4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
23 #include <sys/types.h>
27 #include "qemu-common.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_UNASSIGNED
54 //#define DEBUG_SUBPAGE
56 #if !defined(CONFIG_USER_ONLY)
58 static int in_migration
;
60 RAMList ram_list
= { .blocks
= QTAILQ_HEAD_INITIALIZER(ram_list
.blocks
) };
62 static MemoryRegion
*system_memory
;
63 static MemoryRegion
*system_io
;
65 AddressSpace address_space_io
;
66 AddressSpace address_space_memory
;
67 DMAContext dma_context_memory
;
69 MemoryRegion io_mem_ram
, io_mem_rom
, io_mem_unassigned
, io_mem_notdirty
;
70 static MemoryRegion io_mem_subpage_ram
;
74 CPUArchState
*first_cpu
;
75 /* current CPU in the current thread. It is only valid inside
77 DEFINE_TLS(CPUArchState
*,cpu_single_env
);
78 /* 0 = Do not count executed instructions.
79 1 = Precise instruction counting.
80 2 = Adaptive rate instruction counting. */
83 #if !defined(CONFIG_USER_ONLY)
85 static MemoryRegionSection
*phys_sections
;
86 static unsigned phys_sections_nb
, phys_sections_nb_alloc
;
87 static uint16_t phys_section_unassigned
;
88 static uint16_t phys_section_notdirty
;
89 static uint16_t phys_section_rom
;
90 static uint16_t phys_section_watch
;
92 /* Simple allocator for PhysPageEntry nodes */
93 static PhysPageEntry (*phys_map_nodes
)[L2_SIZE
];
94 static unsigned phys_map_nodes_nb
, phys_map_nodes_nb_alloc
;
96 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
98 static void io_mem_init(void);
99 static void memory_map_init(void);
100 static void *qemu_safe_ram_ptr(ram_addr_t addr
);
102 static MemoryRegion io_mem_watch
;
105 #if !defined(CONFIG_USER_ONLY)
107 static void phys_map_node_reserve(unsigned nodes
)
109 if (phys_map_nodes_nb
+ nodes
> phys_map_nodes_nb_alloc
) {
110 typedef PhysPageEntry Node
[L2_SIZE
];
111 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
* 2, 16);
112 phys_map_nodes_nb_alloc
= MAX(phys_map_nodes_nb_alloc
,
113 phys_map_nodes_nb
+ nodes
);
114 phys_map_nodes
= g_renew(Node
, phys_map_nodes
,
115 phys_map_nodes_nb_alloc
);
119 static uint16_t phys_map_node_alloc(void)
124 ret
= phys_map_nodes_nb
++;
125 assert(ret
!= PHYS_MAP_NODE_NIL
);
126 assert(ret
!= phys_map_nodes_nb_alloc
);
127 for (i
= 0; i
< L2_SIZE
; ++i
) {
128 phys_map_nodes
[ret
][i
].is_leaf
= 0;
129 phys_map_nodes
[ret
][i
].ptr
= PHYS_MAP_NODE_NIL
;
134 static void phys_map_nodes_reset(void)
136 phys_map_nodes_nb
= 0;
140 static void phys_page_set_level(PhysPageEntry
*lp
, hwaddr
*index
,
141 hwaddr
*nb
, uint16_t leaf
,
146 hwaddr step
= (hwaddr
)1 << (level
* L2_BITS
);
148 if (!lp
->is_leaf
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
149 lp
->ptr
= phys_map_node_alloc();
150 p
= phys_map_nodes
[lp
->ptr
];
152 for (i
= 0; i
< L2_SIZE
; i
++) {
154 p
[i
].ptr
= phys_section_unassigned
;
158 p
= phys_map_nodes
[lp
->ptr
];
160 lp
= &p
[(*index
>> (level
* L2_BITS
)) & (L2_SIZE
- 1)];
162 while (*nb
&& lp
< &p
[L2_SIZE
]) {
163 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
169 phys_page_set_level(lp
, index
, nb
, leaf
, level
- 1);
175 static void phys_page_set(AddressSpaceDispatch
*d
,
176 hwaddr index
, hwaddr nb
,
179 /* Wildly overreserve - it doesn't matter much. */
180 phys_map_node_reserve(3 * P_L2_LEVELS
);
182 phys_page_set_level(&d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
185 MemoryRegionSection
*phys_page_find(AddressSpaceDispatch
*d
, hwaddr index
)
187 PhysPageEntry lp
= d
->phys_map
;
191 for (i
= P_L2_LEVELS
- 1; i
>= 0 && !lp
.is_leaf
; i
--) {
192 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
193 return &phys_sections
[phys_section_unassigned
];
195 p
= phys_map_nodes
[lp
.ptr
];
196 lp
= p
[(index
>> (i
* L2_BITS
)) & (L2_SIZE
- 1)];
198 return &phys_sections
[lp
.ptr
];
201 bool memory_region_is_unassigned(MemoryRegion
*mr
)
203 return mr
!= &io_mem_ram
&& mr
!= &io_mem_rom
204 && mr
!= &io_mem_notdirty
&& !mr
->rom_device
205 && mr
!= &io_mem_watch
;
209 void cpu_exec_init_all(void)
211 #if !defined(CONFIG_USER_ONLY)
212 qemu_mutex_init(&ram_list
.mutex
);
218 #if !defined(CONFIG_USER_ONLY)
220 static int cpu_common_post_load(void *opaque
, int version_id
)
222 CPUState
*cpu
= opaque
;
224 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
225 version_id is increased. */
226 cpu
->interrupt_request
&= ~0x01;
227 tlb_flush(cpu
->env_ptr
, 1);
232 static const VMStateDescription vmstate_cpu_common
= {
233 .name
= "cpu_common",
235 .minimum_version_id
= 1,
236 .minimum_version_id_old
= 1,
237 .post_load
= cpu_common_post_load
,
238 .fields
= (VMStateField
[]) {
239 VMSTATE_UINT32(halted
, CPUState
),
240 VMSTATE_UINT32(interrupt_request
, CPUState
),
241 VMSTATE_END_OF_LIST()
245 #define vmstate_cpu_common vmstate_dummy
248 CPUState
*qemu_get_cpu(int index
)
250 CPUArchState
*env
= first_cpu
;
251 CPUState
*cpu
= NULL
;
254 cpu
= ENV_GET_CPU(env
);
255 if (cpu
->cpu_index
== index
) {
261 return env
? cpu
: NULL
;
264 void qemu_for_each_cpu(void (*func
)(CPUState
*cpu
, void *data
), void *data
)
266 CPUArchState
*env
= first_cpu
;
269 func(ENV_GET_CPU(env
), data
);
274 void cpu_exec_init(CPUArchState
*env
)
276 CPUState
*cpu
= ENV_GET_CPU(env
);
277 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
281 #if defined(CONFIG_USER_ONLY)
284 env
->next_cpu
= NULL
;
287 while (*penv
!= NULL
) {
288 penv
= &(*penv
)->next_cpu
;
291 cpu
->cpu_index
= cpu_index
;
293 QTAILQ_INIT(&env
->breakpoints
);
294 QTAILQ_INIT(&env
->watchpoints
);
295 #ifndef CONFIG_USER_ONLY
296 cpu
->thread_id
= qemu_get_thread_id();
299 #if defined(CONFIG_USER_ONLY)
302 vmstate_register(NULL
, cpu_index
, &vmstate_cpu_common
, cpu
);
303 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
304 register_savevm(NULL
, "cpu", cpu_index
, CPU_SAVE_VERSION
,
305 cpu_save
, cpu_load
, env
);
306 assert(cc
->vmsd
== NULL
);
308 if (cc
->vmsd
!= NULL
) {
309 vmstate_register(NULL
, cpu_index
, cc
->vmsd
, cpu
);
313 #if defined(TARGET_HAS_ICE)
314 #if defined(CONFIG_USER_ONLY)
315 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
317 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
320 static void breakpoint_invalidate(CPUArchState
*env
, target_ulong pc
)
322 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env
, pc
) |
323 (pc
& ~TARGET_PAGE_MASK
));
326 #endif /* TARGET_HAS_ICE */
328 #if defined(CONFIG_USER_ONLY)
329 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
334 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
335 int flags
, CPUWatchpoint
**watchpoint
)
340 /* Add a watchpoint. */
341 int cpu_watchpoint_insert(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
342 int flags
, CPUWatchpoint
**watchpoint
)
344 target_ulong len_mask
= ~(len
- 1);
347 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
348 if ((len
& (len
- 1)) || (addr
& ~len_mask
) ||
349 len
== 0 || len
> TARGET_PAGE_SIZE
) {
350 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
351 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
354 wp
= g_malloc(sizeof(*wp
));
357 wp
->len_mask
= len_mask
;
360 /* keep all GDB-injected watchpoints in front */
362 QTAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
364 QTAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
366 tlb_flush_page(env
, addr
);
373 /* Remove a specific watchpoint. */
