2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "sysemu/kvm.h"
22 #include "internals.h"
25 static int read_sys_reg32(int fd
, uint32_t *pret
, uint64_t id
)
27 struct kvm_one_reg idreg
= { .id
= id
, .addr
= (uintptr_t)pret
};
29 assert((id
& KVM_REG_SIZE_MASK
) == KVM_REG_SIZE_U32
);
30 return ioctl(fd
, KVM_GET_ONE_REG
, &idreg
);
33 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures
*ahcf
)
35 /* Identify the feature bits corresponding to the host CPU, and
36 * fill out the ARMHostCPUClass fields accordingly. To do this
37 * we have to create a scratch VM, create a single CPU inside it,
38 * and then query that CPU for the relevant ID registers.
40 int err
= 0, fdarray
[3];
41 uint32_t midr
, id_pfr0
;
42 uint64_t features
= 0;
44 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
45 * we know these will only support creating one kind of guest CPU,
46 * which is its preferred CPU type.
48 static const uint32_t cpus_to_try
[] = {
49 QEMU_KVM_ARM_TARGET_CORTEX_A15
,
50 QEMU_KVM_ARM_TARGET_NONE
53 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
54 * to use the preferred target
56 struct kvm_vcpu_init init
= { .target
= -1, };
58 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try
, fdarray
, &init
)) {
62 ahcf
->target
= init
.target
;
64 /* This is not strictly blessed by the device tree binding docs yet,
65 * but in practice the kernel does not care about this string so
66 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
68 ahcf
->dtb_compatible
= "arm,arm-v7";
70 err
|= read_sys_reg32(fdarray
[2], &midr
, ARM_CP15_REG32(0, 0, 0, 0));
71 err
|= read_sys_reg32(fdarray
[2], &id_pfr0
, ARM_CP15_REG32(0, 0, 1, 0));
73 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar0
,
74 ARM_CP15_REG32(0, 0, 2, 0));
75 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar1
,
76 ARM_CP15_REG32(0, 0, 2, 1));
77 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar2
,
78 ARM_CP15_REG32(0, 0, 2, 2));
79 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar3
,
80 ARM_CP15_REG32(0, 0, 2, 3));
81 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar4
,
82 ARM_CP15_REG32(0, 0, 2, 4));
83 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar5
,
84 ARM_CP15_REG32(0, 0, 2, 5));
85 if (read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_isar6
,
86 ARM_CP15_REG32(0, 0, 2, 7))) {
88 * Older kernels don't support reading ID_ISAR6. This register was
89 * only introduced in ARMv8, so we can assume that it is zero on a
90 * CPU that a kernel this old is running on.
92 ahcf
->isar
.id_isar6
= 0;
95 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_dfr0
,
96 ARM_CP15_REG32(0, 0, 1, 2));
98 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr0
,
99 KVM_REG_ARM
| KVM_REG_SIZE_U32
|
100 KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR0
);
101 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.mvfr1
,
102 KVM_REG_ARM
| KVM_REG_SIZE_U32
|
103 KVM_REG_ARM_VFP
| KVM_REG_ARM_VFP_MVFR1
);
105 * FIXME: There is not yet a way to read MVFR2.
106 * Fortunately there is not yet anything in there that affects migration.
109 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr0
,
110 ARM_CP15_REG32(0, 0, 1, 4));
111 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr1
,
112 ARM_CP15_REG32(0, 0, 1, 5));
113 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr2
,
114 ARM_CP15_REG32(0, 0, 1, 6));
115 err
|= read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr3
,
116 ARM_CP15_REG32(0, 0, 1, 7));
117 if (read_sys_reg32(fdarray
[2], &ahcf
->isar
.id_mmfr4
,
118 ARM_CP15_REG32(0, 0, 2, 6))) {
120 * Older kernels don't support reading ID_MMFR4 (a new in v8
121 * register); assume it's zero.
123 ahcf
->isar
.id_mmfr4
= 0;
127 * There is no way to read DBGDIDR, because currently 32-bit KVM
128 * doesn't implement debug at all. Leave it at zero.
