target-i386: Change gen_intermediate_code_internal() argument to X86CPU
[qemu.git] / dump.c
blob6a3a72a1f7c74d5bd79566dc4296180bf8bd31ab
1 /*
2 * QEMU dump
4 * Copyright Fujitsu, Corp. 2011, 2012
6 * Authors:
7 * Wen Congyang <wency@cn.fujitsu.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
14 #include "qemu-common.h"
15 #include "elf.h"
16 #include "cpu.h"
17 #include "exec/cpu-all.h"
18 #include "exec/hwaddr.h"
19 #include "monitor/monitor.h"
20 #include "sysemu/kvm.h"
21 #include "sysemu/dump.h"
22 #include "sysemu/sysemu.h"
23 #include "sysemu/memory_mapping.h"
24 #include "sysemu/cpus.h"
25 #include "qapi/error.h"
26 #include "qmp-commands.h"
28 static uint16_t cpu_convert_to_target16(uint16_t val, int endian)
30 if (endian == ELFDATA2LSB) {
31 val = cpu_to_le16(val);
32 } else {
33 val = cpu_to_be16(val);
36 return val;
39 static uint32_t cpu_convert_to_target32(uint32_t val, int endian)
41 if (endian == ELFDATA2LSB) {
42 val = cpu_to_le32(val);
43 } else {
44 val = cpu_to_be32(val);
47 return val;
50 static uint64_t cpu_convert_to_target64(uint64_t val, int endian)
52 if (endian == ELFDATA2LSB) {
53 val = cpu_to_le64(val);
54 } else {
55 val = cpu_to_be64(val);
58 return val;
61 typedef struct DumpState {
62 ArchDumpInfo dump_info;
63 MemoryMappingList list;
64 uint16_t phdr_num;
65 uint32_t sh_info;
66 bool have_section;
67 bool resume;
68 size_t note_size;
69 hwaddr memory_offset;
70 int fd;
72 RAMBlock *block;
73 ram_addr_t start;
74 bool has_filter;
75 int64_t begin;
76 int64_t length;
77 Error **errp;
78 } DumpState;
80 static int dump_cleanup(DumpState *s)
82 int ret = 0;
84 memory_mapping_list_free(&s->list);
85 if (s->fd != -1) {
86 close(s->fd);
88 if (s->resume) {
89 vm_start();
92 return ret;
95 static void dump_error(DumpState *s, const char *reason)
97 dump_cleanup(s);
100 static int fd_write_vmcore(void *buf, size_t size, void *opaque)
102 DumpState *s = opaque;
103 size_t written_size;
105 written_size = qemu_write_full(s->fd, buf, size);
106 if (written_size != size) {
107 return -1;
110 return 0;
113 static int write_elf64_header(DumpState *s)
115 Elf64_Ehdr elf_header;
116 int ret;
117 int endian = s->dump_info.d_endian;
119 memset(&elf_header, 0, sizeof(Elf64_Ehdr));
120 memcpy(&elf_header, ELFMAG, SELFMAG);
121 elf_header.e_ident[EI_CLASS] = ELFCLASS64;
122 elf_header.e_ident[EI_DATA] = s->dump_info.d_endian;
123 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
124 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
125 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
126 endian);
127 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
128 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
129 elf_header.e_phoff = cpu_convert_to_target64(sizeof(Elf64_Ehdr), endian);
130 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf64_Phdr),
131 endian);
132 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
133 if (s->have_section) {
134 uint64_t shoff = sizeof(Elf64_Ehdr) + sizeof(Elf64_Phdr) * s->sh_info;
136 elf_header.e_shoff = cpu_convert_to_target64(shoff, endian);
137 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf64_Shdr),
138 endian);
139 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
142 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
