target-tricore: Add instructions of SR opcode format
[qemu.git] / qemu-img.texi
blobcb689483b6a88e1313be21e97263a7d714e50d3f
1 @example
2 @c man begin SYNOPSIS
3 usage: qemu-img command [command options]
4 @c man end
5 @end example
7 @c man begin DESCRIPTION
8 qemu-img allows you to create, convert and modify images offline. It can handle
9 all image formats supported by QEMU.
11 @b{Warning:} Never use qemu-img to modify images in use by a running virtual
12 machine or any other process; this may destroy the image. Also, be aware that
13 querying an image that is being modified by another process may encounter
14 inconsistent state.
15 @c man end
17 @c man begin OPTIONS
19 The following commands are supported:
21 @include qemu-img-cmds.texi
23 Command parameters:
24 @table @var
25 @item filename
26  is a disk image filename
27 @item fmt
28 is the disk image format. It is guessed automatically in most cases. See below
29 for a description of the supported disk formats.
31 @item --backing-chain
32 will enumerate information about backing files in a disk image chain. Refer
33 below for further description.
35 @item size
36 is the disk image size in bytes. Optional suffixes @code{k} or @code{K}
37 (kilobyte, 1024) @code{M} (megabyte, 1024k) and @code{G} (gigabyte, 1024M)
38 and T (terabyte, 1024G) are supported.  @code{b} is ignored.
40 @item output_filename
41 is the destination disk image filename
43 @item output_fmt
44  is the destination format
45 @item options
46 is a comma separated list of format specific options in a
47 name=value format. Use @code{-o ?} for an overview of the options supported
48 by the used format or see the format descriptions below for details.
49 @item snapshot_param
50 is param used for internal snapshot, format is
51 'snapshot.id=[ID],snapshot.name=[NAME]' or '[ID_OR_NAME]'
52 @item snapshot_id_or_name
53 is deprecated, use snapshot_param instead
55 @item -c
56 indicates that target image must be compressed (qcow format only)
57 @item -h
58 with or without a command shows help and lists the supported formats
59 @item -p
60 display progress bar (compare, convert and rebase commands only).
61 If the @var{-p} option is not used for a command that supports it, the
62 progress is reported when the process receives a @code{SIGUSR1} signal.
63 @item -q
64 Quiet mode - do not print any output (except errors). There's no progress bar
65 in case both @var{-q} and @var{-p} options are used.
66 @item -S @var{size}
67 indicates the consecutive number of bytes that must contain only zeros
68 for qemu-img to create a sparse image during conversion. This value is rounded
69 down to the nearest 512 bytes. You may use the common size suffixes like
70 @code{k} for kilobytes.
71 @item -t @var{cache}
72 specifies the cache mode that should be used with the (destination) file. See
73 the documentation of the emulator's @code{-drive cache=...} option for allowed
74 values.
75 @item -T @var{src_cache}
76 in contrast specifies the cache mode that should be used with the source
77 file(s).
78 @end table
80 Parameters to snapshot subcommand:
82 @table @option
84 @item snapshot
85 is the name of the snapshot to create, apply or delete
86 @item -a
87 applies a snapshot (revert disk to saved state)
88 @item -c
89 creates a snapshot
90 @item -d
91 deletes a snapshot
92 @item -l
93 lists all snapshots in the given image
94 @end table
96 Parameters to compare subcommand:
98 @table @option
100 @item -f
101 First image format
102 @item -F
103 Second image format
104 @item -s
105 Strict mode - fail on on different image size or sector allocation
106 @end table
108 Parameters to convert subcommand:
110 @table @option
112 @item -n
113 Skip the creation of the target volume
114 @end table
116 Command description:
118 @table @option
119 @item check [-f @var{fmt}] [--output=@var{ofmt}] [-r [leaks | all]] [-T @var{src_cache}] @var{filename}
121 Perform a consistency check on the disk image @var{filename}. The command can
122 output in the format @var{ofmt} which is either @code{human} or @code{json}.
124 If @code{-r} is specified, qemu-img tries to repair any inconsistencies found
125 during the check. @code{-r leaks} repairs only cluster leaks, whereas
126 @code{-r all} fixes all kinds of errors, with a higher risk of choosing the
127 wrong fix or hiding corruption that has already occurred.