374 int cpu_watchpoint_remove(CPUArchState
*env
, target_ulong addr
, target_ulong len
,
377 target_ulong len_mask
= ~(len
- 1);
380 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
381 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
382 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
383 cpu_watchpoint_remove_by_ref(env
, wp
);
390 /* Remove a specific watchpoint by reference. */
391 void cpu_watchpoint_remove_by_ref(CPUArchState
*env
, CPUWatchpoint
*watchpoint
)
393 QTAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
395 tlb_flush_page(env
, watchpoint
->vaddr
);
400 /* Remove all matching watchpoints. */
401 void cpu_watchpoint_remove_all(CPUArchState
*env
, int mask
)
403 CPUWatchpoint
*wp
, *next
;
405 QTAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
406 if (wp
->flags
& mask
)
407 cpu_watchpoint_remove_by_ref(env
, wp
);
412 /* Add a breakpoint. */
413 int cpu_breakpoint_insert(CPUArchState
*env
, target_ulong pc
, int flags
,
414 CPUBreakpoint
**breakpoint
)
416 #if defined(TARGET_HAS_ICE)
419 bp
= g_malloc(sizeof(*bp
));
424 /* keep all GDB-injected breakpoints in front */
426 QTAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
428 QTAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
430 breakpoint_invalidate(env
, pc
);
440 /* Remove a specific breakpoint. */
441 int cpu_breakpoint_remove(CPUArchState
*env
, target_ulong pc
, int flags
)
443 #if defined(TARGET_HAS_ICE)
446 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
447 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
448 cpu_breakpoint_remove_by_ref(env
, bp
);
458 /* Remove a specific breakpoint by reference. */
459 void cpu_breakpoint_remove_by_ref(CPUArchState
*env
, CPUBreakpoint
*breakpoint
)
461 #if defined(TARGET_HAS_ICE)
462 QTAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
464 breakpoint_invalidate(env
, breakpoint
->pc
);
470 /* Remove all matching breakpoints. */
471 void cpu_breakpoint_remove_all(CPUArchState
*env
, int mask
)
473 #if defined(TARGET_HAS_ICE)
474 CPUBreakpoint
*bp
, *next
;
476 QTAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
477 if (bp
->flags
& mask
)
478 cpu_breakpoint_remove_by_ref(env
, bp
);
483 /* enable or disable single step mode. EXCP_DEBUG is returned by the
484 CPU loop after each instruction */
485 void cpu_single_step(CPUArchState
*env
, int enabled
)
487 #if defined(TARGET_HAS_ICE)
488 if (env
->singlestep_enabled
!= enabled
) {
489 env
->singlestep_enabled
= enabled
;
491 kvm_update_guest_debug(env
, 0);
493 /* must flush all the translated code to avoid inconsistencies */
494 /* XXX: only flush what is necessary */
501 void cpu_exit(CPUArchState
*env
)
503 CPUState
*cpu
= ENV_GET_CPU(env
);
505 cpu
->exit_request
= 1;
506 cpu
->tcg_exit_req
= 1;
509 void cpu_abort(CPUArchState
*env
, const char *fmt
, ...)
516 fprintf(stderr
, "qemu: fatal: ");
517 vfprintf(stderr
, fmt
, ap
);
518 fprintf(stderr
, "\n");
519 cpu_dump_state(env
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
520 if (qemu_log_enabled()) {
521 qemu_log("qemu: fatal: ");
522 qemu_log_vprintf(fmt
, ap2
);
524 log_cpu_state(env
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
530 #if defined(CONFIG_USER_ONLY)
532 struct sigaction act
;
533 sigfillset(&act
.sa_mask
);
534 act
.sa_handler
= SIG_DFL
;
535 sigaction(SIGABRT
, &act
, NULL
);
541 CPUArchState
*cpu_copy(CPUArchState
*env
)
543 CPUArchState
*new_env
= cpu_init(env
->cpu_model_str
);
544 CPUArchState
*next_cpu
= new_env
->next_cpu
;
545 #if defined(TARGET_HAS_ICE)
550 memcpy(new_env
, env
, sizeof(CPUArchState
));
552 /* Preserve chaining. */
553 new_env
->next_cpu
= next_cpu
;
555 /* Clone all break/watchpoints.
556 Note: Once we support ptrace with hw-debug register access, make sure
557 BP_CPU break/watchpoints are handled correctly on clone. */
558 QTAILQ_INIT(&env
->breakpoints
);
559 QTAILQ_INIT(&env
->watchpoints
);
560 #if defined(TARGET_HAS_ICE)
561 QTAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
562 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
564 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
565 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
573 #if !defined(CONFIG_USER_ONLY)
574 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t end
,
579 /* we modify the TLB cache so that the dirty bit will be set again
580 when accessing the range */
581 start1
= (uintptr_t)qemu_safe_ram_ptr(start
);
582 /* Check that we don't span multiple blocks - this breaks the
583 address comparisons below. */
584 if ((uintptr_t)qemu_safe_ram_ptr(end
- 1) - start1
585 != (end
- 1) - start
) {
588 cpu_tlb_reset_dirty_all(start1
, length
);
592 /* Note: start and end must be within the same ram block. */
593 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
598 start
&= TARGET_PAGE_MASK
;
599 end
= TARGET_PAGE_ALIGN(end
);
601 length
= end
- start
;
604 cpu_physical_memory_mask_dirty_range(start
, length
, dirty_flags
);
607 tlb_reset_dirty_range_all(start
, end
, length
);
611 static int cpu_physical_memory_set_dirty_tracking(int enable
)
614 in_migration
= enable
;
618 hwaddr
memory_region_section_get_iotlb(CPUArchState
*env
,
619 MemoryRegionSection
*section
,
623 target_ulong
*address
)
628 if (memory_region_is_ram(section
->mr
)) {
630 iotlb
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
631 + memory_region_section_addr(section
, paddr
);
632 if (!section
->readonly
) {
633 iotlb
|= phys_section_notdirty
;
635 iotlb
|= phys_section_rom
;
638 iotlb
= section
- phys_sections
;
639 iotlb
+= memory_region_section_addr(section
, paddr
);
642 /* Make accesses to pages with watchpoints go via the
643 watchpoint trap routines. */
644 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
645 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
646 /* Avoid trapping reads of pages with a write breakpoint. */
647 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
648 iotlb
= phys_section_watch
+ paddr
;
649 *address
|= TLB_MMIO
;
657 #endif /* defined(CONFIG_USER_ONLY) */
659 #if !defined(CONFIG_USER_ONLY)
661 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
662 typedef struct subpage_t
{
665 uint16_t sub_section
[TARGET_PAGE_SIZE
];
668 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
670 static subpage_t
*subpage_init(hwaddr base
);
671 static void destroy_page_desc(uint16_t section_index
)
673 MemoryRegionSection
*section
= &phys_sections
[section_index
];
674 MemoryRegion
*mr
= section
->mr
;
677 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
678 memory_region_destroy(&subpage
->iomem
);
683 static void destroy_l2_mapping(PhysPageEntry
*lp
, unsigned level
)
688 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
692 p
= phys_map_nodes
[lp
->ptr
];
693 for (i
= 0; i
< L2_SIZE
; ++i
) {
695 destroy_l2_mapping(&p
[i
], level
- 1);
697 destroy_page_desc(p
[i
].ptr
);
701 lp
->ptr
= PHYS_MAP_NODE_NIL
;
704 static void destroy_all_mappings(AddressSpaceDispatch
*d
)
706 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
707 phys_map_nodes_reset();
710 static uint16_t phys_section_add(MemoryRegionSection
*section
)
712 /* The physical section number is ORed with a page-aligned
713 * pointer to produce the iotlb entries. Thus it should
714 * never overflow into the page-aligned value.
