scripts: add arch specific standard-headers
[qemu.git] / hw / net / ne2000.c
blob3492db3663805f7729efa00258460fa9fff4af74
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "net/net.h"
27 #include "ne2000.h"
28 #include "hw/loader.h"
29 #include "sysemu/sysemu.h"
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
34 #define MAX_ETH_FRAME_SIZE 1514
36 #define E8390_CMD 0x00 /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
39 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
40 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
41 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
43 #define EN0_TSR 0x04 /* Transmit status reg RD */
44 #define EN0_TPSR 0x04 /* Transmit starting page WR */
45 #define EN0_NCR 0x05 /* Number of collision reg RD */
46 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
47 #define EN0_FIFO 0x06 /* FIFO RD */
48 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
49 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
50 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
51 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
52 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
53 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
54 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
55 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
57 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
58 #define EN0_RSR 0x0c /* rx status reg RD */
59 #define EN0_RXCR 0x0c /* RX configuration reg WR */
60 #define EN0_TXCR 0x0d /* TX configuration reg WR */
61 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
62 #define EN0_DCFG 0x0e /* Data configuration reg WR */
63 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
64 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
65 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
67 #define EN1_PHYS 0x11
68 #define EN1_CURPAG 0x17
69 #define EN1_MULT 0x18
71 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
72 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
74 #define EN3_CONFIG0 0x33
75 #define EN3_CONFIG1 0x34
76 #define EN3_CONFIG2 0x35
77 #define EN3_CONFIG3 0x36
79 /* Register accessed at EN_CMD, the 8390 base addr. */
80 #define E8390_STOP 0x01 /* Stop and reset the chip */
81 #define E8390_START 0x02 /* Start the chip, clear reset */
82 #define E8390_TRANS 0x04 /* Transmit a frame */
83 #define E8390_RREAD 0x08 /* Remote read */
84 #define E8390_RWRITE 0x10 /* Remote write */
85 #define E8390_NODMA 0x20 /* Remote DMA */
86 #define E8390_PAGE0 0x00 /* Select page chip registers */
87 #define E8390_PAGE1 0x40 /* using the two high-order bits */
88 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX 0x01 /* Receiver, no error */
92 #define ENISR_TX 0x02 /* Transmitter, no error */
93 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
94 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
95 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
96 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
97 #define ENISR_RDC 0x40 /* remote dma complete */
98 #define ENISR_RESET 0x80 /* Reset completed */
99 #define ENISR_ALL 0x3f /* Interrupts we will enable */
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK 0x01 /* Received a good packet */
103 #define ENRSR_CRC 0x02 /* CRC error */
104 #define ENRSR_FAE 0x04 /* frame alignment error */
105 #define ENRSR_FO 0x08 /* FIFO overrun */
106 #define ENRSR_MPA 0x10 /* missed pkt */
107 #define ENRSR_PHY 0x20 /* physical/multicast address */
108 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
109 #define ENRSR_DEF 0x80 /* deferring */
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
113 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
117 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
121 typedef struct PCINE2000State {
122 PCIDevice dev;
123 NE2000State ne2000;
124 } PCINE2000State;
126 void ne2000_reset(NE2000State *s)
128 int i;
130 s->isr = ENISR_RESET;
