2 * Generic vector operation expansion
4 * Copyright (c) 2018 Linaro
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
22 #include "tcg/tcg-op.h"
23 #include "tcg/tcg-op-gvec.h"
24 #include "qemu/main-loop.h"
25 #include "tcg/tcg-gvec-desc.h"
29 #ifdef CONFIG_DEBUG_TCG
30 static const TCGOpcode vecop_list_empty
[1] = { 0 };
32 #define vecop_list_empty NULL
36 /* Verify vector size and alignment rules. OFS should be the OR of all
37 of the operand offsets so that we can check them all at once. */
38 static void check_size_align(uint32_t oprsz
, uint32_t maxsz
, uint32_t ofs
)
46 tcg_debug_assert(oprsz
<= maxsz
);
49 tcg_debug_assert(oprsz
== maxsz
);
52 tcg_debug_assert(maxsz
<= (8 << SIMD_MAXSZ_BITS
));
54 max_align
= maxsz
>= 16 ? 15 : 7;
55 tcg_debug_assert((maxsz
& max_align
) == 0);
56 tcg_debug_assert((ofs
& max_align
) == 0);
59 /* Verify vector overlap rules for two operands. */
60 static void check_overlap_2(uint32_t d
, uint32_t a
, uint32_t s
)
62 tcg_debug_assert(d
== a
|| d
+ s
<= a
|| a
+ s
<= d
);
65 /* Verify vector overlap rules for three operands. */
66 static void check_overlap_3(uint32_t d
, uint32_t a
, uint32_t b
, uint32_t s
)
68 check_overlap_2(d
, a
, s
);
69 check_overlap_2(d
, b
, s
);
70 check_overlap_2(a
, b
, s
);
73 /* Verify vector overlap rules for four operands. */
74 static void check_overlap_4(uint32_t d
, uint32_t a
, uint32_t b
,
75 uint32_t c
, uint32_t s
)
77 check_overlap_2(d
, a
, s
);
78 check_overlap_2(d
, b
, s
);
79 check_overlap_2(d
, c
, s
);
80 check_overlap_2(a
, b
, s
);
81 check_overlap_2(a
, c
, s
);
82 check_overlap_2(b
, c
, s
);
85 /* Create a descriptor from components. */
86 uint32_t simd_desc(uint32_t oprsz
, uint32_t maxsz
, int32_t data
)
90 check_size_align(oprsz
, maxsz
, 0);
91 tcg_debug_assert(data
== sextract32(data
, 0, SIMD_DATA_BITS
));
93 oprsz
= (oprsz
/ 8) - 1;
94 maxsz
= (maxsz
/ 8) - 1;
97 * We have just asserted in check_size_align that either
98 * oprsz is {8,16,32} or matches maxsz. Encode the final
99 * case with '2', as that would otherwise map to 24.
101 if (oprsz
== maxsz
) {
105 desc
= deposit32(desc
, SIMD_OPRSZ_SHIFT
, SIMD_OPRSZ_BITS
, oprsz
);
106 desc
= deposit32(desc
, SIMD_MAXSZ_SHIFT
, SIMD_MAXSZ_BITS
, maxsz
);
107 desc
= deposit32(desc
, SIMD_DATA_SHIFT
, SIMD_DATA_BITS
, data
);
112 /* Generate a call to a gvec-style helper with two vector operands. */
113 void tcg_gen_gvec_2_ool(uint32_t dofs
, uint32_t aofs
,
114 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
115 gen_helper_gvec_2
*fn
)
118 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
120 a0
= tcg_temp_new_ptr();
121 a1
= tcg_temp_new_ptr();
123 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
124 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
128 tcg_temp_free_ptr(a0
);
129 tcg_temp_free_ptr(a1
);
132 /* Generate a call to a gvec-style helper with two vector operands
133 and one scalar operand. */
134 void tcg_gen_gvec_2i_ool(uint32_t dofs
, uint32_t aofs
, TCGv_i64 c
,
135 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
136 gen_helper_gvec_2i
*fn
)
139 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
141 a0
= tcg_temp_new_ptr();
142 a1
= tcg_temp_new_ptr();
144 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
145 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
149 tcg_temp_free_ptr(a0
);
150 tcg_temp_free_ptr(a1
);
153 /* Generate a call to a gvec-style helper with three vector operands. */
154 void tcg_gen_gvec_3_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
155 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
156 gen_helper_gvec_3
*fn
)
159 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
161 a0
= tcg_temp_new_ptr();
162 a1
= tcg_temp_new_ptr();
163 a2
= tcg_temp_new_ptr();
165 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
166 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
167 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
169 fn(a0
, a1
, a2
, desc
);
171 tcg_temp_free_ptr(a0
);
172 tcg_temp_free_ptr(a1
);
173 tcg_temp_free_ptr(a2
);
176 /* Generate a call to a gvec-style helper with four vector operands. */
177 void tcg_gen_gvec_4_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
178 uint32_t cofs
, uint32_t oprsz
, uint32_t maxsz
,
179 int32_t data
, gen_helper_gvec_4
*fn
)
181 TCGv_ptr a0
, a1
, a2
, a3
;
182 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
184 a0
= tcg_temp_new_ptr();
185 a1
= tcg_temp_new_ptr();
186 a2
= tcg_temp_new_ptr();
187 a3
= tcg_temp_new_ptr();
189 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
190 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
191 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
192 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
194 fn(a0
, a1
, a2
, a3
, desc
);
196 tcg_temp_free_ptr(a0
);
197 tcg_temp_free_ptr(a1
);
198 tcg_temp_free_ptr(a2
);
199 tcg_temp_free_ptr(a3
);
202 /* Generate a call to a gvec-style helper with five vector operands. */
203 void tcg_gen_gvec_5_ool(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
204 uint32_t cofs
, uint32_t xofs
, uint32_t oprsz
,
205 uint32_t maxsz
, int32_t data
, gen_helper_gvec_5
*fn
)
207 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
208 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
210 a0
= tcg_temp_new_ptr();
211 a1
= tcg_temp_new_ptr();
212 a2
= tcg_temp_new_ptr();
213 a3
= tcg_temp_new_ptr();
214 a4
= tcg_temp_new_ptr();
216 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
217 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
218 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
219 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
220 tcg_gen_addi_ptr(a4
, cpu_env
, xofs
);
222 fn(a0
, a1
, a2
, a3
, a4
, desc
);
224 tcg_temp_free_ptr(a0
);
225 tcg_temp_free_ptr(a1
);
226 tcg_temp_free_ptr(a2
);
227 tcg_temp_free_ptr(a3
);
228 tcg_temp_free_ptr(a4
);
231 /* Generate a call to a gvec-style helper with three vector operands
232 and an extra pointer operand. */
233 void tcg_gen_gvec_2_ptr(uint32_t dofs
, uint32_t aofs
,
234 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
235 int32_t data
, gen_helper_gvec_2_ptr
*fn
)
238 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
240 a0
= tcg_temp_new_ptr();
241 a1
= tcg_temp_new_ptr();
243 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
244 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
246 fn(a0
, a1
, ptr
, desc
);
248 tcg_temp_free_ptr(a0
);
249 tcg_temp_free_ptr(a1
);
252 /* Generate a call to a gvec-style helper with three vector operands
253 and an extra pointer operand. */
254 void tcg_gen_gvec_3_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
255 TCGv_ptr ptr
, uint32_t oprsz
, uint32_t maxsz
,
256 int32_t data
, gen_helper_gvec_3_ptr
*fn
)
259 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
261 a0
= tcg_temp_new_ptr();
262 a1
= tcg_temp_new_ptr();
263 a2
= tcg_temp_new_ptr();
265 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
266 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
267 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
269 fn(a0
, a1
, a2
, ptr
, desc
);
271 tcg_temp_free_ptr(a0
);
272 tcg_temp_free_ptr(a1
);
273 tcg_temp_free_ptr(a2
);
276 /* Generate a call to a gvec-style helper with four vector operands
277 and an extra pointer operand. */
278 void tcg_gen_gvec_4_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
279 uint32_t cofs
, TCGv_ptr ptr
, uint32_t oprsz
,
280 uint32_t maxsz
, int32_t data
,
281 gen_helper_gvec_4_ptr
*fn
)
283 TCGv_ptr a0
, a1
, a2
, a3
;
284 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
286 a0
= tcg_temp_new_ptr();
287 a1
= tcg_temp_new_ptr();
288 a2
= tcg_temp_new_ptr();
289 a3
= tcg_temp_new_ptr();
291 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
292 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
293 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
294 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
296 fn(a0
, a1
, a2
, a3
, ptr
, desc
);
298 tcg_temp_free_ptr(a0
);
299 tcg_temp_free_ptr(a1
);
300 tcg_temp_free_ptr(a2
);
301 tcg_temp_free_ptr(a3
);
304 /* Generate a call to a gvec-style helper with five vector operands
305 and an extra pointer operand. */
306 void tcg_gen_gvec_5_ptr(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
307 uint32_t cofs
, uint32_t eofs
, TCGv_ptr ptr
,
308 uint32_t oprsz
, uint32_t maxsz
, int32_t data
,
309 gen_helper_gvec_5_ptr
*fn
)
311 TCGv_ptr a0
, a1
, a2
, a3
, a4
;
312 TCGv_i32 desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, data
));
314 a0
= tcg_temp_new_ptr();
315 a1
= tcg_temp_new_ptr();
316 a2
= tcg_temp_new_ptr();
317 a3
= tcg_temp_new_ptr();
318 a4
= tcg_temp_new_ptr();
320 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
321 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
322 tcg_gen_addi_ptr(a2
, cpu_env
, bofs
);
323 tcg_gen_addi_ptr(a3
, cpu_env
, cofs
);
324 tcg_gen_addi_ptr(a4
, cpu_env
, eofs
);
326 fn(a0
, a1
, a2
, a3
, a4
, ptr
, desc
);
328 tcg_temp_free_ptr(a0
);
329 tcg_temp_free_ptr(a1
);
330 tcg_temp_free_ptr(a2
);
331 tcg_temp_free_ptr(a3
);
332 tcg_temp_free_ptr(a4
);
335 /* Return true if we want to implement something of OPRSZ bytes
336 in units of LNSZ. This limits the expansion of inline code. */
337 static inline bool check_size_impl(uint32_t oprsz
, uint32_t lnsz
)
347 tcg_debug_assert((r
& 7) == 0);
350 /* For sizes below 16, accept no remainder. */
356 * Recall that ARM SVE allows vector sizes that are not a
357 * power of 2, but always a multiple of 16. The intent is
358 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
359 * In addition, expand_clr needs to handle a multiple of 8.
360 * Thus we can handle the tail with one more operation per
361 * diminishing power of 2.
366 return q
<= MAX_UNROLL
;
369 static void expand_clr(uint32_t dofs
, uint32_t maxsz
);
371 /* Duplicate C as per VECE. */
372 uint64_t (dup_const
)(unsigned vece
, uint64_t c
)
376 return 0x0101010101010101ull
* (uint8_t)c
;
378 return 0x0001000100010001ull
* (uint16_t)c
;
380 return 0x0000000100000001ull
* (uint32_t)c
;
384 g_assert_not_reached();
388 /* Duplicate IN into OUT as per VECE. */
389 void tcg_gen_dup_i32(unsigned vece
, TCGv_i32 out
, TCGv_i32 in
)
393 tcg_gen_ext8u_i32(out
, in
);
394 tcg_gen_muli_i32(out
, out
, 0x01010101);
397 tcg_gen_deposit_i32(out
, in
, in
, 16, 16);
400 tcg_gen_mov_i32(out
, in
);
403 g_assert_not_reached();
407 void tcg_gen_dup_i64(unsigned vece
, TCGv_i64 out
, TCGv_i64 in
)
411 tcg_gen_ext8u_i64(out
, in
);
412 tcg_gen_muli_i64(out
, out
, 0x0101010101010101ull
);
415 tcg_gen_ext16u_i64(out
, in
);
416 tcg_gen_muli_i64(out
, out
, 0x0001000100010001ull
);
419 tcg_gen_deposit_i64(out
, in
, in
, 32, 32);
422 tcg_gen_mov_i64(out
, in
);
425 g_assert_not_reached();
429 /* Select a supported vector type for implementing an operation on SIZE
430 * bytes. If OP is 0, assume that the real operation to be performed is
431 * required by all backends. Otherwise, make sure than OP can be performed
432 * on elements of size VECE in the selected type. Do not select V64 if
433 * PREFER_I64 is true. Return 0 if no vector type is selected.
435 static TCGType
choose_vector_type(const TCGOpcode
*list
, unsigned vece
,
436 uint32_t size
, bool prefer_i64
)
439 * Recall that ARM SVE allows vector sizes that are not a
440 * power of 2, but always a multiple of 16. The intent is
441 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
442 * It is hard to imagine a case in which v256 is supported
443 * but v128 is not, but check anyway.
444 * In addition, expand_clr needs to handle a multiple of 8.
446 if (TCG_TARGET_HAS_v256
&&
447 check_size_impl(size
, 32) &&
448 tcg_can_emit_vecop_list(list
, TCG_TYPE_V256
, vece
) &&
450 (TCG_TARGET_HAS_v128
&&
451 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
))) &&
453 (TCG_TARGET_HAS_v64
&&
454 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
455 return TCG_TYPE_V256
;
457 if (TCG_TARGET_HAS_v128
&&
458 check_size_impl(size
, 16) &&
459 tcg_can_emit_vecop_list(list
, TCG_TYPE_V128
, vece
) &&
461 (TCG_TARGET_HAS_v64
&&
462 tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)))) {
463 return TCG_TYPE_V128
;
465 if (TCG_TARGET_HAS_v64
&& !prefer_i64
&& check_size_impl(size
, 8)
466 && tcg_can_emit_vecop_list(list
, TCG_TYPE_V64
, vece
)) {
472 static void do_dup_store(TCGType type
, uint32_t dofs
, uint32_t oprsz
,
473 uint32_t maxsz
, TCGv_vec t_vec
)
477 tcg_debug_assert(oprsz
>= 8);
480 * This may be expand_clr for the tail of an operation, e.g.
481 * oprsz == 8 && maxsz == 64. The first 8 bytes of this store
482 * are misaligned wrt the maximum vector size, so do that first.
485 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
492 * Recall that ARM SVE allows vector sizes that are not a
493 * power of 2, but always a multiple of 16. The intent is
494 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
496 for (; i
+ 32 <= oprsz
; i
+= 32) {
497 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V256
);
501 for (; i
+ 16 <= oprsz
; i
+= 16) {
502 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V128
);
506 for (; i
< oprsz
; i
+= 8) {
507 tcg_gen_stl_vec(t_vec
, cpu_env
, dofs
+ i
, TCG_TYPE_V64
);
511 g_assert_not_reached();
515 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
519 /* Set OPRSZ bytes at DOFS to replications of IN_32, IN_64 or IN_C.
