migration: pre_save return int
[qemu.git] / hw / block / onenand.c
blob30e40f39142871ead576e8a46b8eb9e615b0029d
1 /*
2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu/osdep.h"
22 #include "qapi/error.h"
23 #include "qemu-common.h"
24 #include "hw/hw.h"
25 #include "hw/block/flash.h"
26 #include "hw/irq.h"
27 #include "sysemu/block-backend.h"
28 #include "sysemu/blockdev.h"
29 #include "exec/memory.h"
30 #include "exec/address-spaces.h"
31 #include "hw/sysbus.h"
32 #include "qemu/error-report.h"
34 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
35 #define PAGE_SHIFT 11
37 /* Fixed */
38 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
40 #define TYPE_ONE_NAND "onenand"
41 #define ONE_NAND(obj) OBJECT_CHECK(OneNANDState, (obj), TYPE_ONE_NAND)
43 typedef struct OneNANDState {
44 SysBusDevice parent_obj;
46 struct {
47 uint16_t man;
48 uint16_t dev;
49 uint16_t ver;
50 } id;
51 int shift;
52 hwaddr base;
53 qemu_irq intr;
54 qemu_irq rdy;
55 BlockBackend *blk;
56 BlockBackend *blk_cur;
57 uint8_t *image;
58 uint8_t *otp;
59 uint8_t *current;
60 MemoryRegion ram;
61 MemoryRegion mapped_ram;
62 uint8_t current_direction;
63 uint8_t *boot[2];
64 uint8_t *data[2][2];
65 MemoryRegion iomem;
66 MemoryRegion container;
67 int cycle;
68 int otpmode;
70 uint16_t addr[8];
71 uint16_t unladdr[8];
72 int bufaddr;
73 int count;
74 uint16_t command;
75 uint16_t config[2];
76 uint16_t status;
77 uint16_t intstatus;
78 uint16_t wpstatus;
80 ECCState ecc;
82 int density_mask;
83 int secs;
84 int secs_cur;
85 int blocks;
86 uint8_t *blockwp;
87 } OneNANDState;
89 enum {
90 ONEN_BUF_BLOCK = 0,
91 ONEN_BUF_BLOCK2 = 1,
92 ONEN_BUF_DEST_BLOCK = 2,
93 ONEN_BUF_DEST_PAGE = 3,
94 ONEN_BUF_PAGE = 7,
97 enum {
98 ONEN_ERR_CMD = 1 << 10,
99 ONEN_ERR_ERASE = 1 << 11,
100 ONEN_ERR_PROG = 1 << 12,
101 ONEN_ERR_LOAD = 1 << 13,
104 enum {
105 ONEN_INT_RESET = 1 << 4,
106 ONEN_INT_ERASE = 1 << 5,
107 ONEN_INT_PROG = 1 << 6,
108 ONEN_INT_LOAD = 1 << 7,
109 ONEN_INT = 1 << 15,
112 enum {
113 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
114 ONEN_LOCK_LOCKED = 1 << 1,
115 ONEN_LOCK_UNLOCKED = 1 << 2,
118 static void onenand_mem_setup(OneNANDState *s)
120 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
121 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
122 * write boot commands. Also take note of the BWPS bit. */
123 memory_region_init(&s->container, OBJECT(s), "onenand",
124 0x10000 << s->shift);
125 memory_region_add_subregion(&s->container, 0, &s->iomem);
126 memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram",
127 &s->ram, 0x0200 << s->shift,
128 0xbe00 << s->shift);
129 memory_region_add_subregion_overlap(&s->container,
130 0x0200 << s->shift,
131 &s->mapped_ram,
135 static void onenand_intr_update(OneNANDState *s)
137 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
140 static int onenand_pre_save(void *opaque)
142 OneNANDState *s = opaque;
143 if (s->current == s->otp) {
144 s->current_direction = 1;
145 } else if (s->current == s->image) {
146 s->current_direction = 2;
147 } else {
148 s->current_direction = 0;
151 return 0;
154 static int onenand_post_load(void *opaque, int version_id)
156 OneNANDState *s = opaque;
157 switch (s->current_direction) {
158 case 0:
159 break;
160 case 1:
161 s->current = s->otp;
162 break;
163 case 2:
164 s->current = s->image;
165 break;
166 default:
167 return -1;
169 onenand_intr_update(s);
170 return 0;
173 static const VMStateDescription vmstate_onenand = {
