1 /* This is the Linux kernel elf-loading code, ported into user space */
11 #include <sys/resource.h>
17 #include "disas/disas.h"
29 #define ELF_OSABI ELFOSABI_SYSV
31 /* from personality.h */
34 * Flags for bug emulation.
36 * These occupy the top three bytes.
39 ADDR_NO_RANDOMIZE
= 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS
= 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO
= 0x0100000,
43 ADDR_COMPAT_LAYOUT
= 0x0200000,
44 READ_IMPLIES_EXEC
= 0x0400000,
45 ADDR_LIMIT_32BIT
= 0x0800000,
46 SHORT_INODE
= 0x1000000,
47 WHOLE_SECONDS
= 0x2000000,
48 STICKY_TIMEOUTS
= 0x4000000,
49 ADDR_LIMIT_3GB
= 0x8000000,
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
60 PER_LINUX_32BIT
= 0x0000 | ADDR_LIMIT_32BIT
,
61 PER_LINUX_FDPIC
= 0x0000 | FDPIC_FUNCPTRS
,
62 PER_SVR4
= 0x0001 | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
63 PER_SVR3
= 0x0002 | STICKY_TIMEOUTS
| SHORT_INODE
,
64 PER_SCOSVR3
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
| SHORT_INODE
,
65 PER_OSR5
= 0x0003 | STICKY_TIMEOUTS
| WHOLE_SECONDS
,
66 PER_WYSEV386
= 0x0004 | STICKY_TIMEOUTS
| SHORT_INODE
,
67 PER_ISCR4
= 0x0005 | STICKY_TIMEOUTS
,
69 PER_SUNOS
= 0x0006 | STICKY_TIMEOUTS
,
70 PER_XENIX
= 0x0007 | STICKY_TIMEOUTS
| SHORT_INODE
,
72 PER_LINUX32_3GB
= 0x0008 | ADDR_LIMIT_3GB
,
73 PER_IRIX32
= 0x0009 | STICKY_TIMEOUTS
,/* IRIX5 32-bit */
74 PER_IRIXN32
= 0x000a | STICKY_TIMEOUTS
,/* IRIX6 new 32-bit */
75 PER_IRIX64
= 0x000b | STICKY_TIMEOUTS
,/* IRIX6 64-bit */
77 PER_SOLARIS
= 0x000d | STICKY_TIMEOUTS
,
78 PER_UW7
= 0x000e | STICKY_TIMEOUTS
| MMAP_PAGE_ZERO
,
79 PER_OSF4
= 0x000f, /* OSF/1 v4 */
85 * Return the base personality without flags.
87 #define personality(pers) (pers & PER_MASK)
89 /* this flag is uneffective under linux too, should be deleted */
91 #define MAP_DENYWRITE 0
94 /* should probably go in elf.h */
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA ELFDATA2MSB
102 #define ELF_DATA ELFDATA2LSB
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong target_elf_greg_t
;
107 #define tswapreg(ptr) tswap64(ptr)
109 typedef abi_ulong target_elf_greg_t
;
110 #define tswapreg(ptr) tswapal(ptr)
114 typedef abi_ushort target_uid_t
;
115 typedef abi_ushort target_gid_t
;
117 typedef abi_uint target_uid_t
;
118 typedef abi_uint target_gid_t
;
120 typedef abi_int target_pid_t
;
124 #define ELF_PLATFORM get_elf_platform()
126 static const char *get_elf_platform(void)
128 static char elf_platform
[] = "i386";
129 int family
= object_property_get_int(OBJECT(thread_cpu
), "family", NULL
);
133 elf_platform
[1] = '0' + family
;
137 #define ELF_HWCAP get_elf_hwcap()
139 static uint32_t get_elf_hwcap(void)
141 X86CPU
*cpu
= X86_CPU(thread_cpu
);
143 return cpu
->env
.features
[FEAT_1_EDX
];
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
150 #define ELF_CLASS ELFCLASS64
151 #define ELF_ARCH EM_X86_64
153 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
156 regs
->rsp
= infop
->start_stack
;
157 regs
->rip
= infop
->entry
;
161 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
168 * See linux kernel: arch/x86/include/asm/elf.h
170 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
172 (*regs
)[0] = env
->regs
[15];
173 (*regs
)[1] = env
->regs
[14];
174 (*regs
)[2] = env
->regs
[13];
175 (*regs
)[3] = env
->regs
[12];
176 (*regs
)[4] = env
->regs
[R_EBP
];
177 (*regs
)[5] = env
->regs
[R_EBX
];
178 (*regs
)[6] = env
->regs
[11];
179 (*regs
)[7] = env
->regs
[10];
180 (*regs
)[8] = env
->regs
[9];
181 (*regs
)[9] = env
->regs
[8];
182 (*regs
)[10] = env
->regs
[R_EAX
];
183 (*regs
)[11] = env
->regs
[R_ECX
];
184 (*regs
)[12] = env
->regs
[R_EDX
];
185 (*regs
)[13] = env
->regs
[R_ESI
];
186 (*regs
)[14] = env
->regs
[R_EDI
];
187 (*regs
)[15] = env
->regs
[R_EAX
]; /* XXX */
188 (*regs
)[16] = env
->eip
;
189 (*regs
)[17] = env
->segs
[R_CS
].selector
& 0xffff;
190 (*regs
)[18] = env
->eflags
;
191 (*regs
)[19] = env
->regs
[R_ESP
];
192 (*regs
)[20] = env
->segs
[R_SS
].selector
& 0xffff;
193 (*regs
)[21] = env
->segs
[R_FS
].selector
& 0xffff;
194 (*regs
)[22] = env
->segs
[R_GS
].selector
& 0xffff;
195 (*regs
)[23] = env
->segs
[R_DS
].selector
& 0xffff;
196 (*regs
)[24] = env
->segs
[R_ES
].selector
& 0xffff;
197 (*regs
)[25] = env
->segs
[R_FS
].selector
& 0xffff;
198 (*regs
)[26] = env
->segs
[R_GS
].selector
& 0xffff;
203 #define ELF_START_MMAP 0x80000000
206 * This is used to ensure we don't load something for the wrong architecture.
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
211 * These are used to set parameters in the core dumps.
213 #define ELF_CLASS ELFCLASS32
214 #define ELF_ARCH EM_386
216 static inline void init_thread(struct target_pt_regs
*regs
,
217 struct image_info
*infop
)
219 regs
->esp
= infop
->start_stack
;
220 regs
->eip
= infop
->entry
;
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
228 A value of 0 tells we have no such handler. */
233 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
240 * See linux kernel: arch/x86/include/asm/elf.h
242 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUX86State
*env
)
244 (*regs
)[0] = env
->regs
[R_EBX
];
245 (*regs
)[1] = env
->regs
[R_ECX
];
246 (*regs
)[2] = env
->regs
[R_EDX
];
247 (*regs
)[3] = env
->regs
[R_ESI
];
248 (*regs
)[4] = env
->regs
[R_EDI
];
249 (*regs
)[5] = env
->regs
[R_EBP
];
250 (*regs
)[6] = env
->regs
[R_EAX
];
251 (*regs
)[7] = env
->segs
[R_DS
].selector
& 0xffff;
252 (*regs
)[8] = env
->segs
[R_ES
].selector
& 0xffff;
253 (*regs
)[9] = env
->segs
[R_FS
].selector
& 0xffff;
254 (*regs
)[10] = env
->segs
[R_GS
].selector
& 0xffff;
255 (*regs
)[11] = env
->regs
[R_EAX
]; /* XXX */
256 (*regs
)[12] = env
->eip
;
257 (*regs
)[13] = env
->segs
[R_CS
].selector
& 0xffff;
258 (*regs
)[14] = env
->eflags
;
259 (*regs
)[15] = env
->regs
[R_ESP
];
260 (*regs
)[16] = env
->segs
[R_SS
].selector
& 0xffff;
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE 4096
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
274 #define ELF_START_MMAP 0x80000000
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
278 #define ELF_ARCH ELF_MACHINE
279 #define ELF_CLASS ELFCLASS32
281 static inline void init_thread(struct target_pt_regs
*regs
,
282 struct image_info
*infop
)
284 abi_long stack
= infop
->start_stack
;
285 memset(regs
, 0, sizeof(*regs
));
287 regs
->ARM_cpsr
= 0x10;
288 if (infop
->entry
& 1)
289 regs
->ARM_cpsr
|= CPSR_T
;
290 regs
->ARM_pc
= infop
->entry
& 0xfffffffe;
291 regs
->ARM_sp
= infop
->start_stack
;
292 /* FIXME - what to for failure of get_user()? */
293 get_user_ual(regs
->ARM_r2
, stack
+ 8); /* envp */
294 get_user_ual(regs
->ARM_r1
, stack
+ 4); /* envp */
295 /* XXX: it seems that r0 is zeroed after ! */
297 /* For uClinux PIC binaries. */
298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299 regs
->ARM_r10
= infop
->start_data
;
303 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
305 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUARMState
*env
)
307 (*regs
)[0] = tswapreg(env
->regs
[0]);
308 (*regs
)[1] = tswapreg(env
->regs
[1]);
309 (*regs
)[2] = tswapreg(env
->regs
[2]);
310 (*regs
)[3] = tswapreg(env
->regs
[3]);
311 (*regs
)[4] = tswapreg(env
->regs
[4]);
312 (*regs
)[5] = tswapreg(env
->regs
[5]);
313 (*regs
)[6] = tswapreg(env
->regs
[6]);
314 (*regs
)[7] = tswapreg(env
->regs
[7]);
315 (*regs
)[8] = tswapreg(env
->regs
[8]);
316 (*regs
)[9] = tswapreg(env
->regs
[9]);
317 (*regs
)[10] = tswapreg(env
->regs
[10]);
318 (*regs
)[11] = tswapreg(env
->regs
[11]);
319 (*regs
)[12] = tswapreg(env
->regs
[12]);
320 (*regs
)[13] = tswapreg(env
->regs
[13]);
321 (*regs
)[14] = tswapreg(env
->regs
[14]);
322 (*regs
)[15] = tswapreg(env
->regs
[15]);
324 (*regs
)[16] = tswapreg(cpsr_read((CPUARMState
*)env
));
325 (*regs
)[17] = tswapreg(env
->regs
[0]); /* XXX */
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE 4096
333 ARM_HWCAP_ARM_SWP
= 1 << 0,
334 ARM_HWCAP_ARM_HALF
= 1 << 1,
335 ARM_HWCAP_ARM_THUMB
= 1 << 2,
336 ARM_HWCAP_ARM_26BIT
= 1 << 3,
337 ARM_HWCAP_ARM_FAST_MULT
= 1 << 4,
338 ARM_HWCAP_ARM_FPA
= 1 << 5,
339 ARM_HWCAP_ARM_VFP
= 1 << 6,
340 ARM_HWCAP_ARM_EDSP
= 1 << 7,
341 ARM_HWCAP_ARM_JAVA
= 1 << 8,
342 ARM_HWCAP_ARM_IWMMXT
= 1 << 9,
343 ARM_HWCAP_ARM_CRUNCH
= 1 << 10,
344 ARM_HWCAP_ARM_THUMBEE
= 1 << 11,
345 ARM_HWCAP_ARM_NEON
= 1 << 12,
346 ARM_HWCAP_ARM_VFPv3
= 1 << 13,
347 ARM_HWCAP_ARM_VFPv3D16
= 1 << 14,
348 ARM_HWCAP_ARM_TLS
= 1 << 15,
349 ARM_HWCAP_ARM_VFPv4
= 1 << 16,
350 ARM_HWCAP_ARM_IDIVA
= 1 << 17,
351 ARM_HWCAP_ARM_IDIVT
= 1 << 18,
352 ARM_HWCAP_ARM_VFPD32
= 1 << 19,
353 ARM_HWCAP_ARM_LPAE
= 1 << 20,
354 ARM_HWCAP_ARM_EVTSTRM
= 1 << 21,
358 ARM_HWCAP2_ARM_AES
= 1 << 0,
359 ARM_HWCAP2_ARM_PMULL
= 1 << 1,
360 ARM_HWCAP2_ARM_SHA1
= 1 << 2,
361 ARM_HWCAP2_ARM_SHA2
= 1 << 3,
362 ARM_HWCAP2_ARM_CRC32
= 1 << 4,
365 /* The commpage only exists for 32 bit kernels */
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369 * Return 0 if the proposed guest space isn't suitable, but another
370 * address space should be tried.
371 * Return -1 if there is no way the proposed guest space can be
372 * valid regardless of the base.
373 * The guest code may leave a page mapped and populate it if the
374 * address is suitable.
376 static int validate_guest_space(unsigned long guest_base
,
377 unsigned long guest_size
)
379 unsigned long real_start
, test_page_addr
;
381 /* We need to check that we can force a fault on access to the
382 * commpage at 0xffff0fxx
384 test_page_addr
= guest_base
+ (0xffff0f00 & qemu_host_page_mask
);
386 /* If the commpage lies within the already allocated guest space,
387 * then there is no way we can allocate it.
