4041 uint64_t *d3 = &env->vfp.zregs[(rd + 2) & 31].d[0];
4042 uint8_t *pg = vg;
4044 for (i = 0; i < oprsz; i += 1) {
4045 if (pg[H1(i)] & 1) {
4046 cpu_stq_data_ra(env, addr, d1[i], ra);
4047 cpu_stq_data_ra(env, addr + 8, d2[i], ra);
4048 cpu_stq_data_ra(env, addr + 16, d3[i], ra);
4050 addr += 3 * 8;
4054 void HELPER(sve_st4dd_r)(CPUARMState *env, void *vg,
4055 target_ulong addr, uint32_t desc)
4057 intptr_t i, oprsz = simd_oprsz(desc) / 8;
4058 intptr_t ra = GETPC();
4059 unsigned rd = simd_data(desc);
4060 uint64_t *d1 = &env->vfp.zregs[rd].d[0];
4061 uint64_t *d2 = &env->vfp.zregs[(rd + 1) & 31].d[0];
4062 uint64_t *d3 = &env->vfp.zregs[(rd + 2) & 31].d[0];
4063 uint64_t *d4 = &env->vfp.zregs[(rd + 3) & 31].d[0];
4064 uint8_t *pg = vg;
4066 for (i = 0; i < oprsz; i += 1) {
4067 if (pg[H1(i)] & 1) {
4068 cpu_stq_data_ra(env, addr, d1[i], ra);
4069 cpu_stq_data_ra(env, addr + 8, d2[i], ra);
4070 cpu_stq_data_ra(env, addr + 16, d3[i], ra);
4071 cpu_stq_data_ra(env, addr + 24, d4[i], ra);
4073 addr += 4 * 8;
4077 /* Loads with a vector index. */
4079 #define DO_LD1_ZPZ_S(NAME, TYPEI, TYPEM, FN) \
4080 void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
4081 target_ulong base, uint32_t desc) \
4083 intptr_t i, oprsz = simd_oprsz(desc); \
4084 unsigned scale = simd_data(desc); \
4085 uintptr_t ra = GETPC(); \
4086 for (i = 0; i < oprsz; i++) { \
4087 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
4088 do { \
4089 TYPEM m = 0; \
4090 if (pg & 1) { \
4091 target_ulong off = *(TYPEI *)(vm + H1_4(i)); \
4092 m = FN(env, base + (off << scale), ra); \
4094 *(uint32_t *)(vd + H1_4(i)) = m; \
4095 i += 4, pg >>= 4; \
4096 } while (i & 15); \
4100 #define DO_LD1_ZPZ_D(NAME, TYPEI, TYPEM, FN) \
4101 void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
4102 target_ulong base, uint32_t desc) \
4104 intptr_t i, oprsz = simd_oprsz(desc) / 8; \
4105 unsigned scale = simd_data(desc); \
4106 uintptr_t ra = GETPC(); \
4107 uint64_t *d = vd, *m = vm; uint8_t *pg = vg; \
4108 for (i = 0; i < oprsz; i++) { \
4109 TYPEM mm = 0; \
4110 if (pg[H1(i)] & 1) { \
4111 target_ulong off = (TYPEI)m[i]; \
4112 mm = FN(env, base + (off << scale), ra); \
4114 d[i] = mm; \
4118 DO_LD1_ZPZ_S(sve_ldbsu_zsu, uint32_t, uint8_t, cpu_ldub_data_ra)
4119 DO_LD1_ZPZ_S(sve_ldhsu_zsu, uint32_t, uint16_t, cpu_lduw_data_ra)
4120 DO_LD1_ZPZ_S(sve_ldssu_zsu, uint32_t, uint32_t, cpu_ldl_data_ra)
4121 DO_LD1_ZPZ_S(sve_ldbss_zsu, uint32_t, int8_t, cpu_ldub_data_ra)
4122 DO_LD1_ZPZ_S(sve_ldhss_zsu, uint32_t, int16_t, cpu_lduw_data_ra)