520 * Only one of IN_32 or IN_64 may be set;
521 * IN_C is used if IN_32 and IN_64 are unset.
523 static void do_dup(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
524 uint32_t maxsz
, TCGv_i32 in_32
, TCGv_i64 in_64
,
529 TCGv_i32 t_32
, t_desc
;
533 assert(vece
<= (in_32
? MO_32
: MO_64
));
534 assert(in_32
== NULL
|| in_64
== NULL
);
536 /* If we're storing 0, expand oprsz to maxsz. */
537 if (in_32
== NULL
&& in_64
== NULL
) {
538 in_c
= dup_const(vece
, in_c
);
542 } else if (in_c
== dup_const(MO_8
, in_c
)) {
547 /* Implement inline with a vector type, if possible.
548 * Prefer integer when 64-bit host and no variable dup.
550 type
= choose_vector_type(NULL
, vece
, oprsz
,
551 (TCG_TARGET_REG_BITS
== 64 && in_32
== NULL
552 && (in_64
== NULL
|| vece
== MO_64
)));
554 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
557 tcg_gen_dup_i32_vec(vece
, t_vec
, in_32
);
559 tcg_gen_dup_i64_vec(vece
, t_vec
, in_64
);
561 tcg_gen_dupi_vec(vece
, t_vec
, in_c
);
563 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
564 tcg_temp_free_vec(t_vec
);
568 /* Otherwise, inline with an integer type, unless "large". */
569 if (check_size_impl(oprsz
, TCG_TARGET_REG_BITS
/ 8)) {
574 /* We are given a 32-bit variable input. For a 64-bit host,
575 use a 64-bit operation unless the 32-bit operation would
577 if (TCG_TARGET_REG_BITS
== 64
578 && (vece
!= MO_32
|| !check_size_impl(oprsz
, 4))) {
579 t_64
= tcg_temp_new_i64();
580 tcg_gen_extu_i32_i64(t_64
, in_32
);
581 tcg_gen_dup_i64(vece
, t_64
, t_64
);
583 t_32
= tcg_temp_new_i32();
584 tcg_gen_dup_i32(vece
, t_32
, in_32
);
587 /* We are given a 64-bit variable input. */
588 t_64
= tcg_temp_new_i64();
589 tcg_gen_dup_i64(vece
, t_64
, in_64
);
591 /* We are given a constant input. */
592 /* For 64-bit hosts, use 64-bit constants for "simple" constants
593 or when we'd need too many 32-bit stores, or when a 64-bit
594 constant is really required. */
596 || (TCG_TARGET_REG_BITS
== 64
597 && (in_c
== 0 || in_c
== -1
598 || !check_size_impl(oprsz
, 4)))) {
599 t_64
= tcg_constant_i64(in_c
);
601 t_32
= tcg_constant_i32(in_c
);
605 /* Implement inline if we picked an implementation size above. */
607 for (i
= 0; i
< oprsz
; i
+= 4) {
608 tcg_gen_st_i32(t_32
, cpu_env
, dofs
+ i
);
610 tcg_temp_free_i32(t_32
);
614 for (i
= 0; i
< oprsz
; i
+= 8) {
615 tcg_gen_st_i64(t_64
, cpu_env
, dofs
+ i
);
617 tcg_temp_free_i64(t_64
);
622 /* Otherwise implement out of line. */
623 t_ptr
= tcg_temp_new_ptr();
624 tcg_gen_addi_ptr(t_ptr
, cpu_env
, dofs
);
627 * This may be expand_clr for the tail of an operation, e.g.
628 * oprsz == 8 && maxsz == 64. The size of the clear is misaligned
629 * wrt simd_desc and will assert. Simply pass all replicated byte
630 * stores through to memset.
632 if (oprsz
== maxsz
&& vece
== MO_8
) {
633 TCGv_ptr t_size
= tcg_const_ptr(oprsz
);
639 t_val
= tcg_temp_new_i32();
640 tcg_gen_extrl_i64_i32(t_val
, in_64
);
642 t_val
= tcg_constant_i32(in_c
);
644 gen_helper_memset(t_ptr
, t_ptr
, t_val
, t_size
);
647 tcg_temp_free_i32(t_val
);
649 tcg_temp_free_ptr(t_size
);
650 tcg_temp_free_ptr(t_ptr
);
654 t_desc
= tcg_constant_i32(simd_desc(oprsz
, maxsz
, 0));
658 gen_helper_gvec_dup64(t_ptr
, t_desc
, in_64
);
660 t_64
= tcg_constant_i64(in_c
);
661 gen_helper_gvec_dup64(t_ptr
, t_desc
, t_64
);
664 typedef void dup_fn(TCGv_ptr
, TCGv_i32
, TCGv_i32
);
665 static dup_fn
* const fns
[3] = {
666 gen_helper_gvec_dup8
,
667 gen_helper_gvec_dup16
,
668 gen_helper_gvec_dup32
672 fns
[vece
](t_ptr
, t_desc
, in_32
);
674 t_32
= tcg_temp_new_i32();
675 tcg_gen_extrl_i64_i32(t_32
, in_64
);
676 fns
[vece
](t_ptr
, t_desc
, t_32
);
677 tcg_temp_free_i32(t_32
);
681 } else if (vece
== MO_16
) {
684 t_32
= tcg_constant_i32(in_c
);
685 fns
[vece
](t_ptr
, t_desc
, t_32
);
689 tcg_temp_free_ptr(t_ptr
);
694 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
698 /* Likewise, but with zero. */
699 static void expand_clr(uint32_t dofs
, uint32_t maxsz
)
701 do_dup(MO_8
, dofs
, maxsz
, maxsz
, NULL
, NULL
, 0);
704 /* Expand OPSZ bytes worth of two-operand operations using i32 elements. */
705 static void expand_2_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
706 bool load_dest
, void (*fni
)(TCGv_i32
, TCGv_i32
))
708 TCGv_i32 t0
= tcg_temp_new_i32();
709 TCGv_i32 t1
= tcg_temp_new_i32();
712 for (i
= 0; i
< oprsz
; i
+= 4) {
713 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
715 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
718 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
720 tcg_temp_free_i32(t0
);
721 tcg_temp_free_i32(t1
);
724 static void expand_2i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
725 int32_t c
, bool load_dest
,
726 void (*fni
)(TCGv_i32
, TCGv_i32
, int32_t))
728 TCGv_i32 t0
= tcg_temp_new_i32();
729 TCGv_i32 t1
= tcg_temp_new_i32();
732 for (i
= 0; i
< oprsz
; i
+= 4) {
733 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
735 tcg_gen_ld_i32(t1
, cpu_env
, dofs
+ i
);
738 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
740 tcg_temp_free_i32(t0
);
741 tcg_temp_free_i32(t1
);
744 static void expand_2s_i32(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
745 TCGv_i32 c
, bool scalar_first
,
746 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
748 TCGv_i32 t0
= tcg_temp_new_i32();
749 TCGv_i32 t1
= tcg_temp_new_i32();
752 for (i
= 0; i
< oprsz
; i
+= 4) {
753 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
759 tcg_gen_st_i32(t1
, cpu_env
, dofs
+ i
);
761 tcg_temp_free_i32(t0
);
762 tcg_temp_free_i32(t1
);
765 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
766 static void expand_3_i32(uint32_t dofs
, uint32_t aofs
,
767 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
768 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
))
770 TCGv_i32 t0
= tcg_temp_new_i32();
771 TCGv_i32 t1
= tcg_temp_new_i32();
772 TCGv_i32 t2
= tcg_temp_new_i32();
775 for (i
= 0; i
< oprsz
; i
+= 4) {
776 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
777 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
779 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
782 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
784 tcg_temp_free_i32(t2
);
785 tcg_temp_free_i32(t1
);
786 tcg_temp_free_i32(t0
);
789 static void expand_3i_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
790 uint32_t oprsz
, int32_t c
, bool load_dest
,
791 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, int32_t))
793 TCGv_i32 t0
= tcg_temp_new_i32();
794 TCGv_i32 t1
= tcg_temp_new_i32();
795 TCGv_i32 t2
= tcg_temp_new_i32();
798 for (i
= 0; i
< oprsz
; i
+= 4) {
799 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
800 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
802 tcg_gen_ld_i32(t2
, cpu_env
, dofs
+ i
);
805 tcg_gen_st_i32(t2
, cpu_env
, dofs
+ i
);
807 tcg_temp_free_i32(t0
);
808 tcg_temp_free_i32(t1
);
809 tcg_temp_free_i32(t2
);
812 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
813 static void expand_4_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
814 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
815 void (*fni
)(TCGv_i32
, TCGv_i32
, TCGv_i32
, TCGv_i32
))
817 TCGv_i32 t0
= tcg_temp_new_i32();
818 TCGv_i32 t1
= tcg_temp_new_i32();
819 TCGv_i32 t2
= tcg_temp_new_i32();
820 TCGv_i32 t3
= tcg_temp_new_i32();
823 for (i
= 0; i
< oprsz
; i
+= 4) {
824 tcg_gen_ld_i32(t1
, cpu_env
, aofs
+ i
);
825 tcg_gen_ld_i32(t2
, cpu_env
, bofs
+ i
);
826 tcg_gen_ld_i32(t3
, cpu_env
, cofs
+ i
);
828 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
830 tcg_gen_st_i32(t1
, cpu_env
, aofs
+ i
);
833 tcg_temp_free_i32(t3
);
834 tcg_temp_free_i32(t2
);
835 tcg_temp_free_i32(t1
);
836 tcg_temp_free_i32(t0
);
839 /* Expand OPSZ bytes worth of two-operand operations using i64 elements. */
840 static void expand_2_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
841 bool load_dest
, void (*fni
)(TCGv_i64
, TCGv_i64
))
843 TCGv_i64 t0
= tcg_temp_new_i64();
844 TCGv_i64 t1
= tcg_temp_new_i64();
847 for (i
= 0; i
< oprsz
; i
+= 8) {
848 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
850 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
853 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
855 tcg_temp_free_i64(t0
);
856 tcg_temp_free_i64(t1
);
859 static void expand_2i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
860 int64_t c
, bool load_dest
,
861 void (*fni
)(TCGv_i64
, TCGv_i64
, int64_t))
863 TCGv_i64 t0
= tcg_temp_new_i64();
864 TCGv_i64 t1
= tcg_temp_new_i64();
867 for (i
= 0; i
< oprsz
; i
+= 8) {
868 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
870 tcg_gen_ld_i64(t1
, cpu_env
, dofs
+ i
);
873 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
875 tcg_temp_free_i64(t0
);
876 tcg_temp_free_i64(t1
);
879 static void expand_2s_i64(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
880 TCGv_i64 c
, bool scalar_first
,
881 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
883 TCGv_i64 t0
= tcg_temp_new_i64();
884 TCGv_i64 t1
= tcg_temp_new_i64();
887 for (i
= 0; i
< oprsz
; i
+= 8) {
888 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
894 tcg_gen_st_i64(t1
, cpu_env
, dofs
+ i
);
896 tcg_temp_free_i64(t0
);
897 tcg_temp_free_i64(t1
);
900 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
901 static void expand_3_i64(uint32_t dofs
, uint32_t aofs
,
902 uint32_t bofs
, uint32_t oprsz
, bool load_dest
,
903 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
))
905 TCGv_i64 t0
= tcg_temp_new_i64();
906 TCGv_i64 t1
= tcg_temp_new_i64();
907 TCGv_i64 t2
= tcg_temp_new_i64();
910 for (i
= 0; i
< oprsz
; i
+= 8) {
911 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
912 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
914 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
917 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
919 tcg_temp_free_i64(t2
);
920 tcg_temp_free_i64(t1
);
921 tcg_temp_free_i64(t0
);
924 static void expand_3i_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
925 uint32_t oprsz
, int64_t c
, bool load_dest
,
926 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, int64_t))
928 TCGv_i64 t0
= tcg_temp_new_i64();
929 TCGv_i64 t1
= tcg_temp_new_i64();
930 TCGv_i64 t2
= tcg_temp_new_i64();
933 for (i
= 0; i
< oprsz
; i
+= 8) {
934 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
935 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
937 tcg_gen_ld_i64(t2
, cpu_env
, dofs
+ i
);
940 tcg_gen_st_i64(t2
, cpu_env
, dofs
+ i
);
942 tcg_temp_free_i64(t0
);
943 tcg_temp_free_i64(t1
);
944 tcg_temp_free_i64(t2
);
947 /* Expand OPSZ bytes worth of three-operand operations using i64 elements. */
948 static void expand_4_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
949 uint32_t cofs
, uint32_t oprsz
, bool write_aofs
,
950 void (*fni
)(TCGv_i64
, TCGv_i64
, TCGv_i64
, TCGv_i64
))
952 TCGv_i64 t0
= tcg_temp_new_i64();
953 TCGv_i64 t1
= tcg_temp_new_i64();
954 TCGv_i64 t2
= tcg_temp_new_i64();
955 TCGv_i64 t3
= tcg_temp_new_i64();
958 for (i
= 0; i
< oprsz
; i
+= 8) {
959 tcg_gen_ld_i64(t1
, cpu_env
, aofs
+ i
);
960 tcg_gen_ld_i64(t2
, cpu_env
, bofs
+ i
);
961 tcg_gen_ld_i64(t3
, cpu_env
, cofs
+ i
);
963 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
965 tcg_gen_st_i64(t1
, cpu_env
, aofs
+ i
);
968 tcg_temp_free_i64(t3
);
969 tcg_temp_free_i64(t2
);
970 tcg_temp_free_i64(t1
);
971 tcg_temp_free_i64(t0
);
974 /* Expand OPSZ bytes worth of two-operand operations using host vectors. */
975 static void expand_2_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
976 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
978 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
))
980 TCGv_vec t0
= tcg_temp_new_vec(type
);
981 TCGv_vec t1
= tcg_temp_new_vec(type
);
984 for (i
= 0; i
< oprsz
; i
+= tysz
) {
985 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
987 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
990 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
992 tcg_temp_free_vec(t0
);
993 tcg_temp_free_vec(t1
);
996 /* Expand OPSZ bytes worth of two-vector operands and an immediate operand
997 using host vectors. */
998 static void expand_2i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
999 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1000 int64_t c
, bool load_dest
,
1001 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, int64_t))
1003 TCGv_vec t0
= tcg_temp_new_vec(type
);
1004 TCGv_vec t1
= tcg_temp_new_vec(type
);
1007 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1008 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1010 tcg_gen_ld_vec(t1
, cpu_env
, dofs
+ i
);
1012 fni(vece
, t1
, t0
, c
);
1013 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1015 tcg_temp_free_vec(t0
);
1016 tcg_temp_free_vec(t1
);
1019 static void expand_2s_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1020 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
1021 TCGv_vec c
, bool scalar_first
,
1022 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1024 TCGv_vec t0
= tcg_temp_new_vec(type
);
1025 TCGv_vec t1
= tcg_temp_new_vec(type
);
1028 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1029 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1031 fni(vece
, t1
, c
, t0
);
1033 fni(vece
, t1
, t0
, c
);
1035 tcg_gen_st_vec(t1
, cpu_env
, dofs
+ i
);
1037 tcg_temp_free_vec(t0
);
1038 tcg_temp_free_vec(t1
);
1041 /* Expand OPSZ bytes worth of three-operand operations using host vectors. */
1042 static void expand_3_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1043 uint32_t bofs
, uint32_t oprsz
,
1044 uint32_t tysz
, TCGType type
, bool load_dest
,
1045 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
))
1047 TCGv_vec t0
= tcg_temp_new_vec(type
);
1048 TCGv_vec t1
= tcg_temp_new_vec(type
);
1049 TCGv_vec t2
= tcg_temp_new_vec(type
);
1052 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1053 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1054 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1056 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1058 fni(vece
, t2
, t0
, t1
);
1059 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1061 tcg_temp_free_vec(t2
);
1062 tcg_temp_free_vec(t1
);
1063 tcg_temp_free_vec(t0
);
1067 * Expand OPSZ bytes worth of three-vector operands and an immediate operand
1068 * using host vectors.