389 if (test_page_addr
>= guest_base
390 && test_page_addr
<= (guest_base
+ guest_size
)) {
394 /* Note it needs to be writeable to let us initialise it */
395 real_start
= (unsigned long)
396 mmap((void *)test_page_addr
, qemu_host_page_size
,
397 PROT_READ
| PROT_WRITE
,
398 MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
400 /* If we can't map it then try another address */
401 if (real_start
== -1ul) {
405 if (real_start
!= test_page_addr
) {
406 /* OS didn't put the page where we asked - unmap and reject */
407 munmap((void *)real_start
, qemu_host_page_size
);
411 /* Leave the page mapped
412 * Populate it (mmap should have left it all 0'd)
415 /* Kernel helper versions */
416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul
));
418 /* Now it's populated make it RO */
419 if (mprotect((void *)test_page_addr
, qemu_host_page_size
, PROT_READ
)) {
420 perror("Protecting guest commpage");
424 return 1; /* All good */
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
430 static uint32_t get_elf_hwcap(void)
432 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
435 hwcaps
|= ARM_HWCAP_ARM_SWP
;
436 hwcaps
|= ARM_HWCAP_ARM_HALF
;
437 hwcaps
|= ARM_HWCAP_ARM_THUMB
;
438 hwcaps
|= ARM_HWCAP_ARM_FAST_MULT
;
440 /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444 GET_FEATURE(ARM_FEATURE_V5
, ARM_HWCAP_ARM_EDSP
);
445 GET_FEATURE(ARM_FEATURE_VFP
, ARM_HWCAP_ARM_VFP
);
446 GET_FEATURE(ARM_FEATURE_IWMMXT
, ARM_HWCAP_ARM_IWMMXT
);
447 GET_FEATURE(ARM_FEATURE_THUMB2EE
, ARM_HWCAP_ARM_THUMBEE
);
448 GET_FEATURE(ARM_FEATURE_NEON
, ARM_HWCAP_ARM_NEON
);
449 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPv3
);
450 GET_FEATURE(ARM_FEATURE_V6K
, ARM_HWCAP_ARM_TLS
);
451 GET_FEATURE(ARM_FEATURE_VFP4
, ARM_HWCAP_ARM_VFPv4
);
452 GET_FEATURE(ARM_FEATURE_ARM_DIV
, ARM_HWCAP_ARM_IDIVA
);
453 GET_FEATURE(ARM_FEATURE_THUMB_DIV
, ARM_HWCAP_ARM_IDIVT
);
454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457 * to our VFP_FP16 feature bit.
459 GET_FEATURE(ARM_FEATURE_VFP3
, ARM_HWCAP_ARM_VFPD32
);
460 GET_FEATURE(ARM_FEATURE_LPAE
, ARM_HWCAP_ARM_LPAE
);
465 static uint32_t get_elf_hwcap2(void)
467 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
470 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP2_ARM_AES
);
471 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP2_ARM_PMULL
);
472 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP2_ARM_SHA1
);
473 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP2_ARM_SHA2
);
474 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP2_ARM_CRC32
);
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
486 #define ELF_ARCH ELF_MACHINE
487 #define ELF_CLASS ELFCLASS64
488 #define ELF_PLATFORM "aarch64"
490 static inline void init_thread(struct target_pt_regs
*regs
,
491 struct image_info
*infop
)
493 abi_long stack
= infop
->start_stack
;
494 memset(regs
, 0, sizeof(*regs
));
496 regs
->pc
= infop
->entry
& ~0x3ULL
;
501 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
503 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
504 const CPUARMState
*env
)
508 for (i
= 0; i
< 32; i
++) {
509 (*regs
)[i
] = tswapreg(env
->xregs
[i
]);
511 (*regs
)[32] = tswapreg(env
->pc
);
512 (*regs
)[33] = tswapreg(pstate_read((CPUARMState
*)env
));
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE 4096
519 ARM_HWCAP_A64_FP
= 1 << 0,
520 ARM_HWCAP_A64_ASIMD
= 1 << 1,
521 ARM_HWCAP_A64_EVTSTRM
= 1 << 2,
522 ARM_HWCAP_A64_AES
= 1 << 3,
523 ARM_HWCAP_A64_PMULL
= 1 << 4,
524 ARM_HWCAP_A64_SHA1
= 1 << 5,
525 ARM_HWCAP_A64_SHA2
= 1 << 6,
526 ARM_HWCAP_A64_CRC32
= 1 << 7,
529 #define ELF_HWCAP get_elf_hwcap()
531 static uint32_t get_elf_hwcap(void)
533 ARMCPU
*cpu
= ARM_CPU(thread_cpu
);
536 hwcaps
|= ARM_HWCAP_A64_FP
;
537 hwcaps
|= ARM_HWCAP_A64_ASIMD
;
539 /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542 GET_FEATURE(ARM_FEATURE_V8_AES
, ARM_HWCAP_A64_AES
);
543 GET_FEATURE(ARM_FEATURE_V8_PMULL
, ARM_HWCAP_A64_PMULL
);
544 GET_FEATURE(ARM_FEATURE_V8_SHA1
, ARM_HWCAP_A64_SHA1
);
545 GET_FEATURE(ARM_FEATURE_V8_SHA256
, ARM_HWCAP_A64_SHA2
);
546 GET_FEATURE(ARM_FEATURE_CRC
, ARM_HWCAP_A64_CRC32
);
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
555 #ifdef TARGET_UNICORE32
557 #define ELF_START_MMAP 0x80000000
559 #define elf_check_arch(x) ((x) == EM_UNICORE32)
561 #define ELF_CLASS ELFCLASS32
562 #define ELF_DATA ELFDATA2LSB
563 #define ELF_ARCH EM_UNICORE32
565 static inline void init_thread(struct target_pt_regs
*regs
,
566 struct image_info
*infop
)
568 abi_long stack
= infop
->start_stack
;
569 memset(regs
, 0, sizeof(*regs
));
570 regs
->UC32_REG_asr
= 0x10;
571 regs
->UC32_REG_pc
= infop
->entry
& 0xfffffffe;
572 regs
->UC32_REG_sp
= infop
->start_stack
;
573 /* FIXME - what to for failure of get_user()? */
574 get_user_ual(regs
->UC32_REG_02
, stack
+ 8); /* envp */
575 get_user_ual(regs
->UC32_REG_01
, stack
+ 4); /* envp */
576 /* XXX: it seems that r0 is zeroed after ! */
577 regs
->UC32_REG_00
= 0;
581 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
583 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUUniCore32State
*env
)
585 (*regs
)[0] = env
->regs
[0];
586 (*regs
)[1] = env
->regs
[1];
587 (*regs
)[2] = env
->regs
[2];
588 (*regs
)[3] = env
->regs
[3];
589 (*regs
)[4] = env
->regs
[4];
590 (*regs
)[5] = env
->regs
[5];
591 (*regs
)[6] = env
->regs
[6];
592 (*regs
)[7] = env
->regs
[7];
593 (*regs
)[8] = env
->regs
[8];
594 (*regs
)[9] = env
->regs
[9];
595 (*regs
)[10] = env
->regs
[10];
596 (*regs
)[11] = env
->regs
[11];
597 (*regs
)[12] = env
->regs
[12];
598 (*regs
)[13] = env
->regs
[13];
599 (*regs
)[14] = env
->regs
[14];
600 (*regs
)[15] = env
->regs
[15];
601 (*regs
)[16] = env
->regs
[16];
602 (*regs
)[17] = env
->regs
[17];
603 (*regs
)[18] = env
->regs
[18];
604 (*regs
)[19] = env
->regs
[19];
605 (*regs
)[20] = env
->regs
[20];
606 (*regs
)[21] = env
->regs
[21];
607 (*regs
)[22] = env
->regs
[22];
608 (*regs
)[23] = env
->regs
[23];
609 (*regs
)[24] = env
->regs
[24];
610 (*regs
)[25] = env
->regs
[25];
611 (*regs
)[26] = env
->regs
[26];
612 (*regs
)[27] = env
->regs
[27];
613 (*regs
)[28] = env
->regs
[28];
614 (*regs
)[29] = env
->regs
[29];
615 (*regs
)[30] = env
->regs
[30];
616 (*regs
)[31] = env
->regs
[31];
618 (*regs
)[32] = cpu_asr_read((CPUUniCore32State
*)env
);
619 (*regs
)[33] = env
->regs
[0]; /* XXX */
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE 4096
625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
630 #ifdef TARGET_SPARC64
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
641 #define ELF_CLASS ELFCLASS64
642 #define ELF_ARCH EM_SPARCV9
644 #define STACK_BIAS 2047
646 static inline void init_thread(struct target_pt_regs
*regs
,
647 struct image_info
*infop
)
652 regs
->pc
= infop
->entry
;
653 regs
->npc
= regs
->pc
+ 4;
656 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
658 if (personality(infop
->personality
) == PER_LINUX32
)
659 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
661 regs
->u_regs
[14] = infop
->start_stack
- 16 * 8 - STACK_BIAS
;
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668 | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
671 #define ELF_CLASS ELFCLASS32
672 #define ELF_ARCH EM_SPARC
674 static inline void init_thread(struct target_pt_regs
*regs
,
675 struct image_info
*infop
)
678 regs
->pc
= infop
->entry
;
679 regs
->npc
= regs
->pc
+ 4;
681 regs
->u_regs
[14] = infop
->start_stack
- 16 * 4;
689 #define ELF_START_MMAP 0x80000000
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
695 #define ELF_CLASS ELFCLASS64
699 #define elf_check_arch(x) ( (x) == EM_PPC )
701 #define ELF_CLASS ELFCLASS32
705 #define ELF_ARCH EM_PPC
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708 See arch/powerpc/include/asm/cputable.h. */
710 QEMU_PPC_FEATURE_32
= 0x80000000,
711 QEMU_PPC_FEATURE_64
= 0x40000000,
712 QEMU_PPC_FEATURE_601_INSTR
= 0x20000000,
713 QEMU_PPC_FEATURE_HAS_ALTIVEC
= 0x10000000,
714 QEMU_PPC_FEATURE_HAS_FPU
= 0x08000000,
715 QEMU_PPC_FEATURE_HAS_MMU
= 0x04000000,
716 QEMU_PPC_FEATURE_HAS_4xxMAC
= 0x02000000,
717 QEMU_PPC_FEATURE_UNIFIED_CACHE
= 0x01000000,
718 QEMU_PPC_FEATURE_HAS_SPE
= 0x00800000,
719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE
= 0x00400000,
720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
= 0x00200000,
721 QEMU_PPC_FEATURE_NO_TB
= 0x00100000,
722 QEMU_PPC_FEATURE_POWER4
= 0x00080000,
723 QEMU_PPC_FEATURE_POWER5
= 0x00040000,
724 QEMU_PPC_FEATURE_POWER5_PLUS
= 0x00020000,
725 QEMU_PPC_FEATURE_CELL
= 0x00010000,
726 QEMU_PPC_FEATURE_BOOKE
= 0x00008000,
727 QEMU_PPC_FEATURE_SMT
= 0x00004000,
728 QEMU_PPC_FEATURE_ICACHE_SNOOP
= 0x00002000,
729 QEMU_PPC_FEATURE_ARCH_2_05
= 0x00001000,
730 QEMU_PPC_FEATURE_PA6T
= 0x00000800,
731 QEMU_PPC_FEATURE_HAS_DFP
= 0x00000400,
732 QEMU_PPC_FEATURE_POWER6_EXT
= 0x00000200,
733 QEMU_PPC_FEATURE_ARCH_2_06
= 0x00000100,
734 QEMU_PPC_FEATURE_HAS_VSX
= 0x00000080,
735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT
= 0x00000040,
737 QEMU_PPC_FEATURE_TRUE_LE
= 0x00000002,
738 QEMU_PPC_FEATURE_PPC_LE
= 0x00000001,
740 /* Feature definitions in AT_HWCAP2. */
741 QEMU_PPC_FEATURE2_ARCH_2_07
= 0x80000000, /* ISA 2.07 */
742 QEMU_PPC_FEATURE2_HAS_HTM
= 0x40000000, /* Hardware Transactional Memory */
743 QEMU_PPC_FEATURE2_HAS_DSCR
= 0x20000000, /* Data Stream Control Register */
744 QEMU_PPC_FEATURE2_HAS_EBB
= 0x10000000, /* Event Base Branching */
745 QEMU_PPC_FEATURE2_HAS_ISEL
= 0x08000000, /* Integer Select */
746 QEMU_PPC_FEATURE2_HAS_TAR
= 0x04000000, /* Target Address Register */
749 #define ELF_HWCAP get_elf_hwcap()
751 static uint32_t get_elf_hwcap(void)
753 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
754 uint32_t features
= 0;
756 /* We don't have to be terribly complete here; the high points are
757 Altivec/FP/SPE support. Anything else is just a bonus. */
758 #define GET_FEATURE(flag, feature) \
759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature) \
761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762 GET_FEATURE(PPC_64B
, QEMU_PPC_FEATURE_64
);
763 GET_FEATURE(PPC_FLOAT
, QEMU_PPC_FEATURE_HAS_FPU
);
764 GET_FEATURE(PPC_ALTIVEC
, QEMU_PPC_FEATURE_HAS_ALTIVEC
);
765 GET_FEATURE(PPC_SPE
, QEMU_PPC_FEATURE_HAS_SPE
);
766 GET_FEATURE(PPC_SPE_SINGLE
, QEMU_PPC_FEATURE_HAS_EFP_SINGLE
);
767 GET_FEATURE(PPC_SPE_DOUBLE
, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE
);
768 GET_FEATURE(PPC_BOOKE
, QEMU_PPC_FEATURE_BOOKE
);
769 GET_FEATURE(PPC_405_MAC
, QEMU_PPC_FEATURE_HAS_4xxMAC
);
770 GET_FEATURE2(PPC2_DFP
, QEMU_PPC_FEATURE_HAS_DFP
);
771 GET_FEATURE2(PPC2_VSX
, QEMU_PPC_FEATURE_HAS_VSX
);
772 GET_FEATURE2((PPC2_PERM_ISA206
| PPC2_DIVE_ISA206
| PPC2_ATOMIC_ISA206
|
773 PPC2_FP_CVT_ISA206
| PPC2_FP_TST_ISA206
),
774 QEMU_PPC_FEATURE_ARCH_2_06
);
781 #define ELF_HWCAP2 get_elf_hwcap2()
783 static uint32_t get_elf_hwcap2(void)
785 PowerPCCPU
*cpu
= POWERPC_CPU(thread_cpu
);
786 uint32_t features
= 0;
788 #define GET_FEATURE(flag, feature) \
789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature) \
791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
793 GET_FEATURE(PPC_ISEL
, QEMU_PPC_FEATURE2_HAS_ISEL
);
794 GET_FEATURE2(PPC2_BCTAR_ISA207
, QEMU_PPC_FEATURE2_HAS_TAR
);
795 GET_FEATURE2((PPC2_BCTAR_ISA207
| PPC2_LSQ_ISA207
| PPC2_ALTIVEC_207
|
796 PPC2_ISA207S
), QEMU_PPC_FEATURE2_ARCH_2_07
);
805 * The requirements here are:
806 * - keep the final alignment of sp (sp & 0xf)
807 * - make sure the 32-bit value at the first 16 byte aligned position of
808 * AUXV is greater than 16 for glibc compatibility.