131 memcpy(s->mem, &s->c.macaddr, 6);
132 s->mem[14] = 0x57;
133 s->mem[15] = 0x57;
135 /* duplicate prom data */
136 for(i = 15;i >= 0; i--) {
137 s->mem[2 * i] = s->mem[i];
138 s->mem[2 * i + 1] = s->mem[i];
142 static void ne2000_update_irq(NE2000State *s)
144 int isr;
145 isr = (s->isr & s->imr) & 0x7f;
146 #if defined(DEBUG_NE2000)
147 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 isr ? 1 : 0, s->isr, s->imr);
149 #endif
150 qemu_set_irq(s->irq, (isr != 0));
153 static int ne2000_buffer_full(NE2000State *s)
155 int avail, index, boundary;
157 index = s->curpag << 8;
158 boundary = s->boundary << 8;
159 if (index < boundary)
160 avail = boundary - index;
161 else
162 avail = (s->stop - s->start) - (index - boundary);
163 if (avail < (MAX_ETH_FRAME_SIZE + 4))
164 return 1;
165 return 0;
168 int ne2000_can_receive(NetClientState *nc)
170 NE2000State *s = qemu_get_nic_opaque(nc);
172 if (s->cmd & E8390_STOP)
173 return 1;
174 return !ne2000_buffer_full(s);
177 #define MIN_BUF_SIZE 60
179 ssize_t ne2000_receive(NetClientState *nc, const uint8_t *buf, size_t size_)
181 NE2000State *s = qemu_get_nic_opaque(nc);
182 int size = size_;
183 uint8_t *p;
184 unsigned int total_len, next, avail, len, index, mcast_idx;
185 uint8_t buf1[60];
186 static const uint8_t broadcast_macaddr[6] =
187 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
189 #if defined(DEBUG_NE2000)
190 printf("NE2000: received len=%d\n", size);
191 #endif
193 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
194 return -1;
196 /* XXX: check this */
197 if (s->rxcr & 0x10) {
198 /* promiscuous: receive all */
199 } else {
200 if (!memcmp(buf, broadcast_macaddr, 6)) {
201 /* broadcast address */
202 if (!(s->rxcr & 0x04))
203 return size;
204 } else if (buf[0] & 0x01) {
205 /* multicast */
206 if (!(s->rxcr & 0x08))
207 return size;
208 mcast_idx = compute_mcast_idx(buf);
209 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
210 return size;
211 } else if (s->mem[0] == buf[0] &&
212 s->mem[2] == buf[1] &&
213 s->mem[4] == buf[2] &&
214 s->mem[6] == buf[3] &&
215 s->mem[8] == buf[4] &&
216 s->mem[10] == buf[5]) {
217 /* match */
218 } else {
219 return size;
224 /* if too small buffer, then expand it */
225 if (size < MIN_BUF_SIZE) {
226 memcpy(buf1, buf, size);
227 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
228 buf = buf1;
229 size = MIN_BUF_SIZE;
232 index = s->curpag << 8;
233 /* 4 bytes for header */
234 total_len = size + 4;
235 /* address for next packet (4 bytes for CRC) */
236 next = index + ((total_len + 4 + 255) & ~0xff);
237 if (next >= s->stop)
238 next -= (s->stop - s->start);
239 /* prepare packet header */
240 p = s->mem + index;
241 s->rsr = ENRSR_RXOK; /* receive status */
242 /* XXX: check this */
243 if (buf[0] & 0x01)
244 s->rsr |= ENRSR_PHY;
245 p[0] = s->rsr;
246 p[1] = next >> 8;
247 p[2] = total_len;
248 p[3] = total_len >> 8;
249 index += 4;
251 /* write packet data */
252 while (size > 0) {
253 if (index <= s->stop)
254 avail = s->stop - index;
255 else
256 avail = 0;
257 len = size;
258 if (len > avail)
259 len = avail;
260 memcpy(s->mem + index, buf, len);
261 buf += len;
262 index += len;
263 if (index == s->stop)
264 index = s->start;
265 size -= len;
267 s->curpag = next >> 8;
269 /* now we can signal we have received something */
270 s->isr |= ENISR_RX;
271 ne2000_update_irq(s);
273 return size_;
276 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
278 NE2000State *s = opaque;
279 int offset, page, index;
281 addr &= 0xf;
282 #ifdef DEBUG_NE2000
283 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
284 #endif
285 if (addr == E8390_CMD) {
286 /* control register */
287 s->cmd = val;
288 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
289 s->isr &= ~ENISR_RESET;
290 /* test specific case: zero length transfer */
291 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
292 s->rcnt == 0) {
293 s->isr |= ENISR_RDC;