716 assert(phys_sections_nb
< TARGET_PAGE_SIZE
);
718 if (phys_sections_nb
== phys_sections_nb_alloc
) {
719 phys_sections_nb_alloc
= MAX(phys_sections_nb_alloc
* 2, 16);
720 phys_sections
= g_renew(MemoryRegionSection
, phys_sections
,
721 phys_sections_nb_alloc
);
723 phys_sections
[phys_sections_nb
] = *section
;
724 return phys_sections_nb
++;
727 static void phys_sections_clear(void)
729 phys_sections_nb
= 0;
732 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
735 hwaddr base
= section
->offset_within_address_space
737 MemoryRegionSection
*existing
= phys_page_find(d
, base
>> TARGET_PAGE_BITS
);
738 MemoryRegionSection subsection
= {
739 .offset_within_address_space
= base
,
740 .size
= TARGET_PAGE_SIZE
,
744 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
746 if (!(existing
->mr
->subpage
)) {
747 subpage
= subpage_init(base
);
748 subsection
.mr
= &subpage
->iomem
;
749 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
750 phys_section_add(&subsection
));
752 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
754 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
755 end
= start
+ section
->size
- 1;
756 subpage_register(subpage
, start
, end
, phys_section_add(section
));
760 static void register_multipage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
762 hwaddr start_addr
= section
->offset_within_address_space
;
763 ram_addr_t size
= section
->size
;
765 uint16_t section_index
= phys_section_add(section
);
770 phys_page_set(d
, addr
>> TARGET_PAGE_BITS
, size
>> TARGET_PAGE_BITS
,
774 QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS
> MAX_PHYS_ADDR_SPACE_BITS
)
776 static MemoryRegionSection
limit(MemoryRegionSection section
)
778 section
.size
= MIN(section
.offset_within_address_space
+ section
.size
,
780 - section
.offset_within_address_space
;
785 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
787 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
788 MemoryRegionSection now
= limit(*section
), remain
= limit(*section
);
790 if ((now
.offset_within_address_space
& ~TARGET_PAGE_MASK
)
791 || (now
.size
< TARGET_PAGE_SIZE
)) {
792 now
.size
= MIN(TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
793 - now
.offset_within_address_space
,
795 register_subpage(d
, &now
);
796 remain
.size
-= now
.size
;
797 remain
.offset_within_address_space
+= now
.size
;
798 remain
.offset_within_region
+= now
.size
;
800 while (remain
.size
>= TARGET_PAGE_SIZE
) {
802 if (remain
.offset_within_region
& ~TARGET_PAGE_MASK
) {
803 now
.size
= TARGET_PAGE_SIZE
;
804 register_subpage(d
, &now
);
806 now
.size
&= TARGET_PAGE_MASK
;
807 register_multipage(d
, &now
);
809 remain
.size
-= now
.size
;
810 remain
.offset_within_address_space
+= now
.size
;
811 remain
.offset_within_region
+= now
.size
;
815 register_subpage(d
, &now
);
819 void qemu_flush_coalesced_mmio_buffer(void)
822 kvm_flush_coalesced_mmio_buffer();
825 void qemu_mutex_lock_ramlist(void)
827 qemu_mutex_lock(&ram_list
.mutex
);
830 void qemu_mutex_unlock_ramlist(void)
832 qemu_mutex_unlock(&ram_list
.mutex
);
835 #if defined(__linux__) && !defined(TARGET_S390X)
839 #define HUGETLBFS_MAGIC 0x958458f6
841 static long gethugepagesize(const char *path
)
847 ret
= statfs(path
, &fs
);
848 } while (ret
!= 0 && errno
== EINTR
);
855 if (fs
.f_type
!= HUGETLBFS_MAGIC
)
856 fprintf(stderr
, "Warning: path not on HugeTLBFS: %s\n", path
);
861 static void *file_ram_alloc(RAMBlock
*block
,
866 char *sanitized_name
;
873 unsigned long hpagesize
;
875 hpagesize
= gethugepagesize(path
);
880 if (memory
< hpagesize
) {
884 if (kvm_enabled() && !kvm_has_sync_mmu()) {
885 fprintf(stderr
, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
889 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
890 sanitized_name
= g_strdup(block
->mr
->name
);
891 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
896 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
898 g_free(sanitized_name
);
900 fd
= mkstemp(filename
);
902 perror("unable to create backing store for hugepages");
909 memory
= (memory
+hpagesize
-1) & ~(hpagesize
-1);
912 * ftruncate is not supported by hugetlbfs in older
913 * hosts, so don't bother bailing out on errors.
914 * If anything goes wrong with it under other filesystems,
917 if (ftruncate(fd
, memory
))
921 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
922 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
923 * to sidestep this quirk.
925 flags
= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
: MAP_PRIVATE
;
926 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, flags
, fd
, 0);
928 area
= mmap(0, memory
, PROT_READ
| PROT_WRITE
, MAP_PRIVATE
, fd
, 0);
930 if (area
== MAP_FAILED
) {
931 perror("file_ram_alloc: can't mmap RAM pages");
940 static ram_addr_t
find_ram_offset(ram_addr_t size
)
942 RAMBlock
*block
, *next_block
;
943 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
945 assert(size
!= 0); /* it would hand out same offset multiple times */
947 if (QTAILQ_EMPTY(&ram_list
.blocks
))
950 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
951 ram_addr_t end
, next
= RAM_ADDR_MAX
;
953 end
= block
->offset
+ block
->length
;
955 QTAILQ_FOREACH(next_block
, &ram_list
.blocks
, next
) {
956 if (next_block
->offset
>= end
) {
957 next
= MIN(next
, next_block
->offset
);
960 if (next
- end
>= size
&& next
- end
< mingap
) {
966 if (offset
== RAM_ADDR_MAX
) {
967 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
975 ram_addr_t
last_ram_offset(void)
980 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
)
981 last
= MAX(last
, block
->offset
+ block
->length
);
986 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
989 QemuOpts
*machine_opts
;
991 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
992 machine_opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
994 !qemu_opt_get_bool(machine_opts
, "dump-guest-core", true)) {
995 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
997 perror("qemu_madvise");
998 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
999 "but dump_guest_core=off specified\n");
1004 void qemu_ram_set_idstr(ram_addr_t addr
, const char *name
, DeviceState
*dev
)
1006 RAMBlock
*new_block
, *block
;
1009 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1010 if (block
->offset
== addr
) {
1016 assert(!new_block
->idstr
[0]);
1019 char *id
= qdev_get_dev_path(dev
);
1021 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1025 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1027 /* This assumes the iothread lock is taken here too. */
1028 qemu_mutex_lock_ramlist();
1029 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1030 if (block