809 * AT_IGNOREPPC is used for that.
810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
813 #define DLINFO_ARCH_ITEMS 5
814 #define ARCH_DLINFO \
816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
821 * Now handle glibc compatibility. \
823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
827 static inline void init_thread(struct target_pt_regs
*_regs
, struct image_info
*infop
)
829 _regs
->gpr
[1] = infop
->start_stack
;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831 if (get_ppc64_abi(infop
) < 2) {
832 _regs
->gpr
[2] = ldq_raw(infop
->entry
+ 8) + infop
->load_bias
;
833 infop
->entry
= ldq_raw(infop
->entry
) + infop
->load_bias
;
835 _regs
->gpr
[12] = infop
->entry
; /* r12 set to global entry address */
838 _regs
->nip
= infop
->entry
;
841 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
843 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
845 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUPPCState
*env
)
848 target_ulong ccr
= 0;
850 for (i
= 0; i
< ARRAY_SIZE(env
->gpr
); i
++) {
851 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
854 (*regs
)[32] = tswapreg(env
->nip
);
855 (*regs
)[33] = tswapreg(env
->msr
);
856 (*regs
)[35] = tswapreg(env
->ctr
);
857 (*regs
)[36] = tswapreg(env
->lr
);
858 (*regs
)[37] = tswapreg(env
->xer
);
860 for (i
= 0; i
< ARRAY_SIZE(env
->crf
); i
++) {
861 ccr
|= env
->crf
[i
] << (32 - ((i
+ 1) * 4));
863 (*regs
)[38] = tswapreg(ccr
);
866 #define USE_ELF_CORE_DUMP
867 #define ELF_EXEC_PAGESIZE 4096
873 #define ELF_START_MMAP 0x80000000
875 #define elf_check_arch(x) ( (x) == EM_MIPS )
878 #define ELF_CLASS ELFCLASS64
880 #define ELF_CLASS ELFCLASS32
882 #define ELF_ARCH EM_MIPS
884 static inline void init_thread(struct target_pt_regs
*regs
,
885 struct image_info
*infop
)
887 regs
->cp0_status
= 2 << CP0St_KSU
;
888 regs
->cp0_epc
= infop
->entry
;
889 regs
->regs
[29] = infop
->start_stack
;
892 /* See linux kernel: arch/mips/include/asm/elf.h. */
894 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
896 /* See linux kernel: arch/mips/include/asm/reg.h. */
903 TARGET_EF_R26
= TARGET_EF_R0
+ 26,
904 TARGET_EF_R27
= TARGET_EF_R0
+ 27,
905 TARGET_EF_LO
= TARGET_EF_R0
+ 32,
906 TARGET_EF_HI
= TARGET_EF_R0
+ 33,
907 TARGET_EF_CP0_EPC
= TARGET_EF_R0
+ 34,
908 TARGET_EF_CP0_BADVADDR
= TARGET_EF_R0
+ 35,
909 TARGET_EF_CP0_STATUS
= TARGET_EF_R0
+ 36,
910 TARGET_EF_CP0_CAUSE
= TARGET_EF_R0
+ 37
913 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
914 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMIPSState
*env
)
918 for (i
= 0; i
< TARGET_EF_R0
; i
++) {
921 (*regs
)[TARGET_EF_R0
] = 0;
923 for (i
= 1; i
< ARRAY_SIZE(env
->active_tc
.gpr
); i
++) {
924 (*regs
)[TARGET_EF_R0
+ i
] = tswapreg(env
->active_tc
.gpr
[i
]);
927 (*regs
)[TARGET_EF_R26
] = 0;
928 (*regs
)[TARGET_EF_R27
] = 0;
929 (*regs
)[TARGET_EF_LO
] = tswapreg(env
->active_tc
.LO
[0]);
930 (*regs
)[TARGET_EF_HI
] = tswapreg(env
->active_tc
.HI
[0]);
931 (*regs
)[TARGET_EF_CP0_EPC
] = tswapreg(env
->active_tc
.PC
);
932 (*regs
)[TARGET_EF_CP0_BADVADDR
] = tswapreg(env
->CP0_BadVAddr
);
933 (*regs
)[TARGET_EF_CP0_STATUS
] = tswapreg(env
->CP0_Status
);
934 (*regs
)[TARGET_EF_CP0_CAUSE
] = tswapreg(env
->CP0_Cause
);
937 #define USE_ELF_CORE_DUMP
938 #define ELF_EXEC_PAGESIZE 4096
940 #endif /* TARGET_MIPS */
942 #ifdef TARGET_MICROBLAZE
944 #define ELF_START_MMAP 0x80000000
946 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
948 #define ELF_CLASS ELFCLASS32
949 #define ELF_ARCH EM_MICROBLAZE
951 static inline void init_thread(struct target_pt_regs
*regs
,
952 struct image_info
*infop
)
954 regs
->pc
= infop
->entry
;
955 regs
->r1
= infop
->start_stack
;
959 #define ELF_EXEC_PAGESIZE 4096
961 #define USE_ELF_CORE_DUMP
963 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
965 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
966 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUMBState
*env
)
970 for (i
= 0; i
< 32; i
++) {
971 (*regs
)[pos
++] = tswapreg(env
->regs
[i
]);
974 for (i
= 0; i
< 6; i
++) {
975 (*regs
)[pos
++] = tswapreg(env
->sregs
[i
]);
979 #endif /* TARGET_MICROBLAZE */
981 #ifdef TARGET_OPENRISC
983 #define ELF_START_MMAP 0x08000000
985 #define elf_check_arch(x) ((x) == EM_OPENRISC)
987 #define ELF_ARCH EM_OPENRISC
988 #define ELF_CLASS ELFCLASS32
989 #define ELF_DATA ELFDATA2MSB
991 static inline void init_thread(struct target_pt_regs
*regs
,
992 struct image_info
*infop
)
994 regs
->pc
= infop
->entry
;
995 regs
->gpr
[1] = infop
->start_stack
;
998 #define USE_ELF_CORE_DUMP
999 #define ELF_EXEC_PAGESIZE 8192
1001 /* See linux kernel arch/openrisc/include/asm/elf.h. */
1002 #define ELF_NREG 34 /* gprs and pc, sr */
1003 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1005 static void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1006 const CPUOpenRISCState
*env
)
1010 for (i
= 0; i
< 32; i
++) {
1011 (*regs
)[i
] = tswapreg(env
->gpr
[i
]);
1014 (*regs
)[32] = tswapreg(env
->pc
);
1015 (*regs
)[33] = tswapreg(env
->sr
);
1018 #define ELF_PLATFORM NULL
1020 #endif /* TARGET_OPENRISC */
1024 #define ELF_START_MMAP 0x80000000
1026 #define elf_check_arch(x) ( (x) == EM_SH )
1028 #define ELF_CLASS ELFCLASS32
1029 #define ELF_ARCH EM_SH
1031 static inline void init_thread(struct target_pt_regs
*regs
,
1032 struct image_info
*infop
)
1034 /* Check other registers XXXXX */
1035 regs
->pc
= infop
->entry
;
1036 regs
->regs
[15] = infop
->start_stack
;
1039 /* See linux kernel: arch/sh/include/asm/elf.h. */
1041 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1043 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
1048 TARGET_REG_GBR
= 19,
1049 TARGET_REG_MACH
= 20,
1050 TARGET_REG_MACL
= 21,
1051 TARGET_REG_SYSCALL
= 22
1054 static inline void elf_core_copy_regs(target_elf_gregset_t
*regs
,
1055 const CPUSH4State
*env
)
1059 for (i
= 0; i
< 16; i
++) {
1060 (*regs
[i
]) = tswapreg(env
->gregs
[i
]);
1063 (*regs
)[TARGET_REG_PC
] = tswapreg(env
->pc
);
1064 (*regs
)[TARGET_REG_PR
] = tswapreg(env
->pr
);
1065 (*regs
)[TARGET_REG_SR
] = tswapreg(env
->sr
);
1066 (*regs
)[TARGET_REG_GBR
] = tswapreg(env
->gbr
);
1067 (*regs
)[TARGET_REG_MACH
] = tswapreg(env
->mach
);
1068 (*regs
)[TARGET_REG_MACL
] = tswapreg(env
->macl
);
1069 (*regs
)[TARGET_REG_SYSCALL
] = 0; /* FIXME */
1072 #define USE_ELF_CORE_DUMP
1073 #define ELF_EXEC_PAGESIZE 4096
1079 #define ELF_START_MMAP 0x80000000
1081 #define elf_check_arch(x) ( (x) == EM_CRIS )
1083 #define ELF_CLASS ELFCLASS32
1084 #define ELF_ARCH EM_CRIS
1086 static inline void init_thread(struct target_pt_regs
*regs
,
1087 struct image_info
*infop
)
1089 regs
->erp
= infop
->entry
;
1092 #define ELF_EXEC_PAGESIZE 8192
1098 #define ELF_START_MMAP 0x80000000
1100 #define elf_check_arch(x) ( (x) == EM_68K )
1102 #define ELF_CLASS ELFCLASS32
1103 #define ELF_ARCH EM_68K
1105 /* ??? Does this need to do anything?