174 .name = "onenand",
175 .version_id = 1,
176 .minimum_version_id = 1,
177 .pre_save = onenand_pre_save,
178 .post_load = onenand_post_load,
179 .fields = (VMStateField[]) {
180 VMSTATE_UINT8(current_direction, OneNANDState),
181 VMSTATE_INT32(cycle, OneNANDState),
182 VMSTATE_INT32(otpmode, OneNANDState),
183 VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8),
184 VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8),
185 VMSTATE_INT32(bufaddr, OneNANDState),
186 VMSTATE_INT32(count, OneNANDState),
187 VMSTATE_UINT16(command, OneNANDState),
188 VMSTATE_UINT16_ARRAY(config, OneNANDState, 2),
189 VMSTATE_UINT16(status, OneNANDState),
190 VMSTATE_UINT16(intstatus, OneNANDState),
191 VMSTATE_UINT16(wpstatus, OneNANDState),
192 VMSTATE_INT32(secs_cur, OneNANDState),
193 VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks),
194 VMSTATE_UINT8(ecc.cp, OneNANDState),
195 VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2),
196 VMSTATE_UINT16(ecc.count, OneNANDState),
197 VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0,
198 ((64 + 2) << PAGE_SHIFT)),
199 VMSTATE_END_OF_LIST()
203 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
204 static void onenand_reset(OneNANDState *s, int cold)
206 memset(&s->addr, 0, sizeof(s->addr));
207 s->command = 0;
208 s->count = 1;
209 s->bufaddr = 0;
210 s->config[0] = 0x40c0;
211 s->config[1] = 0x0000;
212 onenand_intr_update(s);
213 qemu_irq_raise(s->rdy);
214 s->status = 0x0000;
215 s->intstatus = cold ? 0x8080 : 0x8010;
216 s->unladdr[0] = 0;
217 s->unladdr[1] = 0;
218 s->wpstatus = 0x0002;
219 s->cycle = 0;
220 s->otpmode = 0;
221 s->blk_cur = s->blk;
222 s->current = s->image;
223 s->secs_cur = s->secs;
225 if (cold) {
226 /* Lock the whole flash */
227 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
229 if (s->blk_cur && blk_pread(s->blk_cur, 0, s->boot[0],
230 8 << BDRV_SECTOR_BITS) < 0) {
231 hw_error("%s: Loading the BootRAM failed.\n", __func__);
236 static void onenand_system_reset(DeviceState *dev)
238 OneNANDState *s = ONE_NAND(dev);
240 onenand_reset(s, 1);
243 static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
244 void *dest)
246 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
247 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
248 if (s->blk_cur) {
249 return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, dest,
250 secn << BDRV_SECTOR_BITS) < 0;
251 } else if (sec + secn > s->secs_cur) {
252 return 1;
255 memcpy(dest, s->current + (sec << 9), secn << 9);
257 return 0;
260 static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
261 void *src)
263 int result = 0;
265 if (secn > 0) {
266 uint32_t size = secn << BDRV_SECTOR_BITS;
267 uint32_t offset = sec << BDRV_SECTOR_BITS;
268 assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec);
269 assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn);
270 const uint8_t *sp = (const uint8_t *)src;
271 uint8_t *dp = 0;
272 if (s->blk_cur) {
273 dp = g_malloc(size);
274 if (!dp || blk_pread(s->blk_cur, offset, dp, size) < 0) {
275 result = 1;
277 } else {
278 if (sec + secn > s->secs_cur) {
279 result = 1;
280 } else {
281 dp = (uint8_t *)s->current + offset;
284 if (!result) {
285 uint32_t i;
286 for (i = 0; i < size; i++) {
287 dp[i] &= sp[i];
289 if (s->blk_cur) {
290 result = blk_pwrite(s->blk_cur, offset, dp, size, 0) < 0;
293 if (dp && s->blk_cur) {
294 g_free(dp);
298 return result;
301 static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
302 void *dest)