!= new_block
&& !strcmp(block
->idstr
, new_block
->idstr
)) {
1031 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1036 qemu_mutex_unlock_ramlist();
1039 static int memory_try_enable_merging(void *addr
, size_t len
)
1043 opts
= qemu_opts_find(qemu_find_opts("machine"), 0);
1044 if (opts
&& !qemu_opt_get_bool(opts
, "mem-merge", true)) {
1045 /* disabled by the user */
1049 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1052 ram_addr_t
qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1055 RAMBlock
*block
, *new_block
;
1057 size
= TARGET_PAGE_ALIGN(size
);
1058 new_block
= g_malloc0(sizeof(*new_block
));
1060 /* This assumes the iothread lock is taken here too. */
1061 qemu_mutex_lock_ramlist();
1063 new_block
->offset
= find_ram_offset(size
);
1065 new_block
->host
= host
;
1066 new_block
->flags
|= RAM_PREALLOC_MASK
;
1069 #if defined (__linux__) && !defined(TARGET_S390X)
1070 new_block
->host
= file_ram_alloc(new_block
, size
, mem_path
);
1071 if (!new_block
->host
) {
1072 new_block
->host
= qemu_anon_ram_alloc(size
);
1073 memory_try_enable_merging(new_block
->host
, size
);
1076 fprintf(stderr
, "-mem-path option unsupported\n");
1080 if (xen_enabled()) {
1081 xen_ram_alloc(new_block
->offset
, size
, mr
);
1082 } else if (kvm_enabled()) {
1083 /* some s390/kvm configurations have special constraints */
1084 new_block
->host
= kvm_ram_alloc(size
);
1086 new_block
->host
= qemu_anon_ram_alloc(size
);
1088 memory_try_enable_merging(new_block
->host
, size
);
1091 new_block
->length
= size
;
1093 /* Keep the list sorted from biggest to smallest block. */
1094 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1095 if (block
->length
< new_block
->length
) {
1100 QTAILQ_INSERT_BEFORE(block
, new_block
, next
);
1102 QTAILQ_INSERT_TAIL(&ram_list
.blocks
, new_block
, next
);
1104 ram_list
.mru_block
= NULL
;
1107 qemu_mutex_unlock_ramlist();
1109 ram_list
.phys_dirty
= g_realloc(ram_list
.phys_dirty
,
1110 last_ram_offset() >> TARGET_PAGE_BITS
);
1111 memset(ram_list
.phys_dirty
+ (new_block
->offset
>> TARGET_PAGE_BITS
),
1112 0, size
>> TARGET_PAGE_BITS
);
1113 cpu_physical_memory_set_dirty_range(new_block
->offset
, size
, 0xff);
1115 qemu_ram_setup_dump(new_block
->host
, size
);
1116 qemu_madvise(new_block
->host
, size
, QEMU_MADV_HUGEPAGE
);
1119 kvm_setup_guest_memory(new_block
->host
, size
);
1121 return new_block
->offset
;
1124 ram_addr_t
qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
)
1126 return qemu_ram_alloc_from_ptr(size
, NULL
, mr
);
1129 void qemu_ram_free_from_ptr(ram_addr_t addr
)
1133 /* This assumes the iothread lock is taken here too. */
1134 qemu_mutex_lock_ramlist();
1135 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1136 if (addr
== block
->offset
) {
1137 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1138 ram_list
.mru_block
= NULL
;
1144 qemu_mutex_unlock_ramlist();
1147 void qemu_ram_free(ram_addr_t addr
)
1151 /* This assumes the iothread lock is taken here too. */
1152 qemu_mutex_lock_ramlist();
1153 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1154 if (addr
== block
->offset
) {
1155 QTAILQ_REMOVE(&ram_list
.blocks
, block
, next
);
1156 ram_list
.mru_block
= NULL
;
1158 if (block
->flags
& RAM_PREALLOC_MASK
) {
1160 } else if (mem_path
) {
1161 #if defined (__linux__) && !defined(TARGET_S390X)
1163 munmap(block
->host
, block
->length
);
1166 qemu_anon_ram_free(block
->host
, block
->length
);
1172 if (xen_enabled()) {
1173 xen_invalidate_map_cache_entry(block
->host
);
1175 qemu_anon_ram_free(block
->host
, block
->length
);
1182 qemu_mutex_unlock_ramlist();
1187 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1194 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1195 offset
= addr
- block
->offset
;
1196 if (offset
< block
->length
) {
1197 vaddr
= block
->host
+ offset
;
1198 if (block
->flags
& RAM_PREALLOC_MASK
) {
1202 munmap(vaddr
, length
);
1204 #if defined(__linux__) && !defined(TARGET_S390X)
1207 flags
|= mem_prealloc
? MAP_POPULATE
| MAP_SHARED
:
1210 flags
|= MAP_PRIVATE
;
1212 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1213 flags
, block
->fd
, offset
);
1215 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1216 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1223 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1224 flags
|= MAP_SHARED
| MAP_ANONYMOUS
;
1225 area
= mmap(vaddr
, length
, PROT_EXEC
|PROT_READ
|PROT_WRITE
,
1228 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1229 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1233 if (area
!= vaddr
) {
1234 fprintf(stderr
, "Could not remap addr: "
1235 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1239 memory_try_enable_merging(vaddr
, length
);
1240 qemu_ram_setup_dump(vaddr
, length
);
1246 #endif /* !_WIN32 */
1248 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1249 With the exception of the softmmu code in this file, this should
1250 only be used for local memory (e.g. video ram) that the device owns,
1251 and knows it isn't going to access beyond the end of the block.
1253 It should not be used for general purpose DMA.
1254 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1256 void *qemu_get_ram_ptr(ram_addr_t addr
)
1260 /* The list is protected by the iothread lock here. */
1261 block
= ram_list
.mru_block
;
1262 if (block
&& addr
- block
->offset
< block
->length
) {
1265 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1266 if (addr
- block
->offset
< block
->length
) {
1271 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1275 ram_list
.mru_block
= block
;
1276 if (xen_enabled()) {
1277 /* We need to check if the requested address is in the RAM
1278 * because we don't want to map the entire memory in QEMU.
1279 * In that case just map until the end of the page.
1281 if (block
->offset
== 0) {
1282 return xen_map_cache(addr
, 0, 0);
1283 } else if (block
->host
== NULL
) {
1285 xen_map_cache(block
->offset
, block
->length
, 1);
1288 return block
->host
+ (addr
- block
->offset
);
1291 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1292 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1294 * ??? Is this still necessary?
1296 static void *qemu_safe_ram_ptr(ram_addr_t addr
)
1300 /* The list is protected by the iothread lock here. */
1301 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1302 if (addr
- block
->offset
< block
->length
) {
1303 if (xen_enabled()) {
1304 /* We need to check if the requested address is in the RAM
1305 * because we don't want to map the entire memory in QEMU.
1306 * In that case just map until the end of the page.