143 if (ret < 0) {
144 dump_error(s, "dump: failed to write elf header.\n");
145 return -1;
148 return 0;
151 static int write_elf32_header(DumpState *s)
153 Elf32_Ehdr elf_header;
154 int ret;
155 int endian = s->dump_info.d_endian;
157 memset(&elf_header, 0, sizeof(Elf32_Ehdr));
158 memcpy(&elf_header, ELFMAG, SELFMAG);
159 elf_header.e_ident[EI_CLASS] = ELFCLASS32;
160 elf_header.e_ident[EI_DATA] = endian;
161 elf_header.e_ident[EI_VERSION] = EV_CURRENT;
162 elf_header.e_type = cpu_convert_to_target16(ET_CORE, endian);
163 elf_header.e_machine = cpu_convert_to_target16(s->dump_info.d_machine,
164 endian);
165 elf_header.e_version = cpu_convert_to_target32(EV_CURRENT, endian);
166 elf_header.e_ehsize = cpu_convert_to_target16(sizeof(elf_header), endian);
167 elf_header.e_phoff = cpu_convert_to_target32(sizeof(Elf32_Ehdr), endian);
168 elf_header.e_phentsize = cpu_convert_to_target16(sizeof(Elf32_Phdr),
169 endian);
170 elf_header.e_phnum = cpu_convert_to_target16(s->phdr_num, endian);
171 if (s->have_section) {
172 uint32_t shoff = sizeof(Elf32_Ehdr) + sizeof(Elf32_Phdr) * s->sh_info;
174 elf_header.e_shoff = cpu_convert_to_target32(shoff, endian);
175 elf_header.e_shentsize = cpu_convert_to_target16(sizeof(Elf32_Shdr),
176 endian);
177 elf_header.e_shnum = cpu_convert_to_target16(1, endian);
180 ret = fd_write_vmcore(&elf_header, sizeof(elf_header), s);
181 if (ret < 0) {
182 dump_error(s, "dump: failed to write elf header.\n");
183 return -1;
186 return 0;
189 static int write_elf64_load(DumpState *s, MemoryMapping *memory_mapping,
190 int phdr_index, hwaddr offset)
192 Elf64_Phdr phdr;
193 int ret;
194 int endian = s->dump_info.d_endian;
196 memset(&phdr, 0, sizeof(Elf64_Phdr));
197 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
198 phdr.p_offset = cpu_convert_to_target64(offset, endian);
199 phdr.p_paddr = cpu_convert_to_target64(memory_mapping->phys_addr, endian);
200 if (offset == -1) {
201 /* When the memory is not stored into vmcore, offset will be -1 */
202 phdr.p_filesz = 0;
203 } else {
204 phdr.p_filesz = cpu_convert_to_target64(memory_mapping->length, endian);
206 phdr.p_memsz = cpu_convert_to_target64(memory_mapping->length, endian);
207 phdr.p_vaddr = cpu_convert_to_target64(memory_mapping->virt_addr, endian);
209 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
210 if (ret < 0) {
211 dump_error(s, "dump: failed to write program header table.\n");
212 return -1;
215 return 0;
218 static int write_elf32_load(DumpState *s, MemoryMapping *memory_mapping,
219 int phdr_index, hwaddr offset)
221 Elf32_Phdr phdr;
222 int ret;
223 int endian = s->dump_info.d_endian;
225 memset(&phdr, 0, sizeof(Elf32_Phdr));
226 phdr.p_type = cpu_convert_to_target32(PT_LOAD, endian);
227 phdr.p_offset = cpu_convert_to_target32(offset, endian);
228 phdr.p_paddr = cpu_convert_to_target32(memory_mapping->phys_addr, endian);
229 if (offset == -1) {
230 /* When the memory is not stored into vmcore, offset will be -1 */
231 phdr.p_filesz = 0;
232 } else {
233 phdr.p_filesz = cpu_convert_to_target32(memory_mapping->length, endian);
235 phdr.p_memsz = cpu_convert_to_target32(memory_mapping->length, endian);
236 phdr.p_vaddr = cpu_convert_to_target32(memory_mapping->virt_addr, endian);
