target/arm: Implement the GMI instruction
[qemu.git] / target / arm / kvm32.c
blob7b3a19e9aef16b661d08097a1b37d6331ceee10b
1 /*
2 * ARM implementation of KVM hooks, 32 bit specific code.
4 * Copyright Christoffer Dall 2009-2010
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
9 */
11 #include "qemu/osdep.h"
12 #include <sys/ioctl.h>
14 #include <linux/kvm.h>
16 #include "qemu-common.h"
17 #include "cpu.h"
18 #include "qemu/timer.h"
19 #include "sysemu/runstate.h"
20 #include "sysemu/kvm.h"
21 #include "kvm_arm.h"
22 #include "internals.h"
23 #include "qemu/log.h"
25 static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
27 struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
29 assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32);
30 return ioctl(fd, KVM_GET_ONE_REG, &idreg);
33 bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
35 /* Identify the feature bits corresponding to the host CPU, and
36 * fill out the ARMHostCPUClass fields accordingly. To do this
37 * we have to create a scratch VM, create a single CPU inside it,
38 * and then query that CPU for the relevant ID registers.
40 int err = 0, fdarray[3];
41 uint32_t midr, id_pfr0;
42 uint64_t features = 0;
44 /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
45 * we know these will only support creating one kind of guest CPU,
46 * which is its preferred CPU type.
48 static const uint32_t cpus_to_try[] = {
49 QEMU_KVM_ARM_TARGET_CORTEX_A15,
50 QEMU_KVM_ARM_TARGET_NONE
53 * target = -1 informs kvm_arm_create_scratch_host_vcpu()
54 * to use the preferred target
56 struct kvm_vcpu_init init = { .target = -1, };
58 if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
59 return false;
62 ahcf->target = init.target;
64 /* This is not strictly blessed by the device tree binding docs yet,
65 * but in practice the kernel does not care about this string so
66 * there is no point maintaining an KVM_ARM_TARGET_* -> string table.
68 ahcf->dtb_compatible = "arm,arm-v7";
70 err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0));
71 err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0));
73 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
74 ARM_CP15_REG32(0, 0, 2, 0));
75 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
76 ARM_CP15_REG32(0, 0, 2, 1));
77 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
78 ARM_CP15_REG32(0, 0, 2, 2));
79 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
80 ARM_CP15_REG32(0, 0, 2, 3));
81 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
82 ARM_CP15_REG32(0, 0, 2, 4));
83 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
84 ARM_CP15_REG32(0, 0, 2, 5));
85 if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
86 ARM_CP15_REG32(0, 0, 2, 7))) {
88 * Older kernels don't support reading ID_ISAR6. This register was
89 * only introduced in ARMv8, so we can assume that it is zero on a
90 * CPU that a kernel this old is running on.
92 ahcf->isar.id_isar6 = 0;
95 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
96 ARM_CP15_REG32(0, 0, 1, 2));
98 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
99 KVM_REG_ARM | KVM_REG_SIZE_U32 |
100 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0);
101 err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
102 KVM_REG_ARM | KVM_REG_SIZE_U32 |
103 KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1);
105 * FIXME: There is not yet a way to read MVFR2.
106 * Fortunately there is not yet anything in there that affects migration.
109 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
110 ARM_CP15_REG32(0, 0, 1, 4));
111 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
112 ARM_CP15_REG32(0, 0, 1, 5));
113 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
114 ARM_CP15_REG32(0, 0, 1, 6));
115 err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
116 ARM_CP15_REG32(0, 0, 1, 7));
117 if (read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
118 ARM_CP15_REG32(0, 0, 2, 6))) {
120 * Older kernels don't support reading ID_MMFR4 (a new in v8
121 * register); assume it's zero.
123 ahcf->isar.id_mmfr4 = 0;
127 * There is no way to read DBGDIDR, because currently 32-bit KVM
128 * doesn't implement debug at all. Leave it at zero.
131 kvm_arm_destroy_scratch_host_vcpu(fdarray);
133 if (err < 0) {
134 return false;
137 /* Now we've retrieved all the register information we can
138 * set the feature bits based on the ID register fields.
139 * We can assume any KVM supporting CPU is at least a v7
140 * with VFPv3, virtualization extensions, and the generic
141 * timers; this in turn implies most of the other feature
142 * bits, but a few must be tested.
