ppc/pnv: Distribute RAM among the chips
[qemu.git] / hw / intc / arm_gicv3.c
blobd63f8af604d69187ca8c4ead91dca04f209641cb
1 /*
2 * ARM Generic Interrupt Controller v3
4 * Copyright (c) 2015 Huawei.
5 * Copyright (c) 2016 Linaro Limited
6 * Written by Shlomo Pongratz, Peter Maydell
8 * This code is licensed under the GPL, version 2 or (at your option)
9 * any later version.
12 /* This file contains implementation code for an interrupt controller
13 * which implements the GICv3 architecture. Specifically this is where
14 * the device class itself and the functions for handling interrupts
15 * coming in and going out live.
18 #include "qemu/osdep.h"
19 #include "qapi/error.h"
20 #include "qemu/module.h"
21 #include "hw/intc/arm_gicv3.h"
22 #include "gicv3_internal.h"
24 static bool irqbetter(GICv3CPUState *cs, int irq, uint8_t prio)
26 /* Return true if this IRQ at this priority should take
27 * precedence over the current recorded highest priority
28 * pending interrupt for this CPU. We also return true if
29 * the current recorded highest priority pending interrupt
30 * is the same as this one (a property which the calling code
31 * relies on).
33 if (prio < cs->hppi.prio) {
34 return true;
36 /* If multiple pending interrupts have the same priority then it is an
37 * IMPDEF choice which of them to signal to the CPU. We choose to
38 * signal the one with the lowest interrupt number.
40 if (prio == cs->hppi.prio && irq <= cs->hppi.irq) {
41 return true;
43 return false;
46 static uint32_t gicd_int_pending(GICv3State *s, int irq)
48 /* Recalculate which distributor interrupts are actually pending
49 * in the group of 32 interrupts starting at irq (which should be a multiple
50 * of 32), and return a 32-bit integer which has a bit set for each
51 * interrupt that is eligible to be signaled to the CPU interface.
53 * An interrupt is pending if:
54 * + the PENDING latch is set OR it is level triggered and the input is 1
55 * + its ENABLE bit is set
56 * + the GICD enable bit for its group is set
57 * + its ACTIVE bit is not set (otherwise it would be Active+Pending)
58 * Conveniently we can bulk-calculate this with bitwise operations.
60 uint32_t pend, grpmask;
61 uint32_t pending = *gic_bmp_ptr32(s->pending, irq);
62 uint32_t edge_trigger = *gic_bmp_ptr32(s->edge_trigger, irq);
63 uint32_t level = *gic_bmp_ptr32(s->level, irq);
64 uint32_t group = *gic_bmp_ptr32(s->group, irq);
65 uint32_t grpmod = *gic_bmp_ptr32(s->grpmod, irq);
66 uint32_t enable = *gic_bmp_ptr32(s->enabled, irq);
67 uint32_t active = *gic_bmp_ptr32(s->active, irq);
69 pend = pending | (~edge_trigger & level);
70 pend &= enable;
71 pend &= ~active;
73 if (s->gicd_ctlr & GICD_CTLR_DS) {
74 grpmod = 0;
77 grpmask = 0;
78 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
79 grpmask |= group;
81 if (s->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
82 grpmask |= (~group & grpmod);
84 if (s->gicd_ctlr & GICD_CTLR_EN_GRP0) {
85 grpmask |= (~group & ~grpmod);
87 pend &= grpmask;
89 return pend;
92 static uint32_t gicr_int_pending(GICv3CPUState *cs)
94 /* Recalculate which redistributor interrupts are actually pending,
95 * and return a 32-bit integer which has a bit set for each interrupt
96 * that is eligible to be signaled to the CPU interface.
98 * An interrupt is pending if:
99 * + the PENDING latch is set OR it is level triggered and the input is 1
100 * + its ENABLE bit is set
101 * + the GICD enable bit for its group is set
102 * + its ACTIVE bit is not set (otherwise it would be Active+Pending)
103 * Conveniently we can bulk-calculate this with bitwise operations.
105 uint32_t pend, grpmask, grpmod;
107 pend = cs->gicr_ipendr0 | (~cs->edge_trigger & cs->level);
108 pend &= cs->gicr_ienabler0;
109 pend &= ~cs->gicr_iactiver0;
111 if (cs->gic->gicd_ctlr & GICD_CTLR_DS) {
112 grpmod = 0;
113 } else {
114 grpmod = cs->gicr_igrpmodr0;
117 grpmask = 0;
118 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1NS) {
119 grpmask |= cs->gicr_igroupr0;
121 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP1S) {
122 grpmask |= (~cs->gicr_igroupr0 & grpmod);
124 if (cs->gic->gicd_ctlr & GICD_CTLR_EN_GRP0) {
125 grpmask |= (~cs->gicr_igroupr0 & ~grpmod);
127 pend &= grpmask;
129 return pend;
132 /* Update the interrupt status after state in a redistributor
133 * or CPU interface has changed, but don't tell the CPU i/f.