1070 static void expand_3i_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1071 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
1072 TCGType type
, int64_t c
, bool load_dest
,
1073 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
,
1076 TCGv_vec t0
= tcg_temp_new_vec(type
);
1077 TCGv_vec t1
= tcg_temp_new_vec(type
);
1078 TCGv_vec t2
= tcg_temp_new_vec(type
);
1081 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1082 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
1083 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
1085 tcg_gen_ld_vec(t2
, cpu_env
, dofs
+ i
);
1087 fni(vece
, t2
, t0
, t1
, c
);
1088 tcg_gen_st_vec(t2
, cpu_env
, dofs
+ i
);
1090 tcg_temp_free_vec(t0
);
1091 tcg_temp_free_vec(t1
);
1092 tcg_temp_free_vec(t2
);
1095 /* Expand OPSZ bytes worth of four-operand operations using host vectors. */
1096 static void expand_4_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1097 uint32_t bofs
, uint32_t cofs
, uint32_t oprsz
,
1098 uint32_t tysz
, TCGType type
, bool write_aofs
,
1099 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
,
1100 TCGv_vec
, TCGv_vec
))
1102 TCGv_vec t0
= tcg_temp_new_vec(type
);
1103 TCGv_vec t1
= tcg_temp_new_vec(type
);
1104 TCGv_vec t2
= tcg_temp_new_vec(type
);
1105 TCGv_vec t3
= tcg_temp_new_vec(type
);
1108 for (i
= 0; i
< oprsz
; i
+= tysz
) {
1109 tcg_gen_ld_vec(t1
, cpu_env
, aofs
+ i
);
1110 tcg_gen_ld_vec(t2
, cpu_env
, bofs
+ i
);
1111 tcg_gen_ld_vec(t3
, cpu_env
, cofs
+ i
);
1112 fni(vece
, t0
, t1
, t2
, t3
);
1113 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
1115 tcg_gen_st_vec(t1
, cpu_env
, aofs
+ i
);
1118 tcg_temp_free_vec(t3
);
1119 tcg_temp_free_vec(t2
);
1120 tcg_temp_free_vec(t1
);
1121 tcg_temp_free_vec(t0
);
1124 /* Expand a vector two-operand operation. */
1125 void tcg_gen_gvec_2(uint32_t dofs
, uint32_t aofs
,
1126 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2
*g
)
1128 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1129 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1133 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1134 check_overlap_2(dofs
, aofs
, maxsz
);
1138 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1142 /* Recall that ARM SVE allows vector sizes that are not a
1143 * power of 2, but always a multiple of 16. The intent is
1144 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1146 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1147 expand_2_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1148 g
->load_dest
, g
->fniv
);
1149 if (some
== oprsz
) {
1158 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1159 g
->load_dest
, g
->fniv
);
1162 expand_2_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1163 g
->load_dest
, g
->fniv
);
1167 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1168 expand_2_i64(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni8
);
1169 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1170 expand_2_i32(dofs
, aofs
, oprsz
, g
->load_dest
, g
->fni4
);
1172 assert(g
->fno
!= NULL
);
1173 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, g
->data
, g
->fno
);
1179 g_assert_not_reached();
1181 tcg_swap_vecop_list(hold_list
);
1183 if (oprsz
< maxsz
) {
1184 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1188 /* Expand a vector operation with two vectors and an immediate. */
1189 void tcg_gen_gvec_2i(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1190 uint32_t maxsz
, int64_t c
, const GVecGen2i
*g
)
1192 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1193 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1197 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1198 check_overlap_2(dofs
, aofs
, maxsz
);
1202 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1206 /* Recall that ARM SVE allows vector sizes that are not a
1207 * power of 2, but always a multiple of 16. The intent is
1208 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1210 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1211 expand_2i_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1212 c
, g
->load_dest
, g
->fniv
);
1213 if (some
== oprsz
) {
1222 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1223 c
, g
->load_dest
, g
->fniv
);
1226 expand_2i_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1227 c
, g
->load_dest
, g
->fniv
);
1231 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1232 expand_2i_i64(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1233 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1234 expand_2i_i32(dofs
, aofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1237 tcg_gen_gvec_2_ool(dofs
, aofs
, oprsz
, maxsz
, c
, g
->fno
);
1239 TCGv_i64 tcg_c
= tcg_constant_i64(c
);
1240 tcg_gen_gvec_2i_ool(dofs
, aofs
, tcg_c
, oprsz
,
1248 g_assert_not_reached();
1250 tcg_swap_vecop_list(hold_list
);
1252 if (oprsz
< maxsz
) {
1253 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1257 /* Expand a vector operation with two vectors and a scalar. */
1258 void tcg_gen_gvec_2s(uint32_t dofs
, uint32_t aofs
, uint32_t oprsz
,
1259 uint32_t maxsz
, TCGv_i64 c
, const GVecGen2s
*g
)
1263 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
1264 check_overlap_2(dofs
, aofs
, maxsz
);
1268 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1271 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1272 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1273 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1276 tcg_gen_dup_i64_vec(g
->vece
, t_vec
, c
);
1280 /* Recall that ARM SVE allows vector sizes that are not a
1281 * power of 2, but always a multiple of 16. The intent is
1282 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1284 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1285 expand_2s_vec(g
->vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
1286 t_vec
, g
->scalar_first
, g
->fniv
);
1287 if (some
== oprsz
) {
1297 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
1298 t_vec
, g
->scalar_first
, g
->fniv
);
1302 expand_2s_vec(g
->vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
1303 t_vec
, g
->scalar_first
, g
->fniv
);
1307 g_assert_not_reached();
1309 tcg_temp_free_vec(t_vec
);
1310 tcg_swap_vecop_list(hold_list
);
1311 } else if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1312 TCGv_i64 t64
= tcg_temp_new_i64();
1314 tcg_gen_dup_i64(g
->vece
, t64
, c
);
1315 expand_2s_i64(dofs
, aofs
, oprsz
, t64
, g
->scalar_first
, g
->fni8
);
1316 tcg_temp_free_i64(t64
);
1317 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1318 TCGv_i32 t32
= tcg_temp_new_i32();
1320 tcg_gen_extrl_i64_i32(t32
, c
);
1321 tcg_gen_dup_i32(g
->vece
, t32
, t32
);
1322 expand_2s_i32(dofs
, aofs
, oprsz
, t32
, g
->scalar_first
, g
->fni4
);
1323 tcg_temp_free_i32(t32
);
1325 tcg_gen_gvec_2i_ool(dofs
, aofs
, c
, oprsz
, maxsz
, 0, g
->fno
);
1329 if (oprsz
< maxsz
) {
1330 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1334 /* Expand a vector three-operand operation. */
1335 void tcg_gen_gvec_3(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1336 uint32_t oprsz
, uint32_t maxsz
, const GVecGen3
*g
)
1338 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1339 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1343 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1344 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1348 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1352 /* Recall that ARM SVE allows vector sizes that are not a
1353 * power of 2, but always a multiple of 16. The intent is
1354 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1356 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1357 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1358 g
->load_dest
, g
->fniv
);
1359 if (some
== oprsz
) {
1369 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1370 g
->load_dest
, g
->fniv
);
1373 expand_3_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1374 g
->load_dest
, g
->fniv
);
1378 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1379 expand_3_i64(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni8
);
1380 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1381 expand_3_i32(dofs
, aofs
, bofs
, oprsz
, g
->load_dest
, g
->fni4
);
1383 assert(g
->fno
!= NULL
);
1384 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
,
1385 maxsz
, g
->data
, g
->fno
);
1391 g_assert_not_reached();
1393 tcg_swap_vecop_list(hold_list
);
1395 if (oprsz
< maxsz
) {
1396 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1400 /* Expand a vector operation with three vectors and an immediate. */
1401 void tcg_gen_gvec_3i(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
1402 uint32_t oprsz
, uint32_t maxsz
, int64_t c
,
1405 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1406 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1410 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
1411 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
1415 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1420 * Recall that ARM SVE allows vector sizes that are not a
1421 * power of 2, but always a multiple of 16. The intent is
1422 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1424 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1425 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
,
1426 c
, g
->load_dest
, g
->fniv
);
1427 if (some
== oprsz
) {
1437 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
,
1438 c
, g
->load_dest
, g
->fniv
);
1441 expand_3i_vec(g
->vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
,
1442 c
, g
->load_dest
, g
->fniv
);
1446 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1447 expand_3i_i64(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni8
);
1448 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1449 expand_3i_i32(dofs
, aofs
, bofs
, oprsz
, c
, g
->load_dest
, g
->fni4
);
1451 assert(g
->fno
!= NULL
);
1452 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, c
, g
->fno
);
1458 g_assert_not_reached();
1460 tcg_swap_vecop_list(hold_list
);
1462 if (oprsz
< maxsz
) {
1463 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1467 /* Expand a vector four-operand operation. */
1468 void tcg_gen_gvec_4(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
, uint32_t cofs
,
1469 uint32_t oprsz
, uint32_t maxsz
, const GVecGen4
*g
)
1471 const TCGOpcode
*this_list
= g
->opt_opc
? : vecop_list_empty
;
1472 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(this_list
);
1476 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
| cofs
);
1477 check_overlap_4(dofs
, aofs
, bofs
, cofs
, maxsz
);
1481 type
= choose_vector_type(g
->opt_opc
, g
->vece
, oprsz
, g
->prefer_i64
);
1485 /* Recall that ARM SVE allows vector sizes that are not a
1486 * power of 2, but always a multiple of 16. The intent is
1487 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
1489 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
1490 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, some
,
1491 32, TCG_TYPE_V256
, g
->write_aofs
, g
->fniv
);
1492 if (some
== oprsz
) {
1503 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1504 16, TCG_TYPE_V128
, g
->write_aofs
, g
->fniv
);
1507 expand_4_vec(g
->vece
, dofs
, aofs
, bofs
, cofs
, oprsz
,
1508 8, TCG_TYPE_V64
, g
->write_aofs
, g
->fniv
);
1512 if (g
->fni8
&& check_size_impl(oprsz
, 8)) {
1513 expand_4_i64(dofs
, aofs
, bofs
, cofs
, oprsz
,
1514 g
->write_aofs
, g
->fni8
);
1515 } else if (g
->fni4
&& check_size_impl(oprsz
, 4)) {
1516 expand_4_i32(dofs
, aofs
, bofs
, cofs
, oprsz
,
1517 g
->write_aofs
, g
->fni4
);
1519 assert(g
->fno
!= NULL
);
1520 tcg_gen_gvec_4_ool(dofs
, aofs
, bofs
, cofs
,
1521 oprsz
, maxsz
, g
->data
, g
->fno
);
1527 g_assert_not_reached();
1529 tcg_swap_vecop_list(hold_list
);
1531 if (oprsz
< maxsz
) {
1532 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1537 * Expand specific vector operations.