294 ne2000_update_irq(s);
296 if (val & E8390_TRANS) {
297 index = (s->tpsr << 8);
298 /* XXX: next 2 lines are a hack to make netware 3.11 work */
299 if (index >= NE2000_PMEM_END)
300 index -= NE2000_PMEM_SIZE;
301 /* fail safe: check range on the transmitted length */
302 if (index + s->tcnt <= NE2000_PMEM_END) {
303 qemu_send_packet(qemu_get_queue(s->nic), s->mem + index,
304 s->tcnt);
306 /* signal end of transfer */
307 s->tsr = ENTSR_PTX;
308 s->isr |= ENISR_TX;
309 s->cmd &= ~E8390_TRANS;
310 ne2000_update_irq(s);
313 } else {
314 page = s->cmd >> 6;
315 offset = addr | (page << 4);
316 switch(offset) {
317 case EN0_STARTPG:
318 s->start = val << 8;
319 break;
320 case EN0_STOPPG:
321 s->stop = val << 8;
322 break;
323 case EN0_BOUNDARY:
324 s->boundary = val;
325 break;
326 case EN0_IMR:
327 s->imr = val;
328 ne2000_update_irq(s);
329 break;
330 case EN0_TPSR:
331 s->tpsr = val;
332 break;
333 case EN0_TCNTLO:
334 s->tcnt = (s->tcnt & 0xff00) | val;
335 break;
336 case EN0_TCNTHI:
337 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
338 break;
339 case EN0_RSARLO:
340 s->rsar = (s->rsar & 0xff00) | val;
341 break;
342 case EN0_RSARHI:
343 s->rsar = (s->rsar & 0x00ff) | (val << 8);
344 break;
345 case EN0_RCNTLO:
346 s->rcnt = (s->rcnt & 0xff00) | val;
347 break;
348 case EN0_RCNTHI:
349 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
350 break;
351 case EN0_RXCR:
352 s->rxcr = val;
353 break;
354 case EN0_DCFG:
355 s->dcfg = val;
356 break;
357 case EN0_ISR:
358 s->isr &= ~(val & 0x7f);
359 ne2000_update_irq(s);
360 break;
361 case EN1_PHYS ... EN1_PHYS + 5:
362 s->phys[offset - EN1_PHYS] = val;
363 break;
364 case EN1_CURPAG:
365 s->curpag = val;
366 break;
367 case EN1_MULT ... EN1_MULT + 7:
368 s->mult[offset - EN1_MULT] = val;
369 break;
374 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
376 NE2000State *s = opaque;
377 int offset, page, ret;
379 addr &= 0xf;
380 if (addr == E8390_CMD) {
381 ret = s->cmd;
382 } else {
383 page = s->cmd >> 6;
384 offset = addr | (page << 4);
385 switch(offset) {
386 case EN0_TSR:
387 ret = s->tsr;
388 break;
389 case EN0_BOUNDARY:
390 ret = s->boundary;
391 break;
392 case EN0_ISR:
393 ret = s->isr;
394 break;
395 case EN0_RSARLO:
396 ret = s->rsar & 0x00ff;
397 break;
398 case EN0_RSARHI:
399 ret = s->rsar >> 8;
400 break;
401 case EN1_PHYS ... EN1_PHYS + 5:
402 ret = s->phys[offset - EN1_PHYS];
403 break;
404 case EN1_CURPAG:
405 ret = s->curpag;
406 break;
407 case EN1_MULT ... EN1_MULT + 7:
408 ret = s->mult[offset - EN1_MULT];
409 break;
410 case EN0_RSR:
411 ret = s->rsr;
412 break;
413 case EN2_STARTPG:
414 ret = s->start >> 8;
415 break;
416 case EN2_STOPPG:
417 ret = s->stop >> 8;
418 break;
419 case EN0_RTL8029ID0:
420 ret = 0x50;
421 break;
422 case EN0_RTL8029ID1:
423 ret = 0x43;
424 break;
425 case EN3_CONFIG0:
426 ret = 0; /* 10baseT media */
427 break;
428 case EN3_CONFIG2:
429 ret = 0x40; /* 10baseT active */
430 break;
431 case EN3_CONFIG3:
432 ret = 0x40; /* Full duplex */
433 break;
434 default:
435 ret = 0x00;
436 break;
439 #ifdef DEBUG_NE2000
440 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
441 #endif
442 return ret;
445 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
446 uint32_t val)
448 if (addr < 32 ||
449 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
450 s->mem[addr] = val;
454 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
455 uint32_t val)
457 addr &= ~1; /* XXX: check exact behaviour if not even */
458 if (addr < 32 ||
459 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
460 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
464 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
465 uint32_t val)
467 addr &= ~1; /* XXX: check exact behaviour if not even */
468 if (addr < 32 ||
469 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
470 stl_le_p(s->mem + addr, val);
474 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