144 features |= 1ULL << ARM_FEATURE_V7VE;
145 features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
147 if (extract32(id_pfr0, 12, 4) == 1) {
148 features |= 1ULL << ARM_FEATURE_THUMB2EE;
150 if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) {
151 features |= 1ULL << ARM_FEATURE_NEON;
154 ahcf->features = features;
156 return true;
159 bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
161 /* Return true if the regidx is a register we should synchronize
162 * via the cpreg_tuples array (ie is not a core reg we sync by
163 * hand in kvm_arch_get/put_registers())
165 switch (regidx & KVM_REG_ARM_COPROC_MASK) {
166 case KVM_REG_ARM_CORE:
167 case KVM_REG_ARM_VFP:
168 return false;
169 default:
170 return true;
174 typedef struct CPRegStateLevel {
175 uint64_t regidx;
176 int level;
177 } CPRegStateLevel;
179 /* All coprocessor registers not listed in the following table are assumed to
180 * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
181 * often, you must add it to this table with a state of either
182 * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
184 static const CPRegStateLevel non_runtime_cpregs[] = {
185 { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
188 int kvm_arm_cpreg_level(uint64_t regidx)
190 int i;
192 for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
193 const CPRegStateLevel *l = &non_runtime_cpregs[i];
194 if (l->regidx == regidx) {
195 return l->level;
199 return KVM_PUT_RUNTIME_STATE;
202 #define ARM_CPU_ID_MPIDR 0, 0, 0, 5
204 int kvm_arch_init_vcpu(CPUState *cs)
206 int ret;
207 uint64_t v;
208 uint32_t mpidr;
209 struct kvm_one_reg r;
210 ARMCPU *cpu = ARM_CPU(cs);
212 if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
213 fprintf(stderr, "KVM is not supported for this guest CPU type\n");
214 return -EINVAL;
217 qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
219 /* Determine init features for this CPU */
220 memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
221 if (cpu->start_powered_off) {
222 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
224 if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
225 cpu->psci_version = 2;
226 cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
229 /* Do KVM_ARM_VCPU_INIT ioctl */
230 ret = kvm_arm_vcpu_init(cs);
231 if (ret) {
232 return ret;
235 /* Query the kernel to make sure it supports 32 VFP
236 * registers: QEMU's "cortex-a15" CPU is always a
237 * VFP-D32 core. The simplest way to do this is just
238 * to attempt to read register d31.
240 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
241 r.addr = (uintptr_t)(&v);
242 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
243 if (ret == -ENOENT) {
244 return -EINVAL;
248 * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
249 * Currently KVM has its own idea about MPIDR assignment, so we
250 * override our defaults with what we get from KVM.
252 ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
253 if (ret) {
254 return ret;
256 cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
258 /* Check whether userspace can specify guest syndrome value */
259 kvm_arm_init_serror_injection(cs);
261 return kvm_arm_init_cpreg_list(cpu);
264 int kvm_arch_destroy_vcpu(CPUState *cs)
266 return 0;
269 typedef struct Reg {
270 uint64_t id;
271 int offset;
272 } Reg;
274 #define COREREG(KERNELNAME, QEMUFIELD) \
276 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
277 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
278 offsetof(CPUARMState, QEMUFIELD) \
281 #define VFPSYSREG(R) \
283 KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
284 KVM_REG_ARM_VFP_##R, \
285 offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
288 /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
289 #define COREREG64(KERNELNAME, QEMUFIELD) \
291 KVM_REG_ARM | KVM_REG_SIZE_U32 | \
292 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
293 offsetoflow32(CPUARMState, QEMUFIELD) \
296 static const Reg regs[] = {
297 /* R0_usr .. R14_usr */
298 COREREG(usr_regs.uregs[0], regs[0]),
299 COREREG(usr_regs.uregs[1], regs[1]),
300 COREREG(usr_regs.uregs[2], regs[2]),
301 COREREG(usr_regs.uregs[3], regs[3]),
302 COREREG(usr_regs.uregs[4], regs[4]),
303 COREREG(usr_regs.uregs[5], regs[5]),
304 COREREG(usr_regs.uregs[6], regs[6]),
305 COREREG(usr_regs.uregs[7], regs[7]),
306 COREREG(usr_regs.uregs[8], usr_regs[0]),
307 COREREG(usr_regs.uregs[9], usr_regs[1]),
308 COREREG(usr_regs.uregs[10], usr_regs[2]),
309 COREREG(usr_regs.uregs[11], usr_regs[3]),
310 COREREG(usr_regs.uregs[12], usr_regs[4]),
311 COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
312 COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
313 /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
314 COREREG(svc_regs[0], banked_r13[BANK_SVC]),
315 COREREG(svc_regs[1], banked_r14[BANK_SVC]),
316 COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
317 COREREG(abt_regs[0], banked_r13[BANK_ABT]),
318 COREREG(abt_regs[1], banked_r14[BANK_ABT]),
319 COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
320 COREREG(und_regs[0], banked_r13[BANK_UND]),
321 COREREG(und_regs[1], banked_r14[BANK_UND]),
322 COREREG64(und_regs[2], banked_spsr[BANK_UND]),
323 COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
324 COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
325 COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
326 /* R8_fiq .. R14_fiq and SPSR_fiq */
327 COREREG(fiq_regs[0], fiq_regs[0]),
328 COREREG(fiq_regs[1], fiq_regs[1]),
329 COREREG(fiq_regs[2], fiq_regs[2]),
330 COREREG(fiq_regs[3], fiq_regs[3]),
331 COREREG(fiq_regs[4], fiq_regs[4]),
332 COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
333 COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