1308 if (block
->offset
== 0) {
1309 return xen_map_cache(addr
, 0, 0);
1310 } else if (block
->host
== NULL
) {
1312 xen_map_cache(block
->offset
, block
->length
, 1);
1315 return block
->host
+ (addr
- block
->offset
);
1319 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1325 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1326 * but takes a size argument */
1327 static void *qemu_ram_ptr_length(ram_addr_t addr
, ram_addr_t
*size
)
1332 if (xen_enabled()) {
1333 return xen_map_cache(addr
, *size
, 1);
1337 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1338 if (addr
- block
->offset
< block
->length
) {
1339 if (addr
- block
->offset
+ *size
> block
->length
)
1340 *size
= block
->length
- addr
+ block
->offset
;
1341 return block
->host
+ (addr
- block
->offset
);
1345 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
1350 int qemu_ram_addr_from_host(void *ptr
, ram_addr_t
*ram_addr
)
1353 uint8_t *host
= ptr
;
1355 if (xen_enabled()) {
1356 *ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1360 QTAILQ_FOREACH(block
, &ram_list
.blocks
, next
) {
1361 /* This case append when the block is not mapped. */
1362 if (block
->host
== NULL
) {
1365 if (host
- block
->host
< block
->length
) {
1366 *ram_addr
= block
->offset
+ (host
- block
->host
);
1374 /* Some of the softmmu routines need to translate from a host pointer
1375 (typically a TLB entry) back to a ram offset. */
1376 ram_addr_t
qemu_ram_addr_from_host_nofail(void *ptr
)
1378 ram_addr_t ram_addr
;
1380 if (qemu_ram_addr_from_host(ptr
, &ram_addr
)) {
1381 fprintf(stderr
, "Bad ram pointer %p\n", ptr
);
1387 static uint64_t unassigned_mem_read(void *opaque
, hwaddr addr
,
1390 #ifdef DEBUG_UNASSIGNED
1391 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
1393 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1394 cpu_unassigned_access(cpu_single_env
, addr
, 0, 0, 0, size
);
1399 static void unassigned_mem_write(void *opaque
, hwaddr addr
,
1400 uint64_t val
, unsigned size
)
1402 #ifdef DEBUG_UNASSIGNED
1403 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%"PRIx64
"\n", addr
, val
);
1405 #if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
1406 cpu_unassigned_access(cpu_single_env
, addr
, 1, 0, 0, size
);
1410 static const MemoryRegionOps unassigned_mem_ops
= {
1411 .read
= unassigned_mem_read
,
1412 .write
= unassigned_mem_write
,
1413 .endianness
= DEVICE_NATIVE_ENDIAN
,
1416 static uint64_t error_mem_read(void *opaque
, hwaddr addr
,
1422 static void error_mem_write(void *opaque
, hwaddr addr
,
1423 uint64_t value
, unsigned size
)
1428 static const MemoryRegionOps error_mem_ops
= {
1429 .read
= error_mem_read
,
1430 .write
= error_mem_write
,
1431 .endianness
= DEVICE_NATIVE_ENDIAN
,
1434 static const MemoryRegionOps rom_mem_ops
= {
1435 .read
= error_mem_read
,
1436 .write
= unassigned_mem_write
,
1437 .endianness
= DEVICE_NATIVE_ENDIAN
,
1440 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
1441 uint64_t val
, unsigned size
)
1444 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1445 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
1446 #if !defined(CONFIG_USER_ONLY)
1447 tb_invalidate_phys_page_fast(ram_addr
, size
);
1448 dirty_flags
= cpu_physical_memory_get_dirty_flags(ram_addr
);
1453 stb_p(qemu_get_ram_ptr(ram_addr
), val
);
1456 stw_p(qemu_get_ram_ptr(ram_addr
), val
);
1459 stl_p(qemu_get_ram_ptr(ram_addr
), val
);
1464 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
1465 cpu_physical_memory_set_dirty_flags(ram_addr
, dirty_flags
);
1466 /* we remove the notdirty callback only if the code has been
1468 if (dirty_flags
== 0xff)
1469 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
1472 static const MemoryRegionOps notdirty_mem_ops
= {
1473 .read
= error_mem_read
,
1474 .write
= notdirty_mem_write
,
1475 .endianness
= DEVICE_NATIVE_ENDIAN
,
1478 /* Generate a debug exception if a watchpoint has been hit. */
1479 static void check_watchpoint(int offset
, int len_mask
, int flags
)
1481 CPUArchState
*env
= cpu_single_env
;
1482 target_ulong pc
, cs_base
;
1487 if (env
->watchpoint_hit
) {
1488 /* We re-entered the check after replacing the TB. Now raise
1489 * the debug interrupt so that is will trigger after the
1490 * current instruction. */
1491 cpu_interrupt(ENV_GET_CPU(env
), CPU_INTERRUPT_DEBUG
);
1494 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
1495 QTAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1496 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
1497 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
1498 wp
->flags
|= BP_WATCHPOINT_HIT
;
1499 if (!env
->watchpoint_hit
) {
1500 env
->watchpoint_hit
= wp
;
1501 tb_check_watchpoint(env
);
1502 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
1503 env
->exception_index
= EXCP_DEBUG
;
1506 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
1507 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
1508 cpu_resume_from_signal(env
, NULL
);
1512 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
1517 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1518 so these check for a hit then pass through to the normal out-of-line
1520 static uint64_t watch_mem_read(void *opaque
, hwaddr addr
,
1523 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_READ
);
1525 case 1: return ldub_phys(addr
);
1526 case 2: return lduw_phys(addr
);
1527 case 4: return ldl_phys(addr
);
1532 static void watch_mem_write(void *opaque
, hwaddr addr
,
1533 uint64_t val
, unsigned size
)
1535 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~(size
- 1), BP_MEM_WRITE
);
1538 stb_phys(addr
, val
);
1541 stw_phys(addr
, val
);
1544 stl_phys(addr
, val
);
1550 static const MemoryRegionOps watch_mem_ops
= {
1551 .read
= watch_mem_read
,
1552 .write
= watch_mem_write
,
1553 .endianness
= DEVICE_NATIVE_ENDIAN
,
1556 static uint64_t subpage_read(void *opaque
, hwaddr addr
,
1559 subpage_t
*mmio
= opaque
;
1560 unsigned int idx
= SUBPAGE_IDX(addr
);
1561 MemoryRegionSection
*section
;
1562 #if defined(DEBUG_SUBPAGE)
1563 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
1564 mmio
, len
, addr
, idx
);
1567 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1569 addr
-= section
->offset_within_address_space
;
1570 addr
+= section
->offset_within_region
;
1571 return io_mem_read(section
->mr
, addr
, len
);
1574 static void subpage_write(void *opaque
, hwaddr addr
,
1575 uint64_t value
, unsigned len
)
1577 subpage_t
*mmio
= opaque
;
1578 unsigned int idx
= SUBPAGE_IDX(addr
);
1579 MemoryRegionSection
*section
;
1580 #if defined(DEBUG_SUBPAGE)
1581 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1582 " idx %d value %"PRIx64
"\n",
1583 __func__
, mmio
, len
, addr
, idx
, value
);
1586 section
= &phys_sections
[mmio
->sub_section
[idx
]];
1588 addr
-= section
->offset_within_address_space
;
1589 addr
+= section
->offset_within_region
;
1590 io_mem_write(section
->mr
, addr
, value
, len
);
1593 static const MemoryRegionOps subpage_ops
= {
1594 .read
= subpage_read
,
1595 .write
= subpage_write
,
1596 .endianness
= DEVICE_NATIVE_ENDIAN
,
1599 static uint64_t subpage_ram_read(void *opaque
, hwaddr addr
,
1602 ram_addr_t raddr
= addr
;
1603 void *ptr
= qemu_get_ram_ptr(raddr
);
1605 case 1: return ldub_p(ptr
);
1606 case 2: return lduw_p(ptr
);
1607 case 4: return ldl_p(ptr
);
1612 static void subpage_ram_write(void *opaque
, hwaddr addr
,
1613 uint64_t value
, unsigned size
)
1615 ram_addr_t raddr
= addr
;
1616 void *ptr
= qemu_get_ram_ptr(raddr
);
1618 case 1: return stb_p(ptr
, value
);
1619 case 2: return stw_p(ptr
, value
);
1620 case 4: return stl_p(ptr
, value
);
1625 static const MemoryRegionOps subpage_ram_ops
= {
1626 .read
= subpage_ram_read
,
1627 .write
= subpage_ram_write
,
1628 .endianness
= DEVICE_NATIVE_ENDIAN
,
1631 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1636 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
1638 idx
= SUBPAGE_IDX(start
);
1639 eidx
= SUBPAGE_IDX(end
);
1640 #if defined(DEBUG_SUBPAGE)
1641 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__
,
1642 mmio
, start
, end
, idx
, eidx
, memory
);