131 kvm_arm_destroy_scratch_host_vcpu(fdarray
);
137 /* Now we've retrieved all the register information we can
138 * set the feature bits based on the ID register fields.
139 * We can assume any KVM supporting CPU is at least a v7
140 * with VFPv3, virtualization extensions, and the generic
141 * timers; this in turn implies most of the other feature
142 * bits, but a few must be tested.
144 features
|= 1ULL << ARM_FEATURE_V7VE
;
145 features
|= 1ULL << ARM_FEATURE_GENERIC_TIMER
;
147 if (extract32(id_pfr0
, 12, 4) == 1) {
148 features
|= 1ULL << ARM_FEATURE_THUMB2EE
;
150 if (extract32(ahcf
->isar
.mvfr1
, 12, 4) == 1) {
151 features
|= 1ULL << ARM_FEATURE_NEON
;
154 ahcf
->features
= features
;
159 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx
)
161 /* Return true if the regidx is a register we should synchronize
162 * via the cpreg_tuples array (ie is not a core reg we sync by
163 * hand in kvm_arch_get/put_registers())
165 switch (regidx
& KVM_REG_ARM_COPROC_MASK
) {
166 case KVM_REG_ARM_CORE
:
167 case KVM_REG_ARM_VFP
:
174 typedef struct CPRegStateLevel
{
179 /* All coprocessor registers not listed in the following table are assumed to
180 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
181 * often, you must add it to this table with a state of either
182 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
184 static const CPRegStateLevel non_runtime_cpregs
[] = {
185 { KVM_REG_ARM_TIMER_CNT
, KVM_PUT_FULL_STATE
},
188 int kvm_arm_cpreg_level(uint64_t regidx
)
192 for (i
= 0; i
< ARRAY_SIZE(non_runtime_cpregs
); i
++) {
193 const CPRegStateLevel
*l
= &non_runtime_cpregs
[i
];
194 if (l
->regidx
== regidx
) {
199 return KVM_PUT_RUNTIME_STATE
;
202 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
204 int kvm_arch_init_vcpu(CPUState
*cs
)
209 struct kvm_one_reg r
;
210 ARMCPU
*cpu
= ARM_CPU(cs
);
212 if (cpu
->kvm_target
== QEMU_KVM_ARM_TARGET_NONE
) {
213 fprintf(stderr
, "KVM is not supported for this guest CPU type\n");
217 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change
, cs
);
219 /* Determine init features for this CPU */
220 memset(cpu
->kvm_init_features
, 0, sizeof(cpu
->kvm_init_features
));
221 if (cpu
->start_powered_off
) {
222 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_POWER_OFF
;
224 if (kvm_check_extension(cs
->kvm_state
, KVM_CAP_ARM_PSCI_0_2
)) {
225 cpu
->psci_version
= 2;
226 cpu
->kvm_init_features
[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2
;
229 /* Do KVM_ARM_VCPU_INIT ioctl */
230 ret
= kvm_arm_vcpu_init(cs
);
235 /* Query the kernel to make sure it supports 32 VFP
236 * registers: QEMU's "cortex-a15" CPU is always a
237 * VFP-D32 core. The simplest way to do this is just
238 * to attempt to read register d31.
240 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
| 31;
241 r
.addr
= (uintptr_t)(&v
);
242 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
243 if (ret
== -ENOENT
) {
248 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
249 * Currently KVM has its own idea about MPIDR assignment, so we
250 * override our defaults with what we get from KVM.