238 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
239 if (ret < 0) {
240 dump_error(s, "dump: failed to write program header table.\n");
241 return -1;
244 return 0;
247 static int write_elf64_note(DumpState *s)
249 Elf64_Phdr phdr;
250 int endian = s->dump_info.d_endian;
251 hwaddr begin = s->memory_offset - s->note_size;
252 int ret;
254 memset(&phdr, 0, sizeof(Elf64_Phdr));
255 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
256 phdr.p_offset = cpu_convert_to_target64(begin, endian);
257 phdr.p_paddr = 0;
258 phdr.p_filesz = cpu_convert_to_target64(s->note_size, endian);
259 phdr.p_memsz = cpu_convert_to_target64(s->note_size, endian);
260 phdr.p_vaddr = 0;
262 ret = fd_write_vmcore(&phdr, sizeof(Elf64_Phdr), s);
263 if (ret < 0) {
264 dump_error(s, "dump: failed to write program header table.\n");
265 return -1;
268 return 0;
271 static inline int cpu_index(CPUState *cpu)
273 return cpu->cpu_index + 1;
276 static int write_elf64_notes(DumpState *s)
278 CPUState *cpu;
279 int ret;
280 int id;
282 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
283 id = cpu_index(cpu);
284 ret = cpu_write_elf64_note(fd_write_vmcore, cpu, id, s);
285 if (ret < 0) {
286 dump_error(s, "dump: failed to write elf notes.\n");
287 return -1;
291 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
292 ret = cpu_write_elf64_qemunote(fd_write_vmcore, cpu, s);
293 if (ret < 0) {
294 dump_error(s, "dump: failed to write CPU status.\n");
295 return -1;
299 return 0;
302 static int write_elf32_note(DumpState *s)
304 hwaddr begin = s->memory_offset - s->note_size;
305 Elf32_Phdr phdr;
306 int endian = s->dump_info.d_endian;
307 int ret;
309 memset(&phdr, 0, sizeof(Elf32_Phdr));
310 phdr.p_type = cpu_convert_to_target32(PT_NOTE, endian);
311 phdr.p_offset = cpu_convert_to_target32(begin, endian);
312 phdr.p_paddr = 0;
313 phdr.p_filesz = cpu_convert_to_target32(s->note_size, endian);
314 phdr.p_memsz = cpu_convert_to_target32(s->note_size, endian);
315 phdr.p_vaddr = 0;
317 ret = fd_write_vmcore(&phdr, sizeof(Elf32_Phdr), s);
318 if (ret < 0) {
319 dump_error(s, "dump: failed to write program header table.\n");
320 return -1;
323 return 0;
326 static int write_elf32_notes(DumpState *s)
328 CPUState *cpu;
329 int ret;
330 int id;
332 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
333 id = cpu_index(cpu);
334 ret = cpu_write_elf32_note(fd_write_vmcore, cpu, id, s);
335 if (ret < 0) {
336 dump_error(s, "dump: failed to write elf notes.\n");
337 return -1;
341 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
342 ret = cpu_write_elf32_qemunote(fd_write_vmcore, cpu, s);
343 if (ret < 0) {
344 dump_error(s, "dump: failed to write CPU status.\n");
345 return -1;
349 return 0;
352 static int write_elf_section(DumpState *s, int type)
354 Elf32_Shdr shdr32;
355 Elf64_Shdr shdr64;
356 int endian = s->dump_info.d_endian;
357 int shdr_size;
358 void *shdr;
359 int ret;
361 if (type == 0) {
362 shdr_size = sizeof(Elf32_Shdr);
363 memset(&shdr32, 0, shdr_size);
364 shdr32.sh_info = cpu_convert_to_target32(s->sh_info, endian);
365 shdr = &shdr32;
366 } else {
367 shdr_size = sizeof(Elf64_Shdr);
368 memset(&shdr64, 0, shdr_size);
369 shdr64.sh_info = cpu_convert_to_target32(s->sh_info, endian);