1540 static void vec_mov2(unsigned vece
, TCGv_vec a
, TCGv_vec b
)
1542 tcg_gen_mov_vec(a
, b
);
1545 void tcg_gen_gvec_mov(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1546 uint32_t oprsz
, uint32_t maxsz
)
1548 static const GVecGen2 g
= {
1549 .fni8
= tcg_gen_mov_i64
,
1551 .fno
= gen_helper_gvec_mov
,
1552 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1555 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1557 check_size_align(oprsz
, maxsz
, dofs
);
1558 if (oprsz
< maxsz
) {
1559 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1564 void tcg_gen_gvec_dup_i32(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1565 uint32_t maxsz
, TCGv_i32 in
)
1567 check_size_align(oprsz
, maxsz
, dofs
);
1568 tcg_debug_assert(vece
<= MO_32
);
1569 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1572 void tcg_gen_gvec_dup_i64(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1573 uint32_t maxsz
, TCGv_i64 in
)
1575 check_size_align(oprsz
, maxsz
, dofs
);
1576 tcg_debug_assert(vece
<= MO_64
);
1577 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1580 void tcg_gen_gvec_dup_mem(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1581 uint32_t oprsz
, uint32_t maxsz
)
1583 check_size_align(oprsz
, maxsz
, dofs
);
1584 if (vece
<= MO_64
) {
1585 TCGType type
= choose_vector_type(NULL
, vece
, oprsz
, 0);
1587 TCGv_vec t_vec
= tcg_temp_new_vec(type
);
1588 tcg_gen_dup_mem_vec(vece
, t_vec
, cpu_env
, aofs
);
1589 do_dup_store(type
, dofs
, oprsz
, maxsz
, t_vec
);
1590 tcg_temp_free_vec(t_vec
);
1591 } else if (vece
<= MO_32
) {
1592 TCGv_i32 in
= tcg_temp_new_i32();
1595 tcg_gen_ld8u_i32(in
, cpu_env
, aofs
);
1598 tcg_gen_ld16u_i32(in
, cpu_env
, aofs
);
1601 tcg_gen_ld_i32(in
, cpu_env
, aofs
);
1604 do_dup(vece
, dofs
, oprsz
, maxsz
, in
, NULL
, 0);
1605 tcg_temp_free_i32(in
);
1607 TCGv_i64 in
= tcg_temp_new_i64();
1608 tcg_gen_ld_i64(in
, cpu_env
, aofs
);
1609 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, in
, 0);
1610 tcg_temp_free_i64(in
);
1612 } else if (vece
== 4) {
1613 /* 128-bit duplicate. */
1616 tcg_debug_assert(oprsz
>= 16);
1617 if (TCG_TARGET_HAS_v128
) {
1618 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V128
);
1620 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1621 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1622 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1624 tcg_temp_free_vec(in
);
1626 TCGv_i64 in0
= tcg_temp_new_i64();
1627 TCGv_i64 in1
= tcg_temp_new_i64();
1629 tcg_gen_ld_i64(in0
, cpu_env
, aofs
);
1630 tcg_gen_ld_i64(in1
, cpu_env
, aofs
+ 8);
1631 for (i
= (aofs
== dofs
) * 16; i
< oprsz
; i
+= 16) {
1632 tcg_gen_st_i64(in0
, cpu_env
, dofs
+ i
);
1633 tcg_gen_st_i64(in1
, cpu_env
, dofs
+ i
+ 8);
1635 tcg_temp_free_i64(in0
);
1636 tcg_temp_free_i64(in1
);
1638 if (oprsz
< maxsz
) {
1639 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1641 } else if (vece
== 5) {
1642 /* 256-bit duplicate. */
1645 tcg_debug_assert(oprsz
>= 32);
1646 tcg_debug_assert(oprsz
% 32 == 0);
1647 if (TCG_TARGET_HAS_v256
) {
1648 TCGv_vec in
= tcg_temp_new_vec(TCG_TYPE_V256
);
1650 tcg_gen_ld_vec(in
, cpu_env
, aofs
);
1651 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1652 tcg_gen_st_vec(in
, cpu_env
, dofs
+ i
);
1654 tcg_temp_free_vec(in
);
1655 } else if (TCG_TARGET_HAS_v128
) {
1656 TCGv_vec in0
= tcg_temp_new_vec(TCG_TYPE_V128
);
1657 TCGv_vec in1
= tcg_temp_new_vec(TCG_TYPE_V128
);
1659 tcg_gen_ld_vec(in0
, cpu_env
, aofs
);
1660 tcg_gen_ld_vec(in1
, cpu_env
, aofs
+ 16);
1661 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1662 tcg_gen_st_vec(in0
, cpu_env
, dofs
+ i
);
1663 tcg_gen_st_vec(in1
, cpu_env
, dofs
+ i
+ 16);
1665 tcg_temp_free_vec(in0
);
1666 tcg_temp_free_vec(in1
);
1671 for (j
= 0; j
< 4; ++j
) {
1672 in
[j
] = tcg_temp_new_i64();
1673 tcg_gen_ld_i64(in
[j
], cpu_env
, aofs
+ j
* 8);
1675 for (i
= (aofs
== dofs
) * 32; i
< oprsz
; i
+= 32) {
1676 for (j
= 0; j
< 4; ++j
) {
1677 tcg_gen_st_i64(in
[j
], cpu_env
, dofs
+ i
+ j
* 8);
1680 for (j
= 0; j
< 4; ++j
) {
1681 tcg_temp_free_i64(in
[j
]);
1684 if (oprsz
< maxsz
) {
1685 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
1688 g_assert_not_reached();
1692 void tcg_gen_gvec_dup_imm(unsigned vece
, uint32_t dofs
, uint32_t oprsz
,
1693 uint32_t maxsz
, uint64_t x
)
1695 check_size_align(oprsz
, maxsz
, dofs
);
1696 do_dup(vece
, dofs
, oprsz
, maxsz
, NULL
, NULL
, x
);
1699 void tcg_gen_gvec_not(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1700 uint32_t oprsz
, uint32_t maxsz
)
1702 static const GVecGen2 g
= {
1703 .fni8
= tcg_gen_not_i64
,
1704 .fniv
= tcg_gen_not_vec
,
1705 .fno
= gen_helper_gvec_not
,
1706 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1708 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
);
1711 /* Perform a vector addition using normal addition and a mask. The mask
1712 should be the sign bit of each lane. This 6-operation form is more
1713 efficient than separate additions when there are 4 or more lanes in
1714 the 64-bit operation. */
1715 static void gen_addv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1717 TCGv_i64 t1
= tcg_temp_new_i64();
1718 TCGv_i64 t2
= tcg_temp_new_i64();
1719 TCGv_i64 t3
= tcg_temp_new_i64();
1721 tcg_gen_andc_i64(t1
, a
, m
);
1722 tcg_gen_andc_i64(t2
, b
, m
);
1723 tcg_gen_xor_i64(t3
, a
, b
);
1724 tcg_gen_add_i64(d
, t1
, t2
);
1725 tcg_gen_and_i64(t3
, t3
, m
);
1726 tcg_gen_xor_i64(d
, d
, t3
);
1728 tcg_temp_free_i64(t1
);
1729 tcg_temp_free_i64(t2
);
1730 tcg_temp_free_i64(t3
);
1733 void tcg_gen_vec_add8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1735 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
1736 gen_addv_mask(d
, a
, b
, m
);
1739 void tcg_gen_vec_add8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1741 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
1742 TCGv_i32 t1
= tcg_temp_new_i32();
1743 TCGv_i32 t2
= tcg_temp_new_i32();
1744 TCGv_i32 t3
= tcg_temp_new_i32();
1746 tcg_gen_andc_i32(t1
, a
, m
);
1747 tcg_gen_andc_i32(t2
, b
, m
);
1748 tcg_gen_xor_i32(t3
, a
, b
);
1749 tcg_gen_add_i32(d
, t1
, t2
);
1750 tcg_gen_and_i32(t3
, t3
, m
);
1751 tcg_gen_xor_i32(d
, d
, t3
);
1753 tcg_temp_free_i32(t1
);
1754 tcg_temp_free_i32(t2
);
1755 tcg_temp_free_i32(t3
);
1758 void tcg_gen_vec_add16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1760 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
1761 gen_addv_mask(d
, a
, b
, m
);
1764 void tcg_gen_vec_add16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1766 TCGv_i32 t1
= tcg_temp_new_i32();
1767 TCGv_i32 t2
= tcg_temp_new_i32();
1769 tcg_gen_andi_i32(t1
, a
, ~0xffff);
1770 tcg_gen_add_i32(t2
, a
, b
);
1771 tcg_gen_add_i32(t1
, t1
, b
);
1772 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
1774 tcg_temp_free_i32(t1
);
1775 tcg_temp_free_i32(t2
);
1778 void tcg_gen_vec_add32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1780 TCGv_i64 t1
= tcg_temp_new_i64();
1781 TCGv_i64 t2
= tcg_temp_new_i64();
1783 tcg_gen_andi_i64(t1
, a
, ~0xffffffffull
);
1784 tcg_gen_add_i64(t2
, a
, b
);
1785 tcg_gen_add_i64(t1
, t1
, b
);
1786 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1788 tcg_temp_free_i64(t1
);
1789 tcg_temp_free_i64(t2
);
1792 static const TCGOpcode vecop_list_add
[] = { INDEX_op_add_vec
, 0 };
1794 void tcg_gen_gvec_add(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1795 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1797 static const GVecGen3 g
[4] = {
1798 { .fni8
= tcg_gen_vec_add8_i64
,
1799 .fniv
= tcg_gen_add_vec
,
1800 .fno
= gen_helper_gvec_add8
,
1801 .opt_opc
= vecop_list_add
,
1803 { .fni8
= tcg_gen_vec_add16_i64
,
1804 .fniv
= tcg_gen_add_vec
,
1805 .fno
= gen_helper_gvec_add16
,
1806 .opt_opc
= vecop_list_add
,
1808 { .fni4
= tcg_gen_add_i32
,
1809 .fniv
= tcg_gen_add_vec
,
1810 .fno
= gen_helper_gvec_add32
,
1811 .opt_opc
= vecop_list_add
,
1813 { .fni8
= tcg_gen_add_i64
,
1814 .fniv
= tcg_gen_add_vec
,
1815 .fno
= gen_helper_gvec_add64
,
1816 .opt_opc
= vecop_list_add
,
1817 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1821 tcg_debug_assert(vece
<= MO_64
);
1822 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
1825 void tcg_gen_gvec_adds(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1826 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1828 static const GVecGen2s g
[4] = {
1829 { .fni8
= tcg_gen_vec_add8_i64
,
1830 .fniv
= tcg_gen_add_vec
,
1831 .fno
= gen_helper_gvec_adds8
,
1832 .opt_opc
= vecop_list_add
,
1834 { .fni8
= tcg_gen_vec_add16_i64
,
1835 .fniv
= tcg_gen_add_vec
,
1836 .fno
= gen_helper_gvec_adds16
,
1837 .opt_opc
= vecop_list_add
,
1839 { .fni4
= tcg_gen_add_i32
,
1840 .fniv
= tcg_gen_add_vec
,
1841 .fno
= gen_helper_gvec_adds32
,
1842 .opt_opc
= vecop_list_add
,
1844 { .fni8
= tcg_gen_add_i64
,
1845 .fniv
= tcg_gen_add_vec
,
1846 .fno
= gen_helper_gvec_adds64
,
1847 .opt_opc
= vecop_list_add
,
1848 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1852 tcg_debug_assert(vece
<= MO_64
);
1853 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1856 void tcg_gen_gvec_addi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1857 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
1859 TCGv_i64 tmp
= tcg_constant_i64(c
);
1860 tcg_gen_gvec_adds(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
1863 static const TCGOpcode vecop_list_sub
[] = { INDEX_op_sub_vec
, 0 };
1865 void tcg_gen_gvec_subs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1866 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
1868 static const GVecGen2s g
[4] = {
1869 { .fni8
= tcg_gen_vec_sub8_i64
,
1870 .fniv
= tcg_gen_sub_vec
,
1871 .fno
= gen_helper_gvec_subs8
,
1872 .opt_opc
= vecop_list_sub
,
1874 { .fni8
= tcg_gen_vec_sub16_i64
,
1875 .fniv
= tcg_gen_sub_vec
,
1876 .fno
= gen_helper_gvec_subs16
,
1877 .opt_opc
= vecop_list_sub
,
1879 { .fni4
= tcg_gen_sub_i32
,
1880 .fniv
= tcg_gen_sub_vec
,
1881 .fno
= gen_helper_gvec_subs32
,
1882 .opt_opc
= vecop_list_sub
,
1884 { .fni8
= tcg_gen_sub_i64
,
1885 .fniv
= tcg_gen_sub_vec
,
1886 .fno
= gen_helper_gvec_subs64
,
1887 .opt_opc
= vecop_list_sub
,
1888 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
1892 tcg_debug_assert(vece
<= MO_64
);
1893 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
1896 /* Perform a vector subtraction using normal subtraction and a mask.
1897 Compare gen_addv_mask above. */
1898 static void gen_subv_mask(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 m
)
1900 TCGv_i64 t1
= tcg_temp_new_i64();
1901 TCGv_i64 t2
= tcg_temp_new_i64();
1902 TCGv_i64 t3
= tcg_temp_new_i64();
1904 tcg_gen_or_i64(t1
, a
, m
);
1905 tcg_gen_andc_i64(t2
, b
, m
);
1906 tcg_gen_eqv_i64(t3
, a
, b
);
1907 tcg_gen_sub_i64(d
, t1
, t2
);
1908 tcg_gen_and_i64(t3
, t3
, m
);
1909 tcg_gen_xor_i64(d
, d
, t3
);
1911 tcg_temp_free_i64(t1
);
1912 tcg_temp_free_i64(t2
);
1913 tcg_temp_free_i64(t3
);
1916 void tcg_gen_vec_sub8_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1918 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
1919 gen_subv_mask(d
, a
, b
, m
);
1922 void tcg_gen_vec_sub8_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1924 TCGv_i32 m
= tcg_constant_i32((int32_t)dup_const(MO_8
, 0x80));
1925 TCGv_i32 t1
= tcg_temp_new_i32();
1926 TCGv_i32 t2
= tcg_temp_new_i32();
1927 TCGv_i32 t3
= tcg_temp_new_i32();
1929 tcg_gen_or_i32(t1
, a
, m
);
1930 tcg_gen_andc_i32(t2
, b
, m
);
1931 tcg_gen_eqv_i32(t3
, a
, b
);
1932 tcg_gen_sub_i32(d
, t1
, t2
);
1933 tcg_gen_and_i32(t3
, t3
, m
);
1934 tcg_gen_xor_i32(d
, d
, t3
);
1936 tcg_temp_free_i32(t1
);
1937 tcg_temp_free_i32(t2
);
1938 tcg_temp_free_i32(t3
);
1941 void tcg_gen_vec_sub16_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1943 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
1944 gen_subv_mask(d
, a
, b
, m
);
1947 void tcg_gen_vec_sub16_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
1949 TCGv_i32 t1
= tcg_temp_new_i32();
1950 TCGv_i32 t2
= tcg_temp_new_i32();
1952 tcg_gen_andi_i32(t1
, b
, ~0xffff);
1953 tcg_gen_sub_i32(t2
, a
, b
);
1954 tcg_gen_sub_i32(t1
, a
, t1
);
1955 tcg_gen_deposit_i32(d
, t1
, t2
, 0, 16);
1957 tcg_temp_free_i32(t1
);
1958 tcg_temp_free_i32(t2
);
1961 void tcg_gen_vec_sub32_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
1963 TCGv_i64 t1
= tcg_temp_new_i64();
1964 TCGv_i64 t2
= tcg_temp_new_i64();
1966 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
1967 tcg_gen_sub_i64(t2
, a
, b
);
1968 tcg_gen_sub_i64(t1
, a
, t1
);
1969 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
1971 tcg_temp_free_i64(t1
);
1972 tcg_temp_free_i64(t2
);