1106 #define ELF_PLAT_INIT(_r) */
1108 static inline void init_thread(struct target_pt_regs
*regs
,
1109 struct image_info
*infop
)
1111 regs
->usp
= infop
->start_stack
;
1113 regs
->pc
= infop
->entry
;
1116 /* See linux kernel: arch/m68k/include/asm/elf.h. */
1118 typedef target_elf_greg_t target_elf_gregset_t
[ELF_NREG
];
1120 static void elf_core_copy_regs(target_elf_gregset_t
*regs
, const CPUM68KState
*env
)
1122 (*regs
)[0] = tswapreg(env
->dregs
[1]);
1123 (*regs
)[1] = tswapreg(env
->dregs
[2]);
1124 (*regs
)[2] = tswapreg(env
->dregs
[3]);
1125 (*regs
)[3] = tswapreg(env
->dregs
[4]);
1126 (*regs
)[4] = tswapreg(env
->dregs
[5]);
1127 (*regs
)[5] = tswapreg(env
->dregs
[6]);
1128 (*regs
)[6] = tswapreg(env
->dregs
[7]);
1129 (*regs
)[7] = tswapreg(env
->aregs
[0]);
1130 (*regs
)[8] = tswapreg(env
->aregs
[1]);
1131 (*regs
)[9] = tswapreg(env
->aregs
[2]);
1132 (*regs
)[10] = tswapreg(env
->aregs
[3]);
1133 (*regs
)[11] = tswapreg(env
->aregs
[4]);
1134 (*regs
)[12] = tswapreg(env
->aregs
[5]);
1135 (*regs
)[13] = tswapreg(env
->aregs
[6]);
1136 (*regs
)[14] = tswapreg(env
->dregs
[0]);
1137 (*regs
)[15] = tswapreg(env
->aregs
[7]);
1138 (*regs
)[16] = tswapreg(env
->dregs
[0]); /* FIXME: orig_d0 */
1139 (*regs
)[17] = tswapreg(env
->sr
);
1140 (*regs
)[18] = tswapreg(env
->pc
);
1141 (*regs
)[19] = 0; /* FIXME: regs->format | regs->vector */
1144 #define USE_ELF_CORE_DUMP
1145 #define ELF_EXEC_PAGESIZE 8192
1151 #define ELF_START_MMAP (0x30000000000ULL)
1153 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1155 #define ELF_CLASS ELFCLASS64
1156 #define ELF_ARCH EM_ALPHA
1158 static inline void init_thread(struct target_pt_regs
*regs
,
1159 struct image_info
*infop
)
1161 regs
->pc
= infop
->entry
;
1163 regs
->usp
= infop
->start_stack
;
1166 #define ELF_EXEC_PAGESIZE 8192
1168 #endif /* TARGET_ALPHA */
1172 #define ELF_START_MMAP (0x20000000000ULL)
1174 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1176 #define ELF_CLASS ELFCLASS64
1177 #define ELF_DATA ELFDATA2MSB
1178 #define ELF_ARCH EM_S390
1180 static inline void init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
1182 regs
->psw
.addr
= infop
->entry
;
1183 regs
->psw
.mask
= PSW_MASK_64
| PSW_MASK_32
;
1184 regs
->gprs
[15] = infop
->start_stack
;
1187 #endif /* TARGET_S390X */
1189 #ifndef ELF_PLATFORM
1190 #define ELF_PLATFORM (NULL)
1199 #define ELF_CLASS ELFCLASS32
1201 #define bswaptls(ptr) bswap32s(ptr)
1208 unsigned int a_info
; /* Use macros N_MAGIC, etc for access */
1209 unsigned int a_text
; /* length of text, in bytes */
1210 unsigned int a_data
; /* length of data, in bytes */
1211 unsigned int a_bss
; /* length of uninitialized data area, in bytes */
1212 unsigned int a_syms
; /* length of symbol table data in file, in bytes */
1213 unsigned int a_entry
; /* start address */
1214 unsigned int a_trsize
; /* length of relocation info for text, in bytes */
1215 unsigned int a_drsize
; /* length of relocation info for data, in bytes */
1219 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1225 /* Necessary parameters */
1226 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1227 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1228 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1230 #define DLINFO_ITEMS 14
1232 static inline void memcpy_fromfs(void * to
, const void * from
, unsigned long n
)
1234 memcpy(to
, from
, n
);
1238 static void bswap_ehdr(struct elfhdr
*ehdr
)
1240 bswap16s(&ehdr
->e_type
); /* Object file type */
1241 bswap16s(&ehdr
->e_machine
); /* Architecture */
1242 bswap32s(&ehdr
->e_version
); /* Object file version */
1243 bswaptls(&ehdr
->e_entry
); /* Entry point virtual address */
1244 bswaptls(&ehdr
->e_phoff
); /* Program header table file offset */
1245 bswaptls(&ehdr
->e_shoff
); /* Section header table file offset */
1246 bswap32s(&ehdr
->e_flags
); /* Processor-specific flags */
1247 bswap16s(&ehdr
->e_ehsize
); /* ELF header size in bytes */
1248 bswap16s(&ehdr
->e_phentsize
); /* Program header table entry size */
1249 bswap16s(&ehdr
->e_phnum
); /* Program header table entry count */
1250 bswap16s(&ehdr
->e_shentsize
); /* Section header table entry size */
1251 bswap16s(&ehdr
->e_shnum
); /* Section header table entry count */
1252 bswap16s(&ehdr
->e_shstrndx
); /* Section header string table index */
1255 static void bswap_phdr(struct elf_phdr
*phdr
, int phnum
)
1258 for (i
= 0; i
< phnum
; ++i
, ++phdr
) {
1259 bswap32s(&phdr
->p_type
); /* Segment type */
1260 bswap32s(&phdr
->p_flags
); /* Segment flags */
1261 bswaptls(&phdr
->p_offset
); /* Segment file offset */
1262 bswaptls(&phdr
->p_vaddr
); /* Segment virtual address */
1263 bswaptls(&phdr
->p_paddr
); /* Segment physical address */
1264 bswaptls(&phdr
->p_filesz
); /* Segment size in file */
1265 bswaptls(&phdr
->p_memsz
); /* Segment size in memory */
1266 bswaptls(&phdr
->p_align
); /* Segment alignment */
1270 static void bswap_shdr(struct elf_shdr
*shdr
, int shnum
)
1273 for (i
= 0; i
< shnum
; ++i
, ++shdr
) {
1274 bswap32s(&shdr
->sh_name
);
1275 bswap32s(&shdr
->sh_type
);
1276 bswaptls(&shdr
->sh_flags
);
1277 bswaptls(&shdr
->sh_addr
);
1278 bswaptls(&shdr
->sh_offset
);
1279 bswaptls(&shdr
->sh_size
);
1280 bswap32s(&shdr
->sh_link
);
1281 bswap32s(&shdr
->sh_info
);
1282 bswaptls(&shdr
->sh_addralign
);
1283 bswaptls(&shdr
->sh_entsize
);
1287 static void bswap_sym(struct elf_sym
*sym
)
1289 bswap32s(&sym
->st_name
);
1290 bswaptls(&sym
->st_value
);
1291 bswaptls(&sym
->st_size
);
1292 bswap16s(&sym
->st_shndx
);
1295 static inline void bswap_ehdr(struct elfhdr
*ehdr
) { }
1296 static inline void bswap_phdr(struct elf_phdr
*phdr
, int phnum
) { }
1297 static inline void bswap_shdr(struct elf_shdr
*shdr
, int shnum
) { }
1298 static inline void bswap_sym(struct elf_sym
*sym
) { }
1301 #ifdef USE_ELF_CORE_DUMP
1302 static int elf_core_dump(int, const CPUArchState
*);
1303 #endif /* USE_ELF_CORE_DUMP */
1304 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
);
1306 /* Verify the portions of EHDR within E_IDENT for the target.
1307 This can be performed before bswapping the entire header. */
1308 static bool elf_check_ident(struct elfhdr
*ehdr
)
1310 return (ehdr
->e_ident
[EI_MAG0
] == ELFMAG0
1311 && ehdr
->e_ident
[EI_MAG1
] == ELFMAG1
1312 && ehdr
->e_ident
[EI_MAG2
] == ELFMAG2
1313 && ehdr
->e_ident
[EI_MAG3
] == ELFMAG3
1314 && ehdr
->e_ident
[EI_CLASS
] == ELF_CLASS
1315 && ehdr
->e_ident
[EI_DATA
] == ELF_DATA
1316 && ehdr
->e_ident
[EI_VERSION
] == EV_CURRENT
);
1319 /* Verify the portions of EHDR outside of E_IDENT for the target.
1320 This has to wait until after bswapping the header. */
1321 static bool elf_check_ehdr(struct elfhdr
*ehdr
)
1323 return (elf_check_arch(ehdr
->e_machine
)
1324 && ehdr
->e_ehsize
== sizeof(struct elfhdr
)
1325 && ehdr
->e_phentsize
== sizeof(struct elf_phdr
)
1326 && (ehdr
->e_type
== ET_EXEC
|| ehdr
->e_type
== ET_DYN
));
1330 * 'copy_elf_strings()' copies argument/envelope strings from user
1331 * memory to free pages in kernel mem. These are in a format ready
1332 * to be put directly into the top of new user memory.
1335 static abi_ulong
copy_elf_strings(int argc
,char ** argv
, void **page
,
1338 char *tmp
, *tmp1
, *pag
= NULL
;
1339 int len
, offset
= 0;
1342 return 0; /* bullet-proofing */
1344 while (argc
-- > 0) {
1347 fprintf(stderr
, "VFS: argc is wrong");
1353 if (p
< len
) { /* this shouldn't happen - 128kB */
1359 offset
= p
% TARGET_PAGE_SIZE
;
1360 pag
= (char *)page
[p
/TARGET_PAGE_SIZE
];
1362 pag
= g_try_malloc0(TARGET_PAGE_SIZE
);
1363 page
[p
/TARGET_PAGE_SIZE
] = pag
;
1368 if (len
== 0 || offset
== 0) {
1369 *(pag
+ offset
) = *tmp
;
1372 int bytes_to_copy
= (len
> offset
) ? offset
: len
;
1373 tmp
-= bytes_to_copy
;
1375 offset
-= bytes_to_copy
;
1376 len
-= bytes_to_copy
;
1377 memcpy_fromfs(pag
+ offset
, tmp
, bytes_to_copy
+ 1);
1384 static abi_ulong
setup_arg_pages(abi_ulong p
, struct linux_binprm
*bprm
,
1385 struct image_info
*info
)
1387 abi_ulong stack_base
, size
, error
, guard
;
1390 /* Create enough stack to hold everything. If we don't use
1391 it for args, we'll use it for something else. */
1392 size
= guest_stack_size
;
1393 if (size
< MAX_ARG_PAGES
*TARGET_PAGE_SIZE
) {
1394 size
= MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1396 guard
= TARGET_PAGE_SIZE
;
1397 if (guard
< qemu_real_host_page_size
) {
1398 guard
= qemu_real_host_page_size
;
1401 error
= target_mmap(0, size
+ guard
, PROT_READ
| PROT_WRITE
,
1402 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1404 perror("mmap stack");
1408 /* We reserve one extra page at the top of the stack as guard. */
1409 target_mprotect(error
, guard
, PROT_NONE
);
1411 info
->stack_limit
= error
+ guard
;
1412 stack_base
= info
->stack_limit
+ size
- MAX_ARG_PAGES
*TARGET_PAGE_SIZE
;
1415 for (i
= 0 ; i
< MAX_ARG_PAGES
; i
++) {
1416 if (bprm
->page
[i
]) {
1418 /* FIXME - check return value of memcpy_to_target() for failure */
1419 memcpy_to_target(stack_base
, bprm
->page
[i
], TARGET_PAGE_SIZE
);
1420 g_free(bprm
->page
[i
]);
1422 stack_base
+= TARGET_PAGE_SIZE
;
1427 /* Map and zero the bss. We need to explicitly zero any fractional pages
1428 after the data section (i.e. bss). */
1429 static void zero_bss(abi_ulong elf_bss
, abi_ulong last_bss
, int prot
)
1431 uintptr_t host_start
, host_map_start
, host_end
;
1433 last_bss
= TARGET_PAGE_ALIGN(last_bss
);
1435 /* ??? There is confusion between qemu_real_host_page_size and
1436 qemu_host_page_size here and elsewhere in target_mmap, which
1437 may lead to the end of the data section mapping from the file
1438 not being mapped. At least there was an explicit test and
1439 comment for that here, suggesting that "the file size must
1440 be known". The comment probably pre-dates the introduction
1441 of the fstat system call in target_mmap which does in fact
1442 find out the size. What isn't clear is if the workaround
1443 here is still actually needed. For now, continue with it,
1444 but merge it with the "normal" mmap that would allocate the bss. */
1446 host_start
= (uintptr_t) g2h(elf_bss
);
1447 host_end
= (uintptr_t) g2h(last_bss
);
1448 host_map_start
= (host_start
+ qemu_real_host_page_size
- 1);
1449 host_map_start
&= -qemu_real_host_page_size
;
1451 if (host_map_start
< host_end
) {
1452 void *p
= mmap((void *)host_map_start
, host_end
- host_map_start
,
1453 prot
, MAP_FIXED
| MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
1454 if (p
== MAP_FAILED
) {
1455 perror("cannot mmap brk");
1460 /* Ensure that the bss page(s) are valid */
1461 if ((page_get_flags(last_bss
-1) & prot
) != prot
) {
1462 page_set_flags(elf_bss
& TARGET_PAGE_MASK
, last_bss
, prot
| PAGE_VALID
);
1465 if (host_start
< host_map_start
) {
1466 memset((void *)host_start
, 0, host_map_start
- host_start
);
1470 #ifdef CONFIG_USE_FDPIC
1471 static abi_ulong
loader_build_fdpic_loadmap(struct image_info
*info
, abi_ulong sp
)
1474 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
;
1476 /* elf32_fdpic_loadseg */
1480 put_user_u32(loadsegs
[n
].addr
, sp
+0);
1481 put_user_u32(loadsegs
[n
].p_vaddr
, sp
+4);
1482 put_user_u32(loadsegs
[n
].p_memsz
, sp
+8);
1485 /* elf32_fdpic_loadmap */
1487 put_user_u16(0, sp
+0); /* version */
1488 put_user_u16(info
->nsegs
, sp
+2); /* nsegs */
1490 info
->personality
= PER_LINUX_FDPIC
;
1491 info
->loadmap_addr
= sp
;
1497 static abi_ulong
create_elf_tables(abi_ulong p
, int argc
, int envc
,
1498 struct elfhdr
*exec
,
1499 struct image_info
*info
,
1500 struct image_info
*interp_info
)
1506 abi_ulong u_rand_bytes
;
1507 uint8_t k_rand_bytes
[16];
1508 abi_ulong u_platform
;
1509 const char *k_platform
;
1510 const int n
= sizeof(elf_addr_t
);
1514 #ifdef CONFIG_USE_FDPIC
1515 /* Needs to be before we load the env/argc/... */
1516 if (elf_is_fdpic(exec
)) {
1517 /* Need 4 byte alignment for these structs */
1519 sp
= loader_build_fdpic_loadmap(info
, sp
);
1520 info
->other_info
= interp_info
;
1522 interp_info
->other_info
= info
;
1523 sp
= loader_build_fdpic_loadmap(interp_info
, sp
);
1529 k_platform
= ELF_PLATFORM
;
1531 size_t len
= strlen(k_platform
) + 1;
1532 sp
-= (len
+ n
- 1) & ~(n
- 1);
1534 /* FIXME - check return value of memcpy_to_target() for failure */
1535 memcpy_to_target(sp
, k_platform
, len
);
1539 * Generate 16 random bytes for userspace PRNG seeding (not
1540 * cryptically secure but it's not the aim of QEMU).