304 uint8_t buf[512];
306 if (s->blk_cur) {
307 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
308 if (blk_pread(s->blk_cur, offset, buf, BDRV_SECTOR_SIZE) < 0) {
309 return 1;
311 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
312 } else if (sec + secn > s->secs_cur) {
313 return 1;
314 } else {
315 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
318 return 0;
321 static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
322 void *src)
324 int result = 0;
325 if (secn > 0) {
326 const uint8_t *sp = (const uint8_t *)src;
327 uint8_t *dp = 0, *dpp = 0;
328 uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS;
329 assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5));
330 if (s->blk_cur) {
331 dp = g_malloc(512);
332 if (!dp
333 || blk_pread(s->blk_cur, offset, dp, BDRV_SECTOR_SIZE) < 0) {
334 result = 1;
335 } else {
336 dpp = dp + ((sec & 31) << 4);
338 } else {
339 if (sec + secn > s->secs_cur) {
340 result = 1;
341 } else {
342 dpp = s->current + (s->secs_cur << 9) + (sec << 4);
345 if (!result) {
346 uint32_t i;
347 for (i = 0; i < (secn << 4); i++) {
348 dpp[i] &= sp[i];
350 if (s->blk_cur) {
351 result = blk_pwrite(s->blk_cur, offset, dp,
352 BDRV_SECTOR_SIZE, 0) < 0;
355 g_free(dp);
357 return result;
360 static inline int onenand_erase(OneNANDState *s, int sec, int num)
362 uint8_t *blankbuf, *tmpbuf;
364 blankbuf = g_malloc(512);
365 tmpbuf = g_malloc(512);
366 memset(blankbuf, 0xff, 512);
367 for (; num > 0; num--, sec++) {
368 if (s->blk_cur) {
369 int erasesec = s->secs_cur + (sec >> 5);
370 if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, blankbuf,
371 BDRV_SECTOR_SIZE, 0) < 0) {
372 goto fail;
374 if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
375 BDRV_SECTOR_SIZE) < 0) {
376 goto fail;
378 memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4);
379 if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, tmpbuf,
380 BDRV_SECTOR_SIZE, 0) < 0) {
381 goto fail;
383 } else {
384 if (sec + 1 > s->secs_cur) {
385 goto fail;
387 memcpy(s->current + (sec << 9), blankbuf, 512);
388 memcpy(s->current + (s->secs_cur << 9) + (sec << 4),
389 blankbuf, 1 << 4);
393 g_free(tmpbuf);
394 g_free(blankbuf);
395 return 0;
397 fail:
398 g_free(tmpbuf);
399 g_free(blankbuf);
400 return 1;
403 static void onenand_command(OneNANDState *s)
405 int b;
406 int sec;
407 void *buf;
408 #define SETADDR(block, page) \
409 sec = (s->addr[page] & 3) + \
410 ((((s->addr[page] >> 2) & 0x3f) + \
411 (((s->addr[block] & 0xfff) | \
412 (s->addr[block] >> 15 ? \
413 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
414 #define SETBUF_M() \
415 buf = (s->bufaddr & 8) ? \
416 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
417 buf += (s->bufaddr & 3) << 9;
418 #define SETBUF_S() \
419 buf = (s->bufaddr & 8) ? \
420 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
421 buf += (s->bufaddr & 3) << 4;
423 switch (s->command) {
424 case 0x00: /* Load single/multiple sector data unit into buffer */
425 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
427 SETBUF_M()
428 if (onenand_load_main(s, sec, s->count, buf))
429 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
431 #if 0
432 SETBUF_S()
433 if (onenand_load_spare(s, sec, s->count, buf))
434 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
435 #endif
437 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
438 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
439 * then we need two split the read/write into two chunks.