1975 void tcg_gen_gvec_sub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
1976 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
1978 static const GVecGen3 g
[4] = {
1979 { .fni8
= tcg_gen_vec_sub8_i64
,
1980 .fniv
= tcg_gen_sub_vec
,
1981 .fno
= gen_helper_gvec_sub8
,
1982 .opt_opc
= vecop_list_sub
,
1984 { .fni8
= tcg_gen_vec_sub16_i64
,
1985 .fniv
= tcg_gen_sub_vec
,
1986 .fno
= gen_helper_gvec_sub16
,
1987 .opt_opc
= vecop_list_sub
,
1989 { .fni4
= tcg_gen_sub_i32
,
1990 .fniv
= tcg_gen_sub_vec
,
1991 .fno
= gen_helper_gvec_sub32
,
1992 .opt_opc
= vecop_list_sub
,
1994 { .fni8
= tcg_gen_sub_i64
,
1995 .fniv
= tcg_gen_sub_vec
,
1996 .fno
= gen_helper_gvec_sub64
,
1997 .opt_opc
= vecop_list_sub
,
1998 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2002 tcg_debug_assert(vece
<= MO_64
);
2003 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2006 static const TCGOpcode vecop_list_mul
[] = { INDEX_op_mul_vec
, 0 };
2008 void tcg_gen_gvec_mul(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2009 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2011 static const GVecGen3 g
[4] = {
2012 { .fniv
= tcg_gen_mul_vec
,
2013 .fno
= gen_helper_gvec_mul8
,
2014 .opt_opc
= vecop_list_mul
,
2016 { .fniv
= tcg_gen_mul_vec
,
2017 .fno
= gen_helper_gvec_mul16
,
2018 .opt_opc
= vecop_list_mul
,
2020 { .fni4
= tcg_gen_mul_i32
,
2021 .fniv
= tcg_gen_mul_vec
,
2022 .fno
= gen_helper_gvec_mul32
,
2023 .opt_opc
= vecop_list_mul
,
2025 { .fni8
= tcg_gen_mul_i64
,
2026 .fniv
= tcg_gen_mul_vec
,
2027 .fno
= gen_helper_gvec_mul64
,
2028 .opt_opc
= vecop_list_mul
,
2029 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2033 tcg_debug_assert(vece
<= MO_64
);
2034 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2037 void tcg_gen_gvec_muls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2038 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2040 static const GVecGen2s g
[4] = {
2041 { .fniv
= tcg_gen_mul_vec
,
2042 .fno
= gen_helper_gvec_muls8
,
2043 .opt_opc
= vecop_list_mul
,
2045 { .fniv
= tcg_gen_mul_vec
,
2046 .fno
= gen_helper_gvec_muls16
,
2047 .opt_opc
= vecop_list_mul
,
2049 { .fni4
= tcg_gen_mul_i32
,
2050 .fniv
= tcg_gen_mul_vec
,
2051 .fno
= gen_helper_gvec_muls32
,
2052 .opt_opc
= vecop_list_mul
,
2054 { .fni8
= tcg_gen_mul_i64
,
2055 .fniv
= tcg_gen_mul_vec
,
2056 .fno
= gen_helper_gvec_muls64
,
2057 .opt_opc
= vecop_list_mul
,
2058 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2062 tcg_debug_assert(vece
<= MO_64
);
2063 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, c
, &g
[vece
]);
2066 void tcg_gen_gvec_muli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2067 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2069 TCGv_i64 tmp
= tcg_constant_i64(c
);
2070 tcg_gen_gvec_muls(vece
, dofs
, aofs
, tmp
, oprsz
, maxsz
);
2073 void tcg_gen_gvec_ssadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2074 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2076 static const TCGOpcode vecop_list
[] = { INDEX_op_ssadd_vec
, 0 };
2077 static const GVecGen3 g
[4] = {
2078 { .fniv
= tcg_gen_ssadd_vec
,
2079 .fno
= gen_helper_gvec_ssadd8
,
2080 .opt_opc
= vecop_list
,
2082 { .fniv
= tcg_gen_ssadd_vec
,
2083 .fno
= gen_helper_gvec_ssadd16
,
2084 .opt_opc
= vecop_list
,
2086 { .fniv
= tcg_gen_ssadd_vec
,
2087 .fno
= gen_helper_gvec_ssadd32
,
2088 .opt_opc
= vecop_list
,
2090 { .fniv
= tcg_gen_ssadd_vec
,
2091 .fno
= gen_helper_gvec_ssadd64
,
2092 .opt_opc
= vecop_list
,
2095 tcg_debug_assert(vece
<= MO_64
);
2096 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2099 void tcg_gen_gvec_sssub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2100 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2102 static const TCGOpcode vecop_list
[] = { INDEX_op_sssub_vec
, 0 };
2103 static const GVecGen3 g
[4] = {
2104 { .fniv
= tcg_gen_sssub_vec
,
2105 .fno
= gen_helper_gvec_sssub8
,
2106 .opt_opc
= vecop_list
,
2108 { .fniv
= tcg_gen_sssub_vec
,
2109 .fno
= gen_helper_gvec_sssub16
,
2110 .opt_opc
= vecop_list
,
2112 { .fniv
= tcg_gen_sssub_vec
,
2113 .fno
= gen_helper_gvec_sssub32
,
2114 .opt_opc
= vecop_list
,
2116 { .fniv
= tcg_gen_sssub_vec
,
2117 .fno
= gen_helper_gvec_sssub64
,
2118 .opt_opc
= vecop_list
,
2121 tcg_debug_assert(vece
<= MO_64
);
2122 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2125 static void tcg_gen_usadd_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2127 TCGv_i32 max
= tcg_constant_i32(-1);
2128 tcg_gen_add_i32(d
, a
, b
);
2129 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2132 static void tcg_gen_usadd_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2134 TCGv_i64 max
= tcg_constant_i64(-1);
2135 tcg_gen_add_i64(d
, a
, b
);
2136 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, d
, a
, max
, d
);
2139 void tcg_gen_gvec_usadd(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2140 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2142 static const TCGOpcode vecop_list
[] = { INDEX_op_usadd_vec
, 0 };
2143 static const GVecGen3 g
[4] = {
2144 { .fniv
= tcg_gen_usadd_vec
,
2145 .fno
= gen_helper_gvec_usadd8
,
2146 .opt_opc
= vecop_list
,
2148 { .fniv
= tcg_gen_usadd_vec
,
2149 .fno
= gen_helper_gvec_usadd16
,
2150 .opt_opc
= vecop_list
,
2152 { .fni4
= tcg_gen_usadd_i32
,
2153 .fniv
= tcg_gen_usadd_vec
,
2154 .fno
= gen_helper_gvec_usadd32
,
2155 .opt_opc
= vecop_list
,
2157 { .fni8
= tcg_gen_usadd_i64
,
2158 .fniv
= tcg_gen_usadd_vec
,
2159 .fno
= gen_helper_gvec_usadd64
,
2160 .opt_opc
= vecop_list
,
2163 tcg_debug_assert(vece
<= MO_64
);
2164 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2167 static void tcg_gen_ussub_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
2169 TCGv_i32 min
= tcg_constant_i32(0);
2170 tcg_gen_sub_i32(d
, a
, b
);
2171 tcg_gen_movcond_i32(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2174 static void tcg_gen_ussub_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
2176 TCGv_i64 min
= tcg_constant_i64(0);
2177 tcg_gen_sub_i64(d
, a
, b
);
2178 tcg_gen_movcond_i64(TCG_COND_LTU
, d
, a
, b
, min
, d
);
2181 void tcg_gen_gvec_ussub(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2182 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2184 static const TCGOpcode vecop_list
[] = { INDEX_op_ussub_vec
, 0 };
2185 static const GVecGen3 g
[4] = {
2186 { .fniv
= tcg_gen_ussub_vec
,
2187 .fno
= gen_helper_gvec_ussub8
,
2188 .opt_opc
= vecop_list
,
2190 { .fniv
= tcg_gen_ussub_vec
,
2191 .fno
= gen_helper_gvec_ussub16
,
2192 .opt_opc
= vecop_list
,
2194 { .fni4
= tcg_gen_ussub_i32
,
2195 .fniv
= tcg_gen_ussub_vec
,
2196 .fno
= gen_helper_gvec_ussub32
,
2197 .opt_opc
= vecop_list
,
2199 { .fni8
= tcg_gen_ussub_i64
,
2200 .fniv
= tcg_gen_ussub_vec
,
2201 .fno
= gen_helper_gvec_ussub64
,
2202 .opt_opc
= vecop_list
,
2205 tcg_debug_assert(vece
<= MO_64
);
2206 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2209 void tcg_gen_gvec_smin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2210 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2212 static const TCGOpcode vecop_list
[] = { INDEX_op_smin_vec
, 0 };
2213 static const GVecGen3 g
[4] = {
2214 { .fniv
= tcg_gen_smin_vec
,
2215 .fno
= gen_helper_gvec_smin8
,
2216 .opt_opc
= vecop_list
,
2218 { .fniv
= tcg_gen_smin_vec
,
2219 .fno
= gen_helper_gvec_smin16
,
2220 .opt_opc
= vecop_list
,
2222 { .fni4
= tcg_gen_smin_i32
,
2223 .fniv
= tcg_gen_smin_vec
,
2224 .fno
= gen_helper_gvec_smin32
,
2225 .opt_opc
= vecop_list
,
2227 { .fni8
= tcg_gen_smin_i64
,
2228 .fniv
= tcg_gen_smin_vec
,
2229 .fno
= gen_helper_gvec_smin64
,
2230 .opt_opc
= vecop_list
,
2233 tcg_debug_assert(vece
<= MO_64
);
2234 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2237 void tcg_gen_gvec_umin(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2238 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2240 static const TCGOpcode vecop_list
[] = { INDEX_op_umin_vec
, 0 };
2241 static const GVecGen3 g
[4] = {
2242 { .fniv
= tcg_gen_umin_vec
,
2243 .fno
= gen_helper_gvec_umin8
,
2244 .opt_opc
= vecop_list
,
2246 { .fniv
= tcg_gen_umin_vec
,
2247 .fno
= gen_helper_gvec_umin16
,
2248 .opt_opc
= vecop_list
,
2250 { .fni4
= tcg_gen_umin_i32
,
2251 .fniv
= tcg_gen_umin_vec
,
2252 .fno
= gen_helper_gvec_umin32
,
2253 .opt_opc
= vecop_list
,
2255 { .fni8
= tcg_gen_umin_i64
,
2256 .fniv
= tcg_gen_umin_vec
,
2257 .fno
= gen_helper_gvec_umin64
,
2258 .opt_opc
= vecop_list
,
2261 tcg_debug_assert(vece
<= MO_64
);
2262 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2265 void tcg_gen_gvec_smax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2266 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2268 static const TCGOpcode vecop_list
[] = { INDEX_op_smax_vec
, 0 };
2269 static const GVecGen3 g
[4] = {
2270 { .fniv
= tcg_gen_smax_vec
,
2271 .fno
= gen_helper_gvec_smax8
,
2272 .opt_opc
= vecop_list
,
2274 { .fniv
= tcg_gen_smax_vec
,
2275 .fno
= gen_helper_gvec_smax16
,
2276 .opt_opc
= vecop_list
,
2278 { .fni4
= tcg_gen_smax_i32
,
2279 .fniv
= tcg_gen_smax_vec
,
2280 .fno
= gen_helper_gvec_smax32
,
2281 .opt_opc
= vecop_list
,
2283 { .fni8
= tcg_gen_smax_i64
,
2284 .fniv
= tcg_gen_smax_vec
,
2285 .fno
= gen_helper_gvec_smax64
,
2286 .opt_opc
= vecop_list
,
2289 tcg_debug_assert(vece
<= MO_64
);
2290 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2293 void tcg_gen_gvec_umax(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2294 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2296 static const TCGOpcode vecop_list
[] = { INDEX_op_umax_vec
, 0 };
2297 static const GVecGen3 g
[4] = {
2298 { .fniv
= tcg_gen_umax_vec
,
2299 .fno
= gen_helper_gvec_umax8
,
2300 .opt_opc
= vecop_list
,
2302 { .fniv
= tcg_gen_umax_vec
,
2303 .fno
= gen_helper_gvec_umax16
,
2304 .opt_opc
= vecop_list
,
2306 { .fni4
= tcg_gen_umax_i32
,
2307 .fniv
= tcg_gen_umax_vec
,
2308 .fno
= gen_helper_gvec_umax32
,
2309 .opt_opc
= vecop_list
,
2311 { .fni8
= tcg_gen_umax_i64
,
2312 .fniv
= tcg_gen_umax_vec
,
2313 .fno
= gen_helper_gvec_umax64
,
2314 .opt_opc
= vecop_list
,
2317 tcg_debug_assert(vece
<= MO_64
);
2318 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
2321 /* Perform a vector negation using normal negation and a mask.
2322 Compare gen_subv_mask above. */
2323 static void gen_negv_mask(TCGv_i64 d
, TCGv_i64 b
, TCGv_i64 m
)
2325 TCGv_i64 t2
= tcg_temp_new_i64();
2326 TCGv_i64 t3
= tcg_temp_new_i64();
2328 tcg_gen_andc_i64(t3
, m
, b
);
2329 tcg_gen_andc_i64(t2
, b
, m
);
2330 tcg_gen_sub_i64(d
, m
, t2
);
2331 tcg_gen_xor_i64(d
, d
, t3
);
2333 tcg_temp_free_i64(t2
);
2334 tcg_temp_free_i64(t3
);
2337 void tcg_gen_vec_neg8_i64(TCGv_i64 d
, TCGv_i64 b
)
2339 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_8
, 0x80));
2340 gen_negv_mask(d
, b
, m
);
2343 void tcg_gen_vec_neg16_i64(TCGv_i64 d
, TCGv_i64 b
)
2345 TCGv_i64 m
= tcg_constant_i64(dup_const(MO_16
, 0x8000));
2346 gen_negv_mask(d
, b
, m
);
2349 void tcg_gen_vec_neg32_i64(TCGv_i64 d
, TCGv_i64 b
)
2351 TCGv_i64 t1
= tcg_temp_new_i64();
2352 TCGv_i64 t2
= tcg_temp_new_i64();
2354 tcg_gen_andi_i64(t1
, b
, ~0xffffffffull
);
2355 tcg_gen_neg_i64(t2
, b
);
2356 tcg_gen_neg_i64(t1
, t1
);
2357 tcg_gen_deposit_i64(d
, t1
, t2
, 0, 32);
2359 tcg_temp_free_i64(t1
);
2360 tcg_temp_free_i64(t2
);
2363 void tcg_gen_gvec_neg(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2364 uint32_t oprsz
, uint32_t maxsz
)
2366 static const TCGOpcode vecop_list
[] = { INDEX_op_neg_vec
, 0 };
2367 static const GVecGen2 g
[4] = {
2368 { .fni8
= tcg_gen_vec_neg8_i64
,
2369 .fniv
= tcg_gen_neg_vec
,
2370 .fno
= gen_helper_gvec_neg8
,
2371 .opt_opc
= vecop_list
,
2373 { .fni8
= tcg_gen_vec_neg16_i64
,
2374 .fniv
= tcg_gen_neg_vec
,
2375 .fno
= gen_helper_gvec_neg16
,
2376 .opt_opc
= vecop_list
,
2378 { .fni4
= tcg_gen_neg_i32
,
2379 .fniv
= tcg_gen_neg_vec
,
2380 .fno
= gen_helper_gvec_neg32
,
2381 .opt_opc
= vecop_list
,
2383 { .fni8
= tcg_gen_neg_i64
,
2384 .fniv
= tcg_gen_neg_vec
,
2385 .fno
= gen_helper_gvec_neg64
,
2386 .opt_opc
= vecop_list
,
2387 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2391 tcg_debug_assert(vece
<= MO_64
);
2392 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2395 static void gen_absv_mask(TCGv_i64 d
, TCGv_i64 b
, unsigned vece
)
2397 TCGv_i64 t
= tcg_temp_new_i64();
2398 int nbit
= 8 << vece
;
2400 /* Create -1 for each negative element. */
2401 tcg_gen_shri_i64(t
, b
, nbit
- 1);
2402 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2403 tcg_gen_muli_i64(t
, t
, (1 << nbit
) - 1);
2406 * Invert (via xor -1) and add one.
2407 * Because of the ordering the msb is cleared,
2408 * so we never have carry into the next element.