1644 if (memory_region_is_ram(phys_sections
[section
].mr
)) {
1645 MemoryRegionSection new_section
= phys_sections
[section
];
1646 new_section
.mr
= &io_mem_subpage_ram
;
1647 section
= phys_section_add(&new_section
);
1649 for (; idx
<= eidx
; idx
++) {
1650 mmio
->sub_section
[idx
] = section
;
1656 static subpage_t
*subpage_init(hwaddr base
)
1660 mmio
= g_malloc0(sizeof(subpage_t
));
1663 memory_region_init_io(&mmio
->iomem
, &subpage_ops
, mmio
,
1664 "subpage", TARGET_PAGE_SIZE
);
1665 mmio
->iomem
.subpage
= true;
1666 #if defined(DEBUG_SUBPAGE)
1667 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
1668 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
1670 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, phys_section_unassigned
);
1675 static uint16_t dummy_section(MemoryRegion
*mr
)
1677 MemoryRegionSection section
= {
1679 .offset_within_address_space
= 0,
1680 .offset_within_region
= 0,
1684 return phys_section_add(§ion
);
1687 MemoryRegion
*iotlb_to_region(hwaddr index
)
1689 return phys_sections
[index
& ~TARGET_PAGE_MASK
].mr
;
1692 static void io_mem_init(void)
1694 memory_region_init_io(&io_mem_ram
, &error_mem_ops
, NULL
, "ram", UINT64_MAX
);
1695 memory_region_init_io(&io_mem_rom
, &rom_mem_ops
, NULL
, "rom", UINT64_MAX
);
1696 memory_region_init_io(&io_mem_unassigned
, &unassigned_mem_ops
, NULL
,
1697 "unassigned", UINT64_MAX
);
1698 memory_region_init_io(&io_mem_notdirty
, ¬dirty_mem_ops
, NULL
,
1699 "notdirty", UINT64_MAX
);
1700 memory_region_init_io(&io_mem_subpage_ram
, &subpage_ram_ops
, NULL
,
1701 "subpage-ram", UINT64_MAX
);
1702 memory_region_init_io(&io_mem_watch
, &watch_mem_ops
, NULL
,
1703 "watch", UINT64_MAX
);
1706 static void mem_begin(MemoryListener
*listener
)
1708 AddressSpaceDispatch
*d
= container_of(listener
, AddressSpaceDispatch
, listener
);
1710 destroy_all_mappings(d
);
1711 d
->phys_map
.ptr
= PHYS_MAP_NODE_NIL
;
1714 static void core_begin(MemoryListener
*listener
)
1716 phys_sections_clear();
1717 phys_section_unassigned
= dummy_section(&io_mem_unassigned
);
1718 phys_section_notdirty
= dummy_section(&io_mem_notdirty
);
1719 phys_section_rom
= dummy_section(&io_mem_rom
);
1720 phys_section_watch
= dummy_section(&io_mem_watch
);
1723 static void tcg_commit(MemoryListener
*listener
)
1727 /* since each CPU stores ram addresses in its TLB cache, we must
1728 reset the modified entries */
1730 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1735 static void core_log_global_start(MemoryListener
*listener
)
1737 cpu_physical_memory_set_dirty_tracking(1);
1740 static void core_log_global_stop(MemoryListener
*listener
)
1742 cpu_physical_memory_set_dirty_tracking(0);
1745 static void io_region_add(MemoryListener
*listener
,
1746 MemoryRegionSection
*section
)
1748 MemoryRegionIORange
*mrio
= g_new(MemoryRegionIORange
, 1);
1750 mrio
->mr
= section
->mr
;
1751 mrio
->offset
= section
->offset_within_region
;
1752 iorange_init(&mrio
->iorange
, &memory_region_iorange_ops
,
1753 section
->offset_within_address_space
, section
->size
);
1754 ioport_register(&mrio
->iorange
);
1757 static void io_region_del(MemoryListener
*listener
,
1758 MemoryRegionSection
*section
)
1760 isa_unassign_ioport(section
->offset_within_address_space
, section
->size
);
1763 static MemoryListener core_memory_listener
= {
1764 .begin
= core_begin
,
1765 .log_global_start
= core_log_global_start
,
1766 .log_global_stop
= core_log_global_stop
,
1770 static MemoryListener io_memory_listener
= {
1771 .region_add
= io_region_add
,
1772 .region_del
= io_region_del
,
1776 static MemoryListener tcg_memory_listener
= {
1777 .commit
= tcg_commit
,
1780 void address_space_init_dispatch(AddressSpace
*as
)
1782 AddressSpaceDispatch
*d
= g_new(AddressSpaceDispatch
, 1);
1784 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .is_leaf
= 0 };
1785 d
->listener
= (MemoryListener
) {
1787 .region_add
= mem_add
,
1788 .region_nop
= mem_add
,
1792 memory_listener_register(&d
->listener
, as
);
1795 void address_space_destroy_dispatch(AddressSpace
*as
)
1797 AddressSpaceDispatch
*d
= as
->dispatch
;
1799 memory_listener_unregister(&d
->listener
);
1800 destroy_l2_mapping(&d
->phys_map
, P_L2_LEVELS
- 1);
1802 as
->dispatch
= NULL
;
1805 static void memory_map_init(void)
1807 system_memory
= g_malloc(sizeof(*system_memory
));
1808 memory_region_init(system_memory
, "system", INT64_MAX
);
1809 address_space_init(&address_space_memory
, system_memory
);
1810 address_space_memory
.name
= "memory";
1812 system_io
= g_malloc(sizeof(*system_io
));
1813 memory_region_init(system_io
, "io", 65536);
1814 address_space_init(&address_space_io
, system_io
);
1815 address_space_io
.name
= "I/O";
1817 memory_listener_register(&core_memory_listener
, &address_space_memory
);
1818 memory_listener_register(&io_memory_listener
, &address_space_io
);
1819 memory_listener_register(&tcg_memory_listener
, &address_space_memory
);
1821 dma_context_init(&dma_context_memory
, &address_space_memory
,
1825 MemoryRegion
*get_system_memory(void)
1827 return system_memory
;
1830 MemoryRegion
*get_system_io(void)
1835 #endif /* !defined(CONFIG_USER_ONLY) */
1837 /* physical memory access (slow version, mainly for debug) */
1838 #if defined(CONFIG_USER_ONLY)
1839 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
1840 uint8_t *buf
, int len
, int is_write
)
1847 page
= addr
& TARGET_PAGE_MASK
;
1848 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1851 flags
= page_get_flags(page
);
1852 if (!(flags
& PAGE_VALID
))
1855 if (!(flags
& PAGE_WRITE
))
1857 /* XXX: this code should not depend on lock_user */
1858 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
1861 unlock_user(p
, addr
, l
);
1863 if (!(flags
& PAGE_READ
))
1865 /* XXX: this code should not depend on lock_user */
1866 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
1869 unlock_user(p
, addr
, 0);
1880 static void invalidate_and_set_dirty(hwaddr addr
,
1883 if (!cpu_physical_memory_is_dirty(addr
)) {
1884 /* invalidate code */
1885 tb_invalidate_phys_page_range(addr
, addr
+ length
, 0);
1887 cpu_physical_memory_set_dirty_flags(addr
, (0xff & ~CODE_DIRTY_FLAG
));
1889 xen_modified_memory(addr
, length
);
1892 void address_space_rw(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
,
1893 int len
, bool is_write
)
1895 AddressSpaceDispatch
*d
= as
->dispatch
;
1900 MemoryRegionSection
*section
;
1903 page
= addr
& TARGET_PAGE_MASK
;
1904 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
1907 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
1910 if (!memory_region_is_ram(section
->mr
)) {
1912 addr1
= memory_region_section_addr(section
, addr
);
1913 /* XXX: could force cpu_single_env to NULL to avoid
1915 if (l
>= 4 && ((addr1
& 3) == 0)) {
1916 /* 32 bit write access */
1918 io_mem_write(section
->mr
, addr1
, val
, 4);
1920 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
1921 /* 16 bit write access */
1923 io_mem_write(section
->mr
, addr1
, val
, 2);
1926 /* 8 bit write access */
1928 io_mem_write(section
->mr
, addr1
, val
, 1);
1931 } else if (!section
->readonly
) {
1933 addr1
= memory_region_get_ram_addr(section
->mr
)
1934 + memory_region_section_addr(section
, addr
);
1936 ptr
= qemu_get_ram_ptr(addr1
);
1937 memcpy(ptr
, buf
, l
);
1938 invalidate_and_set_dirty(addr1
, l
);
1941 if (!(memory_region_is_ram(section
->mr
) ||
1942 memory_region_is_romd(section
->mr
))) {
1945 addr1
= memory_region_section_addr(section
, addr
);
1946 if (l
>= 4 && ((addr1
& 3) == 0)) {
1947 /* 32 bit read access */
1948 val
= io_mem_read(section
->mr
, addr1
, 4);
1951 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
1952 /* 16 bit read access */
1953 val
= io_mem_read(section
->mr
, addr1
, 2);
1957 /* 8 bit read access */
1958 val
= io_mem_read(section
->mr
, addr1
, 1);
1964 ptr
= qemu_get_ram_ptr(section
->mr
->ram_addr
1965 + memory_region_section_addr(section
,
1967 memcpy(buf
, ptr
, l
);
1976 void address_space_write(AddressSpace
*as
, hwaddr addr
,
1977 const uint8_t *buf
, int len
)
1979 address_space_rw(as
, addr
, (uint8_t *)buf
, len
, true);
1983 * address_space_read: read from an address space.