476 if (addr < 32 ||
477 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
478 return s->mem[addr];
479 } else {
480 return 0xff;
484 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
486 addr &= ~1; /* XXX: check exact behaviour if not even */
487 if (addr < 32 ||
488 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
489 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
490 } else {
491 return 0xffff;
495 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
497 addr &= ~1; /* XXX: check exact behaviour if not even */
498 if (addr < 32 ||
499 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
500 return ldl_le_p(s->mem + addr);
501 } else {
502 return 0xffffffff;
506 static inline void ne2000_dma_update(NE2000State *s, int len)
508 s->rsar += len;
509 /* wrap */
510 /* XXX: check what to do if rsar > stop */
511 if (s->rsar == s->stop)
512 s->rsar = s->start;
514 if (s->rcnt <= len) {
515 s->rcnt = 0;
516 /* signal end of transfer */
517 s->isr |= ENISR_RDC;
518 ne2000_update_irq(s);
519 } else {
520 s->rcnt -= len;
524 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
526 NE2000State *s = opaque;
528 #ifdef DEBUG_NE2000
529 printf("NE2000: asic write val=0x%04x\n", val);
530 #endif
531 if (s->rcnt == 0)
532 return;
533 if (s->dcfg & 0x01) {
534 /* 16 bit access */
535 ne2000_mem_writew(s, s->rsar, val);
536 ne2000_dma_update(s, 2);
537 } else {
538 /* 8 bit access */
539 ne2000_mem_writeb(s, s->rsar, val);
540 ne2000_dma_update(s, 1);
544 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
546 NE2000State *s = opaque;
547 int ret;
549 if (s->dcfg & 0x01) {
550 /* 16 bit access */
551 ret = ne2000_mem_readw(s, s->rsar);
552 ne2000_dma_update(s, 2);
553 } else {
554 /* 8 bit access */
555 ret = ne2000_mem_readb(s, s->rsar);
556 ne2000_dma_update(s, 1);
558 #ifdef DEBUG_NE2000
559 printf("NE2000: asic read val=0x%04x\n", ret);
560 #endif
561 return ret;
564 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
566 NE2000State *s = opaque;
568 #ifdef DEBUG_NE2000
569 printf("NE2000: asic writel val=0x%04x\n", val);
570 #endif
571 if (s->rcnt == 0)
572 return;
573 /* 32 bit access */
574 ne2000_mem_writel(s, s->rsar, val);
575 ne2000_dma_update(s, 4);
578 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
580 NE2000State *s = opaque;
581 int ret;
583 /* 32 bit access */
584 ret = ne2000_mem_readl(s, s->rsar);
585 ne2000_dma_update(s, 4);
586 #ifdef DEBUG_NE2000
587 printf("NE2000: asic readl val=0x%04x\n", ret);
588 #endif
589 return ret;
592 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
594 /* nothing to do (end of reset pulse) */
597 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
599 NE2000State *s = opaque;
600 ne2000_reset(s);
601 return 0;
604 static int ne2000_post_load(void* opaque, int version_id)
606 NE2000State* s = opaque;
608 if (version_id < 2) {
609 s->rxcr = 0x0c;
611 return 0;
614 const VMStateDescription vmstate_ne2000 = {
615 .name = "ne2000",
616 .version_id = 2,
617 .minimum_version_id = 0,
618 .post_load = ne2000_post_load,
619 .fields = (VMStateField[]) {
620 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
621 VMSTATE_UINT8(cmd, NE2000State),
622 VMSTATE_UINT32(start, NE2000State),
623 VMSTATE_UINT32(stop, NE2000State),
624 VMSTATE_UINT8(boundary, NE2000State),
625 VMSTATE_UINT8(tsr, NE2000State),
626 VMSTATE_UINT8(tpsr, NE2000State),
627 VMSTATE_UINT16(tcnt, NE2000State),
628 VMSTATE_UINT16(rcnt, NE2000State),
629 VMSTATE_UINT32(rsar, NE2000State),
630 VMSTATE_UINT8(rsr, NE2000State),
631 VMSTATE_UINT8(isr, NE2000State),
632 VMSTATE_UINT8(dcfg, NE2000State),
633 VMSTATE_UINT8(imr, NE2000State),
634 VMSTATE_BUFFER(phys, NE2000State),
635 VMSTATE_UINT8(curpag, NE2000State),
636 VMSTATE_BUFFER(mult, NE2000State),
637 VMSTATE_UNUSED(4), /* was irq */
638 VMSTATE_BUFFER(mem, NE2000State),
639 VMSTATE_END_OF_LIST()
643 static const VMStateDescription vmstate_pci_ne2000 = {
644 .name = "ne2000",