252 ret
= kvm_get_one_reg(cs
, ARM_CP15_REG32(ARM_CPU_ID_MPIDR
), &mpidr
);
256 cpu
->mp_affinity
= mpidr
& ARM32_AFFINITY_MASK
;
258 /* Check whether userspace can specify guest syndrome value */
259 kvm_arm_init_serror_injection(cs
);
261 return kvm_arm_init_cpreg_list(cpu
);
264 int kvm_arch_destroy_vcpu(CPUState
*cs
)
274 #define COREREG(KERNELNAME, QEMUFIELD) \
276 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
277 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
278 offsetof(CPUARMState, QEMUFIELD) \
281 #define VFPSYSREG(R) \
283 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
284 KVM_REG_ARM_VFP_##R, \
285 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
288 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
289 #define COREREG64(KERNELNAME, QEMUFIELD) \
291 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
292 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
293 offsetoflow32(CPUARMState, QEMUFIELD) \
296 static const Reg regs
[] = {
297 /* R0_usr .. R14_usr */
298 COREREG(usr_regs
.uregs
[0], regs
[0]),
299 COREREG(usr_regs
.uregs
[1], regs
[1]),
300 COREREG(usr_regs
.uregs
[2], regs
[2]),
301 COREREG(usr_regs
.uregs
[3], regs
[3]),
302 COREREG(usr_regs
.uregs
[4], regs
[4]),
303 COREREG(usr_regs
.uregs
[5], regs
[5]),
304 COREREG(usr_regs
.uregs
[6], regs
[6]),
305 COREREG(usr_regs
.uregs
[7], regs
[7]),
306 COREREG(usr_regs
.uregs
[8], usr_regs
[0]),
307 COREREG(usr_regs
.uregs
[9], usr_regs
[1]),
308 COREREG(usr_regs
.uregs
[10], usr_regs
[2]),
309 COREREG(usr_regs
.uregs
[11], usr_regs
[3]),
310 COREREG(usr_regs
.uregs
[12], usr_regs
[4]),
311 COREREG(usr_regs
.uregs
[13], banked_r13
[BANK_USRSYS
]),
312 COREREG(usr_regs
.uregs
[14], banked_r14
[BANK_USRSYS
]),
313 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
314 COREREG(svc_regs
[0], banked_r13
[BANK_SVC
]),
315 COREREG(svc_regs
[1], banked_r14
[BANK_SVC
]),
316 COREREG64(svc_regs
[2], banked_spsr
[BANK_SVC
]),
317 COREREG(abt_regs
[0], banked_r13
[BANK_ABT
]),
318 COREREG(abt_regs
[1], banked_r14
[BANK_ABT
]),
319 COREREG64(abt_regs
[2], banked_spsr
[BANK_ABT
]),
320 COREREG(und_regs
[0], banked_r13
[BANK_UND
]),
321 COREREG(und_regs
[1], banked_r14
[BANK_UND
]),
322 COREREG64(und_regs
[2], banked_spsr
[BANK_UND
]),
323 COREREG(irq_regs
[0], banked_r13
[BANK_IRQ
]),
324 COREREG(irq_regs
[1], banked_r14
[BANK_IRQ
]),
325 COREREG64(irq_regs
[2], banked_spsr
[BANK_IRQ
]),
326 /* R8_fiq .. R14_fiq and SPSR_fiq */
327 COREREG(fiq_regs
[0], fiq_regs
[0]),
328 COREREG(fiq_regs
[1], fiq_regs
[1]),
329 COREREG(fiq_regs
[2], fiq_regs
[2]),
330 COREREG(fiq_regs
[3], fiq_regs
[3]),
331 COREREG(fiq_regs
[4], fiq_regs
[4]),
332 COREREG(fiq_regs
[5], banked_r13
[BANK_FIQ
]),
333 COREREG(fiq_regs
[6], banked_r14
[BANK_FIQ
]),
334 COREREG64(fiq_regs
[7], banked_spsr
[BANK_FIQ
]),
336 COREREG(usr_regs
.uregs
[15], regs
[15]),
337 /* VFP system registers */
346 int kvm_arch_put_registers(CPUState
*cs
, int level
)
348 ARMCPU
*cpu
= ARM_CPU(cs
);
349 CPUARMState
*env
= &cpu
->env
;
350 struct kvm_one_reg r
;
353 uint32_t cpsr
, fpscr
;
355 /* Make sure the banked regs are properly set */
356 mode
= env
->uncached_cpsr
& CPSR_M
;
357 bn
= bank_number(mode
);
358 if (mode
== ARM_CPU_MODE_FIQ
) {
359 memcpy(env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
361 memcpy(env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
363 env
->banked_r13
[bn
] = env
->regs
[13];
364 env
->banked_spsr
[bn
] = env
->spsr
;
365 env
->banked_r14
[r14_bank_number(mode
)] = env
->regs
[14];
367 /* Now we can safely copy stuff down to the kernel */
368 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
370 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
371 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
377 /* Special cases which aren't a single CPUARMState field */
378 cpsr
= cpsr_read(env
);
379 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