1542 srand((unsigned int) time(NULL
));
1543 for (i
= 0; i
< 16; i
++) {
1544 k_rand_bytes
[i
] = rand();
1548 /* FIXME - check return value of memcpy_to_target() for failure */
1549 memcpy_to_target(sp
, k_rand_bytes
, 16);
1552 * Force 16 byte _final_ alignment here for generality.
1554 sp
= sp
&~ (abi_ulong
)15;
1555 size
= (DLINFO_ITEMS
+ 1) * 2;
1558 #ifdef DLINFO_ARCH_ITEMS
1559 size
+= DLINFO_ARCH_ITEMS
* 2;
1564 size
+= envc
+ argc
+ 2;
1565 size
+= 1; /* argc itself */
1568 sp
-= 16 - (size
& 15);
1570 /* This is correct because Linux defines
1571 * elf_addr_t as Elf32_Off / Elf64_Off
1573 #define NEW_AUX_ENT(id, val) do { \
1574 sp -= n; put_user_ual(val, sp); \
1575 sp -= n; put_user_ual(id, sp); \
1579 NEW_AUX_ENT (AT_NULL
, 0);
1581 /* There must be exactly DLINFO_ITEMS entries here. */
1582 NEW_AUX_ENT(AT_PHDR
, (abi_ulong
)(info
->load_addr
+ exec
->e_phoff
));
1583 NEW_AUX_ENT(AT_PHENT
, (abi_ulong
)(sizeof (struct elf_phdr
)));
1584 NEW_AUX_ENT(AT_PHNUM
, (abi_ulong
)(exec
->e_phnum
));
1585 NEW_AUX_ENT(AT_PAGESZ
, (abi_ulong
)(MAX(TARGET_PAGE_SIZE
, getpagesize())));
1586 NEW_AUX_ENT(AT_BASE
, (abi_ulong
)(interp_info
? interp_info
->load_addr
: 0));
1587 NEW_AUX_ENT(AT_FLAGS
, (abi_ulong
)0);
1588 NEW_AUX_ENT(AT_ENTRY
, info
->entry
);
1589 NEW_AUX_ENT(AT_UID
, (abi_ulong
) getuid());
1590 NEW_AUX_ENT(AT_EUID
, (abi_ulong
) geteuid());
1591 NEW_AUX_ENT(AT_GID
, (abi_ulong
) getgid());
1592 NEW_AUX_ENT(AT_EGID
, (abi_ulong
) getegid());
1593 NEW_AUX_ENT(AT_HWCAP
, (abi_ulong
) ELF_HWCAP
);
1594 NEW_AUX_ENT(AT_CLKTCK
, (abi_ulong
) sysconf(_SC_CLK_TCK
));
1595 NEW_AUX_ENT(AT_RANDOM
, (abi_ulong
) u_rand_bytes
);
1598 NEW_AUX_ENT(AT_HWCAP2
, (abi_ulong
) ELF_HWCAP2
);
1602 NEW_AUX_ENT(AT_PLATFORM
, u_platform
);
1605 * ARCH_DLINFO must come last so platform specific code can enforce
1606 * special alignment requirements on the AUXV if necessary (eg. PPC).
1612 info
->saved_auxv
= sp
;
1613 info
->auxv_len
= sp_auxv
- sp
;
1615 sp
= loader_build_argptr(envc
, argc
, sp
, p
, 0);
1616 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1617 assert(sp_auxv
- sp
== size
);
1621 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1622 /* If the guest doesn't have a validation function just agree */
1623 static int validate_guest_space(unsigned long guest_base
,
1624 unsigned long guest_size
)
1630 unsigned long init_guest_space(unsigned long host_start
,
1631 unsigned long host_size
,
1632 unsigned long guest_start
,
1635 unsigned long current_start
, real_start
;
1638 assert(host_start
|| host_size
);
1640 /* If just a starting address is given, then just verify that
1642 if (host_start
&& !host_size
) {
1643 if (validate_guest_space(host_start
, host_size
) == 1) {
1646 return (unsigned long)-1;
1650 /* Setup the initial flags and start address. */
1651 current_start
= host_start
& qemu_host_page_mask
;
1652 flags
= MAP_ANONYMOUS
| MAP_PRIVATE
| MAP_NORESERVE
;
1657 /* Otherwise, a non-zero size region of memory needs to be mapped
1660 unsigned long real_size
= host_size
;
1662 /* Do not use mmap_find_vma here because that is limited to the
1663 * guest address space. We are going to make the
1664 * guest address space fit whatever we're given.
1666 real_start
= (unsigned long)
1667 mmap((void *)current_start
, host_size
, PROT_NONE
, flags
, -1, 0);
1668 if (real_start
== (unsigned long)-1) {
1669 return (unsigned long)-1;
1672 /* Ensure the address is properly aligned. */
1673 if (real_start
& ~qemu_host_page_mask
) {
1674 munmap((void *)real_start
, host_size
);
1675 real_size
= host_size
+ qemu_host_page_size
;
1676 real_start
= (unsigned long)
1677 mmap((void *)real_start
, real_size
, PROT_NONE
, flags
, -1, 0);
1678 if (real_start
== (unsigned long)-1) {
1679 return (unsigned long)-1;
1681 real_start
= HOST_PAGE_ALIGN(real_start
);
1684 /* Check to see if the address is valid. */
1685 if (!host_start
|| real_start
== current_start
) {
1686 int valid
= validate_guest_space(real_start
- guest_start
,
1690 } else if (valid
== -1) {
1691 return (unsigned long)-1;
1693 /* valid == 0, so try again. */
1696 /* That address didn't work. Unmap and try a different one.
1697 * The address the host picked because is typically right at
1698 * the top of the host address space and leaves the guest with
1699 * no usable address space. Resort to a linear search. We
1700 * already compensated for mmap_min_addr, so this should not
1701 * happen often. Probably means we got unlucky and host
1702 * address space randomization put a shared library somewhere
1705 munmap((void *)real_start
, host_size
);
1706 current_start
+= qemu_host_page_size
;
1707 if (host_start
== current_start
) {
1708 /* Theoretically possible if host doesn't have any suitably
1709 * aligned areas. Normally the first mmap will fail.
1711 return (unsigned long)-1;
1715 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size
);
1720 static void probe_guest_base(const char *image_name
,
1721 abi_ulong loaddr
, abi_ulong hiaddr
)
1723 /* Probe for a suitable guest base address, if the user has not set
1724 * it explicitly, and set guest_base appropriately.
1725 * In case of error we will print a suitable message and exit.
1727 #if defined(CONFIG_USE_GUEST_BASE)
1729 if (!have_guest_base
&& !reserved_va
) {
1730 unsigned long host_start
, real_start
, host_size
;
1732 /* Round addresses to page boundaries. */
1733 loaddr
&= qemu_host_page_mask
;
1734 hiaddr
= HOST_PAGE_ALIGN(hiaddr
);
1736 if (loaddr
< mmap_min_addr
) {
1737 host_start
= HOST_PAGE_ALIGN(mmap_min_addr
);
1739 host_start
= loaddr
;
1740 if (host_start
!= loaddr
) {
1741 errmsg
= "Address overflow loading ELF binary";
1745 host_size
= hiaddr
- loaddr
;
1747 /* Setup the initial guest memory space with ranges gleaned from
1748 * the ELF image that is being loaded.
1750 real_start
= init_guest_space(host_start
, host_size
, loaddr
, false);
1751 if (real_start
== (unsigned long)-1) {
1752 errmsg
= "Unable to find space for application";
1755 guest_base
= real_start
- loaddr
;
1757 qemu_log("Relocating guest address space from 0x"
1758 TARGET_ABI_FMT_lx
" to 0x%lx\n",
1759 loaddr
, real_start
);
1764 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1770 /* Load an ELF image into the address space.
1772 IMAGE_NAME is the filename of the image, to use in error messages.
1773 IMAGE_FD is the open file descriptor for the image.
1775 BPRM_BUF is a copy of the beginning of the file; this of course
1776 contains the elf file header at offset 0. It is assumed that this
1777 buffer is sufficiently aligned to present no problems to the host
1778 in accessing data at aligned offsets within the buffer.
1780 On return: INFO values will be filled in, as necessary or available. */
1782 static void load_elf_image(const char *image_name
, int image_fd
,
1783 struct image_info
*info
, char **pinterp_name
,
1784 char bprm_buf
[BPRM_BUF_SIZE
])
1786 struct elfhdr
*ehdr
= (struct elfhdr
*)bprm_buf
;
1787 struct elf_phdr
*phdr
;
1788 abi_ulong load_addr
, load_bias
, loaddr
, hiaddr
, error
;
1792 /* First of all, some simple consistency checks */
1793 errmsg
= "Invalid ELF image for this architecture";
1794 if (!elf_check_ident(ehdr
)) {
1798 if (!elf_check_ehdr(ehdr
)) {
1802 i
= ehdr
->e_phnum
* sizeof(struct elf_phdr
);
1803 if (ehdr
->e_phoff
+ i
<= BPRM_BUF_SIZE
) {
1804 phdr
= (struct elf_phdr
*)(bprm_buf
+ ehdr
->e_phoff
);
1806 phdr
= (struct elf_phdr
*) alloca(i
);
1807 retval
= pread(image_fd
, phdr
, i
, ehdr
->e_phoff
);
1812 bswap_phdr(phdr
, ehdr
->e_phnum
);
1814 #ifdef CONFIG_USE_FDPIC
1816 info
->pt_dynamic_addr
= 0;
1819 /* Find the maximum size of the image and allocate an appropriate
1820 amount of memory to handle that. */
1821 loaddr
= -1, hiaddr
= 0;
1822 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1823 if (phdr
[i
].p_type
== PT_LOAD
) {
1824 abi_ulong a
= phdr
[i
].p_vaddr
;
1828 a
+= phdr
[i
].p_memsz
;
1832 #ifdef CONFIG_USE_FDPIC
1839 if (ehdr
->e_type
== ET_DYN
) {
1840 /* The image indicates that it can be loaded anywhere. Find a
1841 location that can hold the memory space required. If the
1842 image is pre-linked, LOADDR will be non-zero. Since we do
1843 not supply MAP_FIXED here we'll use that address if and
1844 only if it remains available. */
1845 load_addr
= target_mmap(loaddr
, hiaddr
- loaddr
, PROT_NONE
,
1846 MAP_PRIVATE
| MAP_ANON
| MAP_NORESERVE
,
1848 if (load_addr
== -1) {
1851 } else if (pinterp_name
!= NULL
) {
1852 /* This is the main executable. Make sure that the low
1853 address does not conflict with MMAP_MIN_ADDR or the
1854 QEMU application itself. */
1855 probe_guest_base(image_name
, loaddr
, hiaddr
);
1857 load_bias
= load_addr
- loaddr
;
1859 #ifdef CONFIG_USE_FDPIC
1861 struct elf32_fdpic_loadseg
*loadsegs
= info
->loadsegs
=
1862 g_malloc(sizeof(*loadsegs
) * info
->nsegs
);
1864 for (i
= 0; i
< ehdr
->e_phnum
; ++i
) {
1865 switch (phdr
[i
].p_type
) {
1867 info
->pt_dynamic_addr
= phdr
[i
].p_vaddr
+ load_bias
;
1870 loadsegs
->addr
= phdr
[i
].p_vaddr
+ load_bias
;
1871 loadsegs
->p_vaddr
= phdr
[i
].p_vaddr
;
1872 loadsegs
->p_memsz
= phdr
[i
].p_memsz
;
1880 info
->load_bias
= load_bias
;
1881 info
->load_addr
= load_addr
;
1882 info
->entry
= ehdr
->e_entry
+ load_bias
;
1883 info
->start_code
= -1;
1885 info
->start_data
= -1;
1888 info
->elf_flags
= ehdr
->e_flags
;
1890 for (i
= 0; i
< ehdr
->e_phnum
; i
++) {
1891 struct elf_phdr
*eppnt
= phdr
+ i
;
1892 if (eppnt
->p_type
== PT_LOAD
) {
1893 abi_ulong vaddr
, vaddr_po
, vaddr_ps
, vaddr_ef
, vaddr_em
;
1896 if (eppnt
->p_flags