129 Only the formats @code{qcow2}, @code{qed} and @code{vdi} support
130 consistency checks.
132 In case the image does not have any inconsistencies, check exits with @code{0}.
133 Other exit codes indicate the kind of inconsistency found or if another error
134 occurred. The following table summarizes all exit codes of the check subcommand:
136 @table @option
138 @item 0
139 Check completed, the image is (now) consistent
140 @item 1
141 Check not completed because of internal errors
142 @item 2
143 Check completed, image is corrupted
144 @item 3
145 Check completed, image has leaked clusters, but is not corrupted
146 @item 63
147 Checks are not supported by the image format
149 @end table
151 If @code{-r} is specified, exit codes representing the image state refer to the
152 state after (the attempt at) repairing it. That is, a successful @code{-r all}
153 will yield the exit code 0, independently of the image state before.
155 @item create [-f @var{fmt}] [-o @var{options}] @var{filename} [@var{size}]
157 Create the new disk image @var{filename} of size @var{size} and format
158 @var{fmt}. Depending on the file format, you can add one or more @var{options}
159 that enable additional features of this format.
161 If the option @var{backing_file} is specified, then the image will record
162 only the differences from @var{backing_file}. No size needs to be specified in
163 this case. @var{backing_file} will never be modified unless you use the
164 @code{commit} monitor command (or qemu-img commit).
166 The size can also be specified using the @var{size} option with @code{-o},
167 it doesn't need to be specified separately in this case.
169 @item commit [-f @var{fmt}] [-t @var{cache}] @var{filename}
171 Commit the changes recorded in @var{filename} in its base image or backing file.
172 If the backing file is smaller than the snapshot, then the backing file will be
173 resized to be the same size as the snapshot.  If the snapshot is smaller than
174 the backing file, the backing file will not be truncated.  If you want the
175 backing file to match the size of the smaller snapshot, you can safely truncate
176 it yourself once the commit operation successfully completes.
178 @item compare [-f @var{fmt}] [-F @var{fmt}] [-T @var{src_cache}] [-p] [-s] [-q] @var{filename1} @var{filename2}
180 Check if two images have the same content. You can compare images with
181 different format or settings.
183 The format is probed unless you specify it by @var{-f} (used for
184 @var{filename1}) and/or @var{-F} (used for @var{filename2}) option.
186 By default, images with different size are considered identical if the larger
187 image contains only unallocated and/or zeroed sectors in the area after the end
188 of the other image. In addition, if any sector is not allocated in one image
189 and contains only zero bytes in the second one, it is evaluated as equal. You
190 can use Strict mode by specifying the @var{-s} option. When compare runs in
191 Strict mode, it fails in case image size differs or a sector is allocated in
192 one image and is not allocated in the second one.
194 By default, compare prints out a result message. This message displays
195 information that both images are same or the position of the first different
196 byte. In addition, result message can report different image size in case
197 Strict mode is used.
199 Compare exits with @code{0} in case the images are equal and with @code{1}
200 in case the images differ. Other exit codes mean an error occurred during
201 execution and standard error output should contain an error message.
202 The following table sumarizes all exit codes of the compare subcommand:
204 @table @option
206 @item 0
207 Images are identical
208 @item 1
209 Images differ
210 @item 2
211 Error on opening an image
212 @item 3
213 Error on checking a sector allocation
214 @item 4
215 Error on reading data
217 @end table
219 @item convert [-c] [-p] [-n] [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-O @var{output_fmt}] [-o @var{options}] [-s @var{snapshot_id_or_name}] [-l @var{snapshot_param}] [-S @var{sparse_size}] @var{filename} [@var{filename2} [...]] @var{output_filename}
221 Convert the disk image @var{filename} or a snapshot @var{snapshot_param}(@var{snapshot_id_or_name} is deprecated)
222 to disk image @var{output_filename} using format @var{output_fmt}. It can be optionally compressed (@code{-c}
223 option) or use any format specific options like encryption (@code{-o} option).