2410 tcg_gen_xor_i64(d
, b
, t
);
2411 tcg_gen_andi_i64(t
, t
, dup_const(vece
, 1));
2412 tcg_gen_add_i64(d
, d
, t
);
2414 tcg_temp_free_i64(t
);
2417 static void tcg_gen_vec_abs8_i64(TCGv_i64 d
, TCGv_i64 b
)
2419 gen_absv_mask(d
, b
, MO_8
);
2422 static void tcg_gen_vec_abs16_i64(TCGv_i64 d
, TCGv_i64 b
)
2424 gen_absv_mask(d
, b
, MO_16
);
2427 void tcg_gen_gvec_abs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2428 uint32_t oprsz
, uint32_t maxsz
)
2430 static const TCGOpcode vecop_list
[] = { INDEX_op_abs_vec
, 0 };
2431 static const GVecGen2 g
[4] = {
2432 { .fni8
= tcg_gen_vec_abs8_i64
,
2433 .fniv
= tcg_gen_abs_vec
,
2434 .fno
= gen_helper_gvec_abs8
,
2435 .opt_opc
= vecop_list
,
2437 { .fni8
= tcg_gen_vec_abs16_i64
,
2438 .fniv
= tcg_gen_abs_vec
,
2439 .fno
= gen_helper_gvec_abs16
,
2440 .opt_opc
= vecop_list
,
2442 { .fni4
= tcg_gen_abs_i32
,
2443 .fniv
= tcg_gen_abs_vec
,
2444 .fno
= gen_helper_gvec_abs32
,
2445 .opt_opc
= vecop_list
,
2447 { .fni8
= tcg_gen_abs_i64
,
2448 .fniv
= tcg_gen_abs_vec
,
2449 .fno
= gen_helper_gvec_abs64
,
2450 .opt_opc
= vecop_list
,
2451 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2455 tcg_debug_assert(vece
<= MO_64
);
2456 tcg_gen_gvec_2(dofs
, aofs
, oprsz
, maxsz
, &g
[vece
]);
2459 void tcg_gen_gvec_and(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2460 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2462 static const GVecGen3 g
= {
2463 .fni8
= tcg_gen_and_i64
,
2464 .fniv
= tcg_gen_and_vec
,
2465 .fno
= gen_helper_gvec_and
,
2466 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2470 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2472 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2476 void tcg_gen_gvec_or(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2477 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2479 static const GVecGen3 g
= {
2480 .fni8
= tcg_gen_or_i64
,
2481 .fniv
= tcg_gen_or_vec
,
2482 .fno
= gen_helper_gvec_or
,
2483 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2487 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2489 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2493 void tcg_gen_gvec_xor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2494 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2496 static const GVecGen3 g
= {
2497 .fni8
= tcg_gen_xor_i64
,
2498 .fniv
= tcg_gen_xor_vec
,
2499 .fno
= gen_helper_gvec_xor
,
2500 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2504 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2506 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2510 void tcg_gen_gvec_andc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2511 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2513 static const GVecGen3 g
= {
2514 .fni8
= tcg_gen_andc_i64
,
2515 .fniv
= tcg_gen_andc_vec
,
2516 .fno
= gen_helper_gvec_andc
,
2517 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2521 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, 0);
2523 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2527 void tcg_gen_gvec_orc(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2528 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2530 static const GVecGen3 g
= {
2531 .fni8
= tcg_gen_orc_i64
,
2532 .fniv
= tcg_gen_orc_vec
,
2533 .fno
= gen_helper_gvec_orc
,
2534 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2538 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2540 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2544 void tcg_gen_gvec_nand(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2545 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2547 static const GVecGen3 g
= {
2548 .fni8
= tcg_gen_nand_i64
,
2549 .fniv
= tcg_gen_nand_vec
,
2550 .fno
= gen_helper_gvec_nand
,
2551 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2555 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2557 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2561 void tcg_gen_gvec_nor(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2562 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2564 static const GVecGen3 g
= {
2565 .fni8
= tcg_gen_nor_i64
,
2566 .fniv
= tcg_gen_nor_vec
,
2567 .fno
= gen_helper_gvec_nor
,
2568 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2572 tcg_gen_gvec_not(vece
, dofs
, aofs
, oprsz
, maxsz
);
2574 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2578 void tcg_gen_gvec_eqv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2579 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
2581 static const GVecGen3 g
= {
2582 .fni8
= tcg_gen_eqv_i64
,
2583 .fniv
= tcg_gen_eqv_vec
,
2584 .fno
= gen_helper_gvec_eqv
,
2585 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2589 tcg_gen_gvec_dup_imm(MO_64
, dofs
, oprsz
, maxsz
, -1);
2591 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
);
2595 static const GVecGen2s gop_ands
= {
2596 .fni8
= tcg_gen_and_i64
,
2597 .fniv
= tcg_gen_and_vec
,
2598 .fno
= gen_helper_gvec_ands
,
2599 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2603 void tcg_gen_gvec_ands(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2604 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2606 TCGv_i64 tmp
= tcg_temp_new_i64();
2607 tcg_gen_dup_i64(vece
, tmp
, c
);
2608 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2609 tcg_temp_free_i64(tmp
);
2612 void tcg_gen_gvec_andi(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2613 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2615 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2616 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ands
);
2619 static const GVecGen2s gop_xors
= {
2620 .fni8
= tcg_gen_xor_i64
,
2621 .fniv
= tcg_gen_xor_vec
,
2622 .fno
= gen_helper_gvec_xors
,
2623 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2627 void tcg_gen_gvec_xors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2628 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2630 TCGv_i64 tmp
= tcg_temp_new_i64();
2631 tcg_gen_dup_i64(vece
, tmp
, c
);
2632 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2633 tcg_temp_free_i64(tmp
);
2636 void tcg_gen_gvec_xori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2637 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2639 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2640 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_xors
);
2643 static const GVecGen2s gop_ors
= {
2644 .fni8
= tcg_gen_or_i64
,
2645 .fniv
= tcg_gen_or_vec
,
2646 .fno
= gen_helper_gvec_ors
,
2647 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2651 void tcg_gen_gvec_ors(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2652 TCGv_i64 c
, uint32_t oprsz
, uint32_t maxsz
)
2654 TCGv_i64 tmp
= tcg_temp_new_i64();
2655 tcg_gen_dup_i64(vece
, tmp
, c
);
2656 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2657 tcg_temp_free_i64(tmp
);
2660 void tcg_gen_gvec_ori(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2661 int64_t c
, uint32_t oprsz
, uint32_t maxsz
)
2663 TCGv_i64 tmp
= tcg_constant_i64(dup_const(vece
, c
));
2664 tcg_gen_gvec_2s(dofs
, aofs
, oprsz
, maxsz
, tmp
, &gop_ors
);
2667 void tcg_gen_vec_shl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2669 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2670 tcg_gen_shli_i64(d
, a
, c
);
2671 tcg_gen_andi_i64(d
, d
, mask
);
2674 void tcg_gen_vec_shl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2676 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2677 tcg_gen_shli_i64(d
, a
, c
);
2678 tcg_gen_andi_i64(d
, d
, mask
);
2681 void tcg_gen_vec_shl8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2683 uint32_t mask
= dup_const(MO_8
, 0xff << c
);
2684 tcg_gen_shli_i32(d
, a
, c
);
2685 tcg_gen_andi_i32(d
, d
, mask
);
2688 void tcg_gen_vec_shl16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2690 uint32_t mask
= dup_const(MO_16
, 0xffff << c
);
2691 tcg_gen_shli_i32(d
, a
, c
);
2692 tcg_gen_andi_i32(d
, d
, mask
);
2695 void tcg_gen_gvec_shli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2696 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2698 static const TCGOpcode vecop_list
[] = { INDEX_op_shli_vec
, 0 };
2699 static const GVecGen2i g
[4] = {
2700 { .fni8
= tcg_gen_vec_shl8i_i64
,
2701 .fniv
= tcg_gen_shli_vec
,
2702 .fno
= gen_helper_gvec_shl8i
,
2703 .opt_opc
= vecop_list
,
2705 { .fni8
= tcg_gen_vec_shl16i_i64
,
2706 .fniv
= tcg_gen_shli_vec
,
2707 .fno
= gen_helper_gvec_shl16i
,
2708 .opt_opc
= vecop_list
,
2710 { .fni4
= tcg_gen_shli_i32
,
2711 .fniv
= tcg_gen_shli_vec
,
2712 .fno
= gen_helper_gvec_shl32i
,
2713 .opt_opc
= vecop_list
,
2715 { .fni8
= tcg_gen_shli_i64
,
2716 .fniv
= tcg_gen_shli_vec
,
2717 .fno
= gen_helper_gvec_shl64i
,
2718 .opt_opc
= vecop_list
,
2719 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2723 tcg_debug_assert(vece
<= MO_64
);
2724 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2726 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2728 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2732 void tcg_gen_vec_shr8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2734 uint64_t mask
= dup_const(MO_8
, 0xff >> c
);
2735 tcg_gen_shri_i64(d
, a
, c
);
2736 tcg_gen_andi_i64(d
, d
, mask
);
2739 void tcg_gen_vec_shr16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2741 uint64_t mask
= dup_const(MO_16
, 0xffff >> c
);
2742 tcg_gen_shri_i64(d
, a
, c
);
2743 tcg_gen_andi_i64(d
, d
, mask
);
2746 void tcg_gen_vec_shr8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2748 uint32_t mask
= dup_const(MO_8
, 0xff >> c
);
2749 tcg_gen_shri_i32(d
, a
, c
);
2750 tcg_gen_andi_i32(d
, d
, mask
);
2753 void tcg_gen_vec_shr16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2755 uint32_t mask
= dup_const(MO_16
, 0xffff >> c
);
2756 tcg_gen_shri_i32(d
, a
, c
);
2757 tcg_gen_andi_i32(d
, d
, mask
);
2760 void tcg_gen_gvec_shri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2761 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2763 static const TCGOpcode vecop_list
[] = { INDEX_op_shri_vec
, 0 };
2764 static const GVecGen2i g
[4] = {
2765 { .fni8
= tcg_gen_vec_shr8i_i64
,
2766 .fniv
= tcg_gen_shri_vec
,
2767 .fno
= gen_helper_gvec_shr8i
,
2768 .opt_opc
= vecop_list
,
2770 { .fni8
= tcg_gen_vec_shr16i_i64
,
2771 .fniv
= tcg_gen_shri_vec
,
2772 .fno
= gen_helper_gvec_shr16i
,
2773 .opt_opc
= vecop_list
,
2775 { .fni4
= tcg_gen_shri_i32
,
2776 .fniv
= tcg_gen_shri_vec
,
2777 .fno
= gen_helper_gvec_shr32i
,
2778 .opt_opc
= vecop_list
,
2780 { .fni8
= tcg_gen_shri_i64
,
2781 .fniv
= tcg_gen_shri_vec
,
2782 .fno
= gen_helper_gvec_shr64i
,
2783 .opt_opc
= vecop_list
,
2784 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2788 tcg_debug_assert(vece
<= MO_64
);
2789 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2791 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2793 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2797 void tcg_gen_vec_sar8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2799 uint64_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2800 uint64_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2801 TCGv_i64 s
= tcg_temp_new_i64();
2803 tcg_gen_shri_i64(d
, a
, c
);
2804 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2805 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2806 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2807 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2808 tcg_temp_free_i64(s
);
2811 void tcg_gen_vec_sar16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2813 uint64_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2814 uint64_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2815 TCGv_i64 s
= tcg_temp_new_i64();
2817 tcg_gen_shri_i64(d
, a
, c
);
2818 tcg_gen_andi_i64(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2819 tcg_gen_andi_i64(d
, d
, c_mask
); /* clear out bits above sign */
2820 tcg_gen_muli_i64(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2821 tcg_gen_or_i64(d
, d
, s
); /* include sign extension */
2822 tcg_temp_free_i64(s
);
2825 void tcg_gen_vec_sar8i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2827 uint32_t s_mask
= dup_const(MO_8
, 0x80 >> c
);
2828 uint32_t c_mask
= dup_const(MO_8
, 0xff >> c
);
2829 TCGv_i32 s
= tcg_temp_new_i32();
2831 tcg_gen_shri_i32(d
, a
, c
);
2832 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2833 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2834 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
2835 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
2836 tcg_temp_free_i32(s
);
2839 void tcg_gen_vec_sar16i_i32(TCGv_i32 d
, TCGv_i32 a
, int32_t c
)
2841 uint32_t s_mask
= dup_const(MO_16
, 0x8000 >> c
);
2842 uint32_t c_mask
= dup_const(MO_16
, 0xffff >> c
);
2843 TCGv_i32 s
= tcg_temp_new_i32();
2845 tcg_gen_shri_i32(d
, a
, c
);
2846 tcg_gen_andi_i32(s
, d
, s_mask
); /* isolate (shifted) sign bit */
2847 tcg_gen_andi_i32(d
, d
, c_mask
); /* clear out bits above sign */
2848 tcg_gen_muli_i32(s
, s
, (2 << c
) - 2); /* replicate isolated signs */
2849 tcg_gen_or_i32(d
, d
, s
); /* include sign extension */
2850 tcg_temp_free_i32(s
);
2853 void tcg_gen_gvec_sari(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2854 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2856 static const TCGOpcode vecop_list
[] = { INDEX_op_sari_vec
, 0 };
2857 static const GVecGen2i g
[4] = {
2858 { .fni8
= tcg_gen_vec_sar8i_i64
,
2859 .fniv
= tcg_gen_sari_vec
,
2860 .fno
= gen_helper_gvec_sar8i
,
2861 .opt_opc
= vecop_list
,
2863 { .fni8
= tcg_gen_vec_sar16i_i64
,
2864 .fniv
= tcg_gen_sari_vec
,
2865 .fno
= gen_helper_gvec_sar16i
,
2866 .opt_opc
= vecop_list
,
2868 { .fni4
= tcg_gen_sari_i32
,
2869 .fniv
= tcg_gen_sari_vec
,
2870 .fno
= gen_helper_gvec_sar32i
,
2871 .opt_opc
= vecop_list
,
2873 { .fni8
= tcg_gen_sari_i64
,
2874 .fniv
= tcg_gen_sari_vec
,
2875 .fno
= gen_helper_gvec_sar64i
,
2876 .opt_opc
= vecop_list
,
2877 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2881 tcg_debug_assert(vece
<= MO_64
);
2882 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2884 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2886 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2890 void tcg_gen_vec_rotl8i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2892 uint64_t mask
= dup_const(MO_8
, 0xff << c
);
2894 tcg_gen_shli_i64(d
, a
, c
);
2895 tcg_gen_shri_i64(a
, a
, 8 - c
);
2896 tcg_gen_andi_i64(d
, d
, mask
);
2897 tcg_gen_andi_i64(a
, a
, ~mask
);
2898 tcg_gen_or_i64(d
, d
, a
);
2901 void tcg_gen_vec_rotl16i_i64(TCGv_i64 d
, TCGv_i64 a
, int64_t c
)
2903 uint64_t mask
= dup_const(MO_16
, 0xffff << c
);
2905 tcg_gen_shli_i64(d
, a
, c
);
2906 tcg_gen_shri_i64(a
, a
, 16 - c
);
2907 tcg_gen_andi_i64(d
, d
, mask
);
2908 tcg_gen_andi_i64(a
, a
, ~mask
);
2909 tcg_gen_or_i64(d
, d
, a
);
2912 void tcg_gen_gvec_rotli(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2913 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2915 static const TCGOpcode vecop_list
[] = { INDEX_op_rotli_vec
, 0 };
2916 static const GVecGen2i g
[4] = {
2917 { .fni8
= tcg_gen_vec_rotl8i_i64
,
2918 .fniv
= tcg_gen_rotli_vec
,
2919 .fno
= gen_helper_gvec_rotl8i
,
2920 .opt_opc
= vecop_list
,
2922 { .fni8
= tcg_gen_vec_rotl16i_i64
,
2923 .fniv
= tcg_gen_rotli_vec
,
2924 .fno
= gen_helper_gvec_rotl16i
,
2925 .opt_opc
= vecop_list
,
2927 { .fni4
= tcg_gen_rotli_i32
,
2928 .fniv
= tcg_gen_rotli_vec
,
2929 .fno
= gen_helper_gvec_rotl32i
,
2930 .opt_opc
= vecop_list
,
2932 { .fni8
= tcg_gen_rotli_i64
,
2933 .fniv
= tcg_gen_rotli_vec
,
2934 .fno
= gen_helper_gvec_rotl64i
,
2935 .opt_opc
= vecop_list
,
2936 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
2940 tcg_debug_assert(vece
<= MO_64
);
2941 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2943 tcg_gen_gvec_mov(vece
, dofs
, aofs
, oprsz
, maxsz
);
2945 tcg_gen_gvec_2i(dofs
, aofs
, oprsz
, maxsz
, shift
, &g
[vece
]);
2949 void tcg_gen_gvec_rotri(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2950 int64_t shift
, uint32_t oprsz
, uint32_t maxsz
)
2952 tcg_debug_assert(vece
<= MO_64
);
2953 tcg_debug_assert(shift
>= 0 && shift
< (8 << vece
));
2954 tcg_gen_gvec_rotli(vece
, dofs
, aofs
, -shift
& ((8 << vece
) - 1),
2959 * Specialized generation vector shifts by a non-constant scalar.