370 shdr = &shdr64;
373 ret = fd_write_vmcore(&shdr, shdr_size, s);
374 if (ret < 0) {
375 dump_error(s, "dump: failed to write section header table.\n");
376 return -1;
379 return 0;
382 static int write_data(DumpState *s, void *buf, int length)
384 int ret;
386 ret = fd_write_vmcore(buf, length, s);
387 if (ret < 0) {
388 dump_error(s, "dump: failed to save memory.\n");
389 return -1;
392 return 0;
395 /* write the memroy to vmcore. 1 page per I/O. */
396 static int write_memory(DumpState *s, RAMBlock *block, ram_addr_t start,
397 int64_t size)
399 int64_t i;
400 int ret;
402 for (i = 0; i < size / TARGET_PAGE_SIZE; i++) {
403 ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
404 TARGET_PAGE_SIZE);
405 if (ret < 0) {
406 return ret;
410 if ((size % TARGET_PAGE_SIZE) != 0) {
411 ret = write_data(s, block->host + start + i * TARGET_PAGE_SIZE,
412 size % TARGET_PAGE_SIZE);
413 if (ret < 0) {
414 return ret;
418 return 0;
421 /* get the memory's offset in the vmcore */
422 static hwaddr get_offset(hwaddr phys_addr,
423 DumpState *s)
425 RAMBlock *block;
426 hwaddr offset = s->memory_offset;
427 int64_t size_in_block, start;
429 if (s->has_filter) {
430 if (phys_addr < s->begin || phys_addr >= s->begin + s->length) {
431 return -1;
435 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
436 if (s->has_filter) {
437 if (block->offset >= s->begin + s->length ||
438 block->offset + block->length <= s->begin) {
439 /* This block is out of the range */
440 continue;
443 if (s->begin <= block->offset) {
444 start = block->offset;
445 } else {
446 start = s->begin;
449 size_in_block = block->length - (start - block->offset);
450 if (s->begin + s->length < block->offset + block->length) {
451 size_in_block -= block->offset + block->length -
452 (s->begin + s->length);
454 } else {
455 start = block->offset;
456 size_in_block = block->length;
459 if (phys_addr >= start && phys_addr < start + size_in_block) {
460 return phys_addr - start + offset;
463 offset += size_in_block;
466 return -1;
469 static int write_elf_loads(DumpState *s)
471 hwaddr offset;
472 MemoryMapping *memory_mapping;
473 uint32_t phdr_index = 1;
474 int ret;
475 uint32_t max_index;
477 if (s->have_section) {
478 max_index = s->sh_info;
479 } else {
480 max_index = s->phdr_num;
483 QTAILQ_FOREACH(memory_mapping, &s->list.head, next) {
484 offset = get_offset(memory_mapping->phys_addr, s);
485 if (s->dump_info.d_class == ELFCLASS64) {
486 ret = write_elf64_load(s, memory_mapping, phdr_index++, offset);
487 } else {
488 ret = write_elf32_load(s, memory_mapping, phdr_index++, offset);
491 if (ret < 0) {
492 return -1;
495 if (phdr_index >= max_index) {
496 break;
500 return 0;
503 /* write elf header, PT_NOTE and elf note to vmcore. */
504 static int dump_begin(DumpState *s)
506 int ret;
509 * the vmcore's format is:
510 * --------------
511 * | elf header |
512 * --------------
513 * | PT_NOTE |
514 * --------------
515 * | PT_LOAD |
516 * --------------
517 * | ...... |
518 * --------------
519 * | PT_LOAD |
520 * --------------
521 * | sec_hdr |
522 * --------------
523 * | elf note |
524 * --------------
525 * | memory |
526 * --------------
528 * we only know where the memory is saved after we write elf note into
529 * vmcore.