380 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
381 r
.addr
= (uintptr_t)(&cpsr
);
382 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
388 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
389 for (i
= 0; i
< 32; i
++) {
390 r
.addr
= (uintptr_t)aa32_vfp_dreg(env
, i
);
391 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
398 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
399 KVM_REG_ARM_VFP_FPSCR
;
400 fpscr
= vfp_get_fpscr(env
);
401 r
.addr
= (uintptr_t)&fpscr
;
402 ret
= kvm_vcpu_ioctl(cs
, KVM_SET_ONE_REG
, &r
);
407 write_cpustate_to_list(cpu
, true);
409 if (!write_list_to_kvmstate(cpu
, level
)) {
414 * Setting VCPU events should be triggered after syncing the registers
415 * to avoid overwriting potential changes made by KVM upon calling
416 * KVM_SET_VCPU_EVENTS ioctl
418 ret
= kvm_put_vcpu_events(cpu
);
423 kvm_arm_sync_mpstate_to_kvm(cpu
);
428 int kvm_arch_get_registers(CPUState
*cs
)
430 ARMCPU
*cpu
= ARM_CPU(cs
);
431 CPUARMState
*env
= &cpu
->env
;
432 struct kvm_one_reg r
;
435 uint32_t cpsr
, fpscr
;
437 for (i
= 0; i
< ARRAY_SIZE(regs
); i
++) {
439 r
.addr
= (uintptr_t)(env
) + regs
[i
].offset
;
440 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
446 /* Special cases which aren't a single CPUARMState field */
447 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
|
448 KVM_REG_ARM_CORE
| KVM_REG_ARM_CORE_REG(usr_regs
.ARM_cpsr
);
449 r
.addr
= (uintptr_t)(&cpsr
);
450 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
454 cpsr_write(env
, cpsr
, 0xffffffff, CPSRWriteRaw
);
456 /* Make sure the current mode regs are properly set */
457 mode
= env
->uncached_cpsr
& CPSR_M
;
458 bn
= bank_number(mode
);
459 if (mode
== ARM_CPU_MODE_FIQ
) {
460 memcpy(env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
462 memcpy(env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
464 env
->regs
[13] = env
->banked_r13
[bn
];
465 env
->spsr
= env
->banked_spsr
[bn
];
466 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
469 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
470 for (i
= 0; i
< 32; i
++) {
471 r
.addr
= (uintptr_t)aa32_vfp_dreg(env
, i
);
472 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
479 r
.id
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
|
480 KVM_REG_ARM_VFP_FPSCR
;
481 r
.addr
= (uintptr_t)&fpscr
;
482 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_ONE_REG
, &r
);
486 vfp_set_fpscr(env
, fpscr
);
488 ret
= kvm_get_vcpu_events(cpu
);
493 if (!write_kvmstate_to_list(cpu
)) {
496 /* Note that it's OK to have registers which aren't in CPUState,
497 * so we can ignore a failure return here.
499 write_list_to_cpustate(cpu
);
501 kvm_arm_sync_mpstate_to_qemu(cpu
);
506 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
508 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
512 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
514 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
518 bool kvm_arm_handle_debug(CPUState
*cs
, struct kvm_debug_exit_arch
*debug_exit
)
520 qemu_log_mask(LOG_UNIMP
, "%s: guest debug not yet implemented\n", __func__
);
524 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
525 target_ulong len
, int type
)
527 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
531 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
532 target_ulong len
, int type
)
534 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
538 void kvm_arch_remove_all_hw_breakpoints(void)
540 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
543 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch
*ptr
)
545 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
548 bool kvm_arm_hw_debug_active(CPUState
*cs
)
553 void kvm_arm_pmu_set_irq(CPUState
*cs
, int irq
)
555 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);
558 void kvm_arm_pmu_init(CPUState
*cs
)
560 qemu_log_mask(LOG_UNIMP
, "%s: not implemented\n", __func__
);