2963 void (*fni4
)(TCGv_i32
, TCGv_i32
, TCGv_i32
);
2964 void (*fni8
)(TCGv_i64
, TCGv_i64
, TCGv_i64
);
2965 void (*fniv_s
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
);
2966 void (*fniv_v
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_vec
);
2967 gen_helper_gvec_2
*fno
[4];
2968 TCGOpcode s_list
[2];
2969 TCGOpcode v_list
[2];
2972 static void expand_2sh_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
2973 uint32_t oprsz
, uint32_t tysz
, TCGType type
,
2975 void (*fni
)(unsigned, TCGv_vec
, TCGv_vec
, TCGv_i32
))
2977 TCGv_vec t0
= tcg_temp_new_vec(type
);
2980 for (i
= 0; i
< oprsz
; i
+= tysz
) {
2981 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
2982 fni(vece
, t0
, t0
, shift
);
2983 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
2985 tcg_temp_free_vec(t0
);
2989 do_gvec_shifts(unsigned vece
, uint32_t dofs
, uint32_t aofs
, TCGv_i32 shift
,
2990 uint32_t oprsz
, uint32_t maxsz
, const GVecGen2sh
*g
)
2995 check_size_align(oprsz
, maxsz
, dofs
| aofs
);
2996 check_overlap_2(dofs
, aofs
, maxsz
);
2998 /* If the backend has a scalar expansion, great. */
2999 type
= choose_vector_type(g
->s_list
, vece
, oprsz
, vece
== MO_64
);
3001 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3004 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3005 expand_2sh_vec(vece
, dofs
, aofs
, some
, 32,
3006 TCG_TYPE_V256
, shift
, g
->fniv_s
);
3007 if (some
== oprsz
) {
3016 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 16,
3017 TCG_TYPE_V128
, shift
, g
->fniv_s
);
3020 expand_2sh_vec(vece
, dofs
, aofs
, oprsz
, 8,
3021 TCG_TYPE_V64
, shift
, g
->fniv_s
);
3024 g_assert_not_reached();
3026 tcg_swap_vecop_list(hold_list
);
3030 /* If the backend supports variable vector shifts, also cool. */
3031 type
= choose_vector_type(g
->v_list
, vece
, oprsz
, vece
== MO_64
);
3033 const TCGOpcode
*hold_list
= tcg_swap_vecop_list(NULL
);
3034 TCGv_vec v_shift
= tcg_temp_new_vec(type
);
3036 if (vece
== MO_64
) {
3037 TCGv_i64 sh64
= tcg_temp_new_i64();
3038 tcg_gen_extu_i32_i64(sh64
, shift
);
3039 tcg_gen_dup_i64_vec(MO_64
, v_shift
, sh64
);
3040 tcg_temp_free_i64(sh64
);
3042 tcg_gen_dup_i32_vec(vece
, v_shift
, shift
);
3047 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3048 expand_2s_vec(vece
, dofs
, aofs
, some
, 32, TCG_TYPE_V256
,
3049 v_shift
, false, g
->fniv_v
);
3050 if (some
== oprsz
) {
3059 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 16, TCG_TYPE_V128
,
3060 v_shift
, false, g
->fniv_v
);
3063 expand_2s_vec(vece
, dofs
, aofs
, oprsz
, 8, TCG_TYPE_V64
,
3064 v_shift
, false, g
->fniv_v
);
3067 g_assert_not_reached();
3069 tcg_temp_free_vec(v_shift
);
3070 tcg_swap_vecop_list(hold_list
);
3074 /* Otherwise fall back to integral... */
3075 if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3076 expand_2s_i32(dofs
, aofs
, oprsz
, shift
, false, g
->fni4
);
3077 } else if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3078 TCGv_i64 sh64
= tcg_temp_new_i64();
3079 tcg_gen_extu_i32_i64(sh64
, shift
);
3080 expand_2s_i64(dofs
, aofs
, oprsz
, sh64
, false, g
->fni8
);
3081 tcg_temp_free_i64(sh64
);
3083 TCGv_ptr a0
= tcg_temp_new_ptr();
3084 TCGv_ptr a1
= tcg_temp_new_ptr();
3085 TCGv_i32 desc
= tcg_temp_new_i32();
3087 tcg_gen_shli_i32(desc
, shift
, SIMD_DATA_SHIFT
);
3088 tcg_gen_ori_i32(desc
, desc
, simd_desc(oprsz
, maxsz
, 0));
3089 tcg_gen_addi_ptr(a0
, cpu_env
, dofs
);
3090 tcg_gen_addi_ptr(a1
, cpu_env
, aofs
);
3092 g
->fno
[vece
](a0
, a1
, desc
);
3094 tcg_temp_free_ptr(a0
);
3095 tcg_temp_free_ptr(a1
);
3096 tcg_temp_free_i32(desc
);
3101 if (oprsz
< maxsz
) {
3102 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3106 void tcg_gen_gvec_shls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3107 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3109 static const GVecGen2sh g
= {
3110 .fni4
= tcg_gen_shl_i32
,
3111 .fni8
= tcg_gen_shl_i64
,
3112 .fniv_s
= tcg_gen_shls_vec
,
3113 .fniv_v
= tcg_gen_shlv_vec
,
3115 gen_helper_gvec_shl8i
,
3116 gen_helper_gvec_shl16i
,
3117 gen_helper_gvec_shl32i
,
3118 gen_helper_gvec_shl64i
,
3120 .s_list
= { INDEX_op_shls_vec
, 0 },
3121 .v_list
= { INDEX_op_shlv_vec
, 0 },
3124 tcg_debug_assert(vece
<= MO_64
);
3125 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3128 void tcg_gen_gvec_shrs(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3129 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3131 static const GVecGen2sh g
= {
3132 .fni4
= tcg_gen_shr_i32
,
3133 .fni8
= tcg_gen_shr_i64
,
3134 .fniv_s
= tcg_gen_shrs_vec
,
3135 .fniv_v
= tcg_gen_shrv_vec
,
3137 gen_helper_gvec_shr8i
,
3138 gen_helper_gvec_shr16i
,
3139 gen_helper_gvec_shr32i
,
3140 gen_helper_gvec_shr64i
,
3142 .s_list
= { INDEX_op_shrs_vec
, 0 },
3143 .v_list
= { INDEX_op_shrv_vec
, 0 },
3146 tcg_debug_assert(vece
<= MO_64
);
3147 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3150 void tcg_gen_gvec_sars(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3151 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3153 static const GVecGen2sh g
= {
3154 .fni4
= tcg_gen_sar_i32
,
3155 .fni8
= tcg_gen_sar_i64
,
3156 .fniv_s
= tcg_gen_sars_vec
,
3157 .fniv_v
= tcg_gen_sarv_vec
,
3159 gen_helper_gvec_sar8i
,
3160 gen_helper_gvec_sar16i
,
3161 gen_helper_gvec_sar32i
,
3162 gen_helper_gvec_sar64i
,
3164 .s_list
= { INDEX_op_sars_vec
, 0 },
3165 .v_list
= { INDEX_op_sarv_vec
, 0 },
3168 tcg_debug_assert(vece
<= MO_64
);
3169 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3172 void tcg_gen_gvec_rotls(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3173 TCGv_i32 shift
, uint32_t oprsz
, uint32_t maxsz
)
3175 static const GVecGen2sh g
= {
3176 .fni4
= tcg_gen_rotl_i32
,
3177 .fni8
= tcg_gen_rotl_i64
,
3178 .fniv_s
= tcg_gen_rotls_vec
,
3179 .fniv_v
= tcg_gen_rotlv_vec
,
3181 gen_helper_gvec_rotl8i
,
3182 gen_helper_gvec_rotl16i
,
3183 gen_helper_gvec_rotl32i
,
3184 gen_helper_gvec_rotl64i
,
3186 .s_list
= { INDEX_op_rotls_vec
, 0 },
3187 .v_list
= { INDEX_op_rotlv_vec
, 0 },
3190 tcg_debug_assert(vece
<= MO_64
);
3191 do_gvec_shifts(vece
, dofs
, aofs
, shift
, oprsz
, maxsz
, &g
);
3195 * Expand D = A << (B % element bits)
3197 * Unlike scalar shifts, where it is easy for the target front end
3198 * to include the modulo as part of the expansion. If the target
3199 * naturally includes the modulo as part of the operation, great!
3200 * If the target has some other behaviour from out-of-range shifts,
3201 * then it could not use this function anyway, and would need to
3202 * do it's own expansion with custom functions.
3204 static void tcg_gen_shlv_mod_vec(unsigned vece
, TCGv_vec d
,
3205 TCGv_vec a
, TCGv_vec b
)
3207 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3208 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3210 tcg_gen_and_vec(vece
, t
, b
, m
);
3211 tcg_gen_shlv_vec(vece
, d
, a
, t
);
3212 tcg_temp_free_vec(t
);
3215 static void tcg_gen_shl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3217 TCGv_i32 t
= tcg_temp_new_i32();
3219 tcg_gen_andi_i32(t
, b
, 31);
3220 tcg_gen_shl_i32(d
, a
, t
);
3221 tcg_temp_free_i32(t
);
3224 static void tcg_gen_shl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3226 TCGv_i64 t
= tcg_temp_new_i64();
3228 tcg_gen_andi_i64(t
, b
, 63);
3229 tcg_gen_shl_i64(d
, a
, t
);
3230 tcg_temp_free_i64(t
);
3233 void tcg_gen_gvec_shlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3234 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3236 static const TCGOpcode vecop_list
[] = { INDEX_op_shlv_vec
, 0 };
3237 static const GVecGen3 g
[4] = {
3238 { .fniv
= tcg_gen_shlv_mod_vec
,
3239 .fno
= gen_helper_gvec_shl8v
,
3240 .opt_opc
= vecop_list
,
3242 { .fniv
= tcg_gen_shlv_mod_vec
,
3243 .fno
= gen_helper_gvec_shl16v
,
3244 .opt_opc
= vecop_list
,
3246 { .fni4
= tcg_gen_shl_mod_i32
,
3247 .fniv
= tcg_gen_shlv_mod_vec
,
3248 .fno
= gen_helper_gvec_shl32v
,
3249 .opt_opc
= vecop_list
,
3251 { .fni8
= tcg_gen_shl_mod_i64
,
3252 .fniv
= tcg_gen_shlv_mod_vec
,
3253 .fno
= gen_helper_gvec_shl64v
,
3254 .opt_opc
= vecop_list
,
3255 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3259 tcg_debug_assert(vece
<= MO_64
);
3260 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3264 * Similarly for logical right shifts.
3267 static void tcg_gen_shrv_mod_vec(unsigned vece
, TCGv_vec d
,
3268 TCGv_vec a
, TCGv_vec b
)
3270 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3271 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3273 tcg_gen_and_vec(vece
, t
, b
, m
);
3274 tcg_gen_shrv_vec(vece
, d
, a
, t
);
3275 tcg_temp_free_vec(t
);
3278 static void tcg_gen_shr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3280 TCGv_i32 t
= tcg_temp_new_i32();
3282 tcg_gen_andi_i32(t
, b
, 31);
3283 tcg_gen_shr_i32(d
, a
, t
);
3284 tcg_temp_free_i32(t
);
3287 static void tcg_gen_shr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3289 TCGv_i64 t
= tcg_temp_new_i64();
3291 tcg_gen_andi_i64(t
, b
, 63);
3292 tcg_gen_shr_i64(d
, a
, t
);
3293 tcg_temp_free_i64(t
);
3296 void tcg_gen_gvec_shrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3297 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3299 static const TCGOpcode vecop_list
[] = { INDEX_op_shrv_vec
, 0 };
3300 static const GVecGen3 g
[4] = {
3301 { .fniv
= tcg_gen_shrv_mod_vec
,
3302 .fno
= gen_helper_gvec_shr8v
,
3303 .opt_opc
= vecop_list
,
3305 { .fniv
= tcg_gen_shrv_mod_vec
,
3306 .fno
= gen_helper_gvec_shr16v
,
3307 .opt_opc
= vecop_list
,
3309 { .fni4
= tcg_gen_shr_mod_i32
,
3310 .fniv
= tcg_gen_shrv_mod_vec
,
3311 .fno
= gen_helper_gvec_shr32v
,
3312 .opt_opc
= vecop_list
,
3314 { .fni8
= tcg_gen_shr_mod_i64
,
3315 .fniv
= tcg_gen_shrv_mod_vec
,
3316 .fno
= gen_helper_gvec_shr64v
,
3317 .opt_opc
= vecop_list
,
3318 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3322 tcg_debug_assert(vece
<= MO_64
);
3323 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3327 * Similarly for arithmetic right shifts.