225 Only the formats @code{qcow} and @code{qcow2} support compression. The
226 compression is read-only. It means that if a compressed sector is
227 rewritten, then it is rewritten as uncompressed data.
229 Image conversion is also useful to get smaller image when using a
230 growable format such as @code{qcow} or @code{cow}: the empty sectors
231 are detected and suppressed from the destination image.
233 @var{sparse_size} indicates the consecutive number of bytes (defaults to 4k)
234 that must contain only zeros for qemu-img to create a sparse image during
235 conversion. If @var{sparse_size} is 0, the source will not be scanned for
236 unallocated or zero sectors, and the destination image will always be
237 fully allocated.
239 You can use the @var{backing_file} option to force the output image to be
240 created as a copy on write image of the specified base image; the
241 @var{backing_file} should have the same content as the input's base image,
242 however the path, image format, etc may differ.
244 If the @code{-n} option is specified, the target volume creation will be
245 skipped. This is useful for formats such as @code{rbd} if the target
246 volume has already been created with site specific options that cannot
247 be supplied through qemu-img.
249 @item info [-f @var{fmt}] [--output=@var{ofmt}] [--backing-chain] @var{filename}
251 Give information about the disk image @var{filename}. Use it in
252 particular to know the size reserved on disk which can be different
253 from the displayed size. If VM snapshots are stored in the disk image,
254 they are displayed too. The command can output in the format @var{ofmt}
255 which is either @code{human} or @code{json}.
257 If a disk image has a backing file chain, information about each disk image in
258 the chain can be recursively enumerated by using the option @code{--backing-chain}.
260 For instance, if you have an image chain like:
262 @example
263 base.qcow2 <- snap1.qcow2 <- snap2.qcow2
264 @end example
266 To enumerate information about each disk image in the above chain, starting from top to base, do:
268 @example
269 qemu-img info --backing-chain snap2.qcow2
270 @end example
272 @item map [-f @var{fmt}] [--output=@var{ofmt}] @var{filename}
274 Dump the metadata of image @var{filename} and its backing file chain.
275 In particular, this commands dumps the allocation state of every sector
276 of @var{filename}, together with the topmost file that allocates it in
277 the backing file chain.
279 Two option formats are possible.  The default format (@code{human})
280 only dumps known-nonzero areas of the file.  Known-zero parts of the
281 file are omitted altogether, and likewise for parts that are not allocated
282 throughout the chain.  @command{qemu-img} output will identify a file
283 from where the data can be read, and the offset in the file.  Each line
284 will include four fields, the first three of which are hexadecimal
285 numbers.  For example the first line of:
286 @example
287 Offset          Length          Mapped to       File
288 0               0x20000         0x50000         /tmp/overlay.qcow2
289 0x100000        0x10000         0x95380000      /tmp/backing.qcow2
290 @end example
291 @noindent
292 means that 0x20000 (131072) bytes starting at offset 0 in the image are
293 available in /tmp/overlay.qcow2 (opened in @code{raw} format) starting
294 at offset 0x50000 (327680).  Data that is compressed, encrypted, or
295 otherwise not available in raw format will cause an error if @code{human}
296 format is in use.  Note that file names can include newlines, thus it is
297 not safe to parse this output format in scripts.
299 The alternative format @code{json} will return an array of dictionaries
300 in JSON format.  It will include similar information in
301 the @code{start}, @code{length}, @code{offset} fields;
302 it will also include other more specific information:
303 @itemize @minus
304 @item
305 whether the sectors contain actual data or not (boolean field @code{data};
306 if false, the sectors are either unallocated or stored as optimized
307 all-zero clusters);
309 @item
310 whether the data is known to read as zero (boolean field @code{zero});
312 @item
313 in order to make the output shorter, the target file is expressed as
314 a @code{depth}; for example, a depth of 2 refers to the backing file
315 of the backing file of @var{filename}.
316 @end itemize
318 In JSON format, the @code{offset} field is optional; it is absent in
319 cases where @code{human} format would omit the entry or exit with an error.
320 If @code{data} is false and the @code{offset} field is present, the
321 corresponding sectors in the file are not yet in use, but they are
322 preallocated.
324 For more information, consult @file{include/block/block.h} in QEMU's
325 source code.