1985 * @as: #AddressSpace to be accessed
1986 * @addr: address within that address space
1987 * @buf: buffer with the data transferred
1989 void address_space_read(AddressSpace
*as
, hwaddr addr
, uint8_t *buf
, int len
)
1991 address_space_rw(as
, addr
, buf
, len
, false);
1995 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
1996 int len
, int is_write
)
1998 return address_space_rw(&address_space_memory
, addr
, buf
, len
, is_write
);
2001 /* used for ROM loading : can write in RAM and ROM */
2002 void cpu_physical_memory_write_rom(hwaddr addr
,
2003 const uint8_t *buf
, int len
)
2005 AddressSpaceDispatch
*d
= address_space_memory
.dispatch
;
2009 MemoryRegionSection
*section
;
2012 page
= addr
& TARGET_PAGE_MASK
;
2013 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2016 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
2018 if (!(memory_region_is_ram(section
->mr
) ||
2019 memory_region_is_romd(section
->mr
))) {
2022 unsigned long addr1
;
2023 addr1
= memory_region_get_ram_addr(section
->mr
)
2024 + memory_region_section_addr(section
, addr
);
2026 ptr
= qemu_get_ram_ptr(addr1
);
2027 memcpy(ptr
, buf
, l
);
2028 invalidate_and_set_dirty(addr1
, l
);
2042 static BounceBuffer bounce
;
2044 typedef struct MapClient
{
2046 void (*callback
)(void *opaque
);
2047 QLIST_ENTRY(MapClient
) link
;
2050 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2051 = QLIST_HEAD_INITIALIZER(map_client_list
);
2053 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
2055 MapClient
*client
= g_malloc(sizeof(*client
));
2057 client
->opaque
= opaque
;
2058 client
->callback
= callback
;
2059 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2063 static void cpu_unregister_map_client(void *_client
)
2065 MapClient
*client
= (MapClient
*)_client
;
2067 QLIST_REMOVE(client
, link
);
2071 static void cpu_notify_map_clients(void)
2075 while (!QLIST_EMPTY(&map_client_list
)) {
2076 client
= QLIST_FIRST(&map_client_list
);
2077 client
->callback(client
->opaque
);
2078 cpu_unregister_map_client(client
);
2082 /* Map a physical memory region into a host virtual address.
2083 * May map a subset of the requested range, given by and returned in *plen.
2084 * May return NULL if resources needed to perform the mapping are exhausted.
2085 * Use only for reads OR writes - not for read-modify-write operations.
2086 * Use cpu_register_map_client() to know when retrying the map operation is
2087 * likely to succeed.
2089 void *address_space_map(AddressSpace
*as
,
2094 AddressSpaceDispatch
*d
= as
->dispatch
;
2099 MemoryRegionSection
*section
;
2100 ram_addr_t raddr
= RAM_ADDR_MAX
;
2105 page
= addr
& TARGET_PAGE_MASK
;
2106 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2109 section
= phys_page_find(d
, page
>> TARGET_PAGE_BITS
);
2111 if (!(memory_region_is_ram(section
->mr
) && !section
->readonly
)) {
2112 if (todo
|| bounce
.buffer
) {
2115 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
2119 address_space_read(as
, addr
, bounce
.buffer
, l
);
2123 return bounce
.buffer
;
2126 raddr
= memory_region_get_ram_addr(section
->mr
)
2127 + memory_region_section_addr(section
, addr
);
2135 ret
= qemu_ram_ptr_length(raddr
, &rlen
);
2140 /* Unmaps a memory region previously mapped by address_space_map().
2141 * Will also mark the memory as dirty if is_write == 1. access_len gives
2142 * the amount of memory that was actually read or written by the caller.
2144 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
2145 int is_write
, hwaddr access_len
)
2147 if (buffer
!= bounce
.buffer
) {
2149 ram_addr_t addr1
= qemu_ram_addr_from_host_nofail(buffer
);
2150 while (access_len
) {
2152 l
= TARGET_PAGE_SIZE
;
2155 invalidate_and_set_dirty(addr1
, l
);
2160 if (xen_enabled()) {
2161 xen_invalidate_map_cache_entry(buffer
);
2166 address_space_write(as
, bounce
.addr
, bounce
.buffer
, access_len
);
2168 qemu_vfree(bounce
.buffer
);
2169 bounce
.buffer
= NULL
;
2170 cpu_notify_map_clients();
2173 void *cpu_physical_memory_map(hwaddr addr
,
2177 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
2180 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
2181 int is_write
, hwaddr access_len
)
2183 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
2186 /* warning: addr must be aligned */
2187 static inline uint32_t ldl_phys_internal(hwaddr addr
,
2188 enum device_endian endian
)
2192 MemoryRegionSection
*section
;
2194 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2196 if (!(memory_region_is_ram(section
->mr
) ||
2197 memory_region_is_romd(section
->mr
))) {
2199 addr
= memory_region_section_addr(section
, addr
);
2200 val
= io_mem_read(section
->mr
, addr
, 4);
2201 #if defined(TARGET_WORDS_BIGENDIAN)
2202 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2206 if (endian
== DEVICE_BIG_ENDIAN
) {
2212 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2214 + memory_region_section_addr(section
, addr
));
2216 case DEVICE_LITTLE_ENDIAN
:
2217 val
= ldl_le_p(ptr
);
2219 case DEVICE_BIG_ENDIAN
:
2220 val
= ldl_be_p(ptr
);
2230 uint32_t ldl_phys(hwaddr addr
)
2232 return ldl_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2235 uint32_t ldl_le_phys(hwaddr addr
)
2237 return ldl_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2240 uint32_t ldl_be_phys(hwaddr addr
)
2242 return ldl_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2245 /* warning: addr must be aligned */
2246 static inline uint64_t ldq_phys_internal(hwaddr addr
,
2247 enum device_endian endian
)
2251 MemoryRegionSection
*section
;
2253 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2255 if (!(memory_region_is_ram(section
->mr
) ||
2256 memory_region_is_romd(section
->mr
))) {
2258 addr
= memory_region_section_addr(section
, addr
);
2260 /* XXX This is broken when device endian != cpu endian.