135 static void gicv3_redist_update_noirqset(GICv3CPUState *cs)
137 /* Find the highest priority pending interrupt among the
138 * redistributor interrupts (SGIs and PPIs).
140 bool seenbetter = false;
141 uint8_t prio;
142 int i;
143 uint32_t pend;
145 /* Find out which redistributor interrupts are eligible to be
146 * signaled to the CPU interface.
148 pend = gicr_int_pending(cs);
150 if (pend) {
151 for (i = 0; i < GIC_INTERNAL; i++) {
152 if (!(pend & (1 << i))) {
153 continue;
155 prio = cs->gicr_ipriorityr[i];
156 if (irqbetter(cs, i, prio)) {
157 cs->hppi.irq = i;
158 cs->hppi.prio = prio;
159 seenbetter = true;
164 if (seenbetter) {
165 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
168 /* If the best interrupt we just found would preempt whatever
169 * was the previous best interrupt before this update, then
170 * we know it's definitely the best one now.
171 * If we didn't find an interrupt that would preempt the previous
172 * best, and the previous best is outside our range (or there was no
173 * previous pending interrupt at all), then that is still valid, and
174 * we leave it as the best.
175 * Otherwise, we need to do a full update (because the previous best
176 * interrupt has reduced in priority and any other interrupt could
177 * now be the new best one).
179 if (!seenbetter && cs->hppi.prio != 0xff && cs->hppi.irq < GIC_INTERNAL) {
180 gicv3_full_update_noirqset(cs->gic);
184 /* Update the GIC status after state in a redistributor or
185 * CPU interface has changed, and inform the CPU i/f of
186 * its new highest priority pending interrupt.
188 void gicv3_redist_update(GICv3CPUState *cs)
190 gicv3_redist_update_noirqset(cs);
191 gicv3_cpuif_update(cs);
194 /* Update the GIC status after state in the distributor has
195 * changed affecting @len interrupts starting at @start,
196 * but don't tell the CPU i/f.
198 static void gicv3_update_noirqset(GICv3State *s, int start, int len)
200 int i;
201 uint8_t prio;
202 uint32_t pend = 0;
204 assert(start >= GIC_INTERNAL);
205 assert(len > 0);
207 for (i = 0; i < s->num_cpu; i++) {
208 s->cpu[i].seenbetter = false;
211 /* Find the highest priority pending interrupt in this range. */
212 for (i = start; i < start + len; i++) {
213 GICv3CPUState *cs;
215 if (i == start || (i & 0x1f) == 0) {
216 /* Calculate the next 32 bits worth of pending status */
217 pend = gicd_int_pending(s, i & ~0x1f);
220 if (!(pend & (1 << (i & 0x1f)))) {
221 continue;
223 cs = s->gicd_irouter_target[i];
224 if (!cs) {
225 /* Interrupts targeting no implemented CPU should remain pending
226 * and not be forwarded to any CPU.
228 continue;
230 prio = s->gicd_ipriority[i];
231 if (irqbetter(cs, i, prio)) {
232 cs->hppi.irq = i;
233 cs->hppi.prio = prio;
234 cs->seenbetter = true;
238 /* If the best interrupt we just found would preempt whatever
239 * was the previous best interrupt before this update, then
240 * we know it's definitely the best one now.
241 * If we didn't find an interrupt that would preempt the previous
242 * best, and the previous best is outside our range (or there was
243 * no previous pending interrupt at all), then that
244 * is still valid, and we leave it as the best.
245 * Otherwise, we need to do a full update (because the previous best
246 * interrupt has reduced in priority and any other interrupt could
247 * now be the new best one).
249 for (i = 0; i < s->num_cpu; i++) {
250 GICv3CPUState *cs = &s->cpu[i];
252 if (cs->seenbetter) {
253 cs->hppi.grp = gicv3_irq_group(cs->gic, cs, cs->hppi.irq);
256 if (!cs->seenbetter && cs->hppi.prio != 0xff &&
257 cs->hppi.irq >= start && cs->hppi.irq < start + len) {
258 gicv3_full_update_noirqset(s);
259 break;
264 void gicv3_update(GICv3State *s, int start, int len)
266 int i;
268 gicv3_update_noirqset(s, start, len);
269 for (i = 0; i < s->num_cpu; i++) {
270 gicv3_cpuif_update(&s->cpu[i]);
274 void gicv3_full_update_noirqset(GICv3State *s)
276 /* Completely recalculate the GIC status from scratch, but
277 * don't update any outbound IRQ lines.