4124 DO_LD1_ZPZ_S(sve_ldbsu_zss, int32_t, uint8_t, cpu_ldub_data_ra)
4125 DO_LD1_ZPZ_S(sve_ldhsu_zss, int32_t, uint16_t, cpu_lduw_data_ra)
4126 DO_LD1_ZPZ_S(sve_ldssu_zss, int32_t, uint32_t, cpu_ldl_data_ra)
4127 DO_LD1_ZPZ_S(sve_ldbss_zss, int32_t, int8_t, cpu_ldub_data_ra)
4128 DO_LD1_ZPZ_S(sve_ldhss_zss, int32_t, int16_t, cpu_lduw_data_ra)
4130 DO_LD1_ZPZ_D(sve_ldbdu_zsu, uint32_t, uint8_t, cpu_ldub_data_ra)
4131 DO_LD1_ZPZ_D(sve_ldhdu_zsu, uint32_t, uint16_t, cpu_lduw_data_ra)
4132 DO_LD1_ZPZ_D(sve_ldsdu_zsu, uint32_t, uint32_t, cpu_ldl_data_ra)
4133 DO_LD1_ZPZ_D(sve_ldddu_zsu, uint32_t, uint64_t, cpu_ldq_data_ra)
4134 DO_LD1_ZPZ_D(sve_ldbds_zsu, uint32_t, int8_t, cpu_ldub_data_ra)
4135 DO_LD1_ZPZ_D(sve_ldhds_zsu, uint32_t, int16_t, cpu_lduw_data_ra)
4136 DO_LD1_ZPZ_D(sve_ldsds_zsu, uint32_t, int32_t, cpu_ldl_data_ra)
4138 DO_LD1_ZPZ_D(sve_ldbdu_zss, int32_t, uint8_t, cpu_ldub_data_ra)
4139 DO_LD1_ZPZ_D(sve_ldhdu_zss, int32_t, uint16_t, cpu_lduw_data_ra)
4140 DO_LD1_ZPZ_D(sve_ldsdu_zss, int32_t, uint32_t, cpu_ldl_data_ra)
4141 DO_LD1_ZPZ_D(sve_ldddu_zss, int32_t, uint64_t, cpu_ldq_data_ra)
4142 DO_LD1_ZPZ_D(sve_ldbds_zss, int32_t, int8_t, cpu_ldub_data_ra)
4143 DO_LD1_ZPZ_D(sve_ldhds_zss, int32_t, int16_t, cpu_lduw_data_ra)
4144 DO_LD1_ZPZ_D(sve_ldsds_zss, int32_t, int32_t, cpu_ldl_data_ra)
4146 DO_LD1_ZPZ_D(sve_ldbdu_zd, uint64_t, uint8_t, cpu_ldub_data_ra)
4147 DO_LD1_ZPZ_D(sve_ldhdu_zd, uint64_t, uint16_t, cpu_lduw_data_ra)
4148 DO_LD1_ZPZ_D(sve_ldsdu_zd, uint64_t, uint32_t, cpu_ldl_data_ra)
4149 DO_LD1_ZPZ_D(sve_ldddu_zd, uint64_t, uint64_t, cpu_ldq_data_ra)
4150 DO_LD1_ZPZ_D(sve_ldbds_zd, uint64_t, int8_t, cpu_ldub_data_ra)
4151 DO_LD1_ZPZ_D(sve_ldhds_zd, uint64_t, int16_t, cpu_lduw_data_ra)
4152 DO_LD1_ZPZ_D(sve_ldsds_zd, uint64_t, int32_t, cpu_ldl_data_ra)
4154 /* First fault loads with a vector index. */
4156 #ifdef CONFIG_USER_ONLY
4158 #define DO_LDFF1_ZPZ(NAME, TYPEE, TYPEI, TYPEM, FN, H) \
4159 void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
4160 target_ulong base, uint32_t desc) \
4162 intptr_t i, oprsz = simd_oprsz(desc); \
4163 unsigned scale = simd_data(desc); \
4164 uintptr_t ra = GETPC(); \
4165 bool first = true; \
4166 mmap_lock(); \
4167 for (i = 0; i < oprsz; i++) { \
4168 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
4169 do { \
4170 TYPEM m = 0; \
4171 if (pg & 1) { \
4172 target_ulong off = *(TYPEI *)(vm + H(i)); \
4173 target_ulong addr = base + (off << scale); \
4174 if (!first && \
4175 page_check_range(addr, sizeof(TYPEM), PAGE_READ)) { \
4176 record_fault(env, i, oprsz); \
4177 goto exit; \