& PF_R
) elf_prot
= PROT_READ
;
1897 if (eppnt
->p_flags
& PF_W
) elf_prot
|= PROT_WRITE
;
1898 if (eppnt
->p_flags
& PF_X
) elf_prot
|= PROT_EXEC
;
1900 vaddr
= load_bias
+ eppnt
->p_vaddr
;
1901 vaddr_po
= TARGET_ELF_PAGEOFFSET(vaddr
);
1902 vaddr_ps
= TARGET_ELF_PAGESTART(vaddr
);
1904 error
= target_mmap(vaddr_ps
, eppnt
->p_filesz
+ vaddr_po
,
1905 elf_prot
, MAP_PRIVATE
| MAP_FIXED
,
1906 image_fd
, eppnt
->p_offset
- vaddr_po
);
1911 vaddr_ef
= vaddr
+ eppnt
->p_filesz
;
1912 vaddr_em
= vaddr
+ eppnt
->p_memsz
;
1914 /* If the load segment requests extra zeros (e.g. bss), map it. */
1915 if (vaddr_ef
< vaddr_em
) {
1916 zero_bss(vaddr_ef
, vaddr_em
, elf_prot
);
1919 /* Find the full program boundaries. */
1920 if (elf_prot
& PROT_EXEC
) {
1921 if (vaddr
< info
->start_code
) {
1922 info
->start_code
= vaddr
;
1924 if (vaddr_ef
> info
->end_code
) {
1925 info
->end_code
= vaddr_ef
;
1928 if (elf_prot
& PROT_WRITE
) {
1929 if (vaddr
< info
->start_data
) {
1930 info
->start_data
= vaddr
;
1932 if (vaddr_ef
> info
->end_data
) {
1933 info
->end_data
= vaddr_ef
;
1935 if (vaddr_em
> info
->brk
) {
1936 info
->brk
= vaddr_em
;
1939 } else if (eppnt
->p_type
== PT_INTERP
&& pinterp_name
) {
1942 if (*pinterp_name
) {
1943 errmsg
= "Multiple PT_INTERP entries";
1946 interp_name
= malloc(eppnt
->p_filesz
);
1951 if (eppnt
->p_offset
+ eppnt
->p_filesz
<= BPRM_BUF_SIZE
) {
1952 memcpy(interp_name
, bprm_buf
+ eppnt
->p_offset
,
1955 retval
= pread(image_fd
, interp_name
, eppnt
->p_filesz
,
1957 if (retval
!= eppnt
->p_filesz
) {
1961 if (interp_name
[eppnt
->p_filesz
- 1] != 0) {
1962 errmsg
= "Invalid PT_INTERP entry";
1965 *pinterp_name
= interp_name
;
1969 if (info
->end_data
== 0) {
1970 info
->start_data
= info
->end_code
;
1971 info
->end_data
= info
->end_code
;
1972 info
->brk
= info
->end_code
;
1975 if (qemu_log_enabled()) {
1976 load_symbols(ehdr
, image_fd
, load_bias
);
1984 errmsg
= "Incomplete read of file header";
1988 errmsg
= strerror(errno
);
1990 fprintf(stderr
, "%s: %s\n", image_name
, errmsg
);
1994 static void load_elf_interp(const char *filename
, struct image_info
*info
,
1995 char bprm_buf
[BPRM_BUF_SIZE
])
1999 fd
= open(path(filename
), O_RDONLY
);
2004 retval
= read(fd
, bprm_buf
, BPRM_BUF_SIZE
);
2008 if (retval
< BPRM_BUF_SIZE
) {
2009 memset(bprm_buf
+ retval
, 0, BPRM_BUF_SIZE
- retval
);
2012 load_elf_image(filename
, fd
, info
, NULL
, bprm_buf
);
2016 fprintf(stderr
, "%s: %s\n", filename
, strerror(errno
));
2020 static int symfind(const void *s0
, const void *s1
)
2022 target_ulong addr
= *(target_ulong
*)s0
;
2023 struct elf_sym
*sym
= (struct elf_sym
*)s1
;
2025 if (addr
< sym
->st_value
) {
2027 } else if (addr
>= sym
->st_value
+ sym
->st_size
) {
2033 static const char *lookup_symbolxx(struct syminfo
*s
, target_ulong orig_addr
)
2035 #if ELF_CLASS == ELFCLASS32
2036 struct elf_sym
*syms
= s
->disas_symtab
.elf32
;
2038 struct elf_sym
*syms
= s
->disas_symtab
.elf64
;
2042 struct elf_sym
*sym
;
2044 sym
= bsearch(&orig_addr
, syms
, s
->disas_num_syms
, sizeof(*syms
), symfind
);
2046 return s
->disas_strtab
+ sym
->st_name
;
2052 /* FIXME: This should use elf_ops.h */
2053 static int symcmp(const void *s0
, const void *s1
)
2055 struct elf_sym
*sym0
= (struct elf_sym
*)s0
;
2056 struct elf_sym
*sym1
= (struct elf_sym
*)s1
;
2057 return (sym0
->st_value
< sym1
->st_value
)
2059 : ((sym0
->st_value
> sym1
->st_value
) ? 1 : 0);
2062 /* Best attempt to load symbols from this ELF object. */
2063 static void load_symbols(struct elfhdr
*hdr
, int fd
, abi_ulong load_bias
)
2065 int i
, shnum
, nsyms
, sym_idx
= 0, str_idx
= 0;
2066 struct elf_shdr
*shdr
;
2067 char *strings
= NULL
;
2068 struct syminfo
*s
= NULL
;
2069 struct elf_sym
*new_syms
, *syms
= NULL
;
2071 shnum
= hdr
->e_shnum
;
2072 i
= shnum
* sizeof(struct elf_shdr
);
2073 shdr
= (struct elf_shdr
*)alloca(i
);
2074 if (pread(fd
, shdr
, i
, hdr
->e_shoff
) != i
) {
2078 bswap_shdr(shdr
, shnum
);
2079 for (i
= 0; i
< shnum
; ++i
) {
2080 if (shdr
[i
].sh_type
== SHT_SYMTAB
) {
2082 str_idx
= shdr
[i
].sh_link
;
2087 /* There will be no symbol table if the file was stripped. */
2091 /* Now know where the strtab and symtab are. Snarf them. */
2092 s
= malloc(sizeof(*s
));
2097 i
= shdr
[str_idx
].sh_size
;
2098 s
->disas_strtab
= strings
= malloc(i
);
2099 if (!strings
|| pread(fd
, strings
, i
, shdr
[str_idx
].sh_offset
) != i
) {
2103 i
= shdr
[sym_idx
].sh_size
;
2105 if (!syms
|| pread(fd
, syms
, i
, shdr
[sym_idx
].sh_offset
) != i
) {
2109 nsyms
= i
/ sizeof(struct elf_sym
);
2110 for (i
= 0; i
< nsyms
; ) {
2111 bswap_sym(syms
+ i
);
2112 /* Throw away entries which we do not need. */
2113 if (syms
[i
].st_shndx
== SHN_UNDEF
2114 || syms
[i
].st_shndx
>= SHN_LORESERVE
2115 || ELF_ST_TYPE(syms
[i
].st_info
) != STT_FUNC
) {
2117 syms
[i
] = syms
[nsyms
];
2120 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2121 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2122 syms
[i
].st_value
&= ~(target_ulong
)1;
2124 syms
[i
].st_value
+= load_bias
;
2129 /* No "useful" symbol. */
2134 /* Attempt to free the storage associated with the local symbols
2135 that we threw away. Whether or not this has any effect on the
2136 memory allocation depends on the malloc implementation and how
2137 many symbols we managed to discard. */
2138 new_syms
= realloc(syms
, nsyms
* sizeof(*syms
));
2139 if (new_syms
== NULL
) {
2144 qsort(syms
, nsyms
, sizeof(*syms
), symcmp
);
2146 s
->disas_num_syms
= nsyms
;
2147 #if ELF_CLASS == ELFCLASS32
2148 s
->disas_symtab
.elf32
= syms
;
2150 s
->disas_symtab
.elf64
= syms
;
2152 s
->lookup_symbol
= lookup_symbolxx
;
2164 int load_elf_binary(struct linux_binprm
*bprm
, struct image_info
*info
)
2166 struct image_info interp_info
;
2167 struct elfhdr elf_ex
;
2168 char *elf_interpreter
= NULL
;
2170 info
->start_mmap
= (abi_ulong
)ELF_START_MMAP
;
2174 load_elf_image(bprm
->filename
, bprm
->fd
, info
,
2175 &elf_interpreter
, bprm
->buf
);
2177 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2178 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2179 when we load the interpreter. */
2180 elf_ex
= *(struct elfhdr
*)bprm
->buf
;
2182 bprm
->p
= copy_elf_strings(1, &bprm
->filename
, bprm
->page
, bprm
->p
);
2183 bprm
->p
= copy_elf_strings(bprm
->envc
,bprm
->envp
,bprm
->page
,bprm
->p
);
2184 bprm
->p
= copy_elf_strings(bprm
->argc
,bprm
->argv
,bprm
->page
,bprm
->p
);
2186 fprintf(stderr
, "%s: %s\n", bprm
->filename
, strerror(E2BIG
));
2190 /* Do this so that we can load the interpreter, if need be. We will
2191 change some of these later */
2192 bprm
->p
= setup_arg_pages(bprm
->p
, bprm
, info
);
2194 if (elf_interpreter
) {
2195 load_elf_interp(elf_interpreter
, &interp_info
, bprm
->buf
);
2197 /* If the program interpreter is one of these two, then assume
2198 an iBCS2 image. Otherwise assume a native linux image. */
2200 if (strcmp(elf_interpreter
, "/usr/lib/libc.so.1") == 0
2201 || strcmp(elf_interpreter
, "/usr/lib/ld.so.1") == 0) {
2202 info
->personality
= PER_SVR4
;
2204 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2205 and some applications "depend" upon this behavior. Since
2206 we do not have the power to recompile these, we emulate
2207 the SVr4 behavior. Sigh. */
2208 target_mmap(0, qemu_host_page_size
, PROT_READ
| PROT_EXEC
,
2209 MAP_FIXED
| MAP_PRIVATE
, -1, 0);
2213 bprm
->p
= create_elf_tables(bprm
->p
, bprm
->argc
, bprm
->envc
, &elf_ex
,
2214 info
, (elf_interpreter
? &interp_info
: NULL
));
2215 info
->start_stack
= bprm
->p
;
2217 /* If we have an interpreter, set that as the program's entry point.
2218 Copy the load_bias as well, to help PPC64 interpret the entry
2219 point as a function descriptor. Do this after creating elf tables
2220 so that we copy the original program entry point into the AUXV. */
2221 if (elf_interpreter
) {
2222 info
->load_bias
= interp_info
.load_bias
;
2223 info
->entry
= interp_info
.entry
;
2224 free(elf_interpreter
);
2227 #ifdef USE_ELF_CORE_DUMP
2228 bprm
->core_dump
= &elf_core_dump
;
2234 #ifdef USE_ELF_CORE_DUMP
2236 * Definitions to generate Intel SVR4-like core files.
2237 * These mostly have the same names as the SVR4 types with "target_elf_"
2238 * tacked on the front to prevent clashes with linux definitions,
2239 * and the typedef forms have been avoided. This is mostly like
2240 * the SVR4 structure, but more Linuxy, with things that Linux does
2241 * not support and which gdb doesn't really use excluded.
2243 * Fields we don't dump (their contents is zero) in linux-user qemu
2244 * are marked with XXX.
2246 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2248 * Porting ELF coredump for target is (quite) simple process. First you
2249 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2250 * the target resides):
2252 * #define USE_ELF_CORE_DUMP
2254 * Next you define type of register set used for dumping. ELF specification
2255 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2257 * typedef <target_regtype> target_elf_greg_t;
2258 * #define ELF_NREG <number of registers>
2259 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2261 * Last step is to implement target specific function that copies registers
2262 * from given cpu into just specified register set. Prototype is:
2264 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2265 * const CPUArchState *env);
2268 * regs - copy register values into here (allocated and zeroed by caller)
2269 * env - copy registers from here
2271 * Example for ARM target is provided in this file.