279 int i;
281 for (i = 0; i < s->num_cpu; i++) {
282 s->cpu[i].hppi.prio = 0xff;
285 /* Note that we can guarantee that these functions will not
286 * recursively call back into gicv3_full_update(), because
287 * at each point the "previous best" is always outside the
288 * range we ask them to update.
290 gicv3_update_noirqset(s, GIC_INTERNAL, s->num_irq - GIC_INTERNAL);
292 for (i = 0; i < s->num_cpu; i++) {
293 gicv3_redist_update_noirqset(&s->cpu[i]);
297 void gicv3_full_update(GICv3State *s)
299 /* Completely recalculate the GIC status from scratch, including
300 * updating outbound IRQ lines.
302 int i;
304 gicv3_full_update_noirqset(s);
305 for (i = 0; i < s->num_cpu; i++) {
306 gicv3_cpuif_update(&s->cpu[i]);
310 /* Process a change in an external IRQ input. */
311 static void gicv3_set_irq(void *opaque, int irq, int level)
313 /* Meaning of the 'irq' parameter:
314 * [0..N-1] : external interrupts
315 * [N..N+31] : PPI (internal) interrupts for CPU 0
316 * [N+32..N+63] : PPI (internal interrupts for CPU 1
317 * ...
319 GICv3State *s = opaque;
321 if (irq < (s->num_irq - GIC_INTERNAL)) {
322 /* external interrupt (SPI) */
323 gicv3_dist_set_irq(s, irq + GIC_INTERNAL, level);
324 } else {
325 /* per-cpu interrupt (PPI) */
326 int cpu;
328 irq -= (s->num_irq - GIC_INTERNAL);
329 cpu = irq / GIC_INTERNAL;
330 irq %= GIC_INTERNAL;
331 assert(cpu < s->num_cpu);
332 /* Raising SGIs via this function would be a bug in how the board
333 * model wires up interrupts.
335 assert(irq >= GIC_NR_SGIS);
336 gicv3_redist_set_irq(&s->cpu[cpu], irq, level);
340 static void arm_gicv3_post_load(GICv3State *s)
342 /* Recalculate our cached idea of the current highest priority
343 * pending interrupt, but don't set IRQ or FIQ lines.
345 gicv3_full_update_noirqset(s);
346 /* Repopulate the cache of GICv3CPUState pointers for target CPUs */
347 gicv3_cache_all_target_cpustates(s);
350 static const MemoryRegionOps gic_ops[] = {
352 .read_with_attrs = gicv3_dist_read,
353 .write_with_attrs = gicv3_dist_write,
354 .endianness = DEVICE_NATIVE_ENDIAN,
357 .read_with_attrs = gicv3_redist_read,
358 .write_with_attrs = gicv3_redist_write,
359 .endianness = DEVICE_NATIVE_ENDIAN,
363 static void arm_gic_realize(DeviceState *dev, Error **errp)
365 /* Device instance realize function for the GIC sysbus device */
366 GICv3State *s = ARM_GICV3(dev);
367 ARMGICv3Class *agc = ARM_GICV3_GET_CLASS(s);
368 Error *local_err = NULL;
370 agc->parent_realize(dev, &local_err);
371 if (local_err) {
372 error_propagate(errp, local_err);
373 return;
376 if (s->nb_redist_regions != 1) {
377 error_setg(errp, "VGICv3 redist region number(%d) not equal to 1",
378 s->nb_redist_regions);
379 return;
382 gicv3_init_irqs_and_mmio(s, gicv3_set_irq, gic_ops, &local_err);
383 if (local_err) {
384 error_propagate(errp, local_err);
385 return;
388 gicv3_init_cpuif(s);
391 static void arm_gicv3_class_init(ObjectClass *klass, void *data)
393 DeviceClass *dc = DEVICE_CLASS(klass);
394 ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
395 ARMGICv3Class *agc = ARM_GICV3_CLASS(klass);
397 agcc->post_load = arm_gicv3_post_load;
398 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
401 static const TypeInfo arm_gicv3_info = {
402 .name = TYPE_ARM_GICV3,
403 .parent = TYPE_ARM_GICV3_COMMON,
404 .instance_size = sizeof(GICv3State),
405 .class_init = arm_gicv3_class_init,
406 .class_size = sizeof(ARMGICv3Class),
409 static void arm_gicv3_register_types(void)
411 type_register_static(&arm_gicv3_info);
414 type_init(arm_gicv3_register_types)