532 /* write elf header to vmcore */
533 if (s->dump_info.d_class == ELFCLASS64) {
534 ret = write_elf64_header(s);
535 } else {
536 ret = write_elf32_header(s);
538 if (ret < 0) {
539 return -1;
542 if (s->dump_info.d_class == ELFCLASS64) {
543 /* write PT_NOTE to vmcore */
544 if (write_elf64_note(s) < 0) {
545 return -1;
548 /* write all PT_LOAD to vmcore */
549 if (write_elf_loads(s) < 0) {
550 return -1;
553 /* write section to vmcore */
554 if (s->have_section) {
555 if (write_elf_section(s, 1) < 0) {
556 return -1;
560 /* write notes to vmcore */
561 if (write_elf64_notes(s) < 0) {
562 return -1;
565 } else {
566 /* write PT_NOTE to vmcore */
567 if (write_elf32_note(s) < 0) {
568 return -1;
571 /* write all PT_LOAD to vmcore */
572 if (write_elf_loads(s) < 0) {
573 return -1;
576 /* write section to vmcore */
577 if (s->have_section) {
578 if (write_elf_section(s, 0) < 0) {
579 return -1;
583 /* write notes to vmcore */
584 if (write_elf32_notes(s) < 0) {
585 return -1;
589 return 0;
592 /* write PT_LOAD to vmcore */
593 static int dump_completed(DumpState *s)
595 dump_cleanup(s);
596 return 0;
599 static int get_next_block(DumpState *s, RAMBlock *block)
601 while (1) {
602 block = QTAILQ_NEXT(block, next);
603 if (!block) {
604 /* no more block */
605 return 1;
608 s->start = 0;
609 s->block = block;
610 if (s->has_filter) {
611 if (block->offset >= s->begin + s->length ||
612 block->offset + block->length <= s->begin) {
613 /* This block is out of the range */
614 continue;
617 if (s->begin > block->offset) {
618 s->start = s->begin - block->offset;
622 return 0;
626 /* write all memory to vmcore */
627 static int dump_iterate(DumpState *s)
629 RAMBlock *block;
630 int64_t size;
631 int ret;
633 while (1) {
634 block = s->block;
636 size = block->length;
637 if (s->has_filter) {
638 size -= s->start;
639 if (s->begin + s->length < block->offset + block->length) {
640 size -= block->offset + block->length - (s->begin + s->length);
643 ret = write_memory(s, block, s->start, size);
644 if (ret == -1) {
645 return ret;
648 ret = get_next_block(s, block);
649 if (ret == 1) {
650 dump_completed(s);
651 return 0;
656 static int create_vmcore(DumpState *s)
658 int ret;
660 ret = dump_begin(s);
661 if (ret < 0) {
662 return -1;
665 ret = dump_iterate(s);
666 if (ret < 0) {
667 return -1;
670 return 0;
673 static ram_addr_t get_start_block(DumpState *s)
675 RAMBlock *block;
677 if (!s->has_filter) {
678 s->block = QTAILQ_FIRST(&ram_list.blocks);
679 return 0;
682 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
683 if (block->offset >= s->begin + s->length ||
684 block->offset + block->length <= s->begin) {
685 /* This block is out of the range */
686 continue;
689 s->block = block;
690 if (s->begin > block->offset) {
691 s->start = s->begin - block->offset;
692 } else {
693 s->start = 0;
695 return s->start;
698 return -1;
701 static int dump_init(DumpState *s, int fd, bool paging, bool has_filter,
702 int64_t begin, int64_t length, Error **errp)
704 CPUState *cpu;
705 int nr_cpus;
706 Error *err = NULL;
707 int ret;
709 if (runstate_is_running()) {
710 vm_stop(RUN_STATE_SAVE_VM);
711 s->resume = true;
712 } else {
713 s->resume = false;
716 s->errp = errp;
717 s->fd = fd;
718 s->has_filter = has_filter;
719 s->begin = begin;
720 s->length = length;
721 s->start = get_start_block(s);
722 if (s->start == -1) {
723 error_set(errp, QERR_INVALID_PARAMETER, "begin");
724 goto cleanup;
728 * get dump info: endian, class and architecture.
729 * If the target architecture is not supported, cpu_get_dump_info() will
730 * return -1.
732 * If we use KVM, we should synchronize the registers before we get dump
733 * info.