327 @item snapshot [-l | -a @var{snapshot} | -c @var{snapshot} | -d @var{snapshot} ] @var{filename}
329 List, apply, create or delete snapshots in image @var{filename}.
331 @item rebase [-f @var{fmt}] [-t @var{cache}] [-T @var{src_cache}] [-p] [-u] -b @var{backing_file} [-F @var{backing_fmt}] @var{filename}
333 Changes the backing file of an image. Only the formats @code{qcow2} and
334 @code{qed} support changing the backing file.
336 The backing file is changed to @var{backing_file} and (if the image format of
337 @var{filename} supports this) the backing file format is changed to
338 @var{backing_fmt}. If @var{backing_file} is specified as ``'' (the empty
339 string), then the image is rebased onto no backing file (i.e. it will exist
340 independently of any backing file).
342 @var{cache} specifies the cache mode to be used for @var{filename}, whereas
343 @var{src_cache} specifies the cache mode for reading the new backing file.
345 There are two different modes in which @code{rebase} can operate:
346 @table @option
347 @item Safe mode
348 This is the default mode and performs a real rebase operation. The new backing
349 file may differ from the old one and qemu-img rebase will take care of keeping
350 the guest-visible content of @var{filename} unchanged.
352 In order to achieve this, any clusters that differ between @var{backing_file}
353 and the old backing file of @var{filename} are merged into @var{filename}
354 before actually changing the backing file.
356 Note that the safe mode is an expensive operation, comparable to converting
357 an image. It only works if the old backing file still exists.
359 @item Unsafe mode
360 qemu-img uses the unsafe mode if @code{-u} is specified. In this mode, only the
361 backing file name and format of @var{filename} is changed without any checks
362 on the file contents. The user must take care of specifying the correct new
363 backing file, or the guest-visible content of the image will be corrupted.
365 This mode is useful for renaming or moving the backing file to somewhere else.
366 It can be used without an accessible old backing file, i.e. you can use it to
367 fix an image whose backing file has already been moved/renamed.
368 @end table
370 You can use @code{rebase} to perform a ``diff'' operation on two
371 disk images.  This can be useful when you have copied or cloned
372 a guest, and you want to get back to a thin image on top of a
373 template or base image.
375 Say that @code{base.img} has been cloned as @code{modified.img} by
376 copying it, and that the @code{modified.img} guest has run so there
377 are now some changes compared to @code{base.img}.  To construct a thin
378 image called @code{diff.qcow2} that contains just the differences, do:
380 @example
381 qemu-img create -f qcow2 -b modified.img diff.qcow2
382 qemu-img rebase -b base.img diff.qcow2
383 @end example
385 At this point, @code{modified.img} can be discarded, since
386 @code{base.img + diff.qcow2} contains the same information.
388 @item resize @var{filename} [+ | -]@var{size}
390 Change the disk image as if it had been created with @var{size}.
392 Before using this command to shrink a disk image, you MUST use file system and
393 partitioning tools inside the VM to reduce allocated file systems and partition
394 sizes accordingly.  Failure to do so will result in data loss!
396 After using this command to grow a disk image, you must use file system and
397 partitioning tools inside the VM to actually begin using the new space on the
398 device.
400 @item amend [-f @var{fmt}] [-t @var{cache}] -o @var{options} @var{filename}
402 Amends the image format specific @var{options} for the image file
403 @var{filename}. Not all file formats support this operation.
404 @end table
405 @c man end
407 @ignore
408 @c man begin NOTES
409 Supported image file formats:
411 @table @option
412 @item raw
414 Raw disk image format (default). This format has the advantage of
415 being simple and easily exportable to all other emulators. If your
416 file system supports @emph{holes} (for example in ext2 or ext3 on
417 Linux or NTFS on Windows), then only the written sectors will reserve
418 space. Use @code{qemu-img info} to know the real size used by the
419 image or @code{ls -ls} on Unix/Linux.
421 @item qcow2
422 QEMU image format, the most versatile format. Use it to have smaller
423 images (useful if your filesystem does not supports holes, for example
424 on Windows), optional AES encryption, zlib based compression and
425 support of multiple VM snapshots.