4179 m = FN(env, addr, ra); \
4180 first = false; \
4182 *(TYPEE *)(vd + H(i)) = m; \
4183 i += sizeof(TYPEE), pg >>= sizeof(TYPEE); \
4184 } while (i & 15); \
4186 exit: \
4187 mmap_unlock(); \
4190 #else
4192 #define DO_LDFF1_ZPZ(NAME, TYPEE, TYPEI, TYPEM, FN, H) \
4193 void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
4194 target_ulong base, uint32_t desc) \
4196 g_assert_not_reached(); \
4199 #endif
4201 #define DO_LDFF1_ZPZ_S(NAME, TYPEI, TYPEM, FN) \
4202 DO_LDFF1_ZPZ(NAME, uint32_t, TYPEI, TYPEM, FN, H1_4)
4203 #define DO_LDFF1_ZPZ_D(NAME, TYPEI, TYPEM, FN) \
4204 DO_LDFF1_ZPZ(NAME, uint64_t, TYPEI, TYPEM, FN, )
4206 DO_LDFF1_ZPZ_S(sve_ldffbsu_zsu, uint32_t, uint8_t, cpu_ldub_data_ra)
4207 DO_LDFF1_ZPZ_S(sve_ldffhsu_zsu, uint32_t, uint16_t, cpu_lduw_data_ra)
4208 DO_LDFF1_ZPZ_S(sve_ldffssu_zsu, uint32_t, uint32_t, cpu_ldl_data_ra)
4209 DO_LDFF1_ZPZ_S(sve_ldffbss_zsu, uint32_t, int8_t, cpu_ldub_data_ra)
4210 DO_LDFF1_ZPZ_S(sve_ldffhss_zsu, uint32_t, int16_t, cpu_lduw_data_ra)
4212 DO_LDFF1_ZPZ_S(sve_ldffbsu_zss, int32_t, uint8_t, cpu_ldub_data_ra)
4213 DO_LDFF1_ZPZ_S(sve_ldffhsu_zss, int32_t, uint16_t, cpu_lduw_data_ra)
4214 DO_LDFF1_ZPZ_S(sve_ldffssu_zss, int32_t, uint32_t, cpu_ldl_data_ra)
4215 DO_LDFF1_ZPZ_S(sve_ldffbss_zss, int32_t, int8_t, cpu_ldub_data_ra)
4216 DO_LDFF1_ZPZ_S(sve_ldffhss_zss, int32_t, int16_t, cpu_lduw_data_ra)
4218 DO_LDFF1_ZPZ_D(sve_ldffbdu_zsu, uint32_t, uint8_t, cpu_ldub_data_ra)
4219 DO_LDFF1_ZPZ_D(sve_ldffhdu_zsu, uint32_t, uint16_t, cpu_lduw_data_ra)
4220 DO_LDFF1_ZPZ_D(sve_ldffsdu_zsu, uint32_t, uint32_t, cpu_ldl_data_ra)
4221 DO_LDFF1_ZPZ_D(sve_ldffddu_zsu, uint32_t, uint64_t, cpu_ldq_data_ra)
4222 DO_LDFF1_ZPZ_D(sve_ldffbds_zsu, uint32_t, int8_t, cpu_ldub_data_ra)
4223 DO_LDFF1_ZPZ_D(sve_ldffhds_zsu, uint32_t, int16_t, cpu_lduw_data_ra)
4224 DO_LDFF1_ZPZ_D(sve_ldffsds_zsu, uint32_t, int32_t, cpu_ldl_data_ra)
4226 DO_LDFF1_ZPZ_D(sve_ldffbdu_zss, int32_t, uint8_t, cpu_ldub_data_ra)
4227 DO_LDFF1_ZPZ_D(sve_ldffhdu_zss, int32_t, uint16_t, cpu_lduw_data_ra)
4228 DO_LDFF1_ZPZ_D(sve_ldffsdu_zss, int32_t, uint32_t, cpu_ldl_data_ra)
4229 DO_LDFF1_ZPZ_D(sve_ldffddu_zss, int32_t, uint64_t, cpu_ldq_data_ra)
4230 DO_LDFF1_ZPZ_D(sve_ldffbds_zss, int32_t, int8_t, cpu_ldub_data_ra)
4231 DO_LDFF1_ZPZ_D(sve_ldffhds_zss, int32_t, int16_t, cpu_lduw_data_ra)
4232 DO_LDFF1_ZPZ_D(sve_ldffsds_zss, int32_t, int32_t, cpu_ldl_data_ra)
4234 DO_LDFF1_ZPZ_D(sve_ldffbdu_zd, uint64_t, uint8_t, cpu_ldub_data_ra)
4235 DO_LDFF1_ZPZ_D(sve_ldffhdu_zd, uint64_t, uint16_t, cpu_lduw_data_ra)