3330 static void tcg_gen_sarv_mod_vec(unsigned vece
, TCGv_vec d
,
3331 TCGv_vec a
, TCGv_vec b
)
3333 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3334 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3336 tcg_gen_and_vec(vece
, t
, b
, m
);
3337 tcg_gen_sarv_vec(vece
, d
, a
, t
);
3338 tcg_temp_free_vec(t
);
3341 static void tcg_gen_sar_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3343 TCGv_i32 t
= tcg_temp_new_i32();
3345 tcg_gen_andi_i32(t
, b
, 31);
3346 tcg_gen_sar_i32(d
, a
, t
);
3347 tcg_temp_free_i32(t
);
3350 static void tcg_gen_sar_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3352 TCGv_i64 t
= tcg_temp_new_i64();
3354 tcg_gen_andi_i64(t
, b
, 63);
3355 tcg_gen_sar_i64(d
, a
, t
);
3356 tcg_temp_free_i64(t
);
3359 void tcg_gen_gvec_sarv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3360 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3362 static const TCGOpcode vecop_list
[] = { INDEX_op_sarv_vec
, 0 };
3363 static const GVecGen3 g
[4] = {
3364 { .fniv
= tcg_gen_sarv_mod_vec
,
3365 .fno
= gen_helper_gvec_sar8v
,
3366 .opt_opc
= vecop_list
,
3368 { .fniv
= tcg_gen_sarv_mod_vec
,
3369 .fno
= gen_helper_gvec_sar16v
,
3370 .opt_opc
= vecop_list
,
3372 { .fni4
= tcg_gen_sar_mod_i32
,
3373 .fniv
= tcg_gen_sarv_mod_vec
,
3374 .fno
= gen_helper_gvec_sar32v
,
3375 .opt_opc
= vecop_list
,
3377 { .fni8
= tcg_gen_sar_mod_i64
,
3378 .fniv
= tcg_gen_sarv_mod_vec
,
3379 .fno
= gen_helper_gvec_sar64v
,
3380 .opt_opc
= vecop_list
,
3381 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3385 tcg_debug_assert(vece
<= MO_64
);
3386 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3390 * Similarly for rotates.
3393 static void tcg_gen_rotlv_mod_vec(unsigned vece
, TCGv_vec d
,
3394 TCGv_vec a
, TCGv_vec b
)
3396 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3397 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3399 tcg_gen_and_vec(vece
, t
, b
, m
);
3400 tcg_gen_rotlv_vec(vece
, d
, a
, t
);
3401 tcg_temp_free_vec(t
);
3404 static void tcg_gen_rotl_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3406 TCGv_i32 t
= tcg_temp_new_i32();
3408 tcg_gen_andi_i32(t
, b
, 31);
3409 tcg_gen_rotl_i32(d
, a
, t
);
3410 tcg_temp_free_i32(t
);
3413 static void tcg_gen_rotl_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3415 TCGv_i64 t
= tcg_temp_new_i64();
3417 tcg_gen_andi_i64(t
, b
, 63);
3418 tcg_gen_rotl_i64(d
, a
, t
);
3419 tcg_temp_free_i64(t
);
3422 void tcg_gen_gvec_rotlv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3423 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3425 static const TCGOpcode vecop_list
[] = { INDEX_op_rotlv_vec
, 0 };
3426 static const GVecGen3 g
[4] = {
3427 { .fniv
= tcg_gen_rotlv_mod_vec
,
3428 .fno
= gen_helper_gvec_rotl8v
,
3429 .opt_opc
= vecop_list
,
3431 { .fniv
= tcg_gen_rotlv_mod_vec
,
3432 .fno
= gen_helper_gvec_rotl16v
,
3433 .opt_opc
= vecop_list
,
3435 { .fni4
= tcg_gen_rotl_mod_i32
,
3436 .fniv
= tcg_gen_rotlv_mod_vec
,
3437 .fno
= gen_helper_gvec_rotl32v
,
3438 .opt_opc
= vecop_list
,
3440 { .fni8
= tcg_gen_rotl_mod_i64
,
3441 .fniv
= tcg_gen_rotlv_mod_vec
,
3442 .fno
= gen_helper_gvec_rotl64v
,
3443 .opt_opc
= vecop_list
,
3444 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3448 tcg_debug_assert(vece
<= MO_64
);
3449 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3452 static void tcg_gen_rotrv_mod_vec(unsigned vece
, TCGv_vec d
,
3453 TCGv_vec a
, TCGv_vec b
)
3455 TCGv_vec t
= tcg_temp_new_vec_matching(d
);
3456 TCGv_vec m
= tcg_constant_vec_matching(d
, vece
, (8 << vece
) - 1);
3458 tcg_gen_and_vec(vece
, t
, b
, m
);
3459 tcg_gen_rotrv_vec(vece
, d
, a
, t
);
3460 tcg_temp_free_vec(t
);
3463 static void tcg_gen_rotr_mod_i32(TCGv_i32 d
, TCGv_i32 a
, TCGv_i32 b
)
3465 TCGv_i32 t
= tcg_temp_new_i32();
3467 tcg_gen_andi_i32(t
, b
, 31);
3468 tcg_gen_rotr_i32(d
, a
, t
);
3469 tcg_temp_free_i32(t
);
3472 static void tcg_gen_rotr_mod_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
)
3474 TCGv_i64 t
= tcg_temp_new_i64();
3476 tcg_gen_andi_i64(t
, b
, 63);
3477 tcg_gen_rotr_i64(d
, a
, t
);
3478 tcg_temp_free_i64(t
);
3481 void tcg_gen_gvec_rotrv(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3482 uint32_t bofs
, uint32_t oprsz
, uint32_t maxsz
)
3484 static const TCGOpcode vecop_list
[] = { INDEX_op_rotrv_vec
, 0 };
3485 static const GVecGen3 g
[4] = {
3486 { .fniv
= tcg_gen_rotrv_mod_vec
,
3487 .fno
= gen_helper_gvec_rotr8v
,
3488 .opt_opc
= vecop_list
,
3490 { .fniv
= tcg_gen_rotrv_mod_vec
,
3491 .fno
= gen_helper_gvec_rotr16v
,
3492 .opt_opc
= vecop_list
,
3494 { .fni4
= tcg_gen_rotr_mod_i32
,
3495 .fniv
= tcg_gen_rotrv_mod_vec
,
3496 .fno
= gen_helper_gvec_rotr32v
,
3497 .opt_opc
= vecop_list
,
3499 { .fni8
= tcg_gen_rotr_mod_i64
,
3500 .fniv
= tcg_gen_rotrv_mod_vec
,
3501 .fno
= gen_helper_gvec_rotr64v
,
3502 .opt_opc
= vecop_list
,
3503 .prefer_i64
= TCG_TARGET_REG_BITS
== 64,
3507 tcg_debug_assert(vece
<= MO_64
);
3508 tcg_gen_gvec_3(dofs
, aofs
, bofs
, oprsz
, maxsz
, &g
[vece
]);
3511 /* Expand OPSZ bytes worth of three-operand operations using i32 elements. */
3512 static void expand_cmp_i32(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3513 uint32_t oprsz
, TCGCond cond
)
3515 TCGv_i32 t0
= tcg_temp_new_i32();
3516 TCGv_i32 t1
= tcg_temp_new_i32();
3519 for (i
= 0; i
< oprsz
; i
+= 4) {
3520 tcg_gen_ld_i32(t0
, cpu_env
, aofs
+ i
);
3521 tcg_gen_ld_i32(t1
, cpu_env
, bofs
+ i
);
3522 tcg_gen_setcond_i32(cond
, t0
, t0
, t1
);
3523 tcg_gen_neg_i32(t0
, t0
);
3524 tcg_gen_st_i32(t0
, cpu_env
, dofs
+ i
);
3526 tcg_temp_free_i32(t1
);
3527 tcg_temp_free_i32(t0
);
3530 static void expand_cmp_i64(uint32_t dofs
, uint32_t aofs
, uint32_t bofs
,
3531 uint32_t oprsz
, TCGCond cond
)
3533 TCGv_i64 t0
= tcg_temp_new_i64();
3534 TCGv_i64 t1
= tcg_temp_new_i64();
3537 for (i
= 0; i
< oprsz
; i
+= 8) {
3538 tcg_gen_ld_i64(t0
, cpu_env
, aofs
+ i
);
3539 tcg_gen_ld_i64(t1
, cpu_env
, bofs
+ i
);
3540 tcg_gen_setcond_i64(cond
, t0
, t0
, t1
);
3541 tcg_gen_neg_i64(t0
, t0
);
3542 tcg_gen_st_i64(t0
, cpu_env
, dofs
+ i
);
3544 tcg_temp_free_i64(t1
);
3545 tcg_temp_free_i64(t0
);
3548 static void expand_cmp_vec(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3549 uint32_t bofs
, uint32_t oprsz
, uint32_t tysz
,
3550 TCGType type
, TCGCond cond
)
3552 TCGv_vec t0
= tcg_temp_new_vec(type
);
3553 TCGv_vec t1
= tcg_temp_new_vec(type
);
3556 for (i
= 0; i
< oprsz
; i
+= tysz
) {
3557 tcg_gen_ld_vec(t0
, cpu_env
, aofs
+ i
);
3558 tcg_gen_ld_vec(t1
, cpu_env
, bofs
+ i
);
3559 tcg_gen_cmp_vec(cond
, vece
, t0
, t0
, t1
);
3560 tcg_gen_st_vec(t0
, cpu_env
, dofs
+ i
);
3562 tcg_temp_free_vec(t1
);
3563 tcg_temp_free_vec(t0
);
3566 void tcg_gen_gvec_cmp(TCGCond cond
, unsigned vece
, uint32_t dofs
,
3567 uint32_t aofs
, uint32_t bofs
,
3568 uint32_t oprsz
, uint32_t maxsz
)
3570 static const TCGOpcode cmp_list
[] = { INDEX_op_cmp_vec
, 0 };
3571 static gen_helper_gvec_3
* const eq_fn
[4] = {
3572 gen_helper_gvec_eq8
, gen_helper_gvec_eq16
,
3573 gen_helper_gvec_eq32
, gen_helper_gvec_eq64
3575 static gen_helper_gvec_3
* const ne_fn
[4] = {
3576 gen_helper_gvec_ne8
, gen_helper_gvec_ne16
,
3577 gen_helper_gvec_ne32
, gen_helper_gvec_ne64
3579 static gen_helper_gvec_3
* const lt_fn
[4] = {
3580 gen_helper_gvec_lt8
, gen_helper_gvec_lt16
,
3581 gen_helper_gvec_lt32
, gen_helper_gvec_lt64
3583 static gen_helper_gvec_3
* const le_fn
[4] = {
3584 gen_helper_gvec_le8
, gen_helper_gvec_le16
,
3585 gen_helper_gvec_le32
, gen_helper_gvec_le64
3587 static gen_helper_gvec_3
* const ltu_fn
[4] = {
3588 gen_helper_gvec_ltu8
, gen_helper_gvec_ltu16
,
3589 gen_helper_gvec_ltu32
, gen_helper_gvec_ltu64
3591 static gen_helper_gvec_3
* const leu_fn
[4] = {
3592 gen_helper_gvec_leu8
, gen_helper_gvec_leu16
,
3593 gen_helper_gvec_leu32
, gen_helper_gvec_leu64
3595 static gen_helper_gvec_3
* const * const fns
[16] = {
3596 [TCG_COND_EQ
] = eq_fn
,
3597 [TCG_COND_NE
] = ne_fn
,
3598 [TCG_COND_LT
] = lt_fn
,
3599 [TCG_COND_LE
] = le_fn
,
3600 [TCG_COND_LTU
] = ltu_fn
,
3601 [TCG_COND_LEU
] = leu_fn
,
3604 const TCGOpcode
*hold_list
;
3608 check_size_align(oprsz
, maxsz
, dofs
| aofs
| bofs
);
3609 check_overlap_3(dofs
, aofs
, bofs
, maxsz
);
3611 if (cond
== TCG_COND_NEVER
|| cond
== TCG_COND_ALWAYS
) {
3612 do_dup(MO_8
, dofs
, oprsz
, maxsz
,
3613 NULL
, NULL
, -(cond
== TCG_COND_ALWAYS
));
3618 * Implement inline with a vector type, if possible.
3619 * Prefer integer when 64-bit host and 64-bit comparison.
3621 hold_list
= tcg_swap_vecop_list(cmp_list
);
3622 type
= choose_vector_type(cmp_list
, vece
, oprsz
,
3623 TCG_TARGET_REG_BITS
== 64 && vece
== MO_64
);
3626 /* Recall that ARM SVE allows vector sizes that are not a
3627 * power of 2, but always a multiple of 16. The intent is
3628 * that e.g. size == 80 would be expanded with 2x32 + 1x16.
3630 some
= QEMU_ALIGN_DOWN(oprsz
, 32);
3631 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, some
, 32, TCG_TYPE_V256
, cond
);
3632 if (some
== oprsz
) {
3642 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 16, TCG_TYPE_V128
, cond
);
3645 expand_cmp_vec(vece
, dofs
, aofs
, bofs
, oprsz
, 8, TCG_TYPE_V64
, cond
);
3649 if (vece
== MO_64
&& check_size_impl(oprsz
, 8)) {
3650 expand_cmp_i64(dofs
, aofs
, bofs
, oprsz
, cond
);
3651 } else if (vece
== MO_32
&& check_size_impl(oprsz
, 4)) {
3652 expand_cmp_i32(dofs
, aofs
, bofs
, oprsz
, cond
);
3654 gen_helper_gvec_3
* const *fn
= fns
[cond
];
3658 tmp
= aofs
, aofs
= bofs
, bofs
= tmp
;
3659 cond
= tcg_swap_cond(cond
);
3663 tcg_gen_gvec_3_ool(dofs
, aofs
, bofs
, oprsz
, maxsz
, 0, fn
[vece
]);
3669 g_assert_not_reached();
3671 tcg_swap_vecop_list(hold_list
);
3673 if (oprsz
< maxsz
) {
3674 expand_clr(dofs
+ oprsz
, maxsz
- oprsz
);
3678 static void tcg_gen_bitsel_i64(TCGv_i64 d
, TCGv_i64 a
, TCGv_i64 b
, TCGv_i64 c
)
3680 TCGv_i64 t
= tcg_temp_new_i64();
3682 tcg_gen_and_i64(t
, b
, a
);
3683 tcg_gen_andc_i64(d
, c
, a
);
3684 tcg_gen_or_i64(d
, d
, t
);
3685 tcg_temp_free_i64(t
);
3688 void tcg_gen_gvec_bitsel(unsigned vece
, uint32_t dofs
, uint32_t aofs
,
3689 uint32_t bofs
, uint32_t cofs
,
3690 uint32_t oprsz
, uint32_t maxsz
)
3692 static const GVecGen4 g
= {
3693 .fni8
= tcg_gen_bitsel_i64
,
3694 .fniv
= tcg_gen_bitsel_vec
,
3695 .fno
= gen_helper_gvec_bitsel
,
3698 tcg_gen_gvec_4(dofs
, aofs
, bofs
, cofs
, oprsz
, maxsz
, &g
);