735 cpu_synchronize_all_states();
736 nr_cpus = 0;
737 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
738 nr_cpus++;
741 ret = cpu_get_dump_info(&s->dump_info);
742 if (ret < 0) {
743 error_set(errp, QERR_UNSUPPORTED);
744 goto cleanup;
747 s->note_size = cpu_get_note_size(s->dump_info.d_class,
748 s->dump_info.d_machine, nr_cpus);
749 if (ret < 0) {
750 error_set(errp, QERR_UNSUPPORTED);
751 goto cleanup;
754 /* get memory mapping */
755 memory_mapping_list_init(&s->list);
756 if (paging) {
757 qemu_get_guest_memory_mapping(&s->list, &err);
758 if (err != NULL) {
759 error_propagate(errp, err);
760 goto cleanup;
762 } else {
763 qemu_get_guest_simple_memory_mapping(&s->list);
766 if (s->has_filter) {
767 memory_mapping_filter(&s->list, s->begin, s->length);
771 * calculate phdr_num
773 * the type of ehdr->e_phnum is uint16_t, so we should avoid overflow
775 s->phdr_num = 1; /* PT_NOTE */
776 if (s->list.num < UINT16_MAX - 2) {
777 s->phdr_num += s->list.num;
778 s->have_section = false;
779 } else {
780 s->have_section = true;
781 s->phdr_num = PN_XNUM;
782 s->sh_info = 1; /* PT_NOTE */
784 /* the type of shdr->sh_info is uint32_t, so we should avoid overflow */
785 if (s->list.num <= UINT32_MAX - 1) {
786 s->sh_info += s->list.num;
787 } else {
788 s->sh_info = UINT32_MAX;
792 if (s->dump_info.d_class == ELFCLASS64) {
793 if (s->have_section) {
794 s->memory_offset = sizeof(Elf64_Ehdr) +
795 sizeof(Elf64_Phdr) * s->sh_info +
796 sizeof(Elf64_Shdr) + s->note_size;
797 } else {
798 s->memory_offset = sizeof(Elf64_Ehdr) +
799 sizeof(Elf64_Phdr) * s->phdr_num + s->note_size;
801 } else {
802 if (s->have_section) {
803 s->memory_offset = sizeof(Elf32_Ehdr) +
804 sizeof(Elf32_Phdr) * s->sh_info +
805 sizeof(Elf32_Shdr) + s->note_size;
806 } else {
807 s->memory_offset = sizeof(Elf32_Ehdr) +
808 sizeof(Elf32_Phdr) * s->phdr_num + s->note_size;
812 return 0;
814 cleanup:
815 if (s->resume) {
816 vm_start();
819 return -1;
822 void qmp_dump_guest_memory(bool paging, const char *file, bool has_begin,
823 int64_t begin, bool has_length, int64_t length,
824 Error **errp)
826 const char *p;
827 int fd = -1;
828 DumpState *s;
829 int ret;
831 if (has_begin && !has_length) {
832 error_set(errp, QERR_MISSING_PARAMETER, "length");
833 return;
835 if (!has_begin && has_length) {
836 error_set(errp, QERR_MISSING_PARAMETER, "begin");
837 return;
840 #if !defined(WIN32)
841 if (strstart(file, "fd:", &p)) {
842 fd = monitor_get_fd(cur_mon, p, errp);
843 if (fd == -1) {
844 return;
847 #endif
849 if (strstart(file, "file:", &p)) {
850 fd = qemu_open(p, O_WRONLY | O_CREAT | O_TRUNC | O_BINARY, S_IRUSR);
851 if (fd < 0) {
852 error_setg_file_open(errp, errno, p);
853 return;
857 if (fd == -1) {
858 error_set(errp, QERR_INVALID_PARAMETER, "protocol");
859 return;
862 s = g_malloc(sizeof(DumpState));
864 ret = dump_init(s, fd, paging, has_begin, begin, length, errp);
865 if (ret < 0) {
866 g_free(s);
867 return;
870 if (create_vmcore(s) < 0 && !error_is_set(s->errp)) {
871 error_set(errp, QERR_IO_ERROR);
874 g_free(s);