441 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
442 break;
443 case 0x13: /* Load single/multiple spare sector into buffer */
444 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
446 SETBUF_S()
447 if (onenand_load_spare(s, sec, s->count, buf))
448 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
450 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
451 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
452 * then we need two split the read/write into two chunks.
454 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
455 break;
456 case 0x80: /* Program single/multiple sector data unit from buffer */
457 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
459 SETBUF_M()
460 if (onenand_prog_main(s, sec, s->count, buf))
461 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
463 #if 0
464 SETBUF_S()
465 if (onenand_prog_spare(s, sec, s->count, buf))
466 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
467 #endif
469 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
470 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
471 * then we need two split the read/write into two chunks.
473 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
474 break;
475 case 0x1a: /* Program single/multiple spare area sector from buffer */
476 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
478 SETBUF_S()
479 if (onenand_prog_spare(s, sec, s->count, buf))
480 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
482 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
483 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
484 * then we need two split the read/write into two chunks.
486 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
487 break;
488 case 0x1b: /* Copy-back program */
489 SETBUF_S()
491 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
492 if (onenand_load_main(s, sec, s->count, buf))
493 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
495 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
496 if (onenand_prog_main(s, sec, s->count, buf))
497 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
499 /* TODO: spare areas */
501 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
502 break;
504 case 0x23: /* Unlock NAND array block(s) */
505 s->intstatus |= ONEN_INT;
507 /* XXX the previous (?) area should be locked automatically */
508 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
509 if (b >= s->blocks) {
510 s->status |= ONEN_ERR_CMD;
511 break;
513 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
514 break;
516 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
518 break;
519 case 0x27: /* Unlock All NAND array blocks */
520 s->intstatus |= ONEN_INT;
522 for (b = 0; b < s->blocks; b ++) {
523 if (b >= s->blocks) {
524 s->status |= ONEN_ERR_CMD;
525 break;
527 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
528 break;
530 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
532 break;
534 case 0x2a: /* Lock NAND array block(s) */
535 s->intstatus |= ONEN_INT;
537 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
538 if (b >= s->blocks) {
539 s->status |= ONEN_ERR_CMD;
540 break;
542 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
543 break;
545 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
547 break;
548 case 0x2c: /* Lock-tight NAND array block(s) */
549 s->intstatus |= ONEN_INT;
551 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
552 if (b >= s->blocks) {
553 s->status |= ONEN_ERR_CMD;
554 break;
556 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
557 continue;
559 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
561 break;
563 case 0x71: /* Erase-Verify-Read */
564 s->intstatus |= ONEN_INT;
565 break;
566 case 0x95: /* Multi-block erase */
567 qemu_irq_pulse(s->intr);
568 /* Fall through. */
569 case 0x94: /* Block erase */
570 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
571 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
572 << (BLOCK_SHIFT - 9);
573 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
574 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
576 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