4236 DO_LDFF1_ZPZ_D(sve_ldffsdu_zd, uint64_t, uint32_t, cpu_ldl_data_ra)
4237 DO_LDFF1_ZPZ_D(sve_ldffddu_zd, uint64_t, uint64_t, cpu_ldq_data_ra)
4238 DO_LDFF1_ZPZ_D(sve_ldffbds_zd, uint64_t, int8_t, cpu_ldub_data_ra)
4239 DO_LDFF1_ZPZ_D(sve_ldffhds_zd, uint64_t, int16_t, cpu_lduw_data_ra)
4240 DO_LDFF1_ZPZ_D(sve_ldffsds_zd, uint64_t, int32_t, cpu_ldl_data_ra)
4242 /* Stores with a vector index. */
4244 #define DO_ST1_ZPZ_S(NAME, TYPEI, FN) \
4245 void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
4246 target_ulong base, uint32_t desc) \
4248 intptr_t i, oprsz = simd_oprsz(desc); \
4249 unsigned scale = simd_data(desc); \
4250 uintptr_t ra = GETPC(); \
4251 for (i = 0; i < oprsz; ) { \
4252 uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
4253 do { \
4254 if (likely(pg & 1)) { \
4255 target_ulong off = *(TYPEI *)(vm + H1_4(i)); \
4256 uint32_t d = *(uint32_t *)(vd + H1_4(i)); \
4257 FN(env, base + (off << scale), d, ra); \
4259 i += sizeof(uint32_t), pg >>= sizeof(uint32_t); \
4260 } while (i & 15); \
4264 #define DO_ST1_ZPZ_D(NAME, TYPEI, FN) \
4265 void HELPER(NAME)(CPUARMState *env, void *vd, void *vg, void *vm, \
4266 target_ulong base, uint32_t desc) \
4268 intptr_t i, oprsz = simd_oprsz(desc) / 8; \
4269 unsigned scale = simd_data(desc); \
4270 uintptr_t ra = GETPC(); \
4271 uint64_t *d = vd, *m = vm; uint8_t *pg = vg; \
4272 for (i = 0; i < oprsz; i++) { \
4273 if (likely(pg[H1(i)] & 1)) { \
4274 target_ulong off = (target_ulong)(TYPEI)m[i] << scale; \
4275 FN(env, base + off, d[i], ra); \
4280 DO_ST1_ZPZ_S(sve_stbs_zsu, uint32_t, cpu_stb_data_ra)
4281 DO_ST1_ZPZ_S(sve_sths_zsu, uint32_t, cpu_stw_data_ra)
4282 DO_ST1_ZPZ_S(sve_stss_zsu, uint32_t, cpu_stl_data_ra)
4284 DO_ST1_ZPZ_S(sve_stbs_zss, int32_t, cpu_stb_data_ra)
4285 DO_ST1_ZPZ_S(sve_sths_zss, int32_t, cpu_stw_data_ra)
4286 DO_ST1_ZPZ_S(sve_stss_zss, int32_t, cpu_stl_data_ra)
4288 DO_ST1_ZPZ_D(sve_stbd_zsu, uint32_t, cpu_stb_data_ra)
4289 DO_ST1_ZPZ_D(sve_sthd_zsu, uint32_t, cpu_stw_data_ra)
4290 DO_ST1_ZPZ_D(sve_stsd_zsu, uint32_t, cpu_stl_data_ra)
4291 DO_ST1_ZPZ_D(sve_stdd_zsu, uint32_t, cpu_stq_data_ra)
4293 DO_ST1_ZPZ_D(sve_stbd_zss, int32_t, cpu_stb_data_ra)
4294 DO_ST1_ZPZ_D(sve_sthd_zss, int32_t, cpu_stw_data_ra)
4295 DO_ST1_ZPZ_D(sve_stsd_zss, int32_t, cpu_stl_data_ra)
4296 DO_ST1_ZPZ_D(sve_stdd_zss, int32_t, cpu_stq_data_ra)
4298 DO_ST1_ZPZ_D(sve_stbd_zd, uint64_t, cpu_stb_data_ra)
4299 DO_ST1_ZPZ_D(sve_sthd_zd, uint64_t, cpu_stw_data_ra)
4300 DO_ST1_ZPZ_D(sve_stsd_zd, uint64_t, cpu_stl_data_ra)
4301 DO_ST1_ZPZ_D(sve_stdd_zd, uint64_t, cpu_stq_data_ra)