2261 Fix and add "endian" variable check */
2262 #ifdef TARGET_WORDS_BIGENDIAN
2263 val
= io_mem_read(section
->mr
, addr
, 4) << 32;
2264 val
|= io_mem_read(section
->mr
, addr
+ 4, 4);
2266 val
= io_mem_read(section
->mr
, addr
, 4);
2267 val
|= io_mem_read(section
->mr
, addr
+ 4, 4) << 32;
2271 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2273 + memory_region_section_addr(section
, addr
));
2275 case DEVICE_LITTLE_ENDIAN
:
2276 val
= ldq_le_p(ptr
);
2278 case DEVICE_BIG_ENDIAN
:
2279 val
= ldq_be_p(ptr
);
2289 uint64_t ldq_phys(hwaddr addr
)
2291 return ldq_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2294 uint64_t ldq_le_phys(hwaddr addr
)
2296 return ldq_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2299 uint64_t ldq_be_phys(hwaddr addr
)
2301 return ldq_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2305 uint32_t ldub_phys(hwaddr addr
)
2308 cpu_physical_memory_read(addr
, &val
, 1);
2312 /* warning: addr must be aligned */
2313 static inline uint32_t lduw_phys_internal(hwaddr addr
,
2314 enum device_endian endian
)
2318 MemoryRegionSection
*section
;
2320 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2322 if (!(memory_region_is_ram(section
->mr
) ||
2323 memory_region_is_romd(section
->mr
))) {
2325 addr
= memory_region_section_addr(section
, addr
);
2326 val
= io_mem_read(section
->mr
, addr
, 2);
2327 #if defined(TARGET_WORDS_BIGENDIAN)
2328 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2332 if (endian
== DEVICE_BIG_ENDIAN
) {
2338 ptr
= qemu_get_ram_ptr((memory_region_get_ram_addr(section
->mr
)
2340 + memory_region_section_addr(section
, addr
));
2342 case DEVICE_LITTLE_ENDIAN
:
2343 val
= lduw_le_p(ptr
);
2345 case DEVICE_BIG_ENDIAN
:
2346 val
= lduw_be_p(ptr
);
2356 uint32_t lduw_phys(hwaddr addr
)
2358 return lduw_phys_internal(addr
, DEVICE_NATIVE_ENDIAN
);
2361 uint32_t lduw_le_phys(hwaddr addr
)
2363 return lduw_phys_internal(addr
, DEVICE_LITTLE_ENDIAN
);
2366 uint32_t lduw_be_phys(hwaddr addr
)
2368 return lduw_phys_internal(addr
, DEVICE_BIG_ENDIAN
);
2371 /* warning: addr must be aligned. The ram page is not masked as dirty
2372 and the code inside is not invalidated. It is useful if the dirty
2373 bits are used to track modified PTEs */
2374 void stl_phys_notdirty(hwaddr addr
, uint32_t val
)
2377 MemoryRegionSection
*section
;
2379 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2381 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2382 addr
= memory_region_section_addr(section
, addr
);
2383 if (memory_region_is_ram(section
->mr
)) {
2384 section
= &phys_sections
[phys_section_rom
];
2386 io_mem_write(section
->mr
, addr
, val
, 4);
2388 unsigned long addr1
= (memory_region_get_ram_addr(section
->mr
)
2390 + memory_region_section_addr(section
, addr
);
2391 ptr
= qemu_get_ram_ptr(addr1
);
2394 if (unlikely(in_migration
)) {
2395 if (!cpu_physical_memory_is_dirty(addr1
)) {
2396 /* invalidate code */
2397 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
2399 cpu_physical_memory_set_dirty_flags(
2400 addr1
, (0xff & ~CODE_DIRTY_FLAG
));
2406 /* warning: addr must be aligned */
2407 static inline void stl_phys_internal(hwaddr addr
, uint32_t val
,
2408 enum device_endian endian
)
2411 MemoryRegionSection
*section
;
2413 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2415 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2416 addr
= memory_region_section_addr(section
, addr
);
2417 if (memory_region_is_ram(section
->mr
)) {
2418 section
= &phys_sections
[phys_section_rom
];
2420 #if defined(TARGET_WORDS_BIGENDIAN)
2421 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2425 if (endian
== DEVICE_BIG_ENDIAN
) {
2429 io_mem_write(section
->mr
, addr
, val
, 4);
2431 unsigned long addr1
;
2432 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
2433 + memory_region_section_addr(section
, addr
);
2435 ptr
= qemu_get_ram_ptr(addr1
);
2437 case DEVICE_LITTLE_ENDIAN
:
2440 case DEVICE_BIG_ENDIAN
:
2447 invalidate_and_set_dirty(addr1
, 4);
2451 void stl_phys(hwaddr addr
, uint32_t val
)
2453 stl_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2456 void stl_le_phys(hwaddr addr
, uint32_t val
)
2458 stl_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2461 void stl_be_phys(hwaddr addr
, uint32_t val
)
2463 stl_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2467 void stb_phys(hwaddr addr
, uint32_t val
)
2470 cpu_physical_memory_write(addr
, &v
, 1);
2473 /* warning: addr must be aligned */
2474 static inline void stw_phys_internal(hwaddr addr
, uint32_t val
,
2475 enum device_endian endian
)
2478 MemoryRegionSection
*section
;
2480 section
= phys_page_find(address_space_memory
.dispatch
, addr
>> TARGET_PAGE_BITS
);
2482 if (!memory_region_is_ram(section
->mr
) || section
->readonly
) {
2483 addr
= memory_region_section_addr(section
, addr
);
2484 if (memory_region_is_ram(section
->mr
)) {
2485 section
= &phys_sections
[phys_section_rom
];
2487 #if defined(TARGET_WORDS_BIGENDIAN)
2488 if (endian
== DEVICE_LITTLE_ENDIAN
) {
2492 if (endian
== DEVICE_BIG_ENDIAN
) {
2496 io_mem_write(section
->mr
, addr
, val
, 2);
2498 unsigned long addr1
;
2499 addr1
= (memory_region_get_ram_addr(section
->mr
) & TARGET_PAGE_MASK
)
2500 + memory_region_section_addr(section
, addr
);
2502 ptr
= qemu_get_ram_ptr(addr1
);
2504 case DEVICE_LITTLE_ENDIAN
:
2507 case DEVICE_BIG_ENDIAN
:
2514 invalidate_and_set_dirty(addr1
, 2);
2518 void stw_phys(hwaddr addr
, uint32_t val
)
2520 stw_phys_internal(addr
, val
, DEVICE_NATIVE_ENDIAN
);
2523 void stw_le_phys(hwaddr addr
, uint32_t val
)
2525 stw_phys_internal(addr
, val
, DEVICE_LITTLE_ENDIAN
);
2528 void stw_be_phys(hwaddr addr
, uint32_t val
)
2530 stw_phys_internal(addr
, val
, DEVICE_BIG_ENDIAN
);
2534 void stq_phys(hwaddr addr
, uint64_t val
)
2537 cpu_physical_memory_write(addr
, &val
, 8);
2540 void stq_le_phys(hwaddr addr
, uint64_t val
)
2542 val
= cpu_to_le64(val
);
2543 cpu_physical_memory_write(addr
, &val
, 8);
2546 void stq_be_phys(hwaddr addr
, uint64_t val
)
2548 val
= cpu_to_be64(val
);
2549 cpu_physical_memory_write(addr
, &val
, 8);
2552 /* virtual memory access for debug (includes writing to ROM) */
2553 int cpu_memory_rw_debug(CPUArchState
*env
, target_ulong addr
,
2554 uint8_t *buf
, int len
, int is_write
)
2561 page
= addr
& TARGET_PAGE_MASK
;
2562 phys_addr
= cpu_get_phys_page_debug(env
, page
);
2563 /* if no physical page mapped, return an error */
2564 if (phys_addr
== -1)
2566 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2569 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
2571 cpu_physical_memory_write_rom(phys_addr
, buf
, l
);
2573 cpu_physical_memory_rw(phys_addr
, buf
, l
, is_write
);
2582 #if !defined(CONFIG_USER_ONLY)
2585 * A helper function for the _utterly broken_ virtio device model to find out if
2586 * it's running on a big endian machine. Don't do this at home kids!
2588 bool virtio_is_big_endian(void);
2589 bool virtio_is_big_endian(void)
2591 #if defined(TARGET_WORDS_BIGENDIAN)
2600 #ifndef CONFIG_USER_ONLY
2601 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
2603 MemoryRegionSection
*section
;
2605 section
= phys_page_find(address_space_memory
.dispatch
,
2606 phys_addr
>> TARGET_PAGE_BITS
);
2608 return !(memory_region_is_ram(section
->mr
) ||
2609 memory_region_is_romd(section
->mr
));