334 COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
335 /* R15 */
336 COREREG(usr_regs.uregs[15], regs[15]),
337 /* VFP system registers */
338 VFPSYSREG(FPSID),
339 VFPSYSREG(MVFR1),
340 VFPSYSREG(MVFR0),
341 VFPSYSREG(FPEXC),
342 VFPSYSREG(FPINST),
343 VFPSYSREG(FPINST2),
346 int kvm_arch_put_registers(CPUState *cs, int level)
348 ARMCPU *cpu = ARM_CPU(cs);
349 CPUARMState *env = &cpu->env;
350 struct kvm_one_reg r;
351 int mode, bn;
352 int ret, i;
353 uint32_t cpsr, fpscr;
355 /* Make sure the banked regs are properly set */
356 mode = env->uncached_cpsr & CPSR_M;
357 bn = bank_number(mode);
358 if (mode == ARM_CPU_MODE_FIQ) {
359 memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
360 } else {
361 memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
363 env->banked_r13[bn] = env->regs[13];
364 env->banked_spsr[bn] = env->spsr;
365 env->banked_r14[r14_bank_number(mode)] = env->regs[14];
367 /* Now we can safely copy stuff down to the kernel */
368 for (i = 0; i < ARRAY_SIZE(regs); i++) {
369 r.id = regs[i].id;
370 r.addr = (uintptr_t)(env) + regs[i].offset;
371 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
372 if (ret) {
373 return ret;
377 /* Special cases which aren't a single CPUARMState field */
378 cpsr = cpsr_read(env);
379 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
380 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
381 r.addr = (uintptr_t)(&cpsr);
382 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
383 if (ret) {
384 return ret;
387 /* VFP registers */
388 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
389 for (i = 0; i < 32; i++) {
390 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
391 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
392 if (ret) {
393 return ret;
395 r.id++;
398 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
399 KVM_REG_ARM_VFP_FPSCR;
400 fpscr = vfp_get_fpscr(env);
401 r.addr = (uintptr_t)&fpscr;
402 ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
403 if (ret) {
404 return ret;
407 write_cpustate_to_list(cpu, true);
409 if (!write_list_to_kvmstate(cpu, level)) {
410 return EINVAL;
414 * Setting VCPU events should be triggered after syncing the registers
415 * to avoid overwriting potential changes made by KVM upon calling
416 * KVM_SET_VCPU_EVENTS ioctl
418 ret = kvm_put_vcpu_events(cpu);
419 if (ret) {
420 return ret;
423 kvm_arm_sync_mpstate_to_kvm(cpu);
425 return ret;
428 int kvm_arch_get_registers(CPUState *cs)
430 ARMCPU *cpu = ARM_CPU(cs);
431 CPUARMState *env = &cpu->env;
432 struct kvm_one_reg r;
433 int mode, bn;
434 int ret, i;
435 uint32_t cpsr, fpscr;
437 for (i = 0; i < ARRAY_SIZE(regs); i++) {
438 r.id = regs[i].id;
439 r.addr = (uintptr_t)(env) + regs[i].offset;
440 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
441 if (ret) {
442 return ret;
446 /* Special cases which aren't a single CPUARMState field */
447 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
448 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
449 r.addr = (uintptr_t)(&cpsr);
450 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
451 if (ret) {
452 return ret;
454 cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
456 /* Make sure the current mode regs are properly set */
457 mode = env->uncached_cpsr & CPSR_M;
458 bn = bank_number(mode);
459 if (mode == ARM_CPU_MODE_FIQ) {
460 memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
461 } else {
462 memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
464 env->regs[13] = env->banked_r13[bn];
465 env->spsr = env->banked_spsr[bn];
466 env->regs[14] = env->banked_r14[r14_bank_number(mode)];
468 /* VFP registers */
469 r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
470 for (i = 0; i < 32; i++) {
471 r.addr = (uintptr_t)aa32_vfp_dreg(env, i);
472 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
473 if (ret) {
474 return ret;
476 r.id++;
479 r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
480 KVM_REG_ARM_VFP_FPSCR;
481 r.addr = (uintptr_t)&fpscr;
482 ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
483 if (ret) {
484 return ret;
486 vfp_set_fpscr(env, fpscr);
488 ret = kvm_get_vcpu_events(cpu);
489 if (ret) {
490 return ret;
493 if (!write_kvmstate_to_list(cpu)) {
494 return EINVAL;
496 /* Note that it's OK to have registers which aren't in CPUState,
497 * so we can ignore a failure return here.
499 write_list_to_cpustate(cpu);
501 kvm_arm_sync_mpstate_to_qemu(cpu);
503 return 0;
506 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
508 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
509 return -EINVAL;
512 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
514 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
515 return -EINVAL;
518 bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
520 qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
521 return false;
524 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
525 target_ulong len, int type)
527 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
528 return -EINVAL;
531 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
532 target_ulong len, int type)
534 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
535 return -EINVAL;
538 void kvm_arch_remove_all_hw_breakpoints(void)
540 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
543 void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
545 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
548 bool kvm_arm_hw_debug_active(CPUState *cs)
550 return false;
553 void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
555 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
558 void kvm_arm_pmu_init(CPUState *cs)
560 qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);