2274 /* An ELF note in memory */
2278 size_t namesz_rounded
;
2281 size_t datasz_rounded
;
2286 struct target_elf_siginfo
{
2287 abi_int si_signo
; /* signal number */
2288 abi_int si_code
; /* extra code */
2289 abi_int si_errno
; /* errno */
2292 struct target_elf_prstatus
{
2293 struct target_elf_siginfo pr_info
; /* Info associated with signal */
2294 abi_short pr_cursig
; /* Current signal */
2295 abi_ulong pr_sigpend
; /* XXX */
2296 abi_ulong pr_sighold
; /* XXX */
2297 target_pid_t pr_pid
;
2298 target_pid_t pr_ppid
;
2299 target_pid_t pr_pgrp
;
2300 target_pid_t pr_sid
;
2301 struct target_timeval pr_utime
; /* XXX User time */
2302 struct target_timeval pr_stime
; /* XXX System time */
2303 struct target_timeval pr_cutime
; /* XXX Cumulative user time */
2304 struct target_timeval pr_cstime
; /* XXX Cumulative system time */
2305 target_elf_gregset_t pr_reg
; /* GP registers */
2306 abi_int pr_fpvalid
; /* XXX */
2309 #define ELF_PRARGSZ (80) /* Number of chars for args */
2311 struct target_elf_prpsinfo
{
2312 char pr_state
; /* numeric process state */
2313 char pr_sname
; /* char for pr_state */
2314 char pr_zomb
; /* zombie */
2315 char pr_nice
; /* nice val */
2316 abi_ulong pr_flag
; /* flags */
2317 target_uid_t pr_uid
;
2318 target_gid_t pr_gid
;
2319 target_pid_t pr_pid
, pr_ppid
, pr_pgrp
, pr_sid
;
2321 char pr_fname
[16]; /* filename of executable */
2322 char pr_psargs
[ELF_PRARGSZ
]; /* initial part of arg list */
2325 /* Here is the structure in which status of each thread is captured. */
2326 struct elf_thread_status
{
2327 QTAILQ_ENTRY(elf_thread_status
) ets_link
;
2328 struct target_elf_prstatus prstatus
; /* NT_PRSTATUS */
2330 elf_fpregset_t fpu
; /* NT_PRFPREG */
2331 struct task_struct
*thread
;
2332 elf_fpxregset_t xfpu
; /* ELF_CORE_XFPREG_TYPE */
2334 struct memelfnote notes
[1];
2338 struct elf_note_info
{
2339 struct memelfnote
*notes
;
2340 struct target_elf_prstatus
*prstatus
; /* NT_PRSTATUS */
2341 struct target_elf_prpsinfo
*psinfo
; /* NT_PRPSINFO */
2343 QTAILQ_HEAD(thread_list_head
, elf_thread_status
) thread_list
;
2346 * Current version of ELF coredump doesn't support
2347 * dumping fp regs etc.
2349 elf_fpregset_t
*fpu
;
2350 elf_fpxregset_t
*xfpu
;
2351 int thread_status_size
;
2357 struct vm_area_struct
{
2358 abi_ulong vma_start
; /* start vaddr of memory region */
2359 abi_ulong vma_end
; /* end vaddr of memory region */
2360 abi_ulong vma_flags
; /* protection etc. flags for the region */
2361 QTAILQ_ENTRY(vm_area_struct
) vma_link
;
2365 QTAILQ_HEAD(, vm_area_struct
) mm_mmap
;
2366 int mm_count
; /* number of mappings */
2369 static struct mm_struct
*vma_init(void);
2370 static void vma_delete(struct mm_struct
*);
2371 static int vma_add_mapping(struct mm_struct
*, abi_ulong
,
2372 abi_ulong
, abi_ulong
);
2373 static int vma_get_mapping_count(const struct mm_struct
*);
2374 static struct vm_area_struct
*vma_first(const struct mm_struct
*);
2375 static struct vm_area_struct
*vma_next(struct vm_area_struct
*);
2376 static abi_ulong
vma_dump_size(const struct vm_area_struct
*);
2377 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
2378 unsigned long flags
);
2380 static void fill_elf_header(struct elfhdr
*, int, uint16_t, uint32_t);
2381 static void fill_note(struct memelfnote
*, const char *, int,
2382 unsigned int, void *);
2383 static void fill_prstatus(struct target_elf_prstatus
*, const TaskState
*, int);
2384 static int fill_psinfo(struct target_elf_prpsinfo
*, const TaskState
*);
2385 static void fill_auxv_note(struct memelfnote
*, const TaskState
*);
2386 static void fill_elf_note_phdr(struct elf_phdr
*, int, off_t
);
2387 static size_t note_size(const struct memelfnote
*);
2388 static void free_note_info(struct elf_note_info
*);
2389 static int fill_note_info(struct elf_note_info
*, long, const CPUArchState
*);
2390 static void fill_thread_info(struct elf_note_info
*, const CPUArchState
*);
2391 static int core_dump_filename(const TaskState
*, char *, size_t);
2393 static int dump_write(int, const void *, size_t);
2394 static int write_note(struct memelfnote
*, int);
2395 static int write_note_info(struct elf_note_info
*, int);
2398 static void bswap_prstatus(struct target_elf_prstatus
*prstatus
)
2400 prstatus
->pr_info
.si_signo
= tswap32(prstatus
->pr_info
.si_signo
);
2401 prstatus
->pr_info
.si_code
= tswap32(prstatus
->pr_info
.si_code
);
2402 prstatus
->pr_info
.si_errno
= tswap32(prstatus
->pr_info
.si_errno
);
2403 prstatus
->pr_cursig
= tswap16(prstatus
->pr_cursig
);
2404 prstatus
->pr_sigpend
= tswapal(prstatus
->pr_sigpend
);
2405 prstatus
->pr_sighold
= tswapal(prstatus
->pr_sighold
);
2406 prstatus
->pr_pid
= tswap32(prstatus
->pr_pid
);
2407 prstatus
->pr_ppid
= tswap32(prstatus
->pr_ppid
);
2408 prstatus
->pr_pgrp
= tswap32(prstatus
->pr_pgrp
);
2409 prstatus
->pr_sid
= tswap32(prstatus
->pr_sid
);
2410 /* cpu times are not filled, so we skip them */
2411 /* regs should be in correct format already */
2412 prstatus
->pr_fpvalid
= tswap32(prstatus
->pr_fpvalid
);
2415 static void bswap_psinfo(struct target_elf_prpsinfo
*psinfo
)
2417 psinfo
->pr_flag
= tswapal(psinfo
->pr_flag
);
2418 psinfo
->pr_uid
= tswap16(psinfo
->pr_uid
);
2419 psinfo
->pr_gid
= tswap16(psinfo
->pr_gid
);
2420 psinfo
->pr_pid
= tswap32(psinfo
->pr_pid
);
2421 psinfo
->pr_ppid
= tswap32(psinfo
->pr_ppid
);
2422 psinfo
->pr_pgrp
= tswap32(psinfo
->pr_pgrp
);
2423 psinfo
->pr_sid
= tswap32(psinfo
->pr_sid
);
2426 static void bswap_note(struct elf_note
*en
)
2428 bswap32s(&en
->n_namesz
);
2429 bswap32s(&en
->n_descsz
);
2430 bswap32s(&en
->n_type
);
2433 static inline void bswap_prstatus(struct target_elf_prstatus
*p
) { }
2434 static inline void bswap_psinfo(struct target_elf_prpsinfo
*p
) {}
2435 static inline void bswap_note(struct elf_note
*en
) { }
2436 #endif /* BSWAP_NEEDED */
2439 * Minimal support for linux memory regions. These are needed
2440 * when we are finding out what memory exactly belongs to
2441 * emulated process. No locks needed here, as long as
2442 * thread that received the signal is stopped.
2445 static struct mm_struct
*vma_init(void)
2447 struct mm_struct
*mm
;
2449 if ((mm
= g_malloc(sizeof (*mm
))) == NULL
)
2453 QTAILQ_INIT(&mm
->mm_mmap
);
2458 static void vma_delete(struct mm_struct
*mm
)
2460 struct vm_area_struct
*vma
;
2462 while ((vma
= vma_first(mm
)) != NULL
) {
2463 QTAILQ_REMOVE(&mm
->mm_mmap
, vma
, vma_link
);
2469 static int vma_add_mapping(struct mm_struct
*mm
, abi_ulong start
,
2470 abi_ulong end
, abi_ulong flags
)
2472 struct vm_area_struct
*vma
;
2474 if ((vma
= g_malloc0(sizeof (*vma
))) == NULL
)
2477 vma
->vma_start
= start
;
2479 vma
->vma_flags
= flags
;
2481 QTAILQ_INSERT_TAIL(&mm
->mm_mmap
, vma
, vma_link
);
2487 static struct vm_area_struct
*vma_first(const struct mm_struct
*mm
)
2489 return (QTAILQ_FIRST(&mm
->mm_mmap
));
2492 static struct vm_area_struct
*vma_next(struct vm_area_struct
*vma
)
2494 return (QTAILQ_NEXT(vma
, vma_link
));
2497 static int vma_get_mapping_count(const struct mm_struct
*mm
)
2499 return (mm
->mm_count
);
2503 * Calculate file (dump) size of given memory region.
2505 static abi_ulong
vma_dump_size(const struct vm_area_struct
*vma
)
2507 /* if we cannot even read the first page, skip it */
2508 if (!access_ok(VERIFY_READ
, vma
->vma_start
, TARGET_PAGE_SIZE
))
2512 * Usually we don't dump executable pages as they contain
2513 * non-writable code that debugger can read directly from
2514 * target library etc. However, thread stacks are marked
2515 * also executable so we read in first page of given region
2516 * and check whether it contains elf header. If there is
2517 * no elf header, we dump it.
2519 if (vma
->vma_flags
& PROT_EXEC
) {
2520 char page
[TARGET_PAGE_SIZE
];
2522 copy_from_user(page
, vma
->vma_start
, sizeof (page
));
2523 if ((page
[EI_MAG0
] == ELFMAG0
) &&
2524 (page
[EI_MAG1
] == ELFMAG1
) &&
2525 (page
[EI_MAG2
] == ELFMAG2
) &&
2526 (page
[EI_MAG3
] == ELFMAG3
)) {
2528 * Mappings are possibly from ELF binary. Don't dump
2535 return (vma
->vma_end
- vma
->vma_start
);
2538 static int vma_walker(void *priv
, abi_ulong start
, abi_ulong end
,
2539 unsigned long flags
)
2541 struct mm_struct
*mm
= (struct mm_struct
*)priv
;
2543 vma_add_mapping(mm
, start
, end
, flags
);
2547 static void fill_note(struct memelfnote
*note
, const char *name
, int type
,
2548 unsigned int sz
, void *data
)
2550 unsigned int namesz
;
2552 namesz
= strlen(name
) + 1;
2554 note
->namesz
= namesz
;
2555 note
->namesz_rounded
= roundup(namesz
, sizeof (int32_t));
2558 note
->datasz_rounded
= roundup(sz
, sizeof (int32_t));
2563 * We calculate rounded up note size here as specified by
2566 note
->notesz
= sizeof (struct elf_note
) +
2567 note
->namesz_rounded
+ note
->datasz_rounded
;
2570 static void fill_elf_header(struct elfhdr
*elf
, int segs
, uint16_t machine
,
2573 (void) memset(elf
, 0, sizeof(*elf
));
2575 (void) memcpy(elf
->e_ident
, ELFMAG
, SELFMAG
);
2576 elf
->e_ident
[EI_CLASS
] = ELF_CLASS
;
2577 elf
->e_ident
[EI_DATA
] = ELF_DATA
;
2578 elf
->e_ident
[EI_VERSION
] = EV_CURRENT
;
2579 elf
->e_ident
[EI_OSABI
] = ELF_OSABI
;
2581 elf
->e_type
= ET_CORE
;
2582 elf
->e_machine
= machine
;
2583 elf
->e_version
= EV_CURRENT
;
2584 elf
->e_phoff
= sizeof(struct elfhdr
);
2585 elf
->e_flags
= flags
;
2586 elf
->e_ehsize
= sizeof(struct elfhdr
);
2587 elf
->e_phentsize
= sizeof(struct elf_phdr
);
2588 elf
->e_phnum
= segs
;
2593 static void fill_elf_note_phdr(struct elf_phdr
*phdr
, int sz
, off_t offset
)
2595 phdr
->p_type
= PT_NOTE
;
2596 phdr
->p_offset
= offset
;
2599 phdr
->p_filesz
= sz
;
2604 bswap_phdr(phdr
, 1);
2607 static size_t note_size(const struct memelfnote
*note
)
2609 return (note
->notesz
);
2612 static void fill_prstatus(struct target_elf_prstatus
*prstatus
,
2613 const TaskState
*ts
, int signr
)
2615 (void) memset(prstatus
, 0, sizeof (*prstatus
));
2616 prstatus
->pr_info
.si_signo
= prstatus
->pr_cursig
= signr
;
2617 prstatus
->pr_pid
= ts
->ts_tid
;
2618 prstatus
->pr_ppid
= getppid();
2619 prstatus
->pr_pgrp
= getpgrp();
2620 prstatus
->pr_sid
= getsid(0);
2622 bswap_prstatus(prstatus
);
2625 static int fill_psinfo(struct target_elf_prpsinfo
*psinfo
, const TaskState
*ts
)
2627 char *base_filename
;
2628 unsigned int i
, len
;
2630 (void) memset(psinfo
, 0, sizeof (*psinfo
));
2632 len
= ts
->info
->arg_end
- ts
->info
->arg_start
;
2633 if (len
>= ELF_PRARGSZ
)
2634 len
= ELF_PRARGSZ
- 1;
2635 if (copy_from_user(&psinfo
->pr_psargs
, ts
->info
->arg_start
, len
))
2637 for (i
= 0; i
< len
; i
++)
2638 if (psinfo
->pr_psargs
[i
] == 0)
2639 psinfo
->pr_psargs
[i
] = ' ';
2640 psinfo
->pr_psargs
[len
] = 0;
2642 psinfo
->pr_pid
= getpid();
2643 psinfo
->pr_ppid
= getppid();
2644 psinfo
->pr_pgrp
= getpgrp();
2645 psinfo
->pr_sid
= getsid(0);
2646 psinfo
->pr_uid
= getuid();
2647 psinfo
->pr_gid
= getgid();
2649 base_filename
= g_path_get_basename(ts
->bprm
->filename
);
2651 * Using strncpy here is fine: at max-length,
2652 * this field is not NUL-terminated.