645 .version_id = 3,
646 .minimum_version_id = 3,
647 .fields = (VMStateField[]) {
648 VMSTATE_PCI_DEVICE(dev, PCINE2000State),
649 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
650 VMSTATE_END_OF_LIST()
654 static uint64_t ne2000_read(void *opaque, hwaddr addr,
655 unsigned size)
657 NE2000State *s = opaque;
659 if (addr < 0x10 && size == 1) {
660 return ne2000_ioport_read(s, addr);
661 } else if (addr == 0x10) {
662 if (size <= 2) {
663 return ne2000_asic_ioport_read(s, addr);
664 } else {
665 return ne2000_asic_ioport_readl(s, addr);
667 } else if (addr == 0x1f && size == 1) {
668 return ne2000_reset_ioport_read(s, addr);
670 return ((uint64_t)1 << (size * 8)) - 1;
673 static void ne2000_write(void *opaque, hwaddr addr,
674 uint64_t data, unsigned size)
676 NE2000State *s = opaque;
678 if (addr < 0x10 && size == 1) {
679 ne2000_ioport_write(s, addr, data);
680 } else if (addr == 0x10) {
681 if (size <= 2) {
682 ne2000_asic_ioport_write(s, addr, data);
683 } else {
684 ne2000_asic_ioport_writel(s, addr, data);
686 } else if (addr == 0x1f && size == 1) {
687 ne2000_reset_ioport_write(s, addr, data);
691 static const MemoryRegionOps ne2000_ops = {
692 .read = ne2000_read,
693 .write = ne2000_write,
694 .endianness = DEVICE_LITTLE_ENDIAN,
697 /***********************************************************/
698 /* PCI NE2000 definitions */
700 void ne2000_setup_io(NE2000State *s, DeviceState *dev, unsigned size)
702 memory_region_init_io(&s->io, OBJECT(dev), &ne2000_ops, s, "ne2000", size);
705 static NetClientInfo net_ne2000_info = {
706 .type = NET_CLIENT_OPTIONS_KIND_NIC,
707 .size = sizeof(NICState),
708 .can_receive = ne2000_can_receive,
709 .receive = ne2000_receive,
712 static void pci_ne2000_realize(PCIDevice *pci_dev, Error **errp)
714 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
715 NE2000State *s;
716 uint8_t *pci_conf;
718 pci_conf = d->dev.config;
719 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
721 s = &d->ne2000;
722 ne2000_setup_io(s, DEVICE(pci_dev), 0x100);
723 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
724 s->irq = pci_allocate_irq(&d->dev);
726 qemu_macaddr_default_if_unset(&s->c.macaddr);
727 ne2000_reset(s);
729 s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
730 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
731 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->c.macaddr.a);
734 static void pci_ne2000_exit(PCIDevice *pci_dev)
736 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
737 NE2000State *s = &d->ne2000;
739 qemu_del_nic(s->nic);
740 qemu_free_irq(s->irq);
743 static void ne2000_instance_init(Object *obj)
745 PCIDevice *pci_dev = PCI_DEVICE(obj);
746 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
747 NE2000State *s = &d->ne2000;
749 device_add_bootindex_property(obj, &s->c.bootindex,
750 "bootindex", "/ethernet-phy@0",
751 &pci_dev->qdev, NULL);
754 static Property ne2000_properties[] = {
755 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
756 DEFINE_PROP_END_OF_LIST(),
759 static void ne2000_class_init(ObjectClass *klass, void *data)
761 DeviceClass *dc = DEVICE_CLASS(klass);
762 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
764 k->realize = pci_ne2000_realize;
765 k->exit = pci_ne2000_exit;
766 k->romfile = "efi-ne2k_pci.rom",
767 k->vendor_id = PCI_VENDOR_ID_REALTEK;
768 k->device_id = PCI_DEVICE_ID_REALTEK_8029;
769 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
770 dc->vmsd = &vmstate_pci_ne2000;
771 dc->props = ne2000_properties;
772 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories);
775 static const TypeInfo ne2000_info = {
776 .name = "ne2k_pci",
777 .parent = TYPE_PCI_DEVICE,
778 .instance_size = sizeof(PCINE2000State),
779 .class_init = ne2000_class_init,
780 .instance_init = ne2000_instance_init,
783 static void ne2000_register_types(void)
785 type_register_static(&ne2000_info);
788 type_init(ne2000_register_types)