577 break;
578 case 0xb0: /* Erase suspend */
579 break;
580 case 0x30: /* Erase resume */
581 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
582 break;
584 case 0xf0: /* Reset NAND Flash core */
585 onenand_reset(s, 0);
586 break;
587 case 0xf3: /* Reset OneNAND */
588 onenand_reset(s, 0);
589 break;
591 case 0x65: /* OTP Access */
592 s->intstatus |= ONEN_INT;
593 s->blk_cur = NULL;
594 s->current = s->otp;
595 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
596 s->addr[ONEN_BUF_BLOCK] = 0;
597 s->otpmode = 1;
598 break;
600 default:
601 s->status |= ONEN_ERR_CMD;
602 s->intstatus |= ONEN_INT;
603 fprintf(stderr, "%s: unknown OneNAND command %x\n",
604 __func__, s->command);
607 onenand_intr_update(s);
610 static uint64_t onenand_read(void *opaque, hwaddr addr,
611 unsigned size)
613 OneNANDState *s = (OneNANDState *) opaque;
614 int offset = addr >> s->shift;
616 switch (offset) {
617 case 0x0000 ... 0xc000:
618 return lduw_le_p(s->boot[0] + addr);
620 case 0xf000: /* Manufacturer ID */
621 return s->id.man;
622 case 0xf001: /* Device ID */
623 return s->id.dev;
624 case 0xf002: /* Version ID */
625 return s->id.ver;
626 /* TODO: get the following values from a real chip! */
627 case 0xf003: /* Data Buffer size */
628 return 1 << PAGE_SHIFT;
629 case 0xf004: /* Boot Buffer size */
630 return 0x200;
631 case 0xf005: /* Amount of buffers */
632 return 1 | (2 << 8);
633 case 0xf006: /* Technology */
634 return 0;
636 case 0xf100 ... 0xf107: /* Start addresses */
637 return s->addr[offset - 0xf100];
639 case 0xf200: /* Start buffer */
640 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
642 case 0xf220: /* Command */
643 return s->command;
644 case 0xf221: /* System Configuration 1 */
645 return s->config[0] & 0xffe0;
646 case 0xf222: /* System Configuration 2 */
647 return s->config[1];
649 case 0xf240: /* Controller Status */
650 return s->status;
651 case 0xf241: /* Interrupt */
652 return s->intstatus;
653 case 0xf24c: /* Unlock Start Block Address */
654 return s->unladdr[0];
655 case 0xf24d: /* Unlock End Block Address */
656 return s->unladdr[1];
657 case 0xf24e: /* Write Protection Status */
658 return s->wpstatus;
660 case 0xff00: /* ECC Status */
661 return 0x00;
662 case 0xff01: /* ECC Result of main area data */
663 case 0xff02: /* ECC Result of spare area data */
664 case 0xff03: /* ECC Result of main area data */
665 case 0xff04: /* ECC Result of spare area data */
666 hw_error("%s: imeplement ECC\n", __FUNCTION__);
667 return 0x0000;
670 fprintf(stderr, "%s: unknown OneNAND register %x\n",
671 __FUNCTION__, offset);
672 return 0;
675 static void onenand_write(void *opaque, hwaddr addr,
676 uint64_t value, unsigned size)
678 OneNANDState *s = (OneNANDState *) opaque;
679 int offset = addr >> s->shift;
680 int sec;
682 switch (offset) {
683 case 0x0000 ... 0x01ff:
684 case 0x8000 ... 0x800f:
685 if (s->cycle) {
686 s->cycle = 0;
688 if (value == 0x0000) {
689 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
690 onenand_load_main(s, sec,
691 1 << (PAGE_SHIFT - 9), s->data[0][0]);
692 s->addr[ONEN_BUF_PAGE] += 4;
693 s->addr[ONEN_BUF_PAGE] &= 0xff;
695 break;
698 switch (value) {
699 case 0x00f0: /* Reset OneNAND */
700 onenand_reset(s, 0);
701 break;
703 case 0x00e0: /* Load Data into Buffer */
704 s->cycle = 1;
705 break;
707 case 0x0090: /* Read Identification Data */
708 memset(s->boot[0], 0, 3 << s->shift);
709 s->boot[0][0 << s->shift] = s->id.man & 0xff;
710 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
711 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
712 break;
714 default:
715 fprintf(stderr, "%s: unknown OneNAND boot command %"PRIx64"\n",
716 __FUNCTION__, value);
718 break;
720 case 0xf100 ... 0xf107: /* Start addresses */
721 s->addr[offset - 0xf100] = value;
722 break;
724 case 0xf200: /* Start buffer */
725 s->bufaddr = (value >> 8) & 0xf;
726 if (PAGE_SHIFT == 11)
727 s->count = (value & 3) ?: 4;
728 else if (PAGE_SHIFT == 10)
729 s->count = (value & 1) ?: 2;
730 break;
732 case 0xf220: /* Command */
733 if (s->intstatus & (1 << 15))
734 break;
735 s->command = value;