2654 (void) strncpy(psinfo
->pr_fname
, base_filename
,
2655 sizeof(psinfo
->pr_fname
));
2657 g_free(base_filename
);
2658 bswap_psinfo(psinfo
);
2662 static void fill_auxv_note(struct memelfnote
*note
, const TaskState
*ts
)
2664 elf_addr_t auxv
= (elf_addr_t
)ts
->info
->saved_auxv
;
2665 elf_addr_t orig_auxv
= auxv
;
2667 int len
= ts
->info
->auxv_len
;
2670 * Auxiliary vector is stored in target process stack. It contains
2671 * {type, value} pairs that we need to dump into note. This is not
2672 * strictly necessary but we do it here for sake of completeness.
2675 /* read in whole auxv vector and copy it to memelfnote */
2676 ptr
= lock_user(VERIFY_READ
, orig_auxv
, len
, 0);
2678 fill_note(note
, "CORE", NT_AUXV
, len
, ptr
);
2679 unlock_user(ptr
, auxv
, len
);
2684 * Constructs name of coredump file. We have following convention
2686 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2688 * Returns 0 in case of success, -1 otherwise (errno is set).
2690 static int core_dump_filename(const TaskState
*ts
, char *buf
,
2694 char *filename
= NULL
;
2695 char *base_filename
= NULL
;
2699 assert(bufsize
>= PATH_MAX
);
2701 if (gettimeofday(&tv
, NULL
) < 0) {
2702 (void) fprintf(stderr
, "unable to get current timestamp: %s",
2707 filename
= strdup(ts
->bprm
->filename
);
2708 base_filename
= strdup(basename(filename
));
2709 (void) strftime(timestamp
, sizeof (timestamp
), "%Y%m%d-%H%M%S",
2710 localtime_r(&tv
.tv_sec
, &tm
));
2711 (void) snprintf(buf
, bufsize
, "qemu_%s_%s_%d.core",
2712 base_filename
, timestamp
, (int)getpid());
2713 free(base_filename
);
2719 static int dump_write(int fd
, const void *ptr
, size_t size
)
2721 const char *bufp
= (const char *)ptr
;
2722 ssize_t bytes_written
, bytes_left
;
2723 struct rlimit dumpsize
;
2727 getrlimit(RLIMIT_CORE
, &dumpsize
);
2728 if ((pos
= lseek(fd
, 0, SEEK_CUR
))==-1) {
2729 if (errno
== ESPIPE
) { /* not a seekable stream */
2735 if (dumpsize
.rlim_cur
<= pos
) {
2737 } else if (dumpsize
.rlim_cur
== RLIM_INFINITY
) {
2740 size_t limit_left
=dumpsize
.rlim_cur
- pos
;
2741 bytes_left
= limit_left
>= size
? size
: limit_left
;
2746 * In normal conditions, single write(2) should do but
2747 * in case of socket etc. this mechanism is more portable.
2750 bytes_written
= write(fd
, bufp
, bytes_left
);
2751 if (bytes_written
< 0) {
2755 } else if (bytes_written
== 0) { /* eof */
2758 bufp
+= bytes_written
;
2759 bytes_left
-= bytes_written
;
2760 } while (bytes_left
> 0);
2765 static int write_note(struct memelfnote
*men
, int fd
)
2769 en
.n_namesz
= men
->namesz
;
2770 en
.n_type
= men
->type
;
2771 en
.n_descsz
= men
->datasz
;
2775 if (dump_write(fd
, &en
, sizeof(en
)) != 0)
2777 if (dump_write(fd
, men
->name
, men
->namesz_rounded
) != 0)
2779 if (dump_write(fd
, men
->data
, men
->datasz_rounded
) != 0)
2785 static void fill_thread_info(struct elf_note_info
*info
, const CPUArchState
*env
)
2787 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2788 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2789 struct elf_thread_status
*ets
;
2791 ets
= g_malloc0(sizeof (*ets
));
2792 ets
->num_notes
= 1; /* only prstatus is dumped */
2793 fill_prstatus(&ets
->prstatus
, ts
, 0);
2794 elf_core_copy_regs(&ets
->prstatus
.pr_reg
, env
);
2795 fill_note(&ets
->notes
[0], "CORE", NT_PRSTATUS
, sizeof (ets
->prstatus
),
2798 QTAILQ_INSERT_TAIL(&info
->thread_list
, ets
, ets_link
);
2800 info
->notes_size
+= note_size(&ets
->notes
[0]);
2803 static void init_note_info(struct elf_note_info
*info
)
2805 /* Initialize the elf_note_info structure so that it is at
2806 * least safe to call free_note_info() on it. Must be
2807 * called before calling fill_note_info().
2809 memset(info
, 0, sizeof (*info
));
2810 QTAILQ_INIT(&info
->thread_list
);
2813 static int fill_note_info(struct elf_note_info
*info
,
2814 long signr
, const CPUArchState
*env
)
2817 CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2818 TaskState
*ts
= (TaskState
*)cpu
->opaque
;
2821 info
->notes
= g_malloc0(NUMNOTES
* sizeof (struct memelfnote
));
2822 if (info
->notes
== NULL
)
2824 info
->prstatus
= g_malloc0(sizeof (*info
->prstatus
));
2825 if (info
->prstatus
== NULL
)
2827 info
->psinfo
= g_malloc0(sizeof (*info
->psinfo
));
2828 if (info
->prstatus
== NULL
)
2832 * First fill in status (and registers) of current thread
2833 * including process info & aux vector.
2835 fill_prstatus(info
->prstatus
, ts
, signr
);
2836 elf_core_copy_regs(&info
->prstatus
->pr_reg
, env
);
2837 fill_note(&info
->notes
[0], "CORE", NT_PRSTATUS
,
2838 sizeof (*info
->prstatus
), info
->prstatus
);
2839 fill_psinfo(info
->psinfo
, ts
);
2840 fill_note(&info
->notes
[1], "CORE", NT_PRPSINFO
,
2841 sizeof (*info
->psinfo
), info
->psinfo
);
2842 fill_auxv_note(&info
->notes
[2], ts
);
2845 info
->notes_size
= 0;
2846 for (i
= 0; i
< info
->numnote
; i
++)
2847 info
->notes_size
+= note_size(&info
->notes
[i
]);
2849 /* read and fill status of all threads */
2852 if (cpu
== thread_cpu
) {
2855 fill_thread_info(info
, (CPUArchState
*)cpu
->env_ptr
);
2862 static void free_note_info(struct elf_note_info
*info
)
2864 struct elf_thread_status
*ets
;
2866 while (!QTAILQ_EMPTY(&info
->thread_list
)) {
2867 ets
= QTAILQ_FIRST(&info
->thread_list
);
2868 QTAILQ_REMOVE(&info
->thread_list
, ets
, ets_link
);
2872 g_free(info
->prstatus
);
2873 g_free(info
->psinfo
);
2874 g_free(info
->notes
);
2877 static int write_note_info(struct elf_note_info
*info
, int fd
)
2879 struct elf_thread_status
*ets
;
2882 /* write prstatus, psinfo and auxv for current thread */
2883 for (i
= 0; i
< info
->numnote
; i
++)
2884 if ((error
= write_note(&info
->notes
[i
], fd
)) != 0)
2887 /* write prstatus for each thread */
2888 for (ets
= info
->thread_list
.tqh_first
; ets
!= NULL
;
2889 ets
= ets
->ets_link
.tqe_next
) {
2890 if ((error
= write_note(&ets
->notes
[0], fd
)) != 0)
2898 * Write out ELF coredump.
2900 * See documentation of ELF object file format in:
2901 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2903 * Coredump format in linux is following:
2905 * 0 +----------------------+ \
2906 * | ELF header | ET_CORE |
2907 * +----------------------+ |
2908 * | ELF program headers | |--- headers
2909 * | - NOTE section | |
2910 * | - PT_LOAD sections | |
2911 * +----------------------+ /
2916 * +----------------------+ <-- aligned to target page
2917 * | Process memory dump |
2922 * +----------------------+
2924 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2925 * NT_PRSINFO -> struct elf_prpsinfo
2926 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2928 * Format follows System V format as close as possible. Current
2929 * version limitations are as follows:
2930 * - no floating point registers are dumped
2932 * Function returns 0 in case of success, negative errno otherwise.
2934 * TODO: make this work also during runtime: it should be
2935 * possible to force coredump from running process and then
2936 * continue processing. For example qemu could set up SIGUSR2
2937 * handler (provided that target process haven't registered
2938 * handler for that) that does the dump when signal is received.
2940 static int elf_core_dump(int signr
, const CPUArchState
*env
)
2942 const CPUState
*cpu
= ENV_GET_CPU((CPUArchState
*)env
);
2943 const TaskState
*ts
= (const TaskState
*)cpu
->opaque
;
2944 struct vm_area_struct
*vma
= NULL
;
2945 char corefile
[PATH_MAX
];
2946 struct elf_note_info info
;
2948 struct elf_phdr phdr
;
2949 struct rlimit dumpsize
;
2950 struct mm_struct
*mm
= NULL
;
2951 off_t offset
= 0, data_offset
= 0;
2955 init_note_info(&info
);
2958 getrlimit(RLIMIT_CORE
, &dumpsize
);
2959 if (dumpsize
.rlim_cur
== 0)
2962 if (core_dump_filename(ts
, corefile
, sizeof (corefile
)) < 0)
2965 if ((fd
= open(corefile
, O_WRONLY
| O_CREAT
,
2966 S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH
)) < 0)
2970 * Walk through target process memory mappings and
2971 * set up structure containing this information. After
2972 * this point vma_xxx functions can be used.
2974 if ((mm
= vma_init()) == NULL
)
2977 walk_memory_regions(mm
, vma_walker
);
2978 segs
= vma_get_mapping_count(mm
);
2981 * Construct valid coredump ELF header. We also
2982 * add one more segment for notes.
2984 fill_elf_header(&elf
, segs
+ 1, ELF_MACHINE
, 0);
2985 if (dump_write(fd
, &elf
, sizeof (elf
)) != 0)
2988 /* fill in in-memory version of notes */
2989 if (fill_note_info(&info
, signr
, env
) < 0)
2992 offset
+= sizeof (elf
); /* elf header */
2993 offset
+= (segs
+ 1) * sizeof (struct elf_phdr
); /* program headers */
2995 /* write out notes program header */
2996 fill_elf_note_phdr(&phdr
, info
.notes_size
, offset
);
2998 offset
+= info
.notes_size
;
2999 if (dump_write(fd
, &phdr
, sizeof (phdr
)) != 0)
3003 * ELF specification wants data to start at page boundary so
3006 data_offset
= offset
= roundup(offset
, ELF_EXEC_PAGESIZE
);
3009 * Write program headers for memory regions mapped in
3010 * the target process.
3012 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3013 (void) memset(&phdr
, 0, sizeof (phdr
));
3015 phdr
.p_type
= PT_LOAD
;
3016 phdr
.p_offset
= offset
;
3017 phdr
.p_vaddr
= vma
->vma_start
;
3019 phdr
.p_filesz
= vma_dump_size(vma
);
3020 offset
+= phdr
.p_filesz
;
3021 phdr
.p_memsz
= vma
->vma_end
- vma
->vma_start
;
3022 phdr
.p_flags
= vma
->vma_flags
& PROT_READ
? PF_R
: 0;
3023 if (vma
->vma_flags
& PROT_WRITE
)
3024 phdr
.p_flags
|= PF_W
;
3025 if (vma
->vma_flags
& PROT_EXEC
)
3026 phdr
.p_flags
|= PF_X
;
3027 phdr
.p_align
= ELF_EXEC_PAGESIZE
;
3029 bswap_phdr(&phdr
, 1);
3030 dump_write(fd
, &phdr
, sizeof (phdr
));
3034 * Next we write notes just after program headers. No
3035 * alignment needed here.
3037 if (write_note_info(&info
, fd
) < 0)
3040 /* align data to page boundary */
3041 if (lseek(fd
, data_offset
, SEEK_SET
) != data_offset
)
3045 * Finally we can dump process memory into corefile as well.
3047 for (vma
= vma_first(mm
); vma
!= NULL
; vma
= vma_next(vma
)) {
3051 end
= vma
->vma_start
+ vma_dump_size(vma
);
3053 for (addr
= vma
->vma_start
; addr
< end
;
3054 addr
+= TARGET_PAGE_SIZE
) {
3055 char page
[TARGET_PAGE_SIZE
];
3059 * Read in page from target process memory and
3060 * write it to coredump file.
3062 error
= copy_from_user(page
, addr
, sizeof (page
));
3064 (void) fprintf(stderr
, "unable to dump " TARGET_ABI_FMT_lx
"\n",
3069 if (dump_write(fd
, page
, TARGET_PAGE_SIZE
) < 0)
3075 free_note_info(&info
);
3084 #endif /* USE_ELF_CORE_DUMP */
3086 void do_init_thread(struct target_pt_regs
*regs
, struct image_info
*infop
)
3088 init_thread(regs
, infop
);