427 Supported options:
428 @table @code
429 @item compat
430 Determines the qcow2 version to use. @code{compat=0.10} uses the
431 traditional image format that can be read by any QEMU since 0.10.
432 @code{compat=1.1} enables image format extensions that only QEMU 1.1 and
433 newer understand (this is the default). Amongst others, this includes zero
434 clusters, which allow efficient copy-on-read for sparse images.
436 @item backing_file
437 File name of a base image (see @option{create} subcommand)
438 @item backing_fmt
439 Image format of the base image
440 @item encryption
441 If this option is set to @code{on}, the image is encrypted with 128-bit AES-CBC.
443 The use of encryption in qcow and qcow2 images is considered to be flawed by
444 modern cryptography standards, suffering from a number of design problems:
446 @itemize @minus
447 @item The AES-CBC cipher is used with predictable initialization vectors based
448 on the sector number. This makes it vulnerable to chosen plaintext attacks
449 which can reveal the existence of encrypted data.
450 @item The user passphrase is directly used as the encryption key. A poorly
451 chosen or short passphrase will compromise the security of the encryption.
452 @item In the event of the passphrase being compromised there is no way to
453 change the passphrase to protect data in any qcow images. The files must
454 be cloned, using a different encryption passphrase in the new file. The
455 original file must then be securely erased using a program like shred,
456 though even this is ineffective with many modern storage technologies.
457 @end itemize
459 Use of qcow / qcow2 encryption is thus strongly discouraged. Users are
460 recommended to use an alternative encryption technology such as the
461 Linux dm-crypt / LUKS system.
463 @item cluster_size
464 Changes the qcow2 cluster size (must be between 512 and 2M). Smaller cluster
465 sizes can improve the image file size whereas larger cluster sizes generally
466 provide better performance.
468 @item preallocation
469 Preallocation mode (allowed values: off, metadata). An image with preallocated
470 metadata is initially larger but can improve performance when the image needs
471 to grow.
473 @item lazy_refcounts
474 If this option is set to @code{on}, reference count updates are postponed with
475 the goal of avoiding metadata I/O and improving performance. This is
476 particularly interesting with @option{cache=writethrough} which doesn't batch
477 metadata updates. The tradeoff is that after a host crash, the reference count
478 tables must be rebuilt, i.e. on the next open an (automatic) @code{qemu-img
479 check -r all} is required, which may take some time.
481 This option can only be enabled if @code{compat=1.1} is specified.
483 @item nocow
484 If this option is set to @code{on}, it will turn off COW of the file. It's only
485 valid on btrfs, no effect on other file systems.
487 Btrfs has low performance when hosting a VM image file, even more when the guest
488 on the VM also using btrfs as file system. Turning off COW is a way to mitigate
489 this bad performance. Generally there are two ways to turn off COW on btrfs:
490 a) Disable it by mounting with nodatacow, then all newly created files will be
491 NOCOW. b) For an empty file, add the NOCOW file attribute. That's what this option
492 does.
494 Note: this option is only valid to new or empty files. If there is an existing
495 file which is COW and has data blocks already, it couldn't be changed to NOCOW
496 by setting @code{nocow=on}. One can issue @code{lsattr filename} to check if
497 the NOCOW flag is set or not (Capital 'C' is NOCOW flag).
499 @end table
501 @item Other
502 QEMU also supports various other image file formats for compatibility with
503 older QEMU versions or other hypervisors, including VMDK, VDI, VHD (vpc), VHDX,
504 qcow1 and QED. For a full list of supported formats see @code{qemu-img --help}.
505 For a more detailed description of these formats, see the QEMU Emulation User
506 Documentation.
508 The main purpose of the block drivers for these formats is image conversion.
509 For running VMs, it is recommended to convert the disk images to either raw or
510 qcow2 in order to achieve good performance.
511 @end table
514 @c man end
516 @setfilename qemu-img
517 @settitle QEMU disk image utility
519 @c man begin SEEALSO
520 The HTML documentation of QEMU for more precise information and Linux
521 user mode emulator invocation.
522 @c man end
524 @c man begin AUTHOR
525 Fabrice Bellard
526 @c man end
528 @end ignore