736 onenand_command(s);
737 break;
738 case 0xf221: /* System Configuration 1 */
739 s->config[0] = value;
740 onenand_intr_update(s);
741 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
742 break;
743 case 0xf222: /* System Configuration 2 */
744 s->config[1] = value;
745 break;
747 case 0xf241: /* Interrupt */
748 s->intstatus &= value;
749 if ((1 << 15) & ~s->intstatus)
750 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
751 ONEN_ERR_PROG | ONEN_ERR_LOAD);
752 onenand_intr_update(s);
753 break;
754 case 0xf24c: /* Unlock Start Block Address */
755 s->unladdr[0] = value & (s->blocks - 1);
756 /* For some reason we have to set the end address to by default
757 * be same as start because the software forgets to write anything
758 * in there. */
759 s->unladdr[1] = value & (s->blocks - 1);
760 break;
761 case 0xf24d: /* Unlock End Block Address */
762 s->unladdr[1] = value & (s->blocks - 1);
763 break;
765 default:
766 fprintf(stderr, "%s: unknown OneNAND register %x\n",
767 __FUNCTION__, offset);
771 static const MemoryRegionOps onenand_ops = {
772 .read = onenand_read,
773 .write = onenand_write,
774 .endianness = DEVICE_NATIVE_ENDIAN,
777 static int onenand_initfn(SysBusDevice *sbd)
779 DeviceState *dev = DEVICE(sbd);
780 OneNANDState *s = ONE_NAND(dev);
781 uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7));
782 void *ram;
783 Error *local_err = NULL;
785 s->base = (hwaddr)-1;
786 s->rdy = NULL;
787 s->blocks = size >> BLOCK_SHIFT;
788 s->secs = size >> 9;
789 s->blockwp = g_malloc(s->blocks);
790 s->density_mask = (s->id.dev & 0x08)
791 ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0;
792 memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand",
793 0x10000 << s->shift);
794 if (!s->blk) {
795 s->image = memset(g_malloc(size + (size >> 5)),
796 0xff, size + (size >> 5));
797 } else {
798 if (blk_is_read_only(s->blk)) {
799 error_report("Can't use a read-only drive");
800 return -1;
802 blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE,
803 BLK_PERM_ALL, &local_err);
804 if (local_err) {
805 error_report_err(local_err);
806 return -1;
808 s->blk_cur = s->blk;
810 s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT),
811 0xff, (64 + 2) << PAGE_SHIFT);
812 memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram",
813 0xc000 << s->shift, &error_fatal);
814 vmstate_register_ram_global(&s->ram);
815 ram = memory_region_get_ram_ptr(&s->ram);
816 s->boot[0] = ram + (0x0000 << s->shift);
817 s->boot[1] = ram + (0x8000 << s->shift);
818 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
819 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
820 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
821 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
822 onenand_mem_setup(s);
823 sysbus_init_irq(sbd, &s->intr);
824 sysbus_init_mmio(sbd, &s->container);
825 vmstate_register(dev,
826 ((s->shift & 0x7f) << 24)
827 | ((s->id.man & 0xff) << 16)
828 | ((s->id.dev & 0xff) << 8)
829 | (s->id.ver & 0xff),
830 &vmstate_onenand, s);
831 return 0;
834 static Property onenand_properties[] = {
835 DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0),
836 DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0),
837 DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0),
838 DEFINE_PROP_INT32("shift", OneNANDState, shift, 0),
839 DEFINE_PROP_DRIVE("drive", OneNANDState, blk),
840 DEFINE_PROP_END_OF_LIST(),
843 static void onenand_class_init(ObjectClass *klass, void *data)
845 DeviceClass *dc = DEVICE_CLASS(klass);
846 SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
848 k->init = onenand_initfn;
849 dc->reset = onenand_system_reset;
850 dc->props = onenand_properties;
853 static const TypeInfo onenand_info = {
854 .name = TYPE_ONE_NAND,
855 .parent = TYPE_SYS_BUS_DEVICE,
856 .instance_size = sizeof(OneNANDState),
857 .class_init = onenand_class_init,
860 static void onenand_register_types(void)
862 type_register_static(&onenand_info);
865 void *onenand_raw_otp(DeviceState *onenand_device)
867 OneNANDState *s = ONE_NAND(onenand_device);
869 return s->otp;
872 type_